JP2021114864A - Height measuring method of opening part and manufacturing method of rotor core - Google Patents

Height measuring method of opening part and manufacturing method of rotor core Download PDF

Info

Publication number
JP2021114864A
JP2021114864A JP2020007228A JP2020007228A JP2021114864A JP 2021114864 A JP2021114864 A JP 2021114864A JP 2020007228 A JP2020007228 A JP 2020007228A JP 2020007228 A JP2020007228 A JP 2020007228A JP 2021114864 A JP2021114864 A JP 2021114864A
Authority
JP
Japan
Prior art keywords
rotor core
rod
opening
flow path
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020007228A
Other languages
Japanese (ja)
Other versions
JP7396070B2 (en
Inventor
慎一 谷口
Shinichi Taniguchi
慎一 谷口
治夫 西岡
Haruo Nishioka
治夫 西岡
雅紀 杉山
Masaki Sugiyama
雅紀 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2020007228A priority Critical patent/JP7396070B2/en
Publication of JP2021114864A publication Critical patent/JP2021114864A/en
Application granted granted Critical
Publication of JP7396070B2 publication Critical patent/JP7396070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

To measure the heigh of an opening part with high accuracy.SOLUTION: A measuring method of the height of an opening part 36 measures the height of an opening part 36 from one side surface 20B in an axial direction of a rotor core 20 in the rotor core 20 comprising: a shaft hole 33 into which a shaft 23 is inserted; and a coolant passage 35 having the opening part 36 opened to an inner surface 33A of the shaft hole 33. The measuring method of the height of the opening part 36 comprises: a contact step of inserting a rod-like member 61 into the opening part 36 and bringing the rod-like member 61 into contact with an inner surface 35S in the coolant passage 35; a detection step of detecting a position where the rod-like member 61 is in contact with the inner surface 35S of the coolant passage 35; and a calculation step of calculating the height of the opening part 36 from one side surface 20B in the axial direction of the rotor core 20 on the basis of a position of the detected rod-like member 61.SELECTED DRAWING: Figure 6

Description

本開示は、開口部の高さの測定方法及びロータコアの製造方法に関する。 The present disclosure relates to a method for measuring the height of an opening and a method for manufacturing a rotor core.

特許文献1には、冷媒が流れる冷却用流路が内部に形成されたロータの検査方法が開示されている。この検査方法では、冷却用流路の径方向流路の開口部の前方位置(対向位置)に、投光部を配置し、冷却用流路の積層方向流路の開口部に、受光部を配置し、投光部から投光された光を受光部で受光して、冷却用流路の貫通状態を検査する。 Patent Document 1 discloses a method for inspecting a rotor in which a cooling flow path through which a refrigerant flows is formed. In this inspection method, a light projecting portion is arranged at a position (opposing position) in front of the opening of the radial flow path of the cooling flow path, and a light receiving portion is placed at the opening of the stacking direction flow path of the cooling flow path. The light is arranged and the light projected from the light projecting unit is received by the light receiving unit to inspect the penetration state of the cooling flow path.

特開2016−201892号公報Japanese Unexamined Patent Publication No. 2016-201892

ところで、シャフトに対して径方向流路の開口部の位置がズレると、ロータコアの内部に冷媒を十分に流通させることができないおそれがある。このため、冷却用流路における径方向流路の開口部の高さを正確に測定する技術が求められている。 By the way, if the position of the opening of the radial flow path is deviated from the shaft, the refrigerant may not be sufficiently circulated inside the rotor core. Therefore, there is a demand for a technique for accurately measuring the height of the opening of the radial flow path in the cooling flow path.

冷却用流路における径方向流路の開口部はシャフト孔の内面に開口しており、シャフト孔内の限られた空間において開口部の高さを正確に測ることが困難である。さらに、ロータコアは開口部の開口縁にバリを生じている場合があり、バリの影響によって開口部の高さが精度よく測ることが難しい。 The opening of the radial flow path in the cooling flow path is open to the inner surface of the shaft hole, and it is difficult to accurately measure the height of the opening in the limited space inside the shaft hole. Further, the rotor core may have burrs on the opening edge of the opening, and it is difficult to accurately measure the height of the opening due to the influence of burrs.

本開示は、シャフト孔内の限られた空間においても精度よく開口部の高さを測定できる開口部の高さの測定方法及びロータコアの製造方法を提供することを目的としている。 An object of the present disclosure is to provide a method for measuring the height of an opening and a method for manufacturing a rotor core, which can accurately measure the height of the opening even in a limited space in a shaft hole.

本開示の開口部の高さの測定方法は、シャフトが挿入されるシャフト孔と、前記シャフト孔の内面に開口する開口部を有する冷媒流路とを備えたロータコアにおいて、前記ロータコアの軸方向における一方側の面から前記開口部までの高さを測定する測定方法であって、前記開口部に棒状部材を挿入し、前記棒状部材を前記冷媒流路の内面に接触させる接触工程と、前記棒状部材が前記冷媒流路の内面に接触した位置を検知する検知工程と、検知された前記棒状部材の位置に基づいて、前記ロータコアの軸方向における前記一方側の面から前記開口部までの高さを算出する算出工程と、を備える。 The method of measuring the height of the opening of the present disclosure is a method of measuring the height of an opening in a rotor core having a shaft hole into which a shaft is inserted and a refrigerant flow path having an opening that opens on the inner surface of the shaft hole in the axial direction of the rotor core. A measuring method for measuring the height from one surface to the opening, which includes a contact step of inserting a rod-shaped member into the opening and bringing the rod-shaped member into contact with the inner surface of the refrigerant flow path, and the rod-shaped member. Based on the detection step of detecting the position where the member comes into contact with the inner surface of the refrigerant flow path and the detected position of the rod-shaped member, the height from the one side surface to the opening in the axial direction of the rotor core. It is provided with a calculation process for calculating.

本開示のロータコアの製造方法は、シャフトが挿入されるシャフト孔と、前記シャフト孔の内面に開口する開口部を有する冷媒流路とを備えたロータコアを製造する製造方法であって、複数の電磁鋼板を積層して、前記ロータコアを形成するロータコア形成工程と、前記ロータコアの軸方向における一方側の面から前記開口部までの高さを測定する測定工程と、を備え、前記測定工程は、前記開口部に棒状部材を挿入し、前記棒状部材を前記冷媒流路の内面に接触させる接触工程と、前記棒状部材が前記冷媒流路の内面に接触した位置を検知する検知工程と、検知された前記棒状部材の位置に基づいて、前記ロータコアの軸方向における前記一方側の面から前記開口部までの高さを算出する算出工程と、を含み、前記測定工程において測定した前記一方側の面から前記開口部までの高さを前記ロータコア形成工程にフィードバックして、積層する前記電磁鋼板の枚数を調整する調整工程を更に備える。 The rotor core manufacturing method of the present disclosure is a manufacturing method for manufacturing a rotor core including a shaft hole into which a shaft is inserted and a refrigerant flow path having an opening that opens on the inner surface of the shaft hole, and is a manufacturing method for manufacturing a plurality of electromagnetic waves. A rotor core forming step of laminating steel plates to form the rotor core and a measuring step of measuring the height from one surface of the rotor core in the axial direction to the opening are provided, and the measuring step includes the measuring step. A contact step of inserting a rod-shaped member into the opening and bringing the rod-shaped member into contact with the inner surface of the refrigerant flow path, and a detection step of detecting a position where the rod-shaped member contacts the inner surface of the refrigerant flow path were detected. From the one side surface measured in the measurement step, including a calculation step of calculating the height from the one side surface to the opening in the axial direction of the rotor core based on the position of the rod-shaped member. The height to the opening is fed back to the rotor core forming step, and an adjusting step of adjusting the number of the electromagnetic steel sheets to be laminated is further provided.

本開示によれば、シャフト孔内の限られた空間においても精度よく開口部の高さを測定できる。 According to the present disclosure, the height of the opening can be accurately measured even in a limited space in the shaft hole.

図1は、実施形態1におけるロータコアを模式的に示す平面図である。FIG. 1 is a plan view schematically showing the rotor core according to the first embodiment. 図2は、図1のII−II線断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 図3は、測定工程における検査装置の動作を説明する説明図である。FIG. 3 is an explanatory diagram illustrating the operation of the inspection device in the measurement process. 図4は、棒状部材が冷媒流路の内面に接触する前の状態を表す説明図である。FIG. 4 is an explanatory view showing a state before the rod-shaped member comes into contact with the inner surface of the refrigerant flow path. 図5は、棒状部材が冷媒流路の内面に接触する過程を表す説明図である。FIG. 5 is an explanatory diagram showing a process in which the rod-shaped member comes into contact with the inner surface of the refrigerant flow path. 図6は、棒状部材が冷媒流路の内面に接触した後の状態を表す説明図である。FIG. 6 is an explanatory view showing a state after the rod-shaped member comes into contact with the inner surface of the refrigerant flow path. 図7は、第1部材と第2部材が再度接触した様子を表す説明図である。FIG. 7 is an explanatory view showing a state in which the first member and the second member are in contact with each other again.

<実施形態1>
本実施形態は、図1に示すロータコア20の製造に本発明を適用したものである。
<Embodiment 1>
In this embodiment, the present invention is applied to the manufacture of the rotor core 20 shown in FIG.

ロータコア20は、図1及び図2に示すように、複数の電磁鋼板31が積層された積層体からなるロータコア本体30を備えている。ロータコア本体30の積層方向両側には、エンドプレート21,21が溶接されている。ロータコア本体30は、全体としては円筒状をなす。ロータコア本体30は、複数のブロック32が積層され、接着、溶着等の手段によって互いに固着されている。複数のブロック32の各々は、複数の電磁鋼板31が積層され、互いに組み付けられている。図2では、説明の便宜のために、電磁鋼板31の厚さ及び枚数を変更して模式的に描いている。 As shown in FIGS. 1 and 2, the rotor core 20 includes a rotor core main body 30 made of a laminated body in which a plurality of electromagnetic steel sheets 31 are laminated. End plates 21 and 21 are welded to both sides of the rotor core main body 30 in the stacking direction. The rotor core body 30 has a cylindrical shape as a whole. A plurality of blocks 32 are laminated on the rotor core main body 30, and are fixed to each other by means such as adhesion and welding. Each of the plurality of blocks 32 has a plurality of electrical steel sheets 31 laminated and assembled to each other. In FIG. 2, for convenience of explanation, the thickness and the number of the electromagnetic steel sheets 31 are changed and drawn schematically.

ロータコア本体30は、シャフト孔33と、マグネット孔34とを有している。シャフト孔33は、ロータコア本体30の中心に貫通して設けられている。シャフト孔33には、シャフト23が挿入される。図1に示すように、マグネット孔34は、シャフト孔33の周囲に複数設けられている。複数のマグネット孔34の各々には、マグネット材26が封止される。マグネット材26は、四角柱状の永久磁石からなる。 The rotor core main body 30 has a shaft hole 33 and a magnet hole 34. The shaft hole 33 is provided so as to penetrate the center of the rotor core main body 30. The shaft 23 is inserted into the shaft hole 33. As shown in FIG. 1, a plurality of magnet holes 34 are provided around the shaft holes 33. A magnet material 26 is sealed in each of the plurality of magnet holes 34. The magnet material 26 is made of a square columnar permanent magnet.

シャフト23は、円筒状をなし、ロータコア20の回転中心軸を構成する。シャフト23の内部には、冷却油等の冷媒が流通するシャフト側冷媒流路24が形成されている。シャフト23の外周面には、シャフト側冷媒流路24のシャフト側開口部25が周方向に間隔をあけて複数形成されている(図2参照)。シャフト側開口部25は、シャフト側冷媒流路24からの冷却油をロータコア本体30に供給するための供給口である。 The shaft 23 has a cylindrical shape and constitutes a rotation center axis of the rotor core 20. Inside the shaft 23, a shaft-side refrigerant flow path 24 through which a refrigerant such as cooling oil flows is formed. A plurality of shaft-side openings 25 of the shaft-side refrigerant flow path 24 are formed on the outer peripheral surface of the shaft 23 at intervals in the circumferential direction (see FIG. 2). The shaft-side opening 25 is a supply port for supplying the cooling oil from the shaft-side refrigerant flow path 24 to the rotor core main body 30.

ロータコア20の内部には、図2に示すように、冷媒が流れる冷媒流路35が形成されている。冷媒流路35は、シャフト孔33の内面33Aに開口する内側開口部(開口部)36と、ロータコア20の上面20A及び下面20Bにそれぞれ開口する外側開口部37,37と、を有している。内側開口部36は、シャフト孔33における軸方向中央部付近に設けられている。内側開口部36は、シャフト23のシャフト側開口部25と連通して、ロータコア20の内部に冷媒を導入する導入口である。外側開口部37,37は、ロータコア20の外部に向けて開口して、ロータコア20の内部から冷媒を排出する排出口である。冷媒流路35は、平面に見て異なった形状の孔を有する電磁鋼板31を積層することで形成される。 As shown in FIG. 2, a refrigerant flow path 35 through which the refrigerant flows is formed inside the rotor core 20. The refrigerant flow path 35 has an inner opening (opening) 36 that opens to the inner surface 33A of the shaft hole 33, and outer openings 37 and 37 that open to the upper surface 20A and the lower surface 20B of the rotor core 20, respectively. .. The inner opening 36 is provided in the vicinity of the central portion in the axial direction of the shaft hole 33. The inner opening 36 is an introduction port that communicates with the shaft side opening 25 of the shaft 23 to introduce the refrigerant into the rotor core 20. The outer openings 37, 37 are outlets that open toward the outside of the rotor core 20 and discharge the refrigerant from the inside of the rotor core 20. The refrigerant flow path 35 is formed by laminating electromagnetic steel sheets 31 having holes having different shapes when viewed in a plane.

冷媒流路35は、内側流路35A、分岐流路35B,35B、外側流路35Cを有している。内側流路35Aは、内側開口部36からシャフト孔33の径方向外側に向けて延びている。分岐流路35B,35Bは、内側流路35Aの外側において上下に分岐して、シャフト孔33の径方向外側に向けて屈曲しつつ延びている。外側流路35Cは、分岐流路35B,35Bの外側から外側開口部37までシャフト孔33の軸方向に延びている。冷媒流路35は、複数のシャフト側開口部25の各々に対応して複数設けられている。複数の冷媒流路35において外側流路35Cは、互いに隣接する一対のマグネット材26に近接して、それぞれ設けられている(図1参照)。ロータコア20は、このような冷媒流路35を備えることによって、ロータの回転に伴ってマグネット材26が高温になることを抑制できる。 The refrigerant flow path 35 has an inner flow path 35A, branch flow paths 35B and 35B, and an outer flow path 35C. The inner flow path 35A extends from the inner opening 36 toward the outer side in the radial direction of the shaft hole 33. The branch flow paths 35B and 35B branch up and down on the outside of the inner flow path 35A, and extend while bending toward the outer side in the radial direction of the shaft hole 33. The outer flow path 35C extends from the outside of the branch flow paths 35B and 35B to the outer opening 37 in the axial direction of the shaft hole 33. A plurality of refrigerant flow paths 35 are provided corresponding to each of the plurality of shaft-side openings 25. In the plurality of refrigerant flow paths 35, the outer flow path 35C is provided close to the pair of magnet materials 26 adjacent to each other (see FIG. 1). By providing the rotor core 20 with such a refrigerant flow path 35, it is possible to prevent the magnet material 26 from becoming hot as the rotor rotates.

次に、ロータコア20の製造方法について説明する。ロータコア20は、プレス装置、検査装置50、および制御装置などを備える製造ラインで製造される。プレス装置は、送り出される母材を多段階にプレスして、ロータコア20を構成する電磁鋼板31を打ち抜く。プレス装置、検査装置50等の各種装置は、制御装置によって制御される。制御装置は、プログラムに従って演算処理を行うCPUや製造プログラムなどの各種動作プログラムを格納したROMや作業領域などを有するRAMなどのメモリ等を備えている。 Next, a method of manufacturing the rotor core 20 will be described. The rotor core 20 is manufactured on a production line including a press device, an inspection device 50, a control device, and the like. The pressing device presses the base material to be sent out in multiple stages to punch out the electromagnetic steel sheet 31 constituting the rotor core 20. Various devices such as the press device and the inspection device 50 are controlled by the control device. The control device includes a CPU that performs arithmetic processing according to a program, a ROM that stores various operation programs such as a manufacturing program, and a memory such as a RAM that has a work area.

検査装置50は、図3に示すように、載置台51と、ベース部材53と、内側開口部36の高さを測定するための測定ユニット60と、を備えている。載置台51の上面にはロータコア20が載置される。載置台51には、図4に示すように、測定ユニット60が収容される収容空間52が設けられている。収容空間52は、載置台51に載置されたロータコア20のシャフト孔33と連通する形態で設けられている。 As shown in FIG. 3, the inspection device 50 includes a mounting table 51, a base member 53, and a measuring unit 60 for measuring the height of the inner opening 36. The rotor core 20 is mounted on the upper surface of the mounting table 51. As shown in FIG. 4, the mounting table 51 is provided with a storage space 52 in which the measurement unit 60 is housed. The accommodation space 52 is provided in a form of communicating with the shaft hole 33 of the rotor core 20 mounted on the mounting table 51.

ベース部材53は、載置台51の上方に設置されている。ベース部材53は、載置台51に載置されたロータコア20の上面20Aよりも上方に退避した待機位置と、待機位置から下方に変位した下降位置と、の間を移動可能に構成されている。ベース部材53は、下降位置において、自身と載置台51との間でロータコア20を挟んで荷重を付与する。ベース部材53と載置台51は、ロータコア20の積層方向に沿って荷重を付与する一対の加圧部材を構成する。 The base member 53 is installed above the mounting table 51. The base member 53 is configured to be movable between a standby position retracted above the upper surface 20A of the rotor core 20 mounted on the mounting table 51 and a descending position displaced downward from the standby position. The base member 53 applies a load by sandwiching the rotor core 20 between itself and the mounting table 51 at the lowered position. The base member 53 and the mounting table 51 form a pair of pressure members that apply a load along the stacking direction of the rotor core 20.

測定ユニット60は、載置台51の収容空間52に収容された待機位置と、待機位置から上昇してシャフト孔33内に進入した上昇位置と、の間を移動可能に構成されている。測定ユニット60の上昇位置では、シャフト孔33の径方向について、棒状部材61の先端が内側開口部36の手前に位置する。測定ユニット60は、棒状部材61の先端が内側開口部36の手前に位置する上昇位置と、棒状部材61の先端が内側開口部36の奥方に位置する測定位置と、の間を移動可能に構成されている。 The measuring unit 60 is configured to be movable between a standby position accommodated in the accommodation space 52 of the mounting table 51 and an ascending position that has risen from the standby position and entered the shaft hole 33. At the ascending position of the measuring unit 60, the tip of the rod-shaped member 61 is located in front of the inner opening 36 in the radial direction of the shaft hole 33. The measuring unit 60 is configured to be movable between an ascending position where the tip of the rod-shaped member 61 is located in front of the inner opening 36 and a measuring position where the tip of the rod-shaped member 61 is located behind the inner opening 36. Has been done.

測定ユニット60は、図4及び図6に示すように、棒状部材61を有する第1部材62と、第1部材62と分離可能に接触している第2部材63と、第1部材62と第2部材63の接触及び分離を検知するセンサ65と、を有している。第1部材62は相対的に上方に配置され、第2部材63は相対的に下方に配置される。第1部材62及び第2部材63は、上下に延びた軸部64によって連結され(図6参照)、軸部64の軸方向に沿って互いに近接する方向及び離間する方向に移動可能に構成されている。これに対して、第1部材62は、第2部材63に対する回動変位が規制されている。第1部材62と第2部材63は、互いに向けて付勢されており、外力が作用していない状態では接触状態が保持される。外力が作用していない状態では、第1部材62は、第2部材63の移動に伴って従動する。センサ65は、例えば近接センサとされ、第1部材62と第2部材63の接触及び分離を検出する。 As shown in FIGS. 4 and 6, the measuring unit 60 includes a first member 62 having a rod-shaped member 61, a second member 63 in separably contacting the first member 62, and the first member 62 and the first member 62. It has a sensor 65 that detects contact and separation of the two members 63. The first member 62 is arranged relatively upward, and the second member 63 is arranged relatively downward. The first member 62 and the second member 63 are connected by a vertically extending shaft portion 64 (see FIG. 6), and are configured to be movable in directions toward and away from each other along the axial direction of the shaft portion 64. ing. On the other hand, the rotational displacement of the first member 62 with respect to the second member 63 is regulated. The first member 62 and the second member 63 are urged toward each other, and the contact state is maintained in a state where no external force is applied. In a state where no external force is applied, the first member 62 is driven by the movement of the second member 63. The sensor 65 is, for example, a proximity sensor, and detects contact and separation between the first member 62 and the second member 63.

棒状部材61は、図4及び図5に示すように、第1部材62からシャフト孔33の径方向(水平方向)に突出した棒状の突出部61Aと、突出部61Aの先端に設けられた接触部61Bと、を有している。棒状部材61としては、三次元測定用プローブとして用いられるスタイラスと称される部材を用いることができる。突出部61Aは、内側開口部36に挿入された接触部61Bを、冷媒流路35における内側流路35A内に保持可能な長さ寸法を有する。接触部61Bは、突出部61Aより大径の球状であり、内側開口部36にクリアランスを有して挿入可能な大きさに設けられている。接触部61Bの表面は、内側流路35Aの内面35Sに点接触する。棒状部材61は、内側流路35Aの内面35Sにおいて、内側開口部36の開口縁よりも奥方の位置に接触するように構成されている。 As shown in FIGS. 4 and 5, the rod-shaped member 61 has a contact between the rod-shaped protrusion 61A protruding from the first member 62 in the radial direction (horizontal direction) of the shaft hole 33 and the tip of the protrusion 61A. It has a part 61B and. As the rod-shaped member 61, a member called a stylus used as a probe for three-dimensional measurement can be used. The protrusion 61A has a length dimension that allows the contact portion 61B inserted into the inner opening 36 to be held in the inner flow path 35A in the refrigerant flow path 35. The contact portion 61B has a spherical shape having a diameter larger than that of the protrusion 61A, and is provided with a clearance in the inner opening 36 so that it can be inserted. The surface of the contact portion 61B makes point contact with the inner surface 35S of the inner flow path 35A. The rod-shaped member 61 is configured to come into contact with the inner surface 35S of the inner flow path 35A at a position behind the opening edge of the inner opening 36.

ロータコア20の製造方法は、ロータコア20を形成するロータコア形成工程と、内側開口部36の高さを測定する測定工程と、積層する電磁鋼板31の枚数を調整する調整工程と、を備える。ロータコア形成工程は、複数の電磁鋼板31の積層体にマグネット材26を封止する封止工程、マグネット材26が封止された積層体にエンドプレート21,21を溶接する溶接工程等を更に備える。測定工程は、ロータコア20の下面(軸方向における一方側の面)20Bから内側開口部36までの高さを測定する測定方法を行う工程である。ロータコア20の軸方向における一方側の面は、ロータコア20の底面とも称される。 The method for manufacturing the rotor core 20 includes a rotor core forming step for forming the rotor core 20, a measuring step for measuring the height of the inner opening 36, and an adjusting step for adjusting the number of laminated electromagnetic steel sheets 31. The rotor core forming step further includes a sealing step of sealing the magnet material 26 on a laminated body of a plurality of electromagnetic steel sheets 31, a welding step of welding end plates 21 and 21 to the laminated body on which the magnet material 26 is sealed, and the like. .. The measuring step is a step of performing a measuring method for measuring the height from the lower surface (one side surface in the axial direction) 20B of the rotor core 20 to the inner opening 36. One surface of the rotor core 20 in the axial direction is also referred to as a bottom surface of the rotor core 20.

なお、ロータコア20の製造方法において、測定工程は、ロータコア形成工程の後に行われてもよく、また、ロータコア形成工程の途中において行われてもよい。ロータコア形成工程の途中において測定工程を行う一例として、エンドプレート21,21を溶接する溶接工程の前に測定工程を行う場合には、棒状部材61が冷媒流路35の内面35Sに接触した状態で、ロータコア本体30の下面に対する棒状部材61の位置を検知し、エンドプレート21の厚さを加算することによって、ロータコア20の下面20Bに対する棒状部材61の位置を間接的に検知してもよい。以下の説明では、ロータコア形成工程の後に測定工程を行う場合について具体的に説明する。 In the method for manufacturing the rotor core 20, the measurement step may be performed after the rotor core forming step, or may be performed during the rotor core forming step. As an example of performing the measurement step in the middle of the rotor core forming step, when the measurement step is performed before the welding step of welding the end plates 21 and 21, the rod-shaped member 61 is in contact with the inner surface 35S of the refrigerant flow path 35. The position of the rod-shaped member 61 with respect to the lower surface of the rotor core main body 30 may be detected, and the position of the rod-shaped member 61 with respect to the lower surface 20B of the rotor core 20 may be indirectly detected by adding the thickness of the end plate 21. In the following description, a case where the measurement step is performed after the rotor core forming step will be specifically described.

ロータコア形成工程では、プレス装置を用いて、母材から複数の電磁鋼板31を打ち抜き、複数の電磁鋼板31が積層されたブロック32を形成する。1のブロック32を構成する複数の電磁鋼板31の各々には、所謂ダボ加工により積層方向の一方に向けて突出する形態である結合部(不図示)が設けられている。互いに隣り合う電磁鋼板31は、結合部同士が凹凸の関係により、かしめられることで互いに結合されている。またブロック32の積層方向における一端には、上記結合部を有しない電磁鋼板31が配置されている。このため、ブロック32における一端側の電磁鋼板31は、自身の一端側に隣接した電磁鋼板31とは結合されない。プレス装置は、制御装置によって所定枚数の電磁鋼板31毎に結合部を有しない電磁鋼板31を打ち抜く制御が行われることで、所定の高さに積層されたブロック32を形成する。 In the rotor core forming step, a plurality of electromagnetic steel sheets 31 are punched out from the base material by using a press device to form a block 32 in which the plurality of electromagnetic steel sheets 31 are laminated. Each of the plurality of electrical steel sheets 31 constituting the block 32 of 1 is provided with a joint portion (not shown) which is a form of projecting in one direction in the stacking direction by so-called dowel processing. The electromagnetic steel sheets 31 adjacent to each other are bonded to each other by being crimped due to the unevenness of the bonded portions. Further, an electromagnetic steel sheet 31 having no joint portion is arranged at one end of the block 32 in the stacking direction. Therefore, the electrical steel sheet 31 on one end side of the block 32 is not coupled to the electrical steel sheet 31 adjacent to one end side of the block 32. The press device forms blocks 32 laminated to a predetermined height by controlling the control device to punch out the electromagnetic steel sheets 31 having no joints for each predetermined number of electromagnetic steel sheets 31.

ロータコア形成工程では、複数のブロック32を積層してブロック積層体を形成する。複数のブロック32を積層する際には、ロータコア20の積層高さの寸法精度を向上するために、ブロック32を所定角度だけ回転させて積層する、所謂転積を行ってもよい。ブロック積層体は、封止工程等を経てロータコア本体30に形成される。ロータコア本体30は溶接工程等を経て、ロータコア20に形成される。 In the rotor core forming step, a plurality of blocks 32 are laminated to form a block laminated body. When stacking a plurality of blocks 32, in order to improve the dimensional accuracy of the stacking height of the rotor core 20, the blocks 32 may be rotated by a predetermined angle and laminated, so-called transloading may be performed. The block laminate is formed on the rotor core main body 30 through a sealing step and the like. The rotor core main body 30 is formed on the rotor core 20 through a welding process and the like.

測定工程(内側開口部36の高さの測定方法)は、内側開口部36に棒状部材61を挿入し、棒状部材61を内側流路35Aの内面35Sに接触させる接触工程と、棒状部材61が内側流路35Aの内面35Sに接触した位置を検知する検知工程と、検知された棒状部材61の位置に基づいて、ロータコア20の下面20Bから内側開口部36までの高さを算出する算出工程と、を備える。測定工程は、接触工程の前に、ロータコア20の軸方向に沿って荷重を付与する加圧工程を更に備える。測定工程は、検査装置50を用いて行われる。加圧工程が行われる前には、検査装置50においてベース部材53及び測定ユニット60は待機位置に位置している。載置台51にロータコア20が載置されると、加圧工程が開始される。 The measurement step (method of measuring the height of the inner opening 36) includes a contact step of inserting the rod-shaped member 61 into the inner opening 36 and bringing the rod-shaped member 61 into contact with the inner surface 35S of the inner flow path 35A, and the rod-shaped member 61. A detection step of detecting the position of contact with the inner surface 35S of the inner flow path 35A, and a calculation step of calculating the height from the lower surface 20B of the rotor core 20 to the inner opening 36 based on the detected position of the rod-shaped member 61. , Equipped with. The measuring step further includes a pressurizing step of applying a load along the axial direction of the rotor core 20 before the contacting step. The measurement step is performed using the inspection device 50. Before the pressurizing step is performed, the base member 53 and the measuring unit 60 are located in the standby position in the inspection device 50. When the rotor core 20 is mounted on the mounting table 51, the pressurizing process is started.

加圧工程では、図3(A)及び図3(B)に示すように、ベース部材53が待機位置から下降位置に移動して、載置台51とベース部材53の間でロータコア20に積層方向に沿って荷重が付与される。ロータコア20に積層方向に沿って荷重が付与された状態では、電磁鋼板31のわずかな曲がりや、積層された電磁鋼板31間のわずかな隙間が解消され、荷重が付与されていない状態に比して、内側開口部36の高さを精度よく測定することができる。加圧工程では、内側開口部36の高さの測定と同時に、ロータコア20に荷重を付与した状態でロータコア20の積層高さを測定してもよい。 In the pressurizing step, as shown in FIGS. 3A and 3B, the base member 53 moves from the standby position to the descending position, and is laminated on the rotor core 20 between the mounting table 51 and the base member 53. A load is applied along the line. In the state where the load is applied to the rotor core 20 along the laminating direction, the slight bending of the electromagnetic steel sheet 31 and the slight gap between the laminated electromagnetic steel sheets 31 are eliminated, as compared with the state in which the load is not applied. Therefore, the height of the inner opening 36 can be measured accurately. In the pressurizing step, at the same time as measuring the height of the inner opening 36, the stacking height of the rotor core 20 may be measured with a load applied to the rotor core 20.

接触工程では、図3(B)及び(C)に示すように、第2部材63が上昇して、測定ユニット60が待機位置から上昇位置に変位する。次に、図3(C)に示すように、第2部材63がシャフト孔33の径方向に移動して、測定ユニット60が上昇位置から図4に示す測定位置に変位する。この過程で、棒状部材61は内側開口部36に挿入され、接触部61Bが内側流路35A内に保持される。この状態から第2部材63が下降すると、図5に示すように、第2部材63に従動して第1部材62が下降し、棒状部材61の接触部61Bが内側流路35Aの内面35Sにおける下側の部位に接触する。内側流路35Aの内面35Sにおける下側の部位は、一の電磁鋼板31の板面で構成されており、電磁鋼板31を打ち抜く際にバリを生じない領域である。一方、内側開口部36の開口縁は、複数の電磁鋼板31の端面が組み合わされて構成されており、電磁鋼板31を打ち抜く際にバリを生じ得る領域である。図5では、内側開口部36の開口縁に、略三角形状のバリを模式的に描いている。棒状部材61は、接触部61Bが内側流路35Aの内面35Sに接触した状態では、突出部61Aが内側開口部36の開口縁に接触しないように構成されている。つまり、棒状部材61は、内側流路35Aの内面35Sにおいて、内側開口部36の開口縁よりも奥方の位置のみに接触する。接触部61Bが内側流路35Aの内面35Sに接触した後にも第2部材63が下降して、検知工程が開始される。 In the contact step, as shown in FIGS. 3 (B) and 3 (C), the second member 63 is raised, and the measuring unit 60 is displaced from the standby position to the raised position. Next, as shown in FIG. 3C, the second member 63 moves in the radial direction of the shaft hole 33, and the measuring unit 60 is displaced from the ascending position to the measuring position shown in FIG. In this process, the rod-shaped member 61 is inserted into the inner opening 36, and the contact portion 61B is held in the inner flow path 35A. When the second member 63 descends from this state, as shown in FIG. 5, the first member 62 descends in accordance with the second member 63, and the contact portion 61B of the rod-shaped member 61 is on the inner surface 35S of the inner flow path 35A. Contact the lower part. The lower portion of the inner surface 35S of the inner flow path 35A is composed of the plate surface of one electrical steel sheet 31, and is a region where burrs do not occur when the electrical steel sheet 31 is punched out. On the other hand, the opening edge of the inner opening 36 is formed by combining the end faces of a plurality of electrical steel sheets 31, and is a region where burrs may occur when the electrical steel sheets 31 are punched out. In FIG. 5, a substantially triangular burr is schematically drawn on the opening edge of the inner opening 36. The rod-shaped member 61 is configured so that the protruding portion 61A does not contact the opening edge of the inner opening 36 when the contact portion 61B is in contact with the inner surface 35S of the inner flow path 35A. That is, the rod-shaped member 61 contacts only the position behind the opening edge of the inner opening 36 on the inner surface 35S of the inner flow path 35A. Even after the contact portion 61B comes into contact with the inner surface 35S of the inner flow path 35A, the second member 63 is lowered and the detection process is started.

検知工程は、図6に示すように、棒状部材61が内側流路35Aの内面35Sに接触して第1部材62が下方(軸方向における一方側)に移動することが規制され、移動が規制された第1部材62から第2部材63が分離したことを検出して、棒状部材61が内側流路35Aの内面35Sに接触した位置を検知する。具体的には、接触部61Bが内側流路35Aの内面35Sに接触した状態では、内側流路35Aが第1部材62に対するストッパーとなり、第1部材62がそれ以上下降することが制限される。この際、第1部材62は第2部材63に対する回動変位が規制されているから、接触部61Bを軸として回動しない。このため、接触部61Bが内側流路35Aの内面35Sに接触すると、第1部材62の位置が自ずと定まる。この状態から、第2部材63が更に下降すると、第1部材62から第2部材63が分離し、センサ65が第1部材62と第2部材63の分離を検出する。センサ65が第1部材62と第2部材63の分離を検出した位置が、棒状部材61が内側流路35Aの内面35Sに接触した位置として検知される。 In the detection step, as shown in FIG. 6, the rod-shaped member 61 is restricted from coming into contact with the inner surface 35S of the inner flow path 35A and the first member 62 is restricted from moving downward (one side in the axial direction), and the movement is restricted. It is detected that the second member 63 is separated from the first member 62, and the position where the rod-shaped member 61 is in contact with the inner surface 35S of the inner flow path 35A is detected. Specifically, in a state where the contact portion 61B is in contact with the inner surface 35S of the inner flow path 35A, the inner flow path 35A serves as a stopper for the first member 62, and the first member 62 is restricted from further descending. At this time, since the rotational displacement of the first member 62 with respect to the second member 63 is restricted, the first member 62 does not rotate about the contact portion 61B. Therefore, when the contact portion 61B comes into contact with the inner surface 35S of the inner flow path 35A, the position of the first member 62 is naturally determined. When the second member 63 is further lowered from this state, the second member 63 is separated from the first member 62, and the sensor 65 detects the separation of the first member 62 and the second member 63. The position where the sensor 65 detects the separation of the first member 62 and the second member 63 is detected as the position where the rod-shaped member 61 comes into contact with the inner surface 35S of the inner flow path 35A.

センサ65が第1部材62と第2部材63の分離を検出した後、第2部材63は上昇を開始する。図7に示すように、第2部材63が上昇して第1部材62に接触すると、センサ65は第1部材62と第2部材63の接触を検出する。第1部材62と第2部材63の接触が検出された後に、測定ユニット60は測定位置から上昇位置まで後退する(図3(E)参照)。後退した測定ユニット60は、上昇位置から待機位置に下降し、収容空間52に収容される(図3(F)参照)。以上により、一連の接触工程及び検知工程が完了する。 After the sensor 65 detects the separation of the first member 62 and the second member 63, the second member 63 starts ascending. As shown in FIG. 7, when the second member 63 rises and comes into contact with the first member 62, the sensor 65 detects the contact between the first member 62 and the second member 63. After the contact between the first member 62 and the second member 63 is detected, the measuring unit 60 retracts from the measuring position to the ascending position (see FIG. 3E). The retracted measurement unit 60 descends from the ascending position to the standby position and is accommodated in the accommodating space 52 (see FIG. 3F). As described above, a series of contact steps and detection steps are completed.

算出工程では、棒状部材61が内側流路35Aの内面35Sに接触した位置と、予め記録された載置台51の上面の位置に基づいて、ロータコア20の軸方向における下面20Bから内側開口部36までの高さを算出する。算出工程は制御装置に設けられた演算部によって行うことができる。演算部は、棒状部材61が内側流路35Aの内面35Sに接触した位置を、上下方向において内側開口部36の開口縁において下側の縁部の位置として取得する。また、演算部は、載置台51の上面の位置を、ロータコア20の下面20Bの位置として取得する。そして、棒状部材61が内側流路35Aの内面35Sに接触した位置と、載置台51の上面の位置の差分値を算出し、ロータコア20の下面20Bから内側開口部36の下側縁部までの高さを求める。内側開口部36の高さとして、内側開口部36の中心までの高さを求めたい場合には、上述のように算出したロータコア20の下面20Bから内側開口部36の下側縁部までの高さに、内側開口部36の下側縁部から内側開口部36までの高さを加算して求めることができる。 In the calculation step, from the lower surface 20B in the axial direction of the rotor core 20 to the inner opening 36 based on the position where the rod-shaped member 61 contacts the inner surface 35S of the inner flow path 35A and the position of the upper surface of the mounting table 51 recorded in advance. Calculate the height of. The calculation process can be performed by a calculation unit provided in the control device. The calculation unit acquires the position where the rod-shaped member 61 contacts the inner surface 35S of the inner flow path 35A as the position of the lower edge portion at the opening edge of the inner opening 36 in the vertical direction. Further, the calculation unit acquires the position of the upper surface of the mounting table 51 as the position of the lower surface 20B of the rotor core 20. Then, the difference value between the position where the rod-shaped member 61 contacts the inner surface 35S of the inner flow path 35A and the position of the upper surface of the mounting table 51 is calculated, and the difference value from the lower surface 20B of the rotor core 20 to the lower edge portion of the inner opening 36 is calculated. Find the height. When it is desired to obtain the height to the center of the inner opening 36 as the height of the inner opening 36, the height from the lower surface 20B of the rotor core 20 calculated as described above to the lower edge of the inner opening 36. In addition, the height from the lower edge of the inner opening 36 to the inner opening 36 can be added to obtain the height.

調整工程では、測定工程において測定した下面20Bから内側開口部36までの高さをロータコア形成工程にフィードバックして、積層する電磁鋼板31の枚数を調整する。例えば、制御装置は、ロータコア20の下面20Bから内側開口部36までの高さが所定の高さより小さい場合には、ロータコア20の下面20Bから内側開口部36までに積層される電磁鋼板31の枚数を、電磁鋼板31の厚さに応じて増加させるような制御を実行する。制御装置は、ロータコア20の下面20Bから内側開口部36までの高さが所定の高さより大きい場合には、ロータコア20の下面20Bから内側開口部36までに積層される電磁鋼板31の枚数を、電磁鋼板31の厚さに応じて減少させるような制御を実行する。以上により、ロータコア20の製造が完了する。 In the adjusting step, the height from the lower surface 20B to the inner opening 36 measured in the measuring step is fed back to the rotor core forming step to adjust the number of electrical steel sheets 31 to be laminated. For example, when the height from the lower surface 20B of the rotor core 20 to the inner opening 36 is smaller than a predetermined height, the control device is the number of electrical steel sheets 31 laminated from the lower surface 20B of the rotor core 20 to the inner opening 36. Is controlled so as to increase according to the thickness of the electromagnetic steel sheet 31. When the height from the lower surface 20B of the rotor core 20 to the inner opening 36 is larger than a predetermined height, the control device determines the number of electrical steel sheets 31 laminated from the lower surface 20B of the rotor core 20 to the inner opening 36. Control is performed so as to decrease according to the thickness of the electromagnetic steel sheet 31. With the above, the production of the rotor core 20 is completed.

続いて、本実施形態の作用効果について説明する。本実施形態における内側開口部36の高さの測定方法によれば、内側開口部36の開口縁におけるバリの影響が少ない内側流路35Aの内面35Sに棒状部材61を接触させ、棒状部材61の位置に基づいて内側開口部36の高さを算出することができる。このため、シャフト孔33内の限られた空間においても精度よく内側開口部36の高さを測定することができる。 Subsequently, the action and effect of this embodiment will be described. According to the method for measuring the height of the inner opening 36 in the present embodiment, the rod-shaped member 61 is brought into contact with the inner surface 35S of the inner flow path 35A, which is less affected by burrs at the opening edge of the inner opening 36, to form the rod-shaped member 61. The height of the inner opening 36 can be calculated based on the position. Therefore, the height of the inner opening 36 can be accurately measured even in the limited space in the shaft hole 33.

シャフト孔33内の限られた空間においても精度よく内側開口部36の高さを測定できる理由について、さらに具体的に説明する。開口部の位置を検知する方法として、例えば、光電センサ、レーザセンサ、画像判別センサ等の非接触型の検知方法を採用することが考えられる。しかし、光電センサ、レーザセンサ等を採用した場合、ロータコア20において内側開口部36の開口縁にバリを生じた場合に、バリが光やレーザを遮蔽して内側開口部36の高さを正確に測定することができないおそれがある。これに対して、本実施形態では、仮に開口縁にバリを生じた場合であっても、棒状部材61が内側流路35Aの内面35Sに接触した位置を検知するから、バリの影響が少ない。また、画像判別センサを採用した場合、シャフト孔33内の限られた空間において、レンズと内側開口部36との間に十分な焦点距離を確保することが難しく、鮮明な画像を取得しにくい。これに対して、本実施形態では、棒状部材61を内側開口部36の挿入できればよく、レンズと内側開口部36との間の焦点距離のような空間上の制約が少ない。 The reason why the height of the inner opening 36 can be accurately measured even in the limited space in the shaft hole 33 will be described more specifically. As a method for detecting the position of the opening, for example, a non-contact type detection method such as a photoelectric sensor, a laser sensor, or an image discrimination sensor can be considered. However, when a photoelectric sensor, a laser sensor, or the like is adopted, when a burr is generated on the opening edge of the inner opening 36 in the rotor core 20, the burr shields light or a laser to accurately determine the height of the inner opening 36. It may not be possible to measure. On the other hand, in the present embodiment, even if a burr is generated on the opening edge, the position where the rod-shaped member 61 comes into contact with the inner surface 35S of the inner flow path 35A is detected, so that the influence of the burr is small. Further, when the image discrimination sensor is adopted, it is difficult to secure a sufficient focal length between the lens and the inner opening 36 in the limited space in the shaft hole 33, and it is difficult to acquire a clear image. On the other hand, in the present embodiment, it is sufficient that the rod-shaped member 61 can be inserted into the inner opening 36, and there are few spatial restrictions such as the focal length between the lens and the inner opening 36.

さらに、本実施形態によれば、ロータコア20の内側開口部36の高さを、迅速に精度よく測定することができる。このため、例えば、ロータコア20の全数について内側開口部36の高さの測定をすることが可能となる。この結果、ロータコア20の一部のみを抜き取り検査する場合に比べて内側開口部36の高さが不良となる製品を確実に取り除くことができ、ロータコア20の内側開口部36の高さの精度が担保される。そして、内側開口部36を介してシャフト側冷媒流路24とロータコア20の冷媒流路35を連通させて、ロータコア20の内部に確実に冷媒を流通させることができる。 Further, according to the present embodiment, the height of the inner opening 36 of the rotor core 20 can be measured quickly and accurately. Therefore, for example, it is possible to measure the height of the inner opening 36 for the entire number of rotor cores 20. As a result, it is possible to reliably remove the product whose inner opening 36 has a poor height as compared with the case where only a part of the rotor core 20 is sampled and inspected, and the accuracy of the height of the inner opening 36 of the rotor core 20 is improved. Be secured. Then, the shaft-side refrigerant flow path 24 and the refrigerant flow path 35 of the rotor core 20 can communicate with each other through the inner opening 36, so that the refrigerant can be reliably circulated inside the rotor core 20.

本実施形態の検知工程では、棒状部材61が内側流路35Aの内面35Sに接触して第1部材62が下方に移動することが規制され、移動が規制された第1部材62から第2部材63が分離したことを検出して、棒状部材61が内側流路35Aの内面35Sに接触した位置を検知する。このため、ロータコア20の下面20Bに対する棒状部材61の位置を迅速に精度よく検知することができる。 In the detection step of the present embodiment, the rod-shaped member 61 is restricted from coming into contact with the inner surface 35S of the inner flow path 35A and the first member 62 is restricted from moving downward, and the movement is restricted from the first member 62 to the second member. It is detected that the 63 is separated, and the position where the rod-shaped member 61 is in contact with the inner surface 35S of the inner flow path 35A is detected. Therefore, the position of the rod-shaped member 61 with respect to the lower surface 20B of the rotor core 20 can be detected quickly and accurately.

本実施形態におけるロータコア20の製造方法では、測定工程において測定した下面20Bから内側開口部36までの高さをロータコア形成工程にフィードバックして、積層する電磁鋼板31の枚数を調整する調整工程を更に備える。このような調整工程を備えることで、内側開口部36の高さが不良として廃棄されるロータコア20を低減して、効率よく寸法精度の高いロータコア20を製造することができる。 In the method for manufacturing the rotor core 20 in the present embodiment, the height from the lower surface 20B to the inner opening 36 measured in the measurement step is fed back to the rotor core forming step, and an adjustment step of adjusting the number of laminated electromagnetic steel sheets 31 is further performed. Be prepared. By providing such an adjustment step, it is possible to reduce the number of rotor cores 20 that are discarded because the height of the inner opening 36 is defective, and to efficiently manufacture the rotor core 20 with high dimensional accuracy.

<他の実施形態>
本発明は、上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施の形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、ロータコアの下面から内側開口部までの高さを測定したが、ロータコアの上面から内側開口部までの高さを測定してもよく、下面と上面の双方から内側開口部までの高さを測定してもよい。また、測定工程において、ロータコアは軸方向を上下方向とは異なる方向に沿わせて配置されてもよい。
(2)上記実施形態では、ロータコアに荷重を付与した状態でロータコアの内側開口部までの高さを測定したが、ロータコアに荷重を付与しない自然状態において、ロータコアの内側開口部までの高さを測定してもよい。
(3)上記実施形態以外にも、棒状部材が冷媒流路の内面に接触した位置を検知する手段は、適宜変更可能である。
(4)調整工程を備えておらず、ロータコアの内側開口部の高さが不良である製品を判定する工程のみを備えていてもよい。
(5)ロータコアの構成は、適宜変更可能である。冷媒流路の形状、数、大きさも適宜変更可能である。
(6)検査装置の構成は、ロータコアの構成に応じて適宜変更可能である。棒状部材の形状、大きさも、冷媒流路の構成に応じて適宜変更可能である。例えば、検査装置は、棒状部材のみをシャフト孔に進入させ、第1部材の棒状部材以外の部分がシャフト孔の外部に配置される構成であってもよい。
<Other Embodiments>
The present invention is not limited to the embodiments described in the above description and drawings, and for example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above embodiment, the height from the lower surface to the inner opening of the rotor core is measured, but the height from the upper surface to the inner opening of the rotor core may be measured, and the inner opening is measured from both the lower surface and the upper surface. The height to the part may be measured. Further, in the measurement step, the rotor core may be arranged so that the axial direction is different from the vertical direction.
(2) In the above embodiment, the height to the inner opening of the rotor core is measured with the load applied to the rotor core, but in the natural state where the load is not applied to the rotor core, the height to the inner opening of the rotor core is measured. You may measure.
(3) In addition to the above embodiment, the means for detecting the position where the rod-shaped member comes into contact with the inner surface of the refrigerant flow path can be appropriately changed.
(4) The adjustment step may not be provided, and only the step of determining a product in which the height of the inner opening of the rotor core is defective may be provided.
(5) The configuration of the rotor core can be changed as appropriate. The shape, number, and size of the refrigerant flow paths can be changed as appropriate.
(6) The configuration of the inspection device can be appropriately changed according to the configuration of the rotor core. The shape and size of the rod-shaped member can also be appropriately changed according to the configuration of the refrigerant flow path. For example, the inspection device may have a configuration in which only the rod-shaped member is allowed to enter the shaft hole, and a portion of the first member other than the rod-shaped member is arranged outside the shaft hole.

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または本質から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施形態を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。 The above examples are for illustration purposes only and are not to be construed as limiting the invention. Although the present invention has been described with reference to typical embodiments, the language used in the description and illustration of the invention is understood to be descriptive and exemplary rather than restrictive. As described in detail here, modifications can be made within the scope of the appended claims without departing from the scope or nature of the invention in that form. Although specific structures, materials and embodiments have been referred to herein in detail of the invention, it is not intended to limit the invention to the disclosures herein, but rather the invention is claimed in the accompanying claims. It shall cover all functionally equivalent structures, methods and uses within the scope.

20…ロータコア
20B…下面(軸方向における一方側の面)
23…シャフト
24…シャフト側冷媒流路
31…電磁鋼板
33…シャフト孔
33A…内面
35…冷媒流路
35S…内面
36…内側開口部(開口部)
61…棒状部材
62…第1部材
63…第2部材
20 ... Rotor core 20B ... Bottom surface (one side surface in the axial direction)
23 ... Shaft 24 ... Shaft-side refrigerant flow path 31 ... Electromagnetic steel sheet 33 ... Shaft hole 33A ... Inner surface 35 ... Refrigerant flow path 35S ... Inner surface 36 ... Inner opening (opening)
61 ... Rod-shaped member 62 ... First member 63 ... Second member

Claims (3)

シャフトが挿入されるシャフト孔と、前記シャフト孔の内面に開口する開口部を有する冷媒流路とを備えたロータコアにおいて、前記ロータコアの軸方向における一方側の面から前記開口部までの高さを測定する測定方法であって、
前記開口部に棒状部材を挿入し、前記棒状部材を前記冷媒流路の内面に接触させる接触工程と、
前記棒状部材が前記冷媒流路の内面に接触した位置を検知する検知工程と、
検知された前記棒状部材の位置に基づいて、前記ロータコアの軸方向における前記一方側の面から前記開口部までの高さを算出する算出工程と、を備える、開口部の高さの測定方法。
In a rotor core provided with a shaft hole into which a shaft is inserted and a refrigerant flow path having an opening that opens on the inner surface of the shaft hole, the height from one surface of the rotor core in the axial direction to the opening is determined. It is a measurement method to measure
A contact step of inserting a rod-shaped member into the opening and bringing the rod-shaped member into contact with the inner surface of the refrigerant flow path.
A detection step for detecting the position where the rod-shaped member comes into contact with the inner surface of the refrigerant flow path, and
A method for measuring the height of an opening, comprising a calculation step of calculating the height from the one side surface of the rotor core in the axial direction to the opening based on the detected position of the rod-shaped member.
前記棒状部材は第1部材に設けられ、前記第1部材は前記ロータコアの軸方向に沿って移動する第2部材に分離可能に接触しており、
前記検知工程では、前記棒状部材が前記冷媒流路の内面に接触して前記第1部材が軸方向における一方側に移動することが規制され、移動が規制された前記第1部材から前記第2部材が分離したことを検出して、前記棒状部材が前記冷媒流路の内面に接触した位置を検知する、請求項1に記載の開口部の高さの測定方法。
The rod-shaped member is provided on the first member, and the first member is in separably contacted with a second member moving along the axial direction of the rotor core.
In the detection step, the rod-shaped member is restricted from coming into contact with the inner surface of the refrigerant flow path and the first member is restricted from moving to one side in the axial direction, and the movement is restricted from the first member to the second member. The method for measuring the height of an opening according to claim 1, wherein the rod-shaped member detects the separation of the members and detects the position where the rod-shaped member comes into contact with the inner surface of the refrigerant flow path.
シャフトが挿入されるシャフト孔と、前記シャフト孔の内面に開口する開口部を有する冷媒流路とを備えたロータコアを製造する製造方法であって、
複数の電磁鋼板を積層して、前記ロータコアを形成するロータコア形成工程と、
前記ロータコアの軸方向における一方側の面から前記開口部までの高さを測定する測定工程と、を備え、
前記測定工程は、
前記開口部に棒状部材を挿入し、前記棒状部材を前記冷媒流路の内面に接触させる接触工程と、
前記棒状部材が前記冷媒流路の内面に接触した位置を検知する検知工程と、
検知された前記棒状部材の位置に基づいて、前記ロータコアの軸方向における前記一方側の面から前記開口部までの高さを算出する算出工程と、を含み、
前記測定工程において測定した前記一方側の面から前記開口部までの高さを前記ロータコア形成工程にフィードバックして、積層する前記電磁鋼板の枚数を調整する調整工程を更に備えるロータコアの製造方法。
A manufacturing method for manufacturing a rotor core including a shaft hole into which a shaft is inserted and a refrigerant flow path having an opening that opens on the inner surface of the shaft hole.
A rotor core forming step of laminating a plurality of electrical steel sheets to form the rotor core, and
A measuring step of measuring the height from one surface of the rotor core in the axial direction to the opening is provided.
The measurement step is
A contact step of inserting a rod-shaped member into the opening and bringing the rod-shaped member into contact with the inner surface of the refrigerant flow path.
A detection step for detecting the position where the rod-shaped member comes into contact with the inner surface of the refrigerant flow path, and
A calculation step of calculating the height from the one side surface of the rotor core in the axial direction to the opening based on the detected position of the rod-shaped member is included.
A method for manufacturing a rotor core, further comprising an adjusting step of feeding back the height from one side surface to the opening measured in the measuring step to the rotor core forming step to adjust the number of the electromagnetic steel sheets to be laminated.
JP2020007228A 2020-01-21 2020-01-21 Method for measuring the height of the opening and manufacturing method for the rotor core Active JP7396070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007228A JP7396070B2 (en) 2020-01-21 2020-01-21 Method for measuring the height of the opening and manufacturing method for the rotor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007228A JP7396070B2 (en) 2020-01-21 2020-01-21 Method for measuring the height of the opening and manufacturing method for the rotor core

Publications (2)

Publication Number Publication Date
JP2021114864A true JP2021114864A (en) 2021-08-05
JP7396070B2 JP7396070B2 (en) 2023-12-12

Family

ID=77077305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007228A Active JP7396070B2 (en) 2020-01-21 2020-01-21 Method for measuring the height of the opening and manufacturing method for the rotor core

Country Status (1)

Country Link
JP (1) JP7396070B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201616A (en) * 1994-01-06 1995-08-04 Fuji Electric Co Ltd Machine for producing laminated core
WO2011077830A1 (en) * 2009-12-24 2011-06-30 株式会社安川電機 Core stack, motor provided with core stack, and method for manufacturing core stack
JP2015065739A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Refrigerant passage structure of rotor core
JP2017005807A (en) * 2015-06-05 2017-01-05 株式会社三井ハイテック Device and method for inspecting laminate iron core
JP2018163094A (en) * 2017-03-27 2018-10-18 株式会社東京精密 Detector, contour shape measuring instrument, and contact probe contact control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201616A (en) * 1994-01-06 1995-08-04 Fuji Electric Co Ltd Machine for producing laminated core
WO2011077830A1 (en) * 2009-12-24 2011-06-30 株式会社安川電機 Core stack, motor provided with core stack, and method for manufacturing core stack
JP2015065739A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Refrigerant passage structure of rotor core
JP2017005807A (en) * 2015-06-05 2017-01-05 株式会社三井ハイテック Device and method for inspecting laminate iron core
JP2018163094A (en) * 2017-03-27 2018-10-18 株式会社東京精密 Detector, contour shape measuring instrument, and contact probe contact control method

Also Published As

Publication number Publication date
JP7396070B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
US11196324B2 (en) Method of manufacturing stacked core with adhesive
EP3644390B1 (en) Apparatus and method for manufacturing pouch and method for manufacturing secondary battery
US20190358741A1 (en) Friction stirring tool, friction stir welding device and friction stir welding method
US20180328858A1 (en) Automated tablet tooling inspection system and a method thereof
KR20210085975A (en) Secondary battery pouch sealing part thickness measuring assembly and pouch sealing part thickness measuring method
JP2021114864A (en) Height measuring method of opening part and manufacturing method of rotor core
CN102658422B (en) Test block for use in a welding process
TW201733706A (en) Swaging tool and manufacturing method using the same
KR20140077605A (en) Apparatus for measuring gap of roll bearing in continuous casting machine
JP2008076278A (en) Angle accuracy inspection device for workpiece measurement surface
US11897220B2 (en) Method for measuring or calibrating utensils used in a press
KR101942924B1 (en) Apparatus for measurement of shape and Hydroforming method using the same
JP2007237201A (en) Method for deciding normal/defective condition of welding and welding equipment
JP6240864B2 (en) Press machine
JP2021032684A (en) Dielectric strength characteristic evaluation method for insulating material and dielectric strength characteristic evaluation device
CN104567573A (en) Detection structure for rotary shaft cover plate of vehicle seat
KR102611967B1 (en) Measuring Apparatus For Outer Diameter Of Jelly-roll And Measuring Method For Outer Diameter Of Jelly-roll
KR20230070867A (en) Secondary cell rolling system and secondary cell defect prediction function method using the same
CN110749299B (en) Device and method for rapidly measuring contact precision of thin-wall rotating member and clamp
JP2014223670A (en) Discrimination method and discrimination structure of two-piece overlapping of nuts upon welding
KR101992107B1 (en) Shape Inspection and Correction Device for Stabilizer-Bar
JP7342724B2 (en) Motor core inspection method and motor core manufacturing method
JP2000061559A (en) Device for bonding thin metal sheets and quality control method of bonded part
KR20170019589A (en) Caliper housing sealgroove gauge
CN105180750B (en) The wrong hole amount evaluation method in thin plate lamination hole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R151 Written notification of patent or utility model registration

Ref document number: 7396070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151