JP2008214830A - Functional fiber material and functional fishing net formed by using the same - Google Patents

Functional fiber material and functional fishing net formed by using the same Download PDF

Info

Publication number
JP2008214830A
JP2008214830A JP2007057220A JP2007057220A JP2008214830A JP 2008214830 A JP2008214830 A JP 2008214830A JP 2007057220 A JP2007057220 A JP 2007057220A JP 2007057220 A JP2007057220 A JP 2007057220A JP 2008214830 A JP2008214830 A JP 2008214830A
Authority
JP
Japan
Prior art keywords
activated carbon
functional
fiber material
functional fiber
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007057220A
Other languages
Japanese (ja)
Inventor
Toshiya Ueda
俊也 上田
Kazuo Yamamoto
和男 山本
Megumi Isshiki
恵 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUST KK
UEDA HOLDINGS KK
Original Assignee
TRUST KK
UEDA HOLDINGS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUST KK, UEDA HOLDINGS KK filed Critical TRUST KK
Priority to JP2007057220A priority Critical patent/JP2008214830A/en
Publication of JP2008214830A publication Critical patent/JP2008214830A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new functional fiber material having sufficient strength and excellent in environmental purification effects having an adsorption property, sterilization performance and self-purification action, and a functional fishing net formed by using the fiber material. <P>SOLUTION: The functional fiber material is obtained by dispersing and mixing a photocatalyst material and an active carbon powder into a polymer material to provide a polymer composition and applying the polymer composition to the surface of a core material having long form or forming the polymer composition at the core material having the long form and attaching other fiber in which the photocatalyst material and the active carbon powder are carried onto the surface of the core material having the long form. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、環境浄化効果に優れる機能性繊維材料及びこれを用いて形成された機能性魚網に関する。   The present invention relates to a functional fiber material having an excellent environmental purification effect and a functional fish net formed using the functional fiber material.

例えば、室内等の生活空間においては、埃や塵、調理器具や暖房器具等から発生する一酸化炭素や水蒸気、或いは住宅建材等から発生するホルムアルデヒドやトルエンなどのシックハウスの原因物質、人やペットからのアンモニア臭等の生活臭が常に発生、存在している。   For example, in living spaces such as indoors, it can be caused by dust, dust, carbon monoxide and water vapor generated from cooking utensils, heating appliances, etc. Daily odors such as ammonia odor are always generated and present.

従来の日本式住宅においては、風通しがよく、又、土壁や畳、或いは障子等の建材を用いていたことから、この建材を用いた建物自体が、前記の水分や物質をある程度吸着したり、吸湿したりする役割を担っていた。   In conventional Japanese-style houses, building materials such as earthen walls, tatami mats, or shoji were used, and the building itself using this building material adsorbs the moisture and substances to some extent. Was responsible for moisture absorption.

しかしながら、近年の日本においては洋式の住宅が多く普及しており、土壁や畳等はパネルボードやフローリング等に取って代わられ、又、住宅の高気密化と相成って、建物自体の水分やその他の成分等に対する吸着機能や吸湿機能が低下し、その結果、ダニやカビを発生させ、いわゆる生活臭やアレルギー等の原因となっているといわれている。   However, in recent years, Western-style houses are widely used in Japan. Dirt walls, tatami mats, etc. have been replaced by panel boards and flooring, etc. It is said that the adsorption function and moisture absorption function for other components and the like are lowered, and as a result, mites and molds are generated, causing a so-called life odor and allergy.

そのため、最近では、室内に空気清浄機やエアコンディショナーなどの設置や、脱臭剤や吸着剤などの使用が不可欠となってきている。   Therefore, recently, it has become indispensable to install an air purifier or an air conditioner in the room and to use a deodorant or an adsorbent.

ところで、これらの空気清浄機やエアコンディショナーなどにあっては、吸着・脱臭エレメントとして、不織布や織布或いはネット等の通気性を有する布基材に活性炭等の吸着材を担持させた吸着シートが多く用いられており、又、脱臭剤等にあっては、不織布や織布等の通気性を有する布基材を袋状に成形し、活性炭等の吸着材を封入したものが一般に用いられている。   By the way, in these air purifiers and air conditioners, as an adsorbing / deodorizing element, an adsorbing sheet in which an adsorbing material such as activated carbon is supported on a non-woven fabric, a woven fabric, or a net fabric such as a net is supported. In many cases, deodorizers are generally used in the form of bags made of breathable fabric base materials such as nonwoven fabrics and woven fabrics, and encapsulated with adsorbents such as activated carbon. Yes.

活性炭は、木材、おがくず、木材乾留物、木炭、椰子殻又はリグニン等を原料(活性炭原料)として、これに特別処理(賦活処理)を施すことによって、気体や色素等に対する吸着能力を高めたものであり、臭いの成分や水分等の微粒子成分に対する吸着能力が比較的高く、且つ安価であることから、現在、冷蔵庫や下駄箱の消臭剤或いは空気清浄機のフィルターその他の消臭・吸着製品の分野において、最も広く使用されている吸着材となっている。   Activated carbon uses wood, sawdust, dry wood, charcoal, coconut husk or lignin as raw materials (active carbon raw materials), and has a special treatment (activation treatment) to improve the adsorption capacity for gases, pigments, etc. Because of its relatively high adsorption capacity for odorous components and fine particle components such as moisture, it is currently inexpensive, so it currently has a deodorant for refrigerators and shoeboxes, filters for air purifiers, and other deodorant / adsorption products. It is the most widely used adsorbent in this field.

しかしながら、係る活性炭による吸着は非定常で、吸着平行に支配されるため、一定量の微粒子成分や水分を吸着すると、活性炭はその吸着能力を失い、いわゆる失活状態となる。   However, since the adsorption by the activated carbon is unsteady and governed in parallel with the adsorption, when a certain amount of fine particle components and moisture are adsorbed, the activated carbon loses its adsorption ability and becomes a so-called deactivated state.

ここで、この失活した活性炭の吸着能を再生するためには、当該活性炭に対して加熱処理や高温不活性ガス等の処理を施し、吸着した微粒子成分や水分を活性炭表面部の微細孔から追い出す方法などがある。   Here, in order to regenerate the adsorptive capacity of the deactivated activated carbon, the activated carbon is subjected to a treatment such as heat treatment or high-temperature inert gas, and the adsorbed fine particle components and moisture are removed from the micropores on the surface of the activated carbon. There are ways to kick it out.

又、微粒子成分が、活性炭表面部の微細孔に強固に吸着した場合にあっては、当該活性炭を500〜800℃程度の高温で数時間加熱して、吸着した微粒子成分を炭化ないし分解させる熱処理を行い、更に水蒸気の存在下、900〜1000℃で数時間加熱して表面部の炭化物をガス化させる賦活化処理を行うといった再生処理等も行われている。   When the fine particle component is firmly adsorbed in the fine pores on the surface of the activated carbon, the activated carbon is heated at a high temperature of about 500 to 800 ° C. for several hours to carbonize or decompose the adsorbed fine particle component. In addition, a regeneration process such as an activation process for gasifying the carbide on the surface by heating at 900 to 1000 ° C. for several hours in the presence of water vapor is also performed.

しかしながら、上述の活性炭の再生方法にあっては、専用の再生炉が必要であることから、再生コストが高くなり、しかも再生炉における水蒸気濃度や賦活化温度或いは賦活化時間等の制御が困難であり、特に再生を繰り返す度に数%〜数十%の吸着能のロスが生ずるといった問題があった。   However, in the above-mentioned regeneration method of activated carbon, since a dedicated regeneration furnace is required, the regeneration cost becomes high, and it is difficult to control the water vapor concentration, the activation temperature or the activation time in the regeneration furnace. In particular, there is a problem that an adsorption capacity loss of several to several tens of percent occurs every time regeneration is repeated.

そのため、通常の活性炭を用いた消臭・吸着製品においては、上述の再生処理を行うことなく、単に消臭・吸着製品全体を交換するか、或いは当該製品内の活性炭を詰め替えるなどの方法が採用されているのが殆どであるが、実際の使用状況下において、この交換という作業は非常に煩わしいものである。   Therefore, in the deodorant / adsorption product using normal activated carbon, a method such as simply replacing the entire deodorant / adsorption product or refilling the activated carbon in the product without performing the above-mentioned regeneration treatment is adopted. In most cases, this replacement operation is very troublesome under actual use conditions.

そのため、ごく最近では、活性炭と二酸化チタン等の光触媒材料とを混合したり、活性炭の表面に対して、接着剤等のバインダーを用いて光触媒材料を担持させたりすることにより、活性炭表面の微細孔に捉えられた微粒子成分を分解させる手段が研究・開発されている。   Therefore, very recently, fine pores on the surface of activated carbon can be obtained by mixing activated carbon and a photocatalytic material such as titanium dioxide, or by supporting the surface of activated carbon with a binder such as an adhesive. Research and development have been conducted on the means for decomposing fine particle components captured in

即ち、これらの光触媒材料と混合させた、或いは光触媒材料を担持させた活性炭は、活性炭表面の微細孔に微粒子成分が捉えられて当該活性炭が飽和状態になった場合にあっても、当該活性炭に対して太陽光や水銀灯等の紫外線を含む光を照射することにより、光触媒材料が前記微粒子成分を分解して活性炭の吸着能力を再生し、長期間にわたる吸着作用を維持・確保することができることから、現在、広く研究されているものであり、本発明者も活性炭の表面に光触媒材料を担持させた光触媒活性炭を開発している(例えば、特許文献1。)。
特開2003−226512号公報
That is, activated carbon mixed with these photocatalyst materials or carrying a photocatalyst material, even if the activated carbon surface is saturated because the fine particle component is caught in the micropores on the surface of the activated carbon, On the other hand, by irradiating light including ultraviolet rays such as sunlight and mercury lamp, the photocatalyst material can decompose the fine particle components to regenerate the adsorption ability of activated carbon, and can maintain and secure the adsorption action for a long time. The present inventor has also developed photocatalytic activated carbon in which a photocatalytic material is supported on the surface of activated carbon (for example, Patent Document 1).
JP 2003-226512 A

そして、この光触媒材料及び活性炭を高分子材料に分散し、繊維状に加工した場合にあっては、この繊維を紡糸したり、織ったり、編んだりすることにより、環境悪化微粒子に対する吸着特性、環境悪化有機物質の吸着・分解特性、殺菌特性及び自浄作用を備えた新規な繊維製品として利用することができるのであるが、強度的に不十分な場合が多く、使用範囲が制限されるといった問題がある。   When this photocatalyst material and activated carbon are dispersed in a polymer material and processed into a fiber shape, the fiber is spun, woven, knitted, and so on. Although it can be used as a new textile product with adsorption / decomposition characteristics, sterilization characteristics, and self-cleaning action of deteriorating organic substances, it is often insufficient in strength, and there is a problem that the range of use is limited. is there.

そこで、本発明者は、これらの問題を解決すべく鋭意検討を重ねた結果、本発明の機能性繊維材料を開発するに至ったのである。   Therefore, as a result of intensive studies to solve these problems, the present inventor has developed the functional fiber material of the present invention.

即ち、本発明者は、光触媒材料及び活性炭粉末を高分子材料に分散、配合させてなる高分子組成物を、長尺状芯材の表面にコーティングしたり、或いは、前記高分子組成物を長尺状芯材に形成し、この長尺状芯材の表面に、光触媒材料及び活性炭粉末を担持させた他の繊維を付着させたりすることにより、著しく強度を向上させることができるとの知見を得たのである。   That is, the present inventor coated a polymer composition obtained by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material on the surface of a long core material, The knowledge that it is possible to remarkably improve the strength by forming on a long core material and attaching other fibers carrying the photocatalyst material and activated carbon powder to the surface of this long core material. I got it.

そして、このように強度を向上させた本発明の機能性繊維材料は、その後、綿状、糸状、マット状、布状、又は網状などの所望の形状に加工することにより、環境悪化微粒子に対する吸着特性及び自浄作用を備えた新規な繊維製品として利用することができるのであり、自浄作用を有するインテリア製品、水質浄化フィルター、断熱材、空気清浄器要フィルターなど、広範な範囲にわたって利用することが可能となるなどの知見を得たのである。   The functional fiber material of the present invention with improved strength is then adsorbed to environmentally deteriorating fine particles by processing into a desired shape such as cotton, thread, mat, cloth, or net. It can be used as a new textile product with characteristics and self-cleaning action, and it can be used over a wide range of products such as interior products with self-cleaning action, water purification filters, heat insulating materials, and air purifier filters. The knowledge such as becoming.

中でも、本発明者は、本発明の機能性繊維材料を網状に加工した本発明の機能性魚網においては、フジツボや海草などの水棲生物の付着が著しく抑制され、メインテナンスに要する労力やランニングコストを著しく低減し得る新規な魚網になるとの知見を得たのである。   Among them, the inventor, in the functional fish net of the present invention obtained by processing the functional fiber material of the present invention into a net shape, the adhesion of aquatic organisms such as barnacles and seaweeds is remarkably suppressed, reducing the labor and running costs required for maintenance. They obtained the knowledge that it would be a new fish net that could be significantly reduced.

本発明は、これらの知見に基づき完成されたものであり、十分な強度を有し、微粒子に対する吸着特性、殺菌特性及び自浄作用を備えた環境浄化効果に優れる新規な機能性繊維材料、及びこれを用いて形成した機能性魚網を提供することを目的とする。   The present invention has been completed based on these findings, a novel functional fiber material having sufficient strength, excellent adsorption effect on fine particles, bactericidal properties, and self-cleaning effect, and a novel functional fiber material. It aims at providing the functional fishnet formed using.

前記目的を達成するために、本発明に係る機能性繊維材料においては、光触媒材料及び活性炭粉末を高分子材料に分散、配合させてなる高分子組成物を、長尺状芯材の表面にコーティングしたり、或いは、前記高分子組成物を長尺状芯材に形成し、この長尺状芯材の表面に、光触媒材料及び活性炭粉末を担持させた他の繊維を付着させたりすることを特徴とするものである。
以下、まず、本発明に係る機能性繊維材料について詳細に説明する。
In order to achieve the above object, in the functional fiber material according to the present invention, a surface of a long core material is coated with a polymer composition obtained by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material. Or, the polymer composition is formed into a long core material, and other fibers carrying the photocatalyst material and activated carbon powder are adhered to the surface of the long core material. It is what.
Hereinafter, first, the functional fiber material according to the present invention will be described in detail.

本発明の機能性繊維材料においては、まず、光触媒材料及び活性炭粉末を高分子材料に分散、配合し、これを、例えばマスターバッチに形成する。   In the functional fiber material of the present invention, first, a photocatalyst material and activated carbon powder are dispersed and blended in a polymer material, and this is formed into, for example, a masterbatch.

前記活性炭粉末としては、活性炭を粉末状に加工したものであれば特に限定されるものではなく、工業用の触媒の担体、脱臭剤、有機溶剤の回収等に用いられる通常の活性炭を用いることができる。   The activated carbon powder is not particularly limited as long as the activated carbon is processed into a powder form, and it is possible to use ordinary activated carbon used for recovering industrial catalyst carriers, deodorizers, organic solvents, and the like. it can.

又、活性炭原料としても特に限定されるものではなく、木材、おがくず、木材乾留物、木炭、椰子殻又はリグニン等の既知の活性炭原料を好適に用いることができるが、中でも、入手し易く、廉価でしかも吸着能力の高い椰子殻を用いることが特に好ましい。   Also, the activated carbon material is not particularly limited, and known activated carbon materials such as wood, sawdust, wood distillate, charcoal, coconut shell or lignin can be suitably used. Moreover, it is particularly preferable to use a coconut shell having a high adsorption capacity.

一方、前記光触媒材料としては、光吸収によって触媒反応を起こし、活性炭に吸着された微粒子成分を分解し得るものであれば特に限定されるものではない。   On the other hand, the photocatalytic material is not particularly limited as long as it can cause a catalytic reaction by light absorption and decompose the fine particle component adsorbed on the activated carbon.

具体的な光触媒材料の例としては、例えば、TiO、ZnO、SrTiO、CdS、CdO、CaP、InP、In、CaAs、BaTiO、KNbO、Fe、Ta、WO、SaO、Bi、NiO、CuO、SiC、SiO、MoS、MoS、InPb、RuO又はCeO等を挙げることができるが、本発明においては特に、光吸収による触媒反応が活発で、微粒子成分に対する分解能力が優れるアナターゼ型のTiOを必須成分とするものが特に好ましい。 Specific examples of photocatalytic materials include TiO 2 , ZnO, SrTiO 3 , CdS, CdO, CaP, InP, In 2 O 3 , CaAs, BaTiO 3 , K 2 NbO 3 , Fe 2 O 3 , Ta 2. Examples include O 5 , WO 3 , SaO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiC, SiO 2 , MoS 2 , MoS 3 , InPb, RuO 2, or CeO 2. Particularly preferred is an anatase-type TiO 2 that has an active catalytic reaction due to light absorption and has an excellent ability to decompose fine particle components as an essential component.

本発明においては、上述のように、光触媒材料として、アナターゼ型のTiOを必須成分とするものが好ましく、具体的には、光触媒全体の30〜100重量%をTiOとすることが好ましく、特に50〜100重量%とするのが一層好ましい。 In the present invention, as described above, it is preferable that the photocatalytic material contains anatase-type TiO 2 as an essential component, and specifically, 30 to 100% by weight of the entire photocatalyst is preferably TiO 2 . In particular, the content is more preferably 50 to 100% by weight.

ところで、活性炭粉末に吸着された微粒子成分を効率よく分解するためには、活性炭に存在する細孔と光触媒材料が近接する必要がある。   By the way, in order to efficiently decompose the fine particle component adsorbed on the activated carbon powder, it is necessary that the pores existing in the activated carbon and the photocatalytic material are close to each other.

そこで、本発明においては、高分子材料中に光触媒材料と活性炭粉末を個々に存在させるよりも、活性炭粉末表面に光触媒材料を担持させることが好ましい。   Therefore, in the present invention, it is preferable to support the photocatalytic material on the surface of the activated carbon powder, rather than causing the photocatalytic material and the activated carbon powder to exist individually in the polymer material.

ここで、前記活性炭粉末の表面に前記光触媒材料を担持させる手段としては、特に限定されるものではなく、公知の方法、例えば、活性炭粉末をアナターゼ型酸化チタン微粒子分散アルコール溶液に浸漬させたり、又は活性炭粉末をチタンアルコキシドアルコール溶液等に浸漬したりすることにより、活性炭粉末の表面に光触媒の被膜を形成したりする浸漬法や、スパッタリング法、グロー放電法、熱蒸着法、真空蒸着法或いはイオンプレーティング法等のいわゆる薄膜作成技術を利用した蒸着手段により、活性炭粉末の表面に光触媒の被膜を形成する手段などを挙げることができる。   Here, the means for supporting the photocatalytic material on the surface of the activated carbon powder is not particularly limited, and a known method, for example, the activated carbon powder is immersed in an anatase-type titanium oxide fine particle-dispersed alcohol solution, or Immersion method in which activated carbon powder is immersed in titanium alkoxide alcohol solution or the like to form a photocatalyst film on the surface of activated carbon powder, sputtering method, glow discharge method, thermal evaporation method, vacuum evaporation method or ion plating method. Examples include a means for forming a photocatalyst film on the surface of the activated carbon powder by vapor deposition means using a so-called thin film forming technique such as a coating method.

又、本発明において、活性炭粉末の表面に形成・担持させる光触媒材料の量は、特に限定されるものではなく、その使用目的や場所等に応じて適宜決定すればよいものであるが、一般的には、活性炭100重量部に対して、光触媒を5〜200重量部程度担持させることが好ましく、活性炭100重量部に対して、光触媒が5重量部未満と少な過ぎると所要の光触媒効果を得難く、一方、200重量部を超えると光触媒効果に限界が生じる上、不経済であるので、いずれも好ましくない。   In the present invention, the amount of the photocatalyst material to be formed / supported on the surface of the activated carbon powder is not particularly limited and may be appropriately determined according to the purpose and place of use. It is preferable to support about 5 to 200 parts by weight of the photocatalyst with respect to 100 parts by weight of the activated carbon. If the amount of the photocatalyst is less than 5 parts by weight with respect to 100 parts by weight of the activated carbon, it is difficult to obtain the required photocatalytic effect. On the other hand, if it exceeds 200 parts by weight, the photocatalytic effect is limited, and it is uneconomical.

更に、一定量の光触媒材料を一回の処理で形成・担持させるよりも、2以上の複数回に分けて形成・担持させるほうが、活性炭粉末の表面に光触媒がより強固に担持されるため好ましい。   Furthermore, it is preferable to form and support a certain amount of photocatalyst material in two or more times, rather than forming and supporting it in a single treatment, because the photocatalyst is more firmly supported on the surface of the activated carbon powder.

ここで、光触媒材料及び活性炭粉末を分散配合させるマトリックスとしての高分子材料としては、公知の高分子材料を好適に用いることができることから、特に限定されるものではなく、具体的には、例えばポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−グリシジルメタクリレート共重合体、エチレン−グリシジルメタクリレート−酢酸ビニル共重合体、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体、ポリ塩化ビニル、ポリウレタン、ポリアミド、ポリエステル、ポリアセタール、ポリアミノ酸、ポリサルフォン、ポリフェニレンオキサイド、スチレンーブタジエンゴム、ブタジエンゴム、スチレン−イソプレンゴム、クロロプレンゴム、ニトリルゴム、エチレン−プロピレンゴム、アクリルゴム、ブチルゴム及びシリコーンゴム等から選ばれた少なくとも1種以上の高分子材料を一般的な例として挙げることができる。   Here, the polymer material as a matrix in which the photocatalyst material and the activated carbon powder are dispersed and blended is not particularly limited since a known polymer material can be suitably used. Specifically, for example, polyethylene , Polypropylene, ethylene-vinyl acetate copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate-vinyl acetate copolymer, ethylene-glycidyl methacrylate-methyl acrylate copolymer, polyvinyl chloride, polyurethane, polyamide, Polyester, polyacetal, polyamino acid, polysulfone, polyphenylene oxide, styrene-butadiene rubber, butadiene rubber, styrene-isoprene rubber, chloroprene rubber, nitrile rubber, ethylene-propylene rubber, acrylic Rugomu, at least one or more polymeric materials selected from butyl rubber and silicone rubber, and the like as a general example.

又、本発明において、高分子材料中に光触媒材料及び活性炭粉末を分散、配合させて高分子組成物を製造するにあたり、その手段としては、特に限定されるものではなく、例えば、高分子材料中に光触媒材料及び活性炭粉末を添加し、適宜熱等を加えながら溶融、混練する方法などを挙げることができる。   In the present invention, the means for producing the polymer composition by dispersing and blending the photocatalyst material and the activated carbon powder in the polymer material is not particularly limited. For example, in the polymer material Examples thereof include a method of adding a photocatalytic material and activated carbon powder, and melting and kneading while appropriately applying heat and the like.

この場合、添加する光触媒材料及び活性炭粉末の配合割合としては、高分子材料の種類、又は作成後の機能性繊維材料に求められる強度及び特性などによって、適宜決定されるものであり、特に限定されるものではないが、環境悪化微粒子に対する吸着特性、環境悪化物質の吸着・分解効果、殺菌特性及び自浄作用等の観点から、通常、高分子材料100重量部に対して、活性炭5〜50重量部程度の範囲、光触媒材料5〜50重量部程度の範囲となるように配合することが一般的となる。   In this case, the mixing ratio of the photocatalyst material to be added and the activated carbon powder is appropriately determined depending on the kind of the polymer material or the strength and characteristics required for the functional fiber material after preparation, and is particularly limited. Although not intended, from the viewpoint of adsorption characteristics for environmentally deteriorating fine particles, adsorption / decomposition effect of environmentally deteriorating substances, sterilizing characteristics, self-cleaning action, etc., usually 5 to 50 parts by weight of activated carbon with respect to 100 parts by weight of polymer material In general, it is blended so as to be in a range of about 5 to 50 parts by weight of the photocatalyst material.

ところで、高分子材料中に光触媒材料及び活性炭粉末を分散、配合させて高分子組成物を製造するにあたり、当該高分子材料に対する光触媒材料や活性炭粉末の配合量が多くなると、高分子材料中において光触媒材料や活性炭粉末が凝集・偏在し、均一な高分子組成物が得られない結果、得られた機能性繊維材料の強度が低下したり、所要の光触媒機能を発現し得ない恐れが生じる場合がある。   By the way, in the production of a polymer composition by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material, if the amount of the photocatalyst material or activated carbon powder in the polymer material increases, the photocatalyst in the polymer material The material and activated carbon powder are agglomerated and unevenly distributed, and as a result, a uniform polymer composition cannot be obtained. As a result, the strength of the obtained functional fiber material may decrease, or the required photocatalytic function may not be exhibited. is there.

そこで、本発明においては、高分子材料中において、光触媒材料及び活性炭粉末の分散性を向上させる分散剤を配合し、これによって、高分子材料中に光触媒材料や活性炭粉末の分散性を向上させると共に、光触媒材料や活性炭粉末の凝集・偏在を防止することが好ましい。   Therefore, in the present invention, a dispersing agent that improves the dispersibility of the photocatalyst material and the activated carbon powder is blended in the polymer material, thereby improving the dispersibility of the photocatalyst material and the activated carbon powder in the polymer material. It is preferable to prevent aggregation and uneven distribution of the photocatalytic material and the activated carbon powder.

この分散剤としては、高分子材料中に配合することにより静電効果を発現し、光触媒材料や活性炭粉末の凝集・偏在を防止し得るものであれば特に限定されるものではないが、具体的に例えば、リン酸カルシウムを主成分とした花弁状多孔質構造を有する微粒子(多孔質リン酸カルシウム、表面が花弁状多孔質ヒドロキシアパタイト 丸尾カルシウム株式会社 商品名 HAP)等を挙げることができる。   The dispersant is not particularly limited as long as it is capable of expressing an electrostatic effect and preventing aggregation and uneven distribution of the photocatalyst material and the activated carbon powder by being mixed in the polymer material. Examples thereof include fine particles having a petal-like porous structure composed mainly of calcium phosphate (porous calcium phosphate, petal-like porous hydroxyapatite with a surface of petal, Maruo Calcium Co., Ltd., trade name HAP).

又、本発明においては、前記分散剤の分散機能をより一層向上させるために、前記分散剤と共に、分散助剤を配合することが好ましい。   In the present invention, in order to further improve the dispersing function of the dispersant, it is preferable to blend a dispersion aid together with the dispersant.

この分散助剤としては、分散剤と共に高分子材料中に配合することにより、分散剤の分散能を向上するものであれば特に限定されるものではないが、具体的に例えば、アラキドン酸、ステアリン酸、イソステアリン酸、ウンデシレン酸、オレイン酸、パルミチン酸、ベヘニン酸、ミリスチン酸、ラウリン酸、ラノリン脂肪酸、リノール酸、リノレン酸などの高級脂肪酸等を挙げることができるのであり、これらの高級脂肪酸は高分子材料に対する光触媒材料や活性炭粉末の親和性を向上し、光触媒材料や活性炭粉末が高分子材料中に分散し易くなるのである。   The dispersion aid is not particularly limited as long as it improves the dispersibility of the dispersant by blending it in the polymer material together with the dispersant. Specifically, for example, arachidonic acid, stearin And higher fatty acids such as acid, isostearic acid, undecylenic acid, oleic acid, palmitic acid, behenic acid, myristic acid, lauric acid, lanolin fatty acid, linoleic acid, and linolenic acid. The affinity of the photocatalyst material or activated carbon powder for the molecular material is improved, and the photocatalyst material or activated carbon powder is easily dispersed in the polymer material.

そして、高分子材料中に配合される前記分散剤や分散助剤の配合割合としては、高分子材料の種類、光触媒材料及び活性炭粉末の配合量、或いは得られた機能性繊維材料に求められる強度及び特性などによって、適宜決定されるものであり、特に限定されるものではないが、本発明においては、高分子材料100重量部に対して、分散剤1〜10重量部程度の範囲、分散助剤0.1〜5重量部程度の範囲となるように配合することが望ましい。   The blending ratio of the dispersant and the dispersion aid blended in the polymer material includes the kind of the polymer material, the blending amount of the photocatalyst material and the activated carbon powder, or the strength required for the obtained functional fiber material. In the present invention, the dispersion aid is in the range of about 1 to 10 parts by weight of the dispersing agent with respect to 100 parts by weight of the polymer material. It is desirable to blend so as to be in the range of about 0.1 to 5 parts by weight of the agent.

ところで、本発明においては、高分子材料中において、長尺状芯材と高分子組成物との親和・接合性を向上させるために、光触媒材料及び活性炭粉末と高分子材料との親和性を向上させる親和剤を配合するのが望ましい。   By the way, in the present invention, in the polymer material, the affinity between the photocatalyst material and the activated carbon powder and the polymer material is improved in order to improve the affinity and bondability between the long core material and the polymer composition. It is desirable to add an affinity agent.

前記親和剤としては、光触媒材料及び活性炭粉末と高分子材料との親和性を向上させる物質であれば特に限定されるものではないが、具体的には、例えば、エチレンプロピレンゴム等のポリオレフィン系熱可塑性エラストマー、シンジオタクチック1、2−ポリブタジエン系熱可塑性エラストマー等のポリジエン系熱可塑性エラストマー、スチレン−エチレン・プロピレン−スチレンブロックコポリマー等のポリスチレン系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられるのであり、特に、水添スチレン−イソプレンブロック共重合体、エチレン−グリシジルメタクリレート共重合体、エチレン−グリシジルメタクリレート−酢酸ビニル共重合体、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体、エチレンプロピレンゴム等が挙げられる。   The affinity agent is not particularly limited as long as it is a substance that improves the affinity between the photocatalyst material and the activated carbon powder and the polymer material. Specifically, for example, a polyolefin heat such as ethylene propylene rubber is used. Plastic elastomers, syndiotactic 1,2-polybutadiene thermoplastic elastomers such as thermoplastic elastomers, polystyrene thermoplastic elastomers such as styrene-ethylene / propylene-styrene block copolymers, polyvinyl chloride thermoplastic elastomers, polyurethanes Examples thereof include thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers. Particularly, hydrogenated styrene-isoprene block copolymers, ethylene-glycidyl methacrylate copolymers, and ethylene. - glycidyl methacrylate - vinyl acetate copolymer, ethylene - glycidyl methacrylate - methyl acrylate copolymer, ethylene-propylene rubber.

そして、高分子材料中に配合される前記親和剤の配合割合としては、高分子材料の種類、光触媒材料及び活性炭粉末の配合量、或いは得られた機能性繊維材料に求められる強度及び特性などによって、適宜決定されるものであり、特に限定されるものではないが、本発明においては、高分子材料100重量部に対して、親和剤2〜18.5重量部程度の範囲となるように配合することが望ましい。   And as a compounding ratio of the said affinity agent mix | blended in a polymer material, it depends on the kind of polymer material, the compounding quantity of a photocatalyst material and activated carbon powder, the intensity | strength and characteristic calculated | required by the obtained functional fiber material, etc. In the present invention, it is blended so as to be in the range of about 2 to 18.5 parts by weight of the affinity agent with respect to 100 parts by weight of the polymer material. It is desirable to do.

ところで、本発明においては、更に、高分子材料中に、脱臭作用、消臭作用、吸水(湿)作用、脱酸素作用、小動物忌避作用、酸化作用、殺虫作用、芳香作用、遠赤外線放射作用、マイナスイオン発生作用等の種々の作用(機能)を発現する各種機能性物質を添加する事が好ましく、このような機能性物質を添加することにより、各種機能性物質の特性を更に付与することができるのである。   By the way, in the present invention, further, in the polymer material, deodorizing action, deodorizing action, water absorption (humidity) action, deoxygenation action, small animal repellent action, oxidation action, insecticidal action, aroma action, far infrared radiation action, It is preferable to add various functional substances that exhibit various actions (functions) such as anion generating action, and by adding such functional substances, the characteristics of various functional substances can be further imparted. It can be done.

ここで、具体的な機能性物質の例としては、まず、室内の水分、ホルムアルデヒドやアルキルベンゼン等のシックハウスの原因となる有害物質(環境悪化物質)や生活臭の原因となる物質の吸着作用を有する、酸化カルシウムや酸化マグネシウム等のアルカリ土類金属や遷移金属の酸化物、水酸化物或いは塩化物、更にシリカゲル、ゼオライト、パーライト、パーミキュライト、アルミナ、活性白土等を挙げることができ、又、植物抽出液等の化学的吸着作用や生活臭を分解して消臭効果を発現する物質なども挙げることができる。   Here, as an example of a specific functional substance, first, it has an action of adsorbing harmful substances (environmentally deteriorating substances) that cause sick house such as indoor moisture, formaldehyde and alkylbenzene, and substances that cause life odor. , Alkaline earth metals such as calcium oxide and magnesium oxide, transition metal oxides, hydroxides or chlorides, silica gel, zeolite, perlite, permiculite, alumina, activated clay, etc. Examples thereof include a substance that exhibits a deodorizing effect by decomposing a chemical adsorption action such as liquid or a living odor.

本発明に係る機能性繊維材料においては、機能性物質が、銀化合物、コロイド銀又はゼオライトから選ばれた少なくとも1種が最も望ましく、銀化合物やコロイド銀は殺菌・抗菌作用が極めて高く、フジツボや海草等の水棲生物の付着が著しく抑制される上、優れた自浄作用を発現するのであり、又、ゼオライトは環境悪化微粒子に対する吸着特性が良好なのであり、特に、暗所や夜間に活性が低下してしまう光触媒の分解効果を補うことができることから、本発明の機能性繊維材料においては、中でも、銀化合物(銀イオン)をゼオライトに担持させたものが一層望ましい。   In the functional fiber material according to the present invention, it is most desirable that the functional substance is at least one selected from silver compounds, colloidal silver or zeolite, and silver compounds and colloidal silver have extremely high bactericidal / antibacterial action. Adhesion of aquatic organisms such as seaweeds is remarkably suppressed and an excellent self-cleaning effect is exhibited. Also, zeolite has good adsorption properties for environmentally deteriorating fine particles, and its activity decreases particularly in the dark and at night. Among them, the functional fiber material of the present invention is more preferably one in which a silver compound (silver ion) is supported on zeolite because the photocatalyst decomposition effect can be compensated.

又、本発明に係る機能性繊維材料においては、機能性物質として酸化力が高い物質も好適に用いられるが、この機能性物質をとしては、例えば、ペルオキソ二硫酸カリウムやペルオキソ二硫酸ナトリウムのようなペルオキソ二硫酸塩、二酸化マンガン、過マンガン酸カリウム、過マンガン酸ナトリウムのような過マンガン酸塩類、ヨウ素、過塩素酸塩又は過ヨウ素酸塩等が挙げられる。   In the functional fiber material according to the present invention, a substance having high oxidizing power is also preferably used as the functional substance. Examples of the functional substance include potassium peroxodisulfate and sodium peroxodisulfate. Permanganates such as peroxodisulfate, manganese dioxide, potassium permanganate, sodium permanganate, iodine, perchlorate or periodate.

そして、本発明の機能性繊維材料においては、前述の光触媒材料及び活性炭粉末が分散、配合された高分子組成物を、長尺状芯材の表面にコーティングしたものが挙げられるのであり、この場合、この長尺状芯材としては、光触媒材料及び活性炭粉末が分散、担持されたもので形成されていても良く、光触媒材料及び活性炭粉末が全く担持されていない繊維で形成されたものでも良いのである。   And in the functional fiber material of the present invention, the above-mentioned photocatalyst material and activated carbon powder are dispersed and blended with a polymer composition coated on the surface of the long core material. In this case, The long core material may be formed by dispersing and supporting a photocatalyst material and activated carbon powder, or may be formed by a fiber in which the photocatalyst material and activated carbon powder are not supported at all. is there.

又、本発明の機能性繊維材料においては、光触媒材料及び活性炭粉末を高分子材料に分散、配合させてなる高分子組成物を長尺状芯材に形成し、これを長尺状芯材として、当該長尺状芯材の表面に、光触媒材料及び活性炭粉末を担持させた他の繊維を付着させたものが挙げられる。   In the functional fiber material of the present invention, a polymer composition obtained by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material is formed into a long core material, and this is used as a long core material. , And other fibers carrying a photocatalytic material and activated carbon powder on the surface of the elongated core material.

つまり、本発明に係る機能性繊維材料は、前記構成を備えているので、繊維材料としての強度が著しく向上し、利用範囲を広範なものとすることができるのである。   That is, since the functional fiber material according to the present invention has the above-described configuration, the strength as the fiber material is remarkably improved and the range of use can be widened.

なお、本発明において「長尺状芯材」或いは「長尺状」とは、繊維状、糸状、紐状或いは帯状などの太さや厚みに比較してその長さが著しく長い形状のものの総称である。   In the present invention, “elongate core material” or “long shape” is a general term for a shape having a remarkably long length compared to the thickness or thickness of a fiber, thread, string, or strip. is there.

ここで、光触媒材料及び活性炭粉末が高分子材料に分散、配合されてなる高分子組成物を、長尺状芯材の表面にコーティングする手段としては、特に限定されるものではないが、例えば、光触媒材料及び活性炭粉末が分散、配合された高分子組成物を加熱することにより溶融し、この溶融状態の高分子組成物中に長尺状芯材をくぐらせ、更にこれをダイスに通過させて外層の厚さを調整したり、溶融状態の高分子組成物をダイスに流入させつつ、このダイスに長尺状芯材を通過させることにより、長尺状芯材の表面をコーティングしたりする方法などを挙げることができる。   Here, the means for coating the surface of the long core material with the polymer composition in which the photocatalyst material and the activated carbon powder are dispersed and blended in the polymer material is not particularly limited. The polymer composition in which the photocatalyst material and the activated carbon powder are dispersed and blended is melted by heating, and the long core material is passed through the polymer composition in the molten state, and further passed through a die. A method of coating the surface of the long core material by adjusting the thickness of the outer layer or allowing the molten polymer composition to flow into the die while passing the long core material through the die. And so on.

即ち、本発明に係る機能性繊維材料においては、断面二重構造のものであり、前記長尺状芯材の太さや厚みとしては、用途や使用目的更に要求される強度などによって異なり、特に限定されるものではないが、一般に、機能性繊維材料全体の1/5〜4/5の範囲とするのが好ましい。   That is, the functional fiber material according to the present invention has a double cross-sectional structure, and the thickness and thickness of the long core material differ depending on the use and purpose of use and further required strength, and are particularly limited. In general, however, it is preferably in the range of 1/5 to 4/5 of the entire functional fiber material.

なお、芯材としての長尺状芯材を形成する素材としては、特に限定されるものではなく、公知の天然繊維及び/または人造繊維を長尺状に形成したものを挙げることができる。   In addition, it does not specifically limit as a raw material which forms the elongate core material as a core material, The thing which formed the well-known natural fiber and / or artificial fiber in the elongate shape can be mentioned.

一方、光触媒材料及び活性炭粉末が分散、配合された高分子組成物を長尺状に成形して長尺状芯材とし、この表面に別の繊維を付着させる手段としては、特に限定されるものではないが、例えば、光触媒材料及び活性炭粉末が分散配合された高分子材料を加熱することにより溶融し、これを押出成形することにより長尺状に加工すると共に、表面が硬化する前の粘・接着性により別の繊維を付着させたり、接着剤などを用いて他の繊維を接着したりする方法などを挙げることができるのであり、これによって、本発明に係る機能性繊維材料は断面二重構造に形成されるのである。   On the other hand, the polymer composition in which the photocatalyst material and the activated carbon powder are dispersed and blended is formed into a long shape to form a long core material, and means for attaching another fiber to the surface is particularly limited. However, for example, a polymer material in which a photocatalyst material and activated carbon powder are dispersed and blended is melted by heating and processed into a long shape by extrusion molding, and the viscosity before the surface is cured Examples include a method of adhering another fiber due to adhesiveness, or a method of adhering another fiber using an adhesive or the like. By this, the functional fiber material according to the present invention has a double cross-section. It is formed into a structure.

なお、他の繊維材料を形成する素材としては、特に限定されるものではなく、公知の天然繊維及び/または人造繊維を適宜選択して使用することができる。   In addition, it does not specifically limit as a raw material which forms another fiber material, A well-known natural fiber and / or artificial fiber can be selected suitably, and can be used.

上述の如く、本発明に係る機能性繊維材料は、光触媒材料及び活性炭粉末を高分子材料に分散、配合させてなる高分子組成物を、長尺状芯材の表面にコーティングしたり、或いは、前記高分子組成物を長尺状芯材に形成し、この長尺状芯材の表面に、光触媒材料及び活性炭粉末を担持させた他の繊維を付着させたりすることにより、光触媒材料及び活性炭粉末の有する環境悪化微粒子に対する吸着特性、環境悪化物質の吸着・分解効果、殺菌特性及び自浄作用等の特性を繊維材料に付与しているのであるが、本発明においては、これらの特性を一層向上すべく、この機能性繊維材料に対し、更に、延伸処理を施すことが好ましい。   As described above, the functional fiber material according to the present invention is obtained by coating the surface of a long core material with a polymer composition obtained by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material, or The polymer composition is formed into a long core material, and the photocatalyst material and the activated carbon powder are adhered to the surface of the long core material by attaching another fiber carrying the photocatalyst material and the activated carbon powder. The fiber material is provided with adsorption characteristics for environmentally deteriorating particulates, adsorption / decomposition effects of environmentally degrading substances, sterilization characteristics, and self-cleaning action. In the present invention, these characteristics are further improved. Therefore, it is preferable that the functional fiber material is further subjected to a stretching treatment.

即ち、本発明に係る機能性繊維材料において延伸処理を施した場合、それに延伸倍率に応じて、当該機能性繊維材料が細くなると共に高分子材料中に埋没している光触媒材料及び活性炭粉末が露出するのであり、その結果、より多くの光触媒材料及び活性炭粉末を環境中に暴露することができる結果、光触媒材料及び活性炭粉末の有する上述の特性をより一層向上することができるのである。   That is, when the functional fiber material according to the present invention is subjected to a stretching treatment, the functional fiber material becomes thin and the photocatalyst material and the activated carbon powder embedded in the polymer material are exposed according to the stretching ratio. As a result, more photocatalytic material and activated carbon powder can be exposed to the environment, and as a result, the above-mentioned properties of the photocatalytic material and activated carbon powder can be further improved.

なお、前記延伸処理としては、特に限定されるものではなく、例えば、牽伸ローラーなどを用いて任意の延伸倍率に延伸すれば良く、又、延伸倍率についても、高分子材料の種類、光触媒材料及び活性炭粉末の配合量、或いは得られた機能性繊維材料に求められる強度及び特性などによって、適宜決定されるものであり、特に限定されるものではないが、一般的に2〜10倍程度の延伸倍率とするが好ましく、特に、3〜6.5倍程度の延伸倍率とするが一層好ましい。   The stretching treatment is not particularly limited, and for example, it may be stretched to an arbitrary stretching ratio using a drafting roller, and the stretching ratio is also the kind of polymer material, photocatalytic material. And the amount of the activated carbon powder, or the strength and characteristics required of the obtained functional fiber material, which are appropriately determined, and are not particularly limited, but are generally about 2 to 10 times. The draw ratio is preferable, and a draw ratio of about 3 to 6.5 times is particularly preferable.

延伸倍率が2倍未満では光触媒材料及び活性炭粉末の露出度が低く得られる効果が乏しいのであり、一方、10倍を超えると、外層が破断する恐れが有るうえ、効果に限界が生じると共に、細くなりすぎて機械的強度が低下するため、いずれの場合も好ましくない。   If the draw ratio is less than 2 times, the effect of obtaining low exposure of the photocatalyst material and the activated carbon powder is poor. On the other hand, if it exceeds 10 times, the outer layer may be broken and the effect is limited and thin. In any case, the mechanical strength decreases because of too much.

そして、本発明の機能性繊維材料においては、所望の形態、例えば、綿状、布状、又は網状に加工して利用されるのであり、微粒子に対する吸着特性、殺菌特性及び自浄作用を備え、しかも充分な強度を備えた新規な繊維製品として、例えば濾過材や断熱材更に敷物等、広範な分野において応用できるのである。   And in the functional fiber material of the present invention, it is used after being processed into a desired form, for example, cotton, cloth, or net, and has adsorption characteristics, sterilization characteristics and self-cleaning action for fine particles, As a new fiber product having sufficient strength, it can be applied in a wide range of fields such as filter media, heat insulating materials, and rugs.

即ち、本発明の機能性繊維材料を、紡糸したり、織ったり、編んだり、固めたりすることにより、例えば、糸やロープなどの紐状製品や綿状製品、織布、不織布、編物、フェルトなどの布状製品、或いは網状製品などの繊維製品に加工することができるのである。   That is, by spinning, weaving, knitting, or setting the functional fiber material of the present invention, for example, string-like products such as yarn and rope, cotton-like products, woven fabrics, non-woven fabrics, knitted fabrics, felts, etc. It can be processed into a textile product such as a cloth product or a net product.

特に、本発明の機能性繊維材料を網状に形成してなる本発明の機能性魚網は、光触媒の自浄作用及び殺菌作用によってアオコなどの微細な藍藻(ランソウ)類や緑藻類及び細菌や微生物、フジツボなどの貝類や海草などの水棲生物の付着を好適に抑止することができるのであり、メインテナンスに要する労力やランニングコストの低減を実現することができるのである。   In particular, the functional fishnet of the present invention formed by forming the functional fiber material of the present invention into a net is a fine cyanobacterium such as blue seaweed, green algae, bacteria, microorganisms, and barnacles by the self-cleaning and bactericidal action of the photocatalyst. It is possible to suitably suppress the attachment of aquatic organisms such as shellfish and seaweed, and it is possible to reduce labor and running costs required for maintenance.

本発明においては、前記構成を有し、十分な強度を有し、微粒子に対する吸着特性、殺菌特性及び自浄作用を備えた環境浄化効果に優れる新規な機能性繊維材料となるのであり、そして、この機能性繊維材料を網状に加工して機能性魚網とするものである。   In the present invention, it is a novel functional fiber material having the above-described configuration, having sufficient strength, and excellent in environmental purification effect having adsorption characteristics, sterilization characteristics and self-cleaning action for fine particles, and this A functional fish material is processed into a net shape to form a functional fish net.

即ち、本発明に係る機能性繊維材料においては、光触媒材料及び活性炭粉末を高分子材料に分散、配合させ、これを長尺状芯材表面にコーティングしたり、或いは、これを長尺状に加工すると共にこれを芯材とし、その表面に別の繊維を付着させたりすることにより、著しく強度を向上させることができるのである。   That is, in the functional fiber material according to the present invention, the photocatalyst material and the activated carbon powder are dispersed and blended in the polymer material, and this is coated on the surface of the long core material or processed into a long shape. In addition, the strength can be remarkably improved by using this as a core material and attaching another fiber to the surface thereof.

又、本発明に係る機能性繊維材料おいて、種々の作用(機能)を発現する各種機能性物質を添加すると、当該各種機能性物質の特性を更に付与することができるのであり、特に、この機能性物質が、銀化合物、コロイド銀又はゼオライトから選ばれた少なくとも1種が最も望ましく、銀化合物やコロイド銀は殺菌・抗菌作用が極めて高く、フジツボや海草等の水棲生物の付着が著しく抑制される上、優れた自浄作用を発現するのであり、又、ゼオライトは環境悪化微粒子に対する吸着特性が良好なのであり、特に、銀化合物(銀イオン)をゼオライトに担持させたものが、暗所や夜間に活性が低下してしまう光触媒の分解効果を補うことができるなどの効果を発現するのである。   Moreover, in the functional fiber material according to the present invention, when various functional substances that exhibit various actions (functions) are added, the characteristics of the various functional substances can be further imparted. The functional substance is most preferably at least one selected from silver compounds, colloidal silver, and zeolite. Silver compounds and colloidal silver have extremely high bactericidal and antibacterial effects, and adhesion of aquatic organisms such as barnacles and seaweeds is remarkably suppressed. In addition, it exhibits an excellent self-cleaning action, and zeolite has good adsorption characteristics for environmentally-deteriorating fine particles. In particular, zeolites carrying silver compounds (silver ions) are used in the dark or at night. The effect of being able to compensate for the decomposition effect of the photocatalyst whose activity decreases is exhibited.

そして、この本発明の機能性繊維材料を、紡糸したり、織ったり、編んだり、固めたりすることにより、例えば、糸やロープなどの紐状製品や綿状製品、織布、不織布、編物、フェルトなどの布状製品、或いは網状製品などの機能性繊維製品とすることができるのであり、微粒子に対する吸着特性、殺菌特性及び自浄作用を備えた新規な繊維製品として利用することができるのである。   And, by spinning, weaving, knitting, or solidifying the functional fiber material of the present invention, for example, string-like products such as yarn and rope, cotton-like products, woven fabrics, nonwoven fabrics, knitted fabrics, It can be a functional fiber product such as a cloth-like product such as felt or a net-like product, and can be used as a novel fiber product having adsorption characteristics for fine particles, sterilization characteristics, and self-cleaning action.

特に、本発明の機能性繊維材料を網状に形成してなる、本発明に係る機能性魚網においては、光触媒の自浄作用及び殺菌作用によってアオコなどの微細な藍藻(ランソウ)類や緑藻類及び細菌や微生物、フジツボなどの貝類の付着を好適に抑止することができるのであり、メインテナンスに要する労力やランニングコストを著しく低減し得るのである。   In particular, in the functional fish net according to the present invention formed by forming the functional fiber material of the present invention into a net shape, fine cyanobacteria such as blue seaweed, green algae, bacteria, and so on by the self-cleaning action and bactericidal action of the photocatalyst. Adhesion of shellfish such as microorganisms and barnacles can be suitably suppressed, and labor and running costs required for maintenance can be significantly reduced.

以下、本発明を実施するための最良の形態を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited to the following examples.

図1は、本発明の機能性繊維材料1を示す模式図であり、この図における機能性繊維材料1は、光触媒材料3及び活性炭粉末4が分散、配合された高分子組成物5を長尺状芯材2の表面にコーティングしたものであり、即ち、長尺状芯材2を芯材として、その表面が光触媒材料3及び活性炭粉末4が分散、配合された高分子組成物5で被覆した断面二重構造を有するのである。   FIG. 1 is a schematic view showing a functional fiber material 1 of the present invention. The functional fiber material 1 in this figure is a long polymer composition 5 in which a photocatalyst material 3 and activated carbon powder 4 are dispersed and blended. That is, the surface of the core material 2 is coated, that is, the long core material 2 is used as the core material, and the surface is coated with the polymer composition 5 in which the photocatalyst material 3 and the activated carbon powder 4 are dispersed and blended. It has a double-section structure.

一方、図2は、本発明の他の機能性繊維材料1を示す断面図であり、図2に示す機能性繊維材料1は、光触媒材料3及び活性炭粉末4が分散、配合された高分子組成物5を長尺状に加工すると共にこれを芯材とし、この表面に他の繊維材料6を付着させたものであり、即ち、光触媒材料3及び活性炭粉末4が分散、配合された高分子組成物5で形成された長尺状芯材として、その表面を他の繊維材料6で被覆した断面二重構造を有するのである。   On the other hand, FIG. 2 is a cross-sectional view showing another functional fiber material 1 of the present invention. The functional fiber material 1 shown in FIG. 2 has a polymer composition in which a photocatalyst material 3 and activated carbon powder 4 are dispersed and blended. The product 5 is processed into a long shape, and this is used as a core, and another fiber material 6 is attached to the surface, that is, a polymer composition in which the photocatalyst material 3 and the activated carbon powder 4 are dispersed and blended. As a long core formed of the object 5, it has a double cross-sectional structure whose surface is covered with another fiber material 6.

<活性炭粉末>
椰子殻を乾燥して微粉を除いた活性炭原料を焼成炉(550〜650℃)に入れ、赤熱した状態で水蒸気、炭酸ガス(燃焼ガス中のCO2)及び酸素(燃焼空気中のO2)の混合雰囲気中、温度850〜950℃で活性化処理し、これを粉砕機で更に細かく粉砕し、フィルターに通過させることにより、活性炭の微粉末(CTC:55.42%)を得た。
<Activated carbon powder>
The activated carbon raw material from which the coconut shell is dried and fine powder is removed is placed in a firing furnace (550 to 650 ° C.) and mixed with water vapor, carbon dioxide (CO2 in the combustion gas) and oxygen (O2 in the combustion air) in a red-hot state. In the atmosphere, activation treatment was performed at a temperature of 850 to 950 ° C., and this was further finely pulverized by a pulverizer and passed through a filter to obtain fine powder of activated carbon (CTC: 55.42%).

<光触媒材料が担持された活性炭粉末の製造>
光触媒材料として、アナターゼ型酸化チタン粉末を用いた。
<Manufacture of activated carbon powder carrying photocatalytic material>
Anatase type titanium oxide powder was used as a photocatalytic material.

前記活性炭粉末(100g)を、真空容器内に設けられたホルダーに設置して、当該ホルダーに設けられた攪拌棒で攪拌しながら約400℃に加熱した。   The activated carbon powder (100 g) was placed in a holder provided in a vacuum vessel, and heated to about 400 ° C. while stirring with a stirring bar provided in the holder.

一方、真空容器内に設けられた基台には、光触媒であるアナターゼ型酸化チタン(50g)を設置し、これを蒸発源とした。   On the other hand, anatase-type titanium oxide (50 g) as a photocatalyst was installed on the base provided in the vacuum vessel, and this was used as an evaporation source.

引き続いて、真空容器内に充填されている窒素ガスを真空ポンプで吸引し、真空容器内部を減圧にし、0.000035mmHgに達した時点で、基台をヒーターで加熱し、前記アナターゼ型酸化チタンを蒸発させ、ホルダー上の活性炭表面に酸化チタンの被膜を形成・担持させることにより、表面に光触媒材料が担持された活性炭粉末(光触媒材料担持量22.3g)を得た。   Subsequently, nitrogen gas filled in the vacuum vessel is sucked with a vacuum pump, the inside of the vacuum vessel is decompressed, and when the temperature reaches 0.000035 mmHg, the base is heated with a heater, and the anatase titanium oxide is removed. Evaporation was performed and a titanium oxide film was formed and supported on the surface of the activated carbon on the holder to obtain activated carbon powder (photocatalyst material supported amount 22.3 g) supported on the surface.

前記得られた活性炭50重量部と光触媒材料が担持された活性炭粉末50重量部更に分散剤としての多孔質リン酸カルシウム(丸尾カルシウム株式会社製 商品名 HAP)10重量部を混合し、この混合物を、粒径が10μm以下程度になるまでアトマイザー加工を施すことにより微粉末状混合物を得た。   50 parts by weight of the obtained activated carbon and 50 parts by weight of activated carbon powder carrying a photocatalytic material were mixed with 10 parts by weight of porous calcium phosphate (trade name HAP manufactured by Maruo Calcium Co., Ltd.) as a dispersant. A fine powdery mixture was obtained by carrying out atomizer processing until the diameter became about 10 μm or less.

ポリエチレン樹脂60重量部に対し、前記微粉末状混合物33重量部、分散剤としての水添スチレン‐イソプレンブロック共重合物7重量部、及び分散助剤としてのスレアリン酸1重量部を加え、ニーダーによって充分に混練、溶融してマスターバッチを得た。   To 60 parts by weight of a polyethylene resin, 33 parts by weight of the fine powder mixture, 7 parts by weight of a hydrogenated styrene-isoprene block copolymer as a dispersant, and 1 part by weight of shalelic acid as a dispersion aid are added. The master batch was obtained by sufficiently kneading and melting.

このマスターバッチを加熱し、溶融状態としたものに対し、太さ120μmのポリプロピレン繊維からなる長尺状芯材をくぐらせ、更にダイスを通過させることにより、太さ240μm(コーティング厚60μm)の本発明の機能性繊維材料を得た。   This master batch is heated to a molten state, a long core material made of polypropylene fiber having a thickness of 120 μm is passed through, and further passed through a die, thereby a book having a thickness of 240 μm (coating thickness 60 μm). The functional fiber material of the invention was obtained.

次いで、この機能性繊維材料に対し、延伸処理(延伸倍率4倍)を施すことにより、太さ60μm(コーティング厚15μm)の本発明の機能性繊維材料を得た。   Subsequently, the functional fiber material of the present invention having a thickness of 60 μm (coating thickness of 15 μm) was obtained by subjecting this functional fiber material to a stretching treatment (stretching ratio: 4 times).

前記得られた活性炭50重量部と光触媒材料が担持された活性炭粉末50重量部更に分散剤としての多孔質リン酸カルシウム(丸尾カルシウム株式会社製 商品名 HAP)10重量部を混合し、この混合物を、粒径が10μm以下程度になるまでアトマイザー加工を施すことにより微粉末状混合物を得た。   50 parts by weight of the obtained activated carbon and 50 parts by weight of activated carbon powder carrying a photocatalytic material were mixed with 10 parts by weight of porous calcium phosphate (trade name HAP manufactured by Maruo Calcium Co., Ltd.) as a dispersant. A fine powdery mixture was obtained by carrying out atomizer processing until the diameter became about 10 μm or less.

ポリプロピレン樹脂60重量部に対し、前記微粉末状混合物33重量部、分散剤としてのエチレン‐グリシジルメタクリレート共重合体(株式会社クラレ製 商品名 ボンドファースト)7重量部、及び分散助剤としてのスレアリン酸1重量部を加え、更に、コロイド銀をゼオライトに対して0.5重量%含有させてなる銀含有ゼオライト7.5重量部を添加し、ニーダーによって充分に混練、溶融してマスターバッチを得た。   For 60 parts by weight of polypropylene resin, 33 parts by weight of the fine powder mixture, 7 parts by weight of ethylene-glycidyl methacrylate copolymer (trade name: Bond First, manufactured by Kuraray Co., Ltd.) as a dispersing agent, and srealic acid as a dispersing aid 1 part by weight was added, and further, 7.5 parts by weight of silver-containing zeolite containing 0.5% by weight of colloidal silver with respect to the zeolite was added, and kneaded and melted sufficiently with a kneader to obtain a master batch. .

このマスターバッチを加熱し、溶融状態としたものに対し、太さ120μmのポリエステル繊維からなる長尺状芯材をくぐらせ、更にダイスを通過させることにより、太さ240μm(コーティング厚60μm)の本発明の機能性繊維材料を得た。   This master batch is heated to a molten state, a long core material made of polyester fiber having a thickness of 120 μm is passed through, and further passed through a die, thereby a book having a thickness of 240 μm (coating thickness 60 μm). The functional fiber material of the invention was obtained.

次いで、この機能性繊維材料に対し、延伸処理(延伸倍率4倍)を施すことにより、太さ60μm(コーティング厚15μm)の本発明の機能性繊維材料を得た。   Subsequently, the functional fiber material of the present invention having a thickness of 60 μm (coating thickness of 15 μm) was obtained by subjecting this functional fiber material to a stretching treatment (stretching ratio: 4 times).

比較例Comparative example

前記活性炭50重量部と光触媒材料が担持された活性炭粉末50重量部更に分散剤としての多孔質リン酸カルシウム(丸尾カルシウム株式会社製 商品名 HAP)10重量部を混合し、この混合物を、粒径が10μm以下程度になるまでアトマイザー加工を施すことにより微粉末状混合物を得た。   50 parts by weight of the activated carbon and 50 parts by weight of activated carbon powder carrying a photocatalytic material were mixed with 10 parts by weight of porous calcium phosphate (trade name HAP manufactured by Maruo Calcium Co., Ltd.) as a dispersant, and the mixture was mixed with a particle size of 10 μm. A fine powdery mixture was obtained by performing atomizer processing to the following extent.

ポリエチレン樹脂60重量部に対し、前述の微粉末状混合物33重量部、分散剤としての水添スチレン‐イソプレンブロック共重合物7重量部、及び分散助剤としてのスレアリン酸1重量部を加え、ニーダーによって充分に混練、分散してマスターバッチを得た。   To 60 parts by weight of a polyethylene resin, 33 parts by weight of the fine powder mixture, 7 parts by weight of a hydrogenated styrene-isoprene block copolymer as a dispersing agent, and 1 part by weight of srealic acid as a dispersion aid are added. Were sufficiently kneaded and dispersed to obtain a master batch.

このマスターバッチを加熱・溶融し、細孔から押し出し加工することにより、太さ60μmの比較例に係る繊維材料を得た。   The master batch was heated and melted, and extruded from the pores to obtain a fiber material according to a comparative example having a thickness of 60 μm.

<強度比較試験>
この実施例1及び実施例2で得られた本発明の機能性繊維材料(延伸処理後のもの)及び比較例で得られた繊維材料について、それぞれ引っ張り強度試験に供したところ、比較例で得られた繊維材料に比較して、実施例1及び実施例2で得られた本発明の機能性繊維材料はいずれも強度が5倍以上高く、充分な機械的強度を有していることが認められた。
<Strength comparison test>
When the functional fiber material of the present invention obtained in Example 1 and Example 2 (after the stretching treatment) and the fiber material obtained in the comparative example were each subjected to a tensile strength test, they were obtained in the comparative example. In comparison with the obtained fiber material, the functional fiber materials of the present invention obtained in Example 1 and Example 2 are both 5 times higher in strength and have sufficient mechanical strength. It was.

<浄化能力比較試験>
アンモニア性窒素の初期濃度が20mg/Lとなるように硫酸アンモニウム(試薬特級)で1Lの検液を調製し、実施例1及び実施例2で得られた機能性繊維材料をそれぞれ浸漬して、スターラーで緩く攪拌しながら、紫外線を照射し、24時間経過時のアンモニア性窒素濃度をインドフェノール青吸光光度法により測定し、除去率を計算した。
<Purification capacity comparison test>
Prepare a 1 L test solution with ammonium sulfate (special grade reagent) so that the initial concentration of ammoniacal nitrogen is 20 mg / L, and immerse the functional fiber materials obtained in Example 1 and Example 2 respectively. The mixture was irradiated with ultraviolet rays while gently stirring at, and the ammoniacal nitrogen concentration after 24 hours was measured by indophenol blue absorptiometry, and the removal rate was calculated.

その結果、24時間経過後のアンモニア性窒素の除去率は、実施例1で得られた機能性繊維材料において55%程度、実施例2で得られた機能性繊維材料において65%程度となることが確認された。   As a result, the removal rate of ammonia nitrogen after 24 hours is about 55% in the functional fiber material obtained in Example 1 and about 65% in the functional fiber material obtained in Example 2. Was confirmed.

これより、光触媒材料を活性炭粉末表面に担持させる方が、より効率よくアオコ等の有機微粒子成分を分解していることが認められた。   From this, it was confirmed that the photocatalyst material supported on the surface of the activated carbon powder decomposed organic fine particle components such as blue sea bream more efficiently.

その後、紫外線の照射を止め、更に48時間経過した後に、アンモニア性窒素濃度を測定したところ、実施例1で得られた機能性繊維材料におけるアンモニア性窒素の除去率は60%程度に留まっていた。   Thereafter, the irradiation with ultraviolet light was stopped, and after 48 hours had passed, the ammoniacal nitrogen concentration was measured. As a result, the removal rate of ammoniacal nitrogen in the functional fiber material obtained in Example 1 remained at about 60%. .

一方、実施例2で得られた機能性繊維材料におけるアンモニア性窒素の除去率は85%にまで上昇していることが確認され、これより、銀含有ゼオライトを添加することにより、暗所においても光触媒による自浄作用を維持できることが認められた。   On the other hand, it was confirmed that the removal rate of ammonia nitrogen in the functional fiber material obtained in Example 2 was increased to 85%. From this, by adding silver-containing zeolite, even in the dark It was confirmed that the self-cleaning action by the photocatalyst can be maintained.

前記実施例2で得られた機能性繊維材料(延伸処理後のもの)を数十本撚り合わせて太さ2mm程度の糸に加工し、この糸を更に2本縒り合わせることにより紐状に加工し、次いで、この紐体を網状に加工することにより、本発明の機能性魚網を得た。
なお、本実施例においては、簡易的に10cm角のネットとして作成した。
Tens of the functional fiber material obtained in Example 2 (after being stretched) is twisted into a yarn having a thickness of about 2 mm, and the two yarns are further twisted to form a string. Then, the functional fish net of the present invention was obtained by processing this string into a net shape.
In this example, a 10 cm square net was simply created.

アオコが発生している池の水(30リットル)を循環ポンプフィルターつきの水槽に入れ、水の循環経路中に、前記実施例3で得られた機能性魚網を設置し、ポンプの電源を入れたまま一週間水を循環させた。   The water (30 liters) of the pond where the sea bream is generated is put in a water tank with a circulation pump filter, the functional fish net obtained in Example 3 is installed in the water circulation path, and the pump is turned on. Water was circulated for one week.

又、同様に、比較例として、アオコが発生している池の水(30リットル)を循環ポンプフィルターつきの別水槽に入れ、水の循環経路中に、何も設置しない状態でポンプの電源を入れたまま一週間水を循環させた。   Similarly, as a comparative example, put water (30 liters) of a pond in which water is generated into a separate water tank with a circulation pump filter, and turn on the pump power in a state where nothing is installed in the water circulation path. Water was circulated for one week.

一週間経過後、各水槽内のアオコの状態を目視で確認したところ、実施例3で得られた機能性魚網を設置した水槽については、アオコが死滅し、水の透明度も明らかに向上していることが認められた。   After a week, when the state of the auko in each aquarium was confirmed visually, the aquarium was killed and the water transparency was clearly improved for the aquarium equipped with the functional fish net obtained in Example 3. It was recognized that

一方、機能性魚網を設置していない水槽については、アオコの生息量が増えていることが確認された。   On the other hand, it was confirmed that the aquatic abundance increased in aquariums without functional fishnets.

更に、和歌山県串本漁場において、漁師の協力を得て、前記機能性魚網と市販されている魚網とを通常の使用状態で3ヶ月間海中に設置した後、それぞれの魚網を引き上げて肉眼で観察したところ、機能性魚網についてはフジツボなどの貝類や海草等の生物の付着は殆ど確認されなかったが、市販の魚網についてはフジツボなどの貝類や海草等の生物の付着が確認された。   Furthermore, at the Kushimoto fishing ground in Wakayama Prefecture, with the cooperation of fishermen, the functional fishnets and commercially available fishnets were installed in the sea for three months under normal use, and then each fishnet was pulled up and observed with the naked eye. As a result, the attachment of shellfish such as barnacles and seaweeds to the functional fishnet was hardly confirmed, but the attachment of shellfish such as barnacles and organisms such as seaweed was confirmed to the commercially available fishnet.

図1は、本発明の機能性繊維材料を示す模式図である。FIG. 1 is a schematic view showing a functional fiber material of the present invention. 図2は、本発明の他の機能性繊維材料を示す模式図である。FIG. 2 is a schematic view showing another functional fiber material of the present invention.

符号の説明Explanation of symbols

1 機能性繊維材料
2 長尺状芯材
3 光触媒材料
4 活性炭粉末
5 高分子材料
6 繊維材料
1 functional fiber material 2 long core material 3 photocatalyst material 4 activated carbon powder 5 polymer material 6 fiber material

Claims (10)

光触媒材料及び活性炭粉末を高分子材料に分散、配合させてなる高分子組成物を、長尺状芯材の表面にコーティングしたことを特徴とする機能性繊維材料。   A functional fiber material, wherein a surface of a long core material is coated with a polymer composition obtained by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material. 光触媒材料及び活性炭粉末を高分子材料に分散、配合させてなる高分子組成物を長尺状芯材に形成し、これを長尺状芯材として、当該長尺状芯材の表面に、光触媒材料及び活性炭粉末を担持させた他の繊維を付着させたことを特徴とする機能性繊維材料。   A polymer composition obtained by dispersing and blending a photocatalyst material and activated carbon powder in a polymer material is formed into a long core material, and this is used as a long core material, and the photocatalyst is formed on the surface of the long core material. A functional fiber material characterized by adhering a material and other fibers carrying activated carbon powder. 光触媒材料が、活性炭粉末に光触媒材料を担持させてなるものである請求項1又は2に記載の機能性繊維材料。   The functional fiber material according to claim 1 or 2, wherein the photocatalyst material is obtained by supporting a photocatalyst material on activated carbon powder. 更に、光触媒材料及び活性炭粉末の分散性を向上させる分散剤を配合してなる請求項1ないし3のいずれか1項に記載の機能性繊維材料。   Furthermore, the functional fiber material of any one of Claim 1 thru | or 3 which mix | blends the dispersing agent which improves the dispersibility of photocatalyst material and activated carbon powder. 分散剤と共に、分散助剤を配合してなる請求項4に記載の機能性繊維材料。   The functional fiber material according to claim 4, wherein a dispersing aid is blended together with the dispersing agent. 更に、光触媒材料及び活性炭粉末と高分子材料との親和性を向上させる親和剤を配合してなる請求項1ないし5のいずれか1項に記載の機能性繊維材料。   Furthermore, the functional fiber material of any one of Claim 1 thru | or 5 which mix | blends the photocatalyst material and the affinity agent which improves the affinity of activated carbon powder and polymer material. 請求項1ないし6のいずれか1項に記載の機能性繊維材料には、機能性物質を添加してなる機能性繊維材料。   A functional fiber material obtained by adding a functional substance to the functional fiber material according to any one of claims 1 to 6. 機能性物質が、銀化合物、コロイド銀又はゼオライトから選ばれた少なくとも1種である請求項7に記載の機能性繊維材料。   The functional fiber material according to claim 7, wherein the functional substance is at least one selected from a silver compound, colloidal silver, and zeolite. 請求項1ないし8のいずれか1項に記載の機能性繊維材料が延伸処理を施してなる機能性繊維材料。   A functional fiber material obtained by subjecting the functional fiber material according to claim 1 to a drawing treatment. 請求項1ないし9のいずれか1項に記載の機能性繊維材料を網状に加工してなることを特徴とする機能性魚網。   A functional fish net obtained by processing the functional fiber material according to claim 1 into a net shape.
JP2007057220A 2007-03-07 2007-03-07 Functional fiber material and functional fishing net formed by using the same Pending JP2008214830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057220A JP2008214830A (en) 2007-03-07 2007-03-07 Functional fiber material and functional fishing net formed by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057220A JP2008214830A (en) 2007-03-07 2007-03-07 Functional fiber material and functional fishing net formed by using the same

Publications (1)

Publication Number Publication Date
JP2008214830A true JP2008214830A (en) 2008-09-18

Family

ID=39835224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057220A Pending JP2008214830A (en) 2007-03-07 2007-03-07 Functional fiber material and functional fishing net formed by using the same

Country Status (1)

Country Link
JP (1) JP2008214830A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121245A (en) * 2008-11-20 2010-06-03 Teijin Fibers Ltd Deodorizing sheath-core conjugate fiber and method for producing the same
CN104514088A (en) * 2013-09-28 2015-04-15 泰安鲁普耐特塑料有限公司 A preparing method of a formaldehyde adsorption rope
DE102015222486A1 (en) * 2015-11-13 2017-05-18 Raumedic Ag Neutralization additive
WO2018194177A1 (en) * 2017-04-20 2018-10-25 東レ株式会社 Fibrous adsorbent, water purification filter, and water treatment method
CN113802384A (en) * 2021-10-11 2021-12-17 南通新帝克单丝科技股份有限公司 Preparation method of monofilament with adsorption function
CN114849412A (en) * 2022-05-28 2022-08-05 吕国杰 Preparation process of formaldehyde purification material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161427A (en) * 2000-11-22 2002-06-04 Unitica Fibers Ltd Fiber for underwater material
JP2006116449A (en) * 2004-10-22 2006-05-11 Asahi Kasei Chemicals Corp Photocatalyst fiber and porous photocatalyst fiber derived from it
JP2006341250A (en) * 2000-12-28 2006-12-21 Showa Denko Kk High activity photo-catalyst
JP2007238443A (en) * 2005-11-22 2007-09-20 Ueda Holdings:Kk Functional activated carbon, functional coating using the same, ship bottom coating and coating for applying wall face of water tank each using the functional coating and aquatic life-repelling type water tank using the coating for applying wall face of water tank, and agricaltural product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161427A (en) * 2000-11-22 2002-06-04 Unitica Fibers Ltd Fiber for underwater material
JP2006341250A (en) * 2000-12-28 2006-12-21 Showa Denko Kk High activity photo-catalyst
JP2006116449A (en) * 2004-10-22 2006-05-11 Asahi Kasei Chemicals Corp Photocatalyst fiber and porous photocatalyst fiber derived from it
JP2007238443A (en) * 2005-11-22 2007-09-20 Ueda Holdings:Kk Functional activated carbon, functional coating using the same, ship bottom coating and coating for applying wall face of water tank each using the functional coating and aquatic life-repelling type water tank using the coating for applying wall face of water tank, and agricaltural product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121245A (en) * 2008-11-20 2010-06-03 Teijin Fibers Ltd Deodorizing sheath-core conjugate fiber and method for producing the same
CN104514088A (en) * 2013-09-28 2015-04-15 泰安鲁普耐特塑料有限公司 A preparing method of a formaldehyde adsorption rope
DE102015222486A1 (en) * 2015-11-13 2017-05-18 Raumedic Ag Neutralization additive
WO2017081221A1 (en) 2015-11-13 2017-05-18 Raumedic Ag Neutralization additive for silicone having an adsorbent and a catalytic material for neutralizing and cleaving odor-forming molecules
WO2018194177A1 (en) * 2017-04-20 2018-10-25 東レ株式会社 Fibrous adsorbent, water purification filter, and water treatment method
CN113802384A (en) * 2021-10-11 2021-12-17 南通新帝克单丝科技股份有限公司 Preparation method of monofilament with adsorption function
CN113802384B (en) * 2021-10-11 2023-12-19 南通新帝克单丝科技股份有限公司 Preparation method of monofilament with adsorption function
CN114849412A (en) * 2022-05-28 2022-08-05 吕国杰 Preparation process of formaldehyde purification material

Similar Documents

Publication Publication Date Title
KR100383123B1 (en) Catalyst composition and deodorization method using the same
JP5102034B2 (en) Tungsten oxide photocatalyst, method for producing the same, and fiber fabric having deodorizing and antifouling functions
JP2008214830A (en) Functional fiber material and functional fishing net formed by using the same
WO2019178925A1 (en) Preparation method for novel purification material with catalytic oxidation of formaldehyde and sterilization functions
KR20100079470A (en) Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and tio2,sio2 sol solutions used for thermo stable photo catalyst
JP2007262621A (en) Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth
US20180236438A1 (en) Visible light-activated photocatalytic coating composition and air purification filter
KR101759483B1 (en) Synthetic resin with antibiotic and deodorant functional material and manufacture method thereof
KR101728418B1 (en) Sand deodorant for pet using water-treatment sludge and ash
JP6520957B2 (en) Deodorant and deodorant products
KR101395230B1 (en) Insect interception screen having function of air purification
CN102614539A (en) Preparation method for active carbon deodorant and application of active carbon deodorant in removal of fish meal processing odor
CN110016222B (en) Bactericidal breathable film and preparation method and application thereof
CN103537197B (en) A kind of preparation method with the gas purification film of antibacterial functions
KR100773913B1 (en) Preparing method of filter member for heat exchanger
JPH08266902A (en) Environment purifying material using photocatalyst and its composition
JP2007277433A (en) Functional masterbatch, functional molded product of the functional masterbatch, functional fiber material, functional fiber product and functional filter processed by using the functional fiber material
KR101339721B1 (en) Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
JP2008054705A (en) Deodorant stuffed toy
CN104258437A (en) Refrigerator deodorizer and refrigerator
CN204745083U (en) Antibiotic deodorization type filter
KR100945425B1 (en) The titanium dioxide photocatalyst bond hydroxy apatite on the surface and its preparation method, the antibiotic coating composition containing thereof and the fabric for clothes adapted the antibiotic coating composition
CN107686290A (en) Purify antimicrobial form diatom ooze wall material
JP3505305B2 (en) Catalyst composition and deodorizing method using the same
JP5082034B2 (en) Composite functional photocatalyst dispersion and porous composite functional photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327