JP2021110787A - Domain wall displacement type spatial light modulator - Google Patents

Domain wall displacement type spatial light modulator Download PDF

Info

Publication number
JP2021110787A
JP2021110787A JP2020001307A JP2020001307A JP2021110787A JP 2021110787 A JP2021110787 A JP 2021110787A JP 2020001307 A JP2020001307 A JP 2020001307A JP 2020001307 A JP2020001307 A JP 2020001307A JP 2021110787 A JP2021110787 A JP 2021110787A
Authority
JP
Japan
Prior art keywords
domain wall
layer
exchange coupling
ferromagnetic
coupling portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020001307A
Other languages
Japanese (ja)
Inventor
賢司 町田
Kenji Machida
賢司 町田
信彦 船橋
Nobuhiko Funabashi
信彦 船橋
賢一 青島
Kenichi Aoshima
賢一 青島
諒 東田
Ryo Higashida
諒 東田
慎太郎 麻生
Shintaro Aso
慎太郎 麻生
純一 柴崎
Junichi Shibazaki
純一 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2020001307A priority Critical patent/JP2021110787A/en
Publication of JP2021110787A publication Critical patent/JP2021110787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Hall/Mr Elements (AREA)

Abstract

To provide a domain wall displacement type spatial light modulator which enables low current drive and can improve an opening ratio.SOLUTION: A domain wall displacement type spatial light modulator includes: a light modulation part; a first ferromagnetically exchange coupled part and a second ferromagnetically exchange coupled part which are arranged on both ends of the light modulation part and have mutually different magnetic coercive force; and a plurality of domain wall displacement type light modulation elements. The plurality of domain wall displacement type light modulation elements further include a connection part in which the first ferromagnetically exchange coupled part and the second ferromagnetically exchange coupled part are arranged in a direction perpendicular to a predetermined direction so that the parts are alternately positioned, and a first ferromagnetic layer (first magnetization fixing layer) of the adjacent first ferromagnetically exchange coupled part and a first ferromagnetic layer (second magnetization fixing layer) of the second ferromagnetically exchange coupled part are electrically connected on one end side of the adjacent domain wall displacement type light modulation elements.SELECTED DRAWING: Figure 7

Description

本発明は、視域の広い立体ホログラフィ用空間光変調器として有望な、磁壁移動により光変調領域の磁区構造を制御することで、光の明暗を表示する磁気光学式空間光変調器(以下、「磁壁移動型空間光変調器」と言う。)に関する。 The present invention is a promising spatial light modulator for three-dimensional holography with a wide field of view, which is a magnetic-optical spatial light modulator that displays the brightness and darkness of light by controlling the magnetic zone structure of the optical modulation region by moving the magnetic wall (hereinafter, It is called "magnetic wall moving type spatial light modulator").

従来、立体ホログラフィにおいて実用に足る30度以上の視域を確保するためには、表示装置である空間光変調器(SLM)の画素ピッチを1マイクロメートル以下にする必要がある。液晶やデジタルマイクロミラーデバイス(DMD)等の既存のSLMは、画素ピッチが5マイクロメートル程度であり、これ以上の微細化は困難な状況にある。 Conventionally, in order to secure a viewing range of 30 degrees or more, which is practical in stereoscopic holography, it is necessary to set the pixel pitch of the spatial light modulator (SLM), which is a display device, to 1 micrometer or less. Existing SLMs such as liquid crystals and digital micromirror devices (DMDs) have a pixel pitch of about 5 micrometers, and further miniaturization is difficult.

一方で、画素の書き換えにスピン注入磁化反転や磁壁移動を用いた磁気光学式空間光変調器(MOSLM)は、光利用効率や動作電流等の観点で性能改善の必要はあるものの、1マイクロメートル程度の画素ピッチを実現することができる(特許文献1参照)。このMOSLMは、磁化の向きに応じた光の偏光面の回転を明暗に割り当てることにより、光の変調を実現するデバイスである。 On the other hand, the magneto-optical spatial light modulator (MOSLM), which uses spin injection magnetization reversal and domain wall movement to rewrite pixels, needs to be improved in terms of light utilization efficiency and operating current, but is 1 micrometer. A degree of pixel pitch can be realized (see Patent Document 1). This MOSLM is a device that realizes light modulation by assigning light and dark rotation of a plane of polarization of light according to the direction of magnetization.

ここで、出願人が提案済みである磁壁移動型SLMは、光変調層の両端に磁化固定層を配した構造により、光変調層に流す電流の向きによって磁区の拡大・縮小を制御することができる(特許文献2参照)。この磁壁移動型SLMによれば、スピン注入磁化反転を用いたMOSLMに比べて、低消費電力が期待できる。 Here, the domain wall moving type SLM proposed by the applicant has a structure in which magnetization fixing layers are arranged at both ends of the optical modulation layer, so that the expansion / contraction of the magnetic domain can be controlled by the direction of the current flowing through the optical modulation layer. Yes (see Patent Document 2). According to this domain wall moving type SLM, lower power consumption can be expected as compared with MOSLM using spin injection magnetization reversal.

特開2012−141402号公報Japanese Unexamined Patent Publication No. 2012-141402 特願2017−109478号明細書Japanese Patent Application No. 2017-109478 特開2017−167430号公報JP-A-2017-167430 特開2005−191032号公報Japanese Unexamined Patent Publication No. 2005-191032

A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, “Real−Space Observation of Current−Driven Domain Wall Motion in Submicron Magnetic Wires”, Physical Review Letters, United States of America, American Physical Society, 20 February 2004, Volume 92, Number 7, pp.077205−1−077205−4A. Yamaguchi, T.M. Ono, S.M. Nasu, K.K. Miyake, K.K. Mibu, and T. et al. Shinjo, "Real-Space Observation of Current-Driven Domain Wall Motion in Submicron Magnetic Wires", Physical Review Letters, United States of America, American Physical Society, 20 February 2004, Volume 92, Number 7, pp. 077205-1-077205-4 K. Aoshima, R. Ebisawa, N. Funabashi, K. Kuga, and K. Machida, “Current−induced domain−wall motion in patterned nanowires with various Gd−Fe compositions for magneto−optical light modulator applications”, Japanese Journal of Applied Physics, Japan, The Japan Society of Applied Physics, 7 August 2018, Volume 57, pp.09TC03−1−09TC03−4K. Aoshima, R.M. Ebisawa, N.M. Funabashi, K.K. Kuga, and K. Machida, "Current-induced domain-wall motion in patterned nanowires with various Gd-Fe compositions for magneto-optical light modulator applications", Japanese Journal of Applied Physics, Japan, The Japan Society of Applied Physics, 7 August 2018, Volume 57, pp. 09TC03-1-09TC03-4

ところで、磁壁移動型SLMは、開口率を向上させることで有効な光変調領域が増加するため、より明るい立体像を再生することが可能となる。ここで、磁壁移動型SLMの1画素を構成する磁壁移動型光変調素子は、磁化固定層と光変調層を備えるが、開口率を向上させるために光変調層の幅を広げると、駆動電流が増加する。これに対して、光変調層を画素内で細長く配置することで、駆動電流の増加を抑制しつつ、開口率を向上させる方法が提案されている(特許文献3参照)。 By the way, in the domain wall moving type SLM, an effective optical modulation region is increased by improving the aperture ratio, so that a brighter stereoscopic image can be reproduced. Here, the domain wall moving light modulation element constituting one pixel of the domain wall moving SLM includes a magnetization fixing layer and a light modulation layer, but when the width of the light modulation layer is widened in order to improve the aperture ratio, the drive current Will increase. On the other hand, a method has been proposed in which the aperture ratio is improved while suppressing the increase in the driving current by arranging the optical modulation layer elongated in the pixel (see Patent Document 3).

しかしながら、くびれ部や屈曲部を有する光変調層では、該くびれ部や屈曲部において磁壁が引っ掛かってトラップされることが知られている(特許文献4参照)。また、磁壁の移動距離と駆動電流密度とは比例する(非特許文献1,2参照)ため、光変調層を細長く配置したことによる低電流化の効果は限定的である。 However, in an optical modulation layer having a constricted portion or a bent portion, it is known that a domain wall is caught and trapped in the constricted portion or the bent portion (see Patent Document 4). Further, since the moving distance of the domain wall is proportional to the driving current density (see Non-Patent Documents 1 and 2), the effect of reducing the current by arranging the optical modulation layer in an elongated manner is limited.

本発明は上記に鑑みてなされたものであり、その目的は、低電流駆動が可能であるとともに開口率の向上が可能な磁壁移動型空間光変調器を提供することにある。 The present invention has been made in view of the above, and an object of the present invention is to provide a domain wall moving type spatial light modulator capable of driving at a low current and improving an aperture ratio.

(1) 本発明は、所定方向に延び、入射した光の偏光の向きを変化させて出射する光変調部と、前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、複数の磁壁移動型光変調素子と、を備える磁壁移動型空間光変調器であって、前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、強磁性材料からなる第1強磁性層と、前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有し、前記複数の磁壁移動型光変調素子は、前記所定方向に直交する方向に前記第1強磁性交換結合部と前記第2強磁性交換結合部とが交互に位置するように並んで配置され、前記磁壁移動型空間光変調器は、隣接する前記磁壁移動型光変調素子同士の一端側において、隣接する前記第1強磁性交換結合部の第1強磁性層と前記第2強磁性交換結合部の第1強磁性層とを電気的に接続する接続部をさらに備える、磁壁移動型空間光変調器を提供する。 (1) In the present invention, a first ferromagnet that extends in a predetermined direction and emits by changing the direction of polarization of incident light and a first ferromagnet that is arranged at both ends of the light modulation section and has different coercive forces. A magnetic wall moving space optical modulator comprising an exchange coupling portion, a second ferromagnet exchange coupling portion, and a plurality of magnetic wall moving photomodulators, wherein the first ferromagnetic exchange coupling portion and the second ferromagnetism Each of the exchange coupling portions is formed on a first ferromagnetic layer made of a ferromagnetic material and the first ferromagnetic layer, and is made of a ferromagnetic material to form a ferromagnetic exchange coupling with the first ferromagnetic layer. In the plurality of magnetic wall moving type optical modulation elements having two ferromagnetic layers, the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion alternate in a direction orthogonal to the predetermined direction. The magnetic wall moving type space optical modulators are arranged side by side so as to be located, and the magnetic wall moving type spatial optical modulators are arranged on one end side of the adjacent magnetic wall moving type optical modulators, and the first ferromagnetic layer of the adjacent first ferromagnetic exchange coupling portion is provided. Provided is a magnetic wall mobile space optical modulator further comprising a connecting portion for electrically connecting the second ferromagnetic exchange coupling portion and the first ferromagnetic layer of the second ferromagnetic exchange coupling portion.

(2) 前記接続部は、隣接する前記第1強磁性層の前記第2強磁性層とは反対側の面同士を電気的に接続する接続用配線であってよい。 (2) The connecting portion may be a connection wiring for electrically connecting the surfaces of the adjacent first ferromagnetic layer on the opposite side of the second ferromagnetic layer.

本発明によれば、低電流駆動が可能であるとともに開口率の向上が可能な磁壁移動型空間光変調器を提供できる。 According to the present invention, it is possible to provide a domain wall moving type spatial light modulator capable of driving at a low current and improving an aperture ratio.

本発明の第1実施形態に係る磁壁移動型光変調素子の斜視図である。It is a perspective view of the magnetic domain wall movement type light modulation element which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る磁壁移動型光変調素子の動作を示す側面図である。It is a side view which shows the operation of the domain wall moving type light modulation element which concerns on 1st Embodiment of this invention. 従来の磁壁移動型空間光変調器の平面図である。It is a top view of the conventional domain wall moving type spatial light modulator. 本発明の第1実施形態に係る磁壁移動型空間光変調器の平面図である。It is a top view of the domain wall moving type spatial light modulator which concerns on 1st Embodiment of this invention. 従来の磁壁移動型光変調素子の平面図である。It is a top view of the conventional domain wall moving type light modulation element. 従来の磁壁移動型光変調素子の平面図である。It is a top view of the conventional domain wall moving type light modulation element. 本発明の第1実施形態に係る連結磁壁素子の平面図である。It is a top view of the connecting domain wall element which concerns on 1st Embodiment of this invention. 図7に示される本発明の第1実施形態に係る連結磁壁素子のX−X線断面図である。FIG. 7 is a cross-sectional view taken along line XX of the connecting domain wall element according to the first embodiment of the present invention shown in FIG. 図7に示される本発明の第1実施形態に係る連結磁壁素子のY−Y線断面図である。FIG. 7 is a sectional view taken along line YY of the connecting domain wall element according to the first embodiment of the present invention shown in FIG. 7. 本発明の第2実施形態に係る磁壁移動型空間光変調器の平面図である。It is a top view of the domain wall moving type spatial light modulator which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る連結磁壁素子の平面図である。It is a top view of the connecting domain wall element which concerns on 2nd Embodiment of this invention.

以下、本発明の実施形態について、図面を参照して説明する。なお、第2実施形態の説明において第1実施形態と共通する構成については同一符号を付し、その説明を省略する。また、説明の便宜上、図中の上下左右を、磁壁移動型光変調素子の上下左右として説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the second embodiment, the same reference numerals are given to the configurations common to those of the first embodiment, and the description thereof will be omitted. Further, for convenience of explanation, the top, bottom, left, and right in the drawing will be described as the top, bottom, left, and right of the domain wall movable light modulation element.

<第1実施形態>
本発明の第1実施形態に係る磁壁移動型空間光変調器5は、磁壁移動を利用した複数の磁壁移動型光変調素子100を備える。本実施形態に係る磁壁移動型空間光変調器5は、これら複数の磁壁移動型光変調素子100が直列に電気的に接続されることを特徴とする。
<First Embodiment>
The domain wall moving spatial light modulator 5 according to the first embodiment of the present invention includes a plurality of domain wall moving light modulation elements 100 utilizing the domain wall movement. The domain wall moving type spatial light modulator 5 according to the present embodiment is characterized in that the plurality of domain wall moving type light modulation elements 100 are electrically connected in series.

先ず、本実施形態に係る磁壁移動型空間光変調器5を構成する磁壁移動型光変調素子100の基本構成について説明する。図1は、本発明の第1実施形態に係る磁壁移動型光変調素子100の斜視図である。図2は、本発明の第1実施形態に係る磁壁移動型光変調素子100の動作を示す側面図である。なお、図1及び図2中の矢印は、磁化方向の向きを示している。 First, the basic configuration of the domain wall moving light modulation element 100 constituting the domain wall moving space light modulator 5 according to the present embodiment will be described. FIG. 1 is a perspective view of the magnetic domain wall moving light modulation element 100 according to the first embodiment of the present invention. FIG. 2 is a side view showing the operation of the domain wall movable light modulation element 100 according to the first embodiment of the present invention. The arrows in FIGS. 1 and 2 indicate the direction of the magnetization direction.

図1に示されるように、磁壁移動型光変調素子100は、基本構成として、第1強磁性交換結合部1と、第2強磁性交換結合部2と、光変調部3と、を有しており、これらが図示しないSi等の基板上に形成される。 As shown in FIG. 1, the magnetic domain wall moving type light modulation element 100 has a first ferromagnetic exchange coupling portion 1, a second ferromagnetic exchange coupling portion 2, and an optical modulation portion 3 as a basic configuration. These are formed on a substrate such as Si (not shown).

第1強磁性交換結合部1と第2強磁性交換結合部2は、それぞれ図示しないCu、Al、Au、Ag、Ru、Ta、Cr等の金属やその合金のような一般的な金属電極材料で形成される下部電極を最下層に有する。第1強磁性交換結合部1と第2強磁性交換結合部2は、この下部電極にパルス電流源9が接続されることで、パルス電流(駆動電流)を印加可能となっている。 The first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 are general metal electrode materials such as metals such as Cu, Al, Au, Ag, Ru, Ta, and Cr and their alloys, which are not shown, respectively. It has a lower electrode formed by the lowermost layer. A pulse current (driving current) can be applied to the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 by connecting the pulse current source 9 to the lower electrode.

図1に示されるように、磁壁移動型光変調素子100は、例えば光変調部3が所定方向(図1の左右方向)に延びる平板状(平面視で略長方形)に形成され、その両端に第1強磁性交換結合部1及び第2強磁性交換結合部2が配置される。光変調部3と第1強磁性交換結合部1及び第2強磁性交換結合部2の上面は、連続して面一とされる。 As shown in FIG. 1, in the magnetic wall moving type light modulation element 100, for example, the light modulation unit 3 is formed in a flat plate shape (substantially rectangular in a plan view) extending in a predetermined direction (left-right direction in FIG. 1) at both ends thereof. The first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 are arranged. The upper surfaces of the optical modulation section 3, the first ferromagnetic exchange coupling section 1 and the second ferromagnetic exchange coupling section 2 are continuously flush with each other.

図2に示されるように、第1強磁性交換結合部1は、第1磁化固定層11と光変調層30とが積層されて構成される。この第1強磁性交換結合部1においては、必要に応じて、第1磁化固定層11と光変調層30との間に非磁性金属層12及びバッファ層13が配置される。 As shown in FIG. 2, the first ferromagnetic exchange coupling portion 1 is configured by laminating a first magnetization fixed layer 11 and an optical modulation layer 30. In the first ferromagnetic exchange coupling portion 1, a non-magnetic metal layer 12 and a buffer layer 13 are arranged between the first magnetization fixing layer 11 and the photomodulation layer 30, if necessary.

第1磁化固定層11は、強磁性材料からなり、本発明の第1強磁性層に相当する。第1磁化固定層11は、磁化方向が一方向に固定された層であり、大きな保磁力を有する。第1磁化固定層11は、第1強磁性交換結合部1における光変調層30と同一方向の磁気異方性を有し、光変調層30に垂直磁気異方性を有する強磁性材料を用いた場合には、第1磁化固定層11も垂直磁気異方性を有する強磁性材料が用いられる。好ましくは、第1磁化固定層11及び光変調層30ともに、垂直磁気異方性を有する強磁性材料で構成される。 The first magnetization fixed layer 11 is made of a ferromagnetic material and corresponds to the first ferromagnetic layer of the present invention. The first magnetization fixed layer 11 is a layer in which the magnetization direction is fixed in one direction, and has a large coercive force. The first magnetization fixed layer 11 uses a ferromagnetic material having magnetic anisotropy in the same direction as the optical modulation layer 30 in the first ferromagnetic exchange coupling portion 1 and having vertical magnetic anisotropy in the optical modulation layer 30. If so, a ferromagnetic material having vertical magnetic anisotropy is also used for the first magnetization fixed layer 11. Preferably, both the first magnetization fixing layer 11 and the photomodulation layer 30 are made of a ferromagnetic material having vertical magnetic anisotropy.

第1磁化固定層11は、磁化が垂直方向に固定された磁化固定層と磁化の方向が反転可能な磁化自由層で非磁性層を挟持する構造の垂直磁気異方性を有するCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子やTMR素子等の磁化固定層として公知の強磁性材料で構成可能である。具体的には、Fe、Co、Niのような遷移金属及びそれらを含む合金、例えばTbFe系、TbFeCo系、CoCr系、CoPt系、CoPd系、FePt系の合金を用いることができる。これにより、第1磁化固定層11の保磁力を大きくすることができ、第1磁化固定層11の磁化方向が外部磁場によって容易に変化しないように固定することが可能となる。 The first magnetization-fixed layer 11 is a CPP-GMR (CPP-GMR) having a structure in which a non-magnetic layer is sandwiched between a magnetized fixed layer in which the magnetization is fixed in the vertical direction and a magnetized free layer in which the magnetization direction can be reversed. Current Perpendicular to the Plane Giant MagnetoResistance: It can be constructed of a ferromagnetic material known as a magnetization fixing layer such as a vertically energized giant magnetoresistive element or a TMR element. Specifically, transition metals such as Fe, Co, and Ni and alloys containing them, for example, TbFe-based, TbFeCo-based, CoCr-based, CoPt-based, CoPd-based, and FePt-based alloys can be used. As a result, the coercive force of the first magnetization fixing layer 11 can be increased, and the magnetization direction of the first magnetization fixing layer 11 can be fixed so as not to be easily changed by the external magnetic field.

また、第1磁化固定層11は、これらの遷移金属の層と非磁性金属の層とを交互に積層した多層の積層体で構成してもよく、Co/Pt、Fe/Pt、Co/Pd等の多層膜を用いることができる。これらの強磁性材料を用いることにより、強い垂直磁気異方性を有するとともに、大きな保磁力を有する第1磁化固定層11が得られる。 Further, the first magnetization fixing layer 11 may be composed of a multi-layered laminate in which these transition metal layers and non-magnetic metal layers are alternately laminated, and may be composed of Co / Pt, Fe / Pt, Co / Pd. And other multilayer films can be used. By using these ferromagnetic materials, a first magnetization fixed layer 11 having a strong perpendicular magnetic anisotropy and a large coercive force can be obtained.

上記多層膜は、熱処理することにより保磁力が増大する特性を有する。そのため、上記多層膜からなる第1磁化固定層11を熱処理してその保磁力を増大させると、光変調層30と結合した後の第1強磁性交換結合部1の保磁力もより大きくなり、光変調部3との保磁力差をより大きくすることができる。 The multilayer film has a property that the coercive force is increased by heat treatment. Therefore, when the first magnetization fixed layer 11 made of the multilayer film is heat-treated to increase its coercive force, the coercive force of the first ferromagnetic exchange coupling portion 1 after coupling with the photomodulation layer 30 also becomes larger. The difference in coercive force with the optical modulation unit 3 can be further increased.

ここで、後述する磁壁33を有する光変調部3を形成するためには、第1強磁性交換結合部1と第2強磁性交換結合部2の保磁力が異なるように設計する必要があり、そのためには、第1磁化固定層11の保磁力と後述する第2磁化固定層21の保磁力との間に差を設ける必要がある。その具体的手段としては、第1磁化固定層11と第2磁化固定層21とで、上述のように一方のみ熱処理する(あるいは両者の熱処理の度合に差を設ける)か、互いに形状を異なるもの(例えば、第1磁化固定層11の幅を広くすると保磁力は小さくなる)とするか、あるいは互いの層構成を異なるものとするか、のいずれかが選択される。 Here, in order to form the optical modulation unit 3 having the domain wall 33 described later, it is necessary to design the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 so that the coercive force is different. For that purpose, it is necessary to provide a difference between the coercive force of the first magnetization fixing layer 11 and the coercive force of the second magnetization fixing layer 21 described later. As a specific means, the first magnetization-fixed layer 11 and the second magnetization-fixed layer 21 are heat-treated only on one side (or a difference is provided in the degree of heat treatment between the two) as described above, or the shapes are different from each other. (For example, when the width of the first magnetization fixed layer 11 is widened, the coercive force becomes small), or the layer configurations of the first magnetization fixed layers 11 are different from each other.

非磁性金属層12及びバッファ層13は、第1磁化固定層11と光変調層30との間に配置され、これらの層が介在することにより、第1磁化固定層11と光変調層30の間の磁気的結合が保たれる。 The non-magnetic metal layer 12 and the buffer layer 13 are arranged between the first magnetization fixing layer 11 and the optical modulation layer 30, and by interposing these layers, the first magnetization fixing layer 11 and the optical modulation layer 30 The magnetic bond between them is maintained.

非磁性金属層12は、上述の第1磁化固定層11上に積層されて形成される。この非磁性金属層12は、製造工程において、第1磁化固定層11にエッチングのダメージが及ばないようにするために設けられる。非磁性金属層12は、非磁性の各種金属の薄膜層を用いることができる。例えば、非磁性金属層12として、Ta、Mo、Ruを用いることができ、中でも、Taからなるものが好ましく用いられる。 The non-magnetic metal layer 12 is formed by being laminated on the first magnetization fixing layer 11 described above. The non-magnetic metal layer 12 is provided so that the first magnetization fixing layer 11 is not damaged by etching in the manufacturing process. As the non-magnetic metal layer 12, thin film layers of various non-magnetic metals can be used. For example, Ta, Mo, and Ru can be used as the non-magnetic metal layer 12, and among them, those made of Ta are preferably used.

バッファ層13は、上述の非磁性金属層12上に積層されて形成される。バッファ層13は、磁壁移動を利用した光変調素子でもTMR素子でも電流を流せることが必要であるため、薄膜化したときに抵抗が大き過ぎず、高い導電性を有するものである。また、バッファ層13は、製造工程におけるエッチングのレートが遅く、且つSIMS(Secondary Ion Mass Spectrometry)の検出感度が高い元素を含み、SIMS式エンドポイントモニターで見える材料であることが必要である。これにより、エッチングをバッファ層13で確実に止めることが可能となり、第1磁化固定層11にダメージが及ぶのを回避できる。 The buffer layer 13 is formed by being laminated on the above-mentioned non-magnetic metal layer 12. Since the buffer layer 13 needs to be able to pass a current in both the light modulation element and the TMR element using the domain wall movement, the resistance is not too large when the thin film is formed, and the buffer layer 13 has high conductivity. Further, the buffer layer 13 needs to be a material that contains an element having a slow etching rate in the manufacturing process and a high detection sensitivity of SIMS (Secondary Ion Mass Spectrometry) and can be seen by a SIMS type endpoint monitor. As a result, the etching can be reliably stopped by the buffer layer 13, and damage to the first magnetization fixing layer 11 can be avoided.

バッファ層13は、酸化物又は窒化物からなるもので構成される。より具体的には、バッファ層13は、MgO、Al、MgAl、TiO、ZnO又はRuOから構成されることが好ましい。中でも、バッファ層13としては、MgOからなるものが好ましく用いられる。このMgOからなるMgO層によれば、適度な導電性を有し、エッチングのレートが遅いうえSIMS感度が高いバッファ層13を形成できる。 The buffer layer 13 is made of an oxide or a nitride. More specifically, the buffer layer 13 is preferably composed of MgO, Al 2 O 3 , Mg Al 2 O 4 , TiO 2 , ZnO or RuO 2 . Among them, as the buffer layer 13, one made of MgO is preferably used. According to the MgO layer made of MgO, it is possible to form the buffer layer 13 which has appropriate conductivity, has a slow etching rate, and has high SIMS sensitivity.

光変調層30は、上述のバッファ層13上に積層されて形成される。この光変調層30は、強磁性材料からなり、本発明の第2強磁性層に相当する。光変調層30は、公知の強磁性材料を適用でき、好ましくは磁気光学効果(カー効果)の大きな材料を適用する。磁気光学効果を大きくするためには、垂直磁気異方性を有する磁性層を用いることが好ましく、具体的には、Co/Pd多層膜のような遷移金属とPd、Pt、Cuとを繰り返し積層した多層膜、又はTbFeCo、GdFe等の希土類金属と遷移金属との合金(RE−TM合金)が挙げられる。中でも、光変調層30としては、GdFe合金からなるGdFe層が好ましく用いられる。 The optical modulation layer 30 is formed by being laminated on the buffer layer 13 described above. The optical modulation layer 30 is made of a ferromagnetic material and corresponds to the second ferromagnetic layer of the present invention. A known ferromagnetic material can be applied to the photomodulation layer 30, and a material having a large magneto-optical effect (Kerr effect) is preferably applied. In order to increase the magnetic optical effect, it is preferable to use a magnetic layer having vertical magnetic anisotropy. Specifically, a transition metal such as a Co / Pd multilayer film and Pd, Pt, and Cu are repeatedly laminated. Examples thereof include a multilayer film made of copper, or an alloy of a rare earth metal such as TbFeCo or GdFe and a transition metal (RE-TM alloy). Among them, as the light modulation layer 30, a GdFe layer made of a GdFe alloy is preferably used.

なお、光変調層30は、後述する第2強磁性交換結合部2における第2強磁性層を構成するとともに、光変調部3を構成する。即ち、第1強磁性交換結合部1における第2強磁性層、第2強磁性交換結合部2における第2強磁性層及び光変調部3は、いずれも光変調層30から構成され、外部からの磁界により磁化の方向が異なったものである。 The optical modulation layer 30 constitutes the second ferromagnetic layer in the second ferromagnetic exchange coupling portion 2 described later, and also constitutes the optical modulation section 3. That is, the second ferromagnetic layer in the first ferromagnetic exchange coupling portion 1, the second ferromagnetic layer in the second ferromagnetic exchange coupling portion 2, and the optical modulation portion 3 are all composed of the optical modulation layer 30, and are composed of the optical modulation layer 30 from the outside. The direction of magnetization differs depending on the magnetic field of.

上述の構成からなる第1強磁性交換結合部1では、第1磁化固定層11と光変調層30は、非磁性金属層12及びバッファ層13を介して強磁性交換結合されている。この強磁性交換結合により、第1磁化固定層11の磁化方向と第1強磁性交換結合部1における光変調層30の磁化方向は、第1磁化固定層11の磁化方向に固定される。 In the first ferromagnetic exchange coupling portion 1 having the above-described configuration, the first magnetization fixing layer 11 and the optical modulation layer 30 are ferromagnetically exchange-coupled via the non-magnetic metal layer 12 and the buffer layer 13. By this ferromagnetic exchange coupling, the magnetization direction of the first magnetization fixing layer 11 and the magnetization direction of the photomodulation layer 30 in the first ferromagnetic exchange coupling portion 1 are fixed to the magnetization direction of the first magnetization fixing layer 11.

また、図2に示されるように、第2強磁性交換結合部2は、第2磁化固定層21と光変調層30とが積層されて構成される。この第2強磁性交換結合部2においては、必要に応じて、第2磁化固定層21と光変調層30との間に非磁性金属層22及びバッファ層23が配置される。 Further, as shown in FIG. 2, the second ferromagnetic exchange coupling portion 2 is configured by laminating the second magnetization fixed layer 21 and the optical modulation layer 30. In the second ferromagnetic exchange coupling portion 2, the non-magnetic metal layer 22 and the buffer layer 23 are arranged between the second magnetization fixed layer 21 and the photomodulation layer 30 as needed.

第2磁化固定層21は、上記第1磁化固定層11で使用可能な材料の中から選択され、同様に、非磁性金属層22及びバッファ層23も、それぞれ非磁性金属層12及びバッファ層13で使用可能な材料の中から選択される。 The second magnetization fixing layer 21 is selected from the materials that can be used in the first magnetization fixing layer 11, and similarly, the non-magnetic metal layer 22 and the buffer layer 23 are also the non-magnetic metal layer 12 and the buffer layer 13, respectively. Selected from the materials available in.

第2強磁性交換結合部2では、上記第1強磁性交換結合部1と同様に、第2磁化固定層21と光変調層30は、非磁性金属層22及びバッファ層23を介して強磁性交換結合されている。この強磁性交換結合により、第2磁化固定層21の磁化方向と第2強磁性交換結合部2における光変調層30の磁化方向は、第2磁化固定層21の磁化方向に固定される。 In the second ferromagnetic exchange coupling portion 2, similarly to the first ferromagnetic exchange coupling portion 1, the second magnetization fixed layer 21 and the optical modulation layer 30 are ferromagnetic via the non-magnetic metal layer 22 and the buffer layer 23. It is exchange-bonded. By this ferromagnetic exchange coupling, the magnetization direction of the second magnetization fixing layer 21 and the magnetization direction of the photomodulation layer 30 in the second ferromagnetic exchange coupling portion 2 are fixed to the magnetization direction of the second magnetization fixing layer 21.

上述したように、第1強磁性交換結合部1と第2強磁性交換結合部2は、光変調部3の光変調制御に必須となる光変調層30両端(上記所定方向の両端であり、図1及び図2では左右方向の両端)の磁化方向を反平行に初期化するため、互いの保磁力が異なるように設計される。この第1強磁性交換結合部1と第2強磁性交換結合部2の保磁力差を利用し、適切な外部磁界(後段で詳述)を印加することにより、第1強磁性交換結合部1と第2強磁性交換結合部2の磁化方向を、互いに反平行に初期化することができる。 As described above, the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 are both ends of the optical modulation layer 30 (both ends in the predetermined direction) which are indispensable for the optical modulation control of the optical modulation unit 3. Since the magnetization directions of (both ends in the left-right direction) are initialized antiparallel in FIGS. 1 and 2, they are designed so that their coercive forces are different from each other. By utilizing the difference in coercive force between the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 and applying an appropriate external magnetic field (detailed later), the first ferromagnetic exchange coupling portion 1 And the magnetization directions of the second ferromagnetic exchange coupling portion 2 can be initialized antiparallel to each other.

また、上述したように、光変調層30は、光変調部3を構成する。図1に示されるように、この光変調層30からなる光変調部3には、磁壁33と、磁区31,32が形成される。 Further, as described above, the optical modulation layer 30 constitutes the optical modulation unit 3. As shown in FIG. 1, a magnetic domain wall 33 and magnetic domains 31 and 32 are formed in the optical modulation section 3 composed of the optical modulation layer 30.

なお、各磁化固定層(以下、第1磁化固定層11及び第2磁化固定層21を単に磁化固定層とも言う。)、各非磁性金属層、各バッファ層、及び光変調層30の各層間、又は下部電極との界面に、機能層を適宜設けてもよい。例えば、微細加工プロセス中に光変調層30が受けるダメージを防ぐために、光変調層30上に、Ta、Ru又はSiNを含む、あるいはTa、Ru又はSiNからなるキャップ層を設けてもよい。このキャップ層は、光変調層30の形成に用いられて酸化し易いGdFeやTbFeCoが、素子完成後に大気中で酸化するのを防止する機能を有する。 Each of the magnetization fixing layers (hereinafter, the first magnetization fixing layer 11 and the second magnetization fixing layer 21 are also simply referred to as a magnetization fixing layer), each non-magnetic metal layer, each buffer layer, and each layer of the optical modulation layer 30. , Or a functional layer may be appropriately provided at the interface with the lower electrode. For example, in order to prevent damage to the optical modulation layer 30 during the microfabrication process, a cap layer containing Ta, Ru or SiN, or made of Ta, Ru or SiN may be provided on the optical modulation layer 30. This cap layer has a function of preventing GdFe and TbFeCo, which are used for forming the photomodulation layer 30 and are easily oxidized, from being oxidized in the atmosphere after the device is completed.

次に、本実施形態に係る磁壁移動型光変調素子100の磁気特性について説明する。
上述したように、第1強磁性交換結合部1は、光変調層30と強磁性交換結合する第1磁化固定層11を有し、第2強磁性交換結合部2は、同じく光変調層30と強磁性交換結合する第2磁化固定層21を有する。即ち、これら第1強磁性交換結合部1及び第2強磁性交換結合部2は、それぞれ内部に強磁性交換結合を有するために、それぞれの磁化方向は同時に反転する。そして、図1及び図2に示されるように、例えば第1強磁性交換結合部1の磁化方向は上向きに設計されている一方で、第2強磁性交換結合部2の磁化方向は下向きに設計される。
Next, the magnetic characteristics of the domain wall movable light modulation element 100 according to the present embodiment will be described.
As described above, the first ferromagnetic exchange coupling portion 1 has a first magnetization fixed layer 11 that ferromagnetically exchanges and couples with the optical modulation layer 30, and the second ferromagnetic exchange coupling portion 2 also has the optical modulation layer 30. It has a second magnetization fixed layer 21 which is ferromagnetically exchange-coupled with. That is, since the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 each have a ferromagnetic exchange coupling inside, their magnetization directions are reversed at the same time. Then, as shown in FIGS. 1 and 2, for example, the magnetization direction of the first ferromagnetic exchange coupling portion 1 is designed to be upward, while the magnetization direction of the second ferromagnetic exchange coupling portion 2 is designed to be downward. Will be done.

光変調部3には、所定方向(図1及び図2の左右方向)に直交する方向に面状に延びる磁壁33が形成されている。即ち、磁壁33は、両強磁性交換結合部の磁化方向に対して平行に配置されている。また、磁壁33の両側に形成される磁区31,32の磁化方向は、互いに逆方向となっている。例えば図1及び図2に示されるように、磁壁33よりも第1強磁性交換結合部1側に配置される磁区31の磁化方向は下向きであり、磁壁33よりも第2強磁性交換結合部2側に配置される磁区32の磁化方向は上向きとなっている。 The optical modulation unit 3 is formed with a domain wall 33 extending in a plane in a direction orthogonal to a predetermined direction (horizontal direction in FIGS. 1 and 2). That is, the domain wall 33 is arranged parallel to the magnetization direction of both ferromagnetic exchange coupling portions. Further, the magnetization directions of the magnetic domains 31 and 32 formed on both sides of the domain wall 33 are opposite to each other. For example, as shown in FIGS. 1 and 2, the magnetization direction of the magnetic domain 31 arranged on the first ferromagnetic exchange coupling portion 1 side of the domain wall 33 is downward, and the second ferromagnetic exchange coupling portion is more than the magnetic wall 33. The magnetization direction of the magnetic domain 32 arranged on the 2 side is upward.

このように、磁壁33を介して磁化方向の向きが異なる磁区31,32を光変調部3に形成することにより、磁壁移動型光変調素子100を光変調素子として機能させることができる。より詳しくは、例えば磁壁移動型光変調素子100を反射型の光変調素子として構成した場合には、磁壁移動型光変調素子100の上方から光変調部3の上面に対して偏光の揃った光を入射すると、磁化の向きに応じて反射光の偏光面は互いに異なる方向に回転する。そのため、これら偏光面の回転方向が異なる反射光を、偏光フィルタを介してそれぞれ光の明暗に割り当てることにより、光の変調が可能となる。また、基板をガラスやサファイア等の透光性の材料で構成することにより、磁壁移動型光変調素子100を透過型の光変調素子として機能させることも可能である。 In this way, by forming the magnetic domains 31 and 32 having different directions of magnetization in the optical modulation unit 3 via the domain wall 33, the domain wall moving type light modulation element 100 can function as the light modulation element. More specifically, for example, when the magnetic wall moving type light modulation element 100 is configured as a reflection type light modulation element, light having polarized light with respect to the upper surface of the light modulation unit 3 from above the magnetic wall moving light modulation element 100. When the light is incident on the light, the planes of polarization of the reflected light rotate in different directions depending on the direction of magnetization. Therefore, the light can be modulated by assigning the reflected light having different rotation directions of the polarizing surfaces to the light and darkness of the light through the polarizing filter. Further, by forming the substrate with a translucent material such as glass or sapphire, it is possible to make the domain wall moving type light modulation element 100 function as a transmission type light modulation element.

ここで、第1磁化固定層11の保磁力を、第2磁化固定層21の保磁力よりも小さく設計した場合には、第1強磁性交換結合部1の保磁力をHc1とし、第2強磁性交換結合部2の保磁力をHc2とし、光変調層の保磁力をHc_mとすると、Hc2>Hc1>Hc_mの関係が成立する。 Here, when the coercive force of the first magnetization fixed layer 11 is designed to be smaller than the coercive force of the second magnetization fixed layer 21, the coercive force of the first ferromagnetic exchange coupling portion 1 is set to Hc1 and the second strong force. Assuming that the coercive force of the magnetic exchange coupling portion 2 is Hc2 and the coercive force of the photomodulation layer is Hc_m, the relationship of Hc2> Hc1> Hc_m is established.

そして、上述の保磁力の関係が成立する構造の素子に対して、強さHが、H>Hc2である磁場を、素子に対して下向きに印加すると、第1強磁性交換結合部1、第2強磁性交換結合部2、及び光変調部3のいずれにおいても、磁化方向の向きは下向きとなる。 Then, when a magnetic field having a strength H of H> Hc2 is applied downward to the element having a structure in which the above-mentioned coercive force relationship is established, the first ferromagnetic exchange coupling portion 1, the first. 2 In both the ferromagnetic exchange coupling unit 2 and the optical modulation unit 3, the direction of the magnetization direction is downward.

一方で、強さH’が、Hc2>H’>Hc1である磁場を、素子に対して上向きに印加すると、第2強磁性交換結合部2の磁化方向の向きは下向きのままであるのに対して、第1強磁性交換結合部1及び光変調部3の磁化方向の向きは、いずれも上向きに変化する。 On the other hand, when a magnetic field having a strength H'of Hc2> H'> Hc1 is applied upward to the element, the direction of the magnetization direction of the second ferromagnetic exchange coupling portion 2 remains downward. On the other hand, the directions of the magnetization directions of the first ferromagnetic exchange coupling unit 1 and the optical modulation unit 3 both change upward.

このとき、光変調部3の両端には、図2に示されるように、初期磁区310,320が生成する。より詳しくは、光変調部3の第1強磁性交換結合部1側の端部には、第1強磁性交換結合部1からの漏れ磁界(図2中の破線矢印)により、第1強磁性交換結合部1の上向きの磁化とは反平行な、下向きの磁化方向の初期磁区310が生成する。また、光変調部3の第2強磁性交換結合部2側の端部には、第2強磁性交換結合部2からの漏れ磁界(図2中の破線矢印)により、第2強磁性交換結合部2の下向きの磁化とは反平行な、上向きの磁化方向の初期磁区320が生成する。 At this time, initial magnetic domains 310 and 320 are generated at both ends of the optical modulation unit 3, as shown in FIG. More specifically, at the end of the optical modulation unit 3 on the first ferromagnetic exchange coupling portion 1 side, the first ferromagnetism is caused by the leakage magnetic field from the first ferromagnetic exchange coupling portion 1 (broken line arrow in FIG. 2). An initial magnetic domain 310 in the downward magnetization direction, which is antiparallel to the upward magnetization of the exchange coupling portion 1, is generated. Further, at the end of the optical modulation unit 3 on the second ferromagnetic exchange coupling portion 2 side, a second ferromagnetic exchange coupling is formed by a magnetic domain leaking from the second ferromagnetic exchange coupling portion 2 (broken line arrow in FIG. 2). An initial magnetic domain 320 in the upward magnetization direction, which is antiparallel to the downward magnetization of part 2, is generated.

次いでこの状態で、パルス電流源9からパルス電流(駆動電流)を印加し、第1強磁性交換結合部1から第2強磁性交換結合部2、又は第2強磁性交換結合部2から第1強磁性交換結合部1に向けてパルス電流(駆動電流)を流す。すると、初期磁区310,320の生成により形成される磁壁33を、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)に、移動させることができる。これにより、図2に示されるように、光変調部3の両端を除く光変調領域300の磁化の向きを反転(図2の例では、光変調領域300の磁化の向きを上向きに反転)させることが可能となる。 Next, in this state, a pulse current (driving current) is applied from the pulse current source 9, and the first ferromagnetic exchange coupling portion 1 to the second ferromagnetic exchange coupling portion 2 or the second ferromagnetic exchange coupling portion 2 to the first A pulse current (drive current) is passed toward the ferromagnetic exchange coupling portion 1. Then, the domain wall 33 formed by the generation of the initial magnetic domains 310 and 320 can be moved in the direction opposite to the direction of the pulse current (driving current) (the same direction as the flow of electrons). As a result, as shown in FIG. 2, the direction of magnetization of the optical modulation region 300 excluding both ends of the optical modulation section 3 is reversed (in the example of FIG. 2, the direction of magnetization of the optical modulation region 300 is inverted upward). It becomes possible.

以上説明した基本構成及び磁気特性を有する磁壁移動型光変調素子100を複数個直列に電気的に接続し、連結式磁壁移動型光変調素子10(以降、連結磁壁素子10)を形成し、この連結磁壁素子10を格子状に整列配置することで、本実施形態に係る磁壁移動型空間光変調器5が構成される。図3は、従来の磁壁移動型空間光変調器90の平面図である。図3に示すように、従来の磁壁移動型空間光変調器90は、第1磁化固定層910、第2磁化固定層920及び光変調部930を有する複数の磁壁移動型光変調素子91が、図示しない基板上にそれぞれ独立して作製され、例えば格子状に整列配置されることで構成される。これに対して、図4は、本実施形態に係る磁壁移動型空間光変調器5の平面図である。図4に示すように、本実施形態に係る磁壁移動型空間光変調器5は、連結磁壁素子10が格子状に整列配置される点においては従来と同様であるが、後述の図7に示すように複数の磁壁移動型光変調素子100が直列に電気的に接続される点において、従来とは大きく相違している。 A plurality of domain wall moving light modulation elements 100 having the basic configuration and magnetic characteristics described above are electrically connected in series to form a connecting domain wall moving light modulation element 10 (hereinafter referred to as a connecting domain wall element 10). By arranging the connecting domain wall elements 10 in a grid pattern, the domain wall moving type spatial light modulator 5 according to the present embodiment is configured. FIG. 3 is a plan view of the conventional domain wall movable spatial light modulator 90. As shown in FIG. 3, in the conventional domain wall moving spatial light modulator 90, a plurality of domain wall moving light modulation elements 91 having a first magnetization fixing layer 910, a second magnetization fixing layer 920, and an optical modulation unit 930 are provided. They are independently produced on a substrate (not shown), and are arranged, for example, in a grid pattern. On the other hand, FIG. 4 is a plan view of the domain wall moving type spatial light modulator 5 according to the present embodiment. As shown in FIG. 4, the domain wall moving type spatial light modulator 5 according to the present embodiment is the same as the conventional one in that the connecting domain wall elements 10 are arranged in a grid pattern, but is shown in FIG. 7 described later. As described above, it is significantly different from the conventional one in that a plurality of domain wall moving light modulation elements 100 are electrically connected in series.

ここで、図5及び図6は、いずれも従来の磁壁移動型光変調素子の平面図である。より詳しくは、図5は、細長く直線状に延び且つ2回折り返されることで形成された2つの屈曲部(折り返し部)を有する磁壁移動型光変調素子50の平面図である。図6は、細長く直線状に延び且つ1回折り返されることで形成された1つの屈曲部(折り返し部)を有する磁壁移動型光変調素子60の平面図である。 Here, FIGS. 5 and 6 are both plan views of the conventional domain wall moving light modulation element. More specifically, FIG. 5 is a plan view of the magnetic wall moving type light modulation element 50 having two bent portions (folded portions) formed by extending in an elongated linear shape and being folded back twice. FIG. 6 is a plan view of the magnetic domain wall moving type light modulation element 60 having one bent portion (folded portion) formed by extending in an elongated linear shape and being folded back once.

図5に示されるように、磁壁移動型光変調素子50は、第1磁化固定層511と、第2磁化固定層521と、光変調層530と、を備える。第1磁化固定層511及び光変調層530により第1強磁性交換結合部51が構成され、第2磁化固定層521及び光変調層530により第2強磁性交換結合部52が構成され、光変調層530により光変調部53が構成される。光変調層530は、細長く延び且つ屈曲部(折り返し部)55a,55bを有し、光変調部53には磁壁533が形成されている。磁壁533の第1磁化固定層511側に配置される磁区510の磁化方向は下向きの磁化方向D1であり、磁壁533の第2磁化固定層521側に配置される磁区520の磁化方向は上向きの磁化方向D2である。第1強磁性交換結合部1と第2強磁性交換結合部2にパルス電流源59が接続されることで、図5中の破線矢印の方向にパルス電流(駆動電流)が流れ、磁壁533が光変調層530に沿って、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)に移動する。 As shown in FIG. 5, the domain wall moving type light modulation element 50 includes a first magnetization fixing layer 511, a second magnetization fixing layer 521, and a light modulation layer 530. The first magnetization fixed layer 511 and the optical modulation layer 530 constitute the first ferromagnetic exchange coupling portion 51, and the second magnetization fixing layer 521 and the optical modulation layer 530 constitute the second ferromagnetic exchange coupling portion 52, and light modulation is performed. The layer 530 constitutes the optical modulation section 53. The optical modulation layer 530 is elongated and has bent portions (folded portions) 55a and 55b, and a magnetic domain wall 533 is formed in the optical modulation portion 53. The magnetization direction of the magnetic domain 510 arranged on the first magnetization fixed layer 511 side of the domain wall 533 is the downward magnetization direction D1, and the magnetization direction of the magnetic domain 520 arranged on the second magnetization fixed layer 521 side of the domain wall 533 is upward. Magnetization direction D2. By connecting the pulse current source 59 to the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2, the pulse current (driving current) flows in the direction of the broken line arrow in FIG. 5, and the domain wall 533 is formed. Along the optical modulation layer 530, it moves in the direction opposite to the direction of the pulse current (driving current) (the same direction as the flow of electrons).

同様に、図6に示されるように、磁壁移動型光変調素子60は、第1磁化固定層611と、第2磁化固定層621と、光変調層630と、を備える。第1磁化固定層611及び光変調層630により第1強磁性交換結合部61が構成され、第2磁化固定層621及び光変調層630により第2強磁性交換結合部62が構成され、光変調層630により光変調部63が構成される。光変調層630は、細長く延び且つ屈曲部(折り返し部)65を有し、光変調部63には磁壁633が形成されている。磁壁633の第1磁化固定層611側に配置される磁区610の磁化方向は下向きの磁化方向D1であり、磁壁633の第2磁化固定層621側に配置される磁区620の磁化方向は上向きの磁化方向D2である。第1強磁性交換結合部1と第2強磁性交換結合部2にパルス電流源69が接続されることで、図6中の破線矢印の方向にパルス電流(駆動電流)が流れ、磁壁633が光変調層630に沿って、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)に移動する。 Similarly, as shown in FIG. 6, the domain wall moving type light modulation element 60 includes a first magnetization fixing layer 611, a second magnetization fixing layer 621, and a light modulation layer 630. The first magnetization fixed layer 611 and the optical modulation layer 630 form the first ferromagnetic exchange coupling portion 61, and the second magnetization fixing layer 621 and the optical modulation layer 630 form the second ferromagnetic exchange coupling portion 62, which is photomodulated. The layer 630 constitutes the optical modulation section 63. The optical modulation layer 630 is elongated and has a bent portion (folded portion) 65, and a magnetic domain wall 633 is formed in the optical modulation portion 63. The magnetization direction of the magnetic domain 610 arranged on the first magnetization fixed layer 611 side of the domain wall 633 is the downward magnetization direction D1, and the magnetization direction of the magnetic domain 620 arranged on the second magnetization fixed layer 621 side of the domain wall 633 is upward. Magnetization direction D2. By connecting the pulse current source 69 to the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2, the pulse current (driving current) flows in the direction of the broken line arrow in FIG. Along the optical modulation layer 630, it moves in the direction opposite to the direction of the pulse current (driving current) (the same direction as the flow of electrons).

これら磁壁移動型光変調素子50,60は、例えば上述の引用文献3に開示されるものである。これら磁壁移動型光変調素子50,60は、開口率を向上させるために光変調層の幅を広げると駆動電流が増加するという知見に基づいて、駆動電流の増加を抑えつつ開口率を向上させることを目的として、光変調層530,630を細長く形成したものである。 These domain wall moving light modulation elements 50 and 60 are disclosed in, for example, the above-mentioned Cited Document 3. These magnetic wall moving type light modulation elements 50 and 60 improve the aperture ratio while suppressing the increase in the drive current based on the finding that the drive current increases when the width of the light modulation layer is widened in order to improve the aperture ratio. For the purpose of this, the light modulation layers 530 and 630 are formed in an elongated shape.

図5及び図6に示されるように、磁壁移動型光変調素子50,60における光変調層530,630は、屈曲部(折り返し部)55a,55b,65を有するため、磁壁533,633は、光変調層530,630に沿って、屈曲部(折り返し部)55a,55b,65を通過して移動することとなる。また、光変調層530,630の長さが長くなるため、磁壁533,633の移動距離も長くなる。 As shown in FIGS. 5 and 6, since the light modulation layers 530 and 630 in the magnetic wall moving type light modulation elements 50 and 60 have bent portions (folded portions) 55a, 55b and 65, the magnetic wall 533 and 633 are formed. It moves along the light modulation layers 530 and 630 through the bent portions (folded portions) 55a, 55b and 65. Further, since the lengths of the optical modulation layers 530 and 630 are increased, the moving distance of the domain walls 533 and 633 is also increased.

しかしながら、上述した通り、くびれ部や屈曲部を有する形状の光変調層では、該くびれ部や屈曲部において磁壁が引っ掛かってトラップされることが知られている(上述の特許文献4参照)。また、磁壁の移動距離と駆動電流密度とは比例することが知られている(上述の非特許文献1,2参照)。そのため、光変調層を細長く配置したことによる低電流化の効果は限定的である。 However, as described above, it is known that in an optical modulation layer having a constricted portion or a bent portion, a domain wall is caught and trapped in the constricted portion or the bent portion (see Patent Document 4 described above). Further, it is known that the moving distance of the domain wall is proportional to the driving current density (see Non-Patent Documents 1 and 2 described above). Therefore, the effect of reducing the current by arranging the optical modulation layer in an elongated manner is limited.

そこで、本実施形態に係る磁壁移動型空間光変調器5では、上述した基本構成及び磁気特性を有する複数の磁壁移動型光変調素子100を、長手方向が平行となるように整列配置させるとともに、直列に電気的に接続させることで連結磁壁素子10を形成し、上記のような屈曲部の存在による磁壁のトラップを回避したものである。ここで、図7は、本発明の第1実施形態に係る連結磁壁素子10の平面図である。図8は、図7に示される連結磁壁素子10のX−X線断面図であり、図9は、図7に示される連結磁壁素子10のY−Y線断面図である。 Therefore, in the domain wall moving type spatial light modulator 5 according to the present embodiment, a plurality of domain wall moving type light modulators 100 having the above-mentioned basic configuration and magnetic characteristics are aligned and arranged so as to be parallel in the longitudinal direction. The connecting domain wall element 10 is formed by electrically connecting in series, and the trap of the domain wall due to the presence of the bent portion as described above is avoided. Here, FIG. 7 is a plan view of the connecting domain wall element 10 according to the first embodiment of the present invention. FIG. 8 is a sectional view taken along line XX of the connecting domain wall element 10 shown in FIG. 7, and FIG. 9 is a sectional view taken along line YY of the connecting domain wall element 10 shown in FIG.

本実施形態に係る連結磁壁素子10は、図7に示されるように、2つの磁壁移動型光変調素子100a,100bを備える。これら磁壁移動型光変調素子100a,100bの基本構成は上述した通りであり、対応する各構成の符号には、磁壁移動型光変調素子100aではaを付し、磁壁移動型光変調素子100bではbを付している。 As shown in FIG. 7, the connecting domain wall element 10 according to the present embodiment includes two domain wall moving light modulation elements 100a and 100b. The basic configurations of the domain wall-moving light modulation elements 100a and 100b are as described above. b is attached.

2つの磁壁移動型光変調素子100a,100bは、長手方向が平行となるように整列配置される。より詳しくは、磁壁移動型光変調素子100a,100bは、所定方向(図7中の左右方向)に直交する方向(図7中の上下方向)に、第1強磁性交換結合部1aと第2強磁性交換結合部2b、第1強磁性交換結合部1bと第2強磁性交換結合部2aが、交互に位置するように並んで配置される。即ち、磁壁移動型光変調素子100a,100bは、互いに逆向きとなるように配置される。 The two domain wall-moving light modulation elements 100a and 100b are arranged so as to be parallel in the longitudinal direction. More specifically, the magnetic wall moving type optical modulation elements 100a and 100b are the first ferromagnetic exchange coupling portion 1a and the second in the direction (vertical direction in FIG. 7) orthogonal to the predetermined direction (horizontal direction in FIG. 7). The ferromagnetic exchange coupling portion 2b, the first ferromagnetic exchange coupling portion 1b and the second ferromagnetic exchange coupling portion 2a are arranged side by side so as to be alternately positioned. That is, the domain wall-moving light modulation elements 100a and 100b are arranged so as to face each other in opposite directions.

また、本実施形態に係る連結磁壁素子10は、図7〜図9に示されるように、隣接する磁壁移動型光変調素子100a,100b同士の一端側(図7中の右方向端部)において、隣接する第1強磁性交換結合部1bの第1磁化固定層11bと第2強磁性交換結合部2aの第2磁化固定層21aと、を電気的に接続する接続部としての接続用配線111をさらに備える。この接続用配線111により、2つの磁壁移動型光変調素子100a,100bは直列に電気的に接続される。 Further, as shown in FIGS. 7 to 9, the connecting domain wall element 10 according to the present embodiment is on one end side (right direction end portion in FIG. 7) of adjacent domain wall moving type optical modulation elements 100a and 100b. , Connection wiring 111 as a connecting portion for electrically connecting the first magnetization fixed layer 11b of the adjacent first ferromagnetic exchange coupling portion 1b and the second magnetization fixing layer 21a of the second ferromagnetic exchange coupling portion 2a. Further prepare. The two magnetic domain wall moving light modulation elements 100a and 100b are electrically connected in series by the connection wiring 111.

接続用配線111は、例えば図7及び図9に示されるように、第1強磁性交換結合部1bの第1磁化固定層11bの光変調層30bとは反対側の面(図9の下面)と、第2強磁性交換結合部2aの第2磁化固定層21aの光変調層30aとは反対側の面(図9の下面)と、を電気的に接続するように構成される。接続用配線111は、磁壁移動型光変調素子100a,100bの延びる方向(長手方向)である所定方向(図7中の左右方向)に直交する方向(図7中の上下方向)に延びて形成される。接続用配線111を構成する材料としては、導電性を有する金属材料が用いられる。例えば、ルテニウム、タンタル、タングステン、金、銀、銅、アルミニウム等の材料により、接続用配線111が構成される。 As shown in FIGS. 7 and 9, for example, the connection wiring 111 is a surface of the first ferromagnetic exchange coupling portion 1b of the first magnetization fixed layer 11b opposite to the optical modulation layer 30b (lower surface of FIG. 9). And the surface (lower surface of FIG. 9) of the second magnetization fixed layer 21a of the second ferromagnetic exchange coupling portion 2a opposite to the photomodulation layer 30a are electrically connected. The connection wiring 111 is formed so as to extend in a direction (vertical direction in FIG. 7) orthogonal to a predetermined direction (horizontal direction in FIG. 7) which is an extension direction (longitudinal direction) of the magnetic wall movable light modulation elements 100a and 100b. Will be done. As a material constituting the connection wiring 111, a conductive metal material is used. For example, the connection wiring 111 is made of materials such as ruthenium, tantalum, tungsten, gold, silver, copper, and aluminum.

また、磁壁移動型光変調素子100a,100bは、図8及び図9に示されるように、その周囲が絶縁部材206で覆われている。この絶縁部材206は、例えばSiバックプレーン等の上に形成された絶縁部材層に対して、従来公知のリソグラフィ等を用いて磁壁移動型光変調素子100a,100bを形成する場合には、絶縁部材層の残部で構成される。絶縁部材206の材料としては、絶縁性のある材料であればよく、例えば、SiO、SiN、MgO等が用いられる。 Further, as shown in FIGS. 8 and 9, the magnetic wall moving type light modulation elements 100a and 100b are surrounded by an insulating member 206. The insulating member 206 is an insulating member when the magnetic domain wall moving light modulation elements 100a and 100b are formed on the insulating member layer formed on, for example, a Si backplane or the like by using conventionally known lithography or the like. Consists of the rest of the layer. The material of the insulating member 206 may be any material having an insulating property, and for example, SiO 2 , SiN, MgO and the like are used.

なお、磁壁移動型光変調素子100a,100bでは、図8及び図9に示されるように、光変調層30a,30b上に、上述のキャップ層207a、207bが形成されている。また、第1磁化固定層11aと第2磁化固定層21bには、パルス電流源19が接続されている。より具体的には、パルス電流源19は、図8に示されるように第1磁化固定層11aと第2磁化固定層21bのそれぞれの下面側に設けられた電極112を介して、第1磁化固定層11aと第2磁化固定層21bに接続されている。これにより、磁壁移動型光変調素子100a,100bに対してパルス電流(駆動電流)が印加可能となっている。 In the magnetic wall moving type light modulation elements 100a and 100b, as shown in FIGS. 8 and 9, the above-mentioned cap layers 207a and 207b are formed on the light modulation layers 30a and 30b. Further, a pulse current source 19 is connected to the first magnetization fixing layer 11a and the second magnetization fixing layer 21b. More specifically, as shown in FIG. 8, the pulse current source 19 has a first magnetization via an electrode 112 provided on the lower surface side of each of the first magnetization fixed layer 11a and the second magnetization fixing layer 21b. It is connected to the fixed layer 11a and the second magnetized fixed layer 21b. As a result, a pulse current (driving current) can be applied to the magnetic domain wall moving type light modulation elements 100a and 100b.

上記構成を備える磁壁移動型光変調素子100aでは、図7及び図8に示されるように第1強磁性交換結合部1aの磁化方向は上向きであり、第2強磁性交換結合部2aの磁化方向は下向きである。磁壁33aの第1強磁性交換結合部1a側に配置される磁区31aの磁化方向は下向きの磁化方向D1であり、磁壁33aの第2強磁性交換結合部2a側に配置される磁区32aの磁化方向は上向きの磁化方向D2である。 In the magnetic domain wall moving light modulation element 100a having the above configuration, as shown in FIGS. 7 and 8, the magnetization direction of the first ferromagnetic exchange coupling portion 1a is upward, and the magnetization direction of the second ferromagnetic exchange coupling portion 2a is upward. Is facing down. The magnetization direction of the magnetic domain 31a arranged on the first ferromagnetic exchange coupling portion 1a side of the domain wall 33a is the downward magnetization direction D1, and the magnetization of the magnetic domain 32a arranged on the second ferromagnetic exchange coupling portion 2a side of the magnetic wall 33a. The direction is the upward magnetization direction D2.

また、上記構成を備える磁壁移動型光変調素子100bでは、図7及び図8に示されるように第1強磁性交換結合部1bの磁化方向は上向きであり、第2強磁性交換結合部2bの磁化方向は下向きである。磁壁33bの第1強磁性交換結合部1b側に配置される磁区31bの磁化方向は下向きの磁化方向D1であり、磁壁33bの第2強磁性交換結合部2b側に配置される磁区32bの磁化方向は上向きの磁化方向D2である。 Further, in the magnetic domain wall moving type light modulation element 100b having the above configuration, as shown in FIGS. 7 and 8, the magnetization direction of the first ferromagnetic exchange coupling portion 1b is upward, and the magnetization direction of the second ferromagnetic exchange coupling portion 2b is upward. The magnetization direction is downward. The magnetization direction of the magnetic domain 31b arranged on the first ferromagnetic exchange coupling portion 1b side of the domain wall 33b is the downward magnetization direction D1, and the magnetization of the magnetic domain 32b arranged on the second ferromagnetic exchange coupling portion 2b side of the domain wall 33b. The direction is the upward magnetization direction D2.

本実施形態に係る磁壁移動型空間光変調器5の製造方法について説明する。
先ず、Siバックプレーン等の上に形成されたSiO等の絶縁部材層に対して、従来公知のリソグラフィを用いて接続用配線111を形成する。このとき、パルス電流源19に接続される電極112も併せて形成する。
A method of manufacturing the domain wall movable spatial light modulator 5 according to the present embodiment will be described.
First, the connection wiring 111 is formed on the insulating member layer such as SiO 2 formed on the Si backplane or the like by using conventionally known lithography. At this time, the electrode 112 connected to the pulse current source 19 is also formed.

次いで、磁壁移動型光変調素子100a,100bを形成する。これら磁壁移動型光変調素子100a,100bの形成方法については、例えば、Siバックプレーン等の上に形成された絶縁部材層に対して、従来公知のリソグラフィ等を用いて第1磁化固定層及び第2磁化固定層等を形成し、必要に応じて熱処理等を施した後、従来公知のイオンビームスパッタ等により光変調層等を形成することにより製造可能である。より詳しくは、例えば、本出願人が提案している特願2017−191723号に記載の製造方法により製造可能である。 Next, the magnetic domain wall moving type light modulation elements 100a and 100b are formed. Regarding the method of forming the domain wall moving light modulation elements 100a and 100b, for example, the first magnetization fixing layer and the first magnetization fixing layer and the first magnetization fixed layer are formed on the insulating member layer formed on the Si back plane or the like by using conventionally known lithography or the like. It can be manufactured by forming a two-magnetized fixed layer or the like, performing heat treatment or the like as necessary, and then forming a light modulation layer or the like by conventionally known ion beam sputtering or the like. More specifically, for example, it can be produced by the production method described in Japanese Patent Application No. 2017-191723 proposed by the present applicant.

本実施形態に係る磁壁移動型空間光変調器5の動作及び効果について説明する。
パルス電流源19によりパルス電流(駆動電流)を磁壁移動型空間光変調器5を構成する連結磁壁素子10に印加すると、図7中の破線矢印で示されるように、パルス電流(駆動電流)は、磁壁移動型光変調素子100aの第1強磁性交換結合部1aから光変調部3aを通って第2強磁性交換結合部2aへと流れる。次いで、パルス電流(駆動電流)は、接続用配線111を介して磁壁移動型光変調素子100bの第1強磁性交換結合部1bから光変調部3bを通って第2強磁性交換結合部2bへと流れる。
The operation and effect of the domain wall movable spatial light modulator 5 according to the present embodiment will be described.
When a pulse current (driving current) is applied to the connecting domain wall element 10 constituting the domain wall moving space optical modulator 5 by the pulse current source 19, the pulse current (driving current) becomes as shown by the broken arrow in FIG. , The current flows from the first ferromagnetic exchange coupling portion 1a of the domain wall moving type optical modulation element 100a to the second ferromagnetic exchange coupling portion 2a through the optical modulation portion 3a. Next, the pulse current (drive current) is transferred from the first ferromagnetic exchange coupling portion 1b of the magnetic domain wall moving light modulation element 100b to the second ferromagnetic exchange coupling portion 2b through the optical modulation portion 3b via the connection wiring 111. Flows.

上記のようにパルス電流(駆動電流)が流れると、磁壁移動型光変調素子100aの磁壁33aは、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)、具体的には、第2強磁性交換結合部2a側から第1強磁性交換結合部1a側に向かって移動する。また、磁壁移動型光変調素子100bの磁壁33bは、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)、具体的には、第1強磁性交換結合部1b側から第2強磁性交換結合部2b側に向かって移動する。 When the pulse current (driving current) flows as described above, the magnetic wall 33a of the magnetic wall moving type optical modulation element 100a is in the direction opposite to the direction of the pulse current (driving current) (the same direction as the electron flow), specifically, , Moves from the second ferromagnetic exchange coupling portion 2a side toward the first ferromagnetic exchange coupling portion 1a side. Further, the magnetic wall 33b of the magnetic wall moving type light modulation element 100b is in the direction opposite to the direction of the pulse current (driving current) (the same direction as the flow of electrons), specifically, from the first ferromagnetic exchange coupling portion 1b side to the first. 2 Moves toward the ferromagnetic exchange coupling portion 2b side.

即ち、磁壁移動型光変調素子100a,100bいずれにおいても、光変調層30a,30bは屈曲部を有さない直線形状であるため、磁壁33a,33bを直線的にのみ移動させることができるため、磁壁33a,33bが屈曲部で引っ掛かってトラップされるのを回避できる。 That is, in any of the magnetic wall moving type light modulation elements 100a and 100b, since the optical modulation layers 30a and 30b have a linear shape having no bent portion, the magnetic wall 33a and 33b can be moved only linearly. It is possible to prevent the domain walls 33a and 33b from being caught at the bent portion and trapped.

加えて、磁壁移動型光変調素子100a,100bいずれにおいても、図5及び図6に示されるような屈曲部を有する従来のものと比べて、磁壁33a,33bの移動距離を短くすることができるため、低電流駆動が可能である。 In addition, in any of the magnetic wall moving type light modulation elements 100a and 100b, the moving distance of the magnetic wall 33a and 33b can be shortened as compared with the conventional one having a bent portion as shown in FIGS. 5 and 6. Therefore, low current drive is possible.

従って、本実施形態に係る磁壁移動型空間光変調器5によれば、複数の磁壁移動型光変調素子100a,100bを接続用配線111によって直列に電気的に接続した連結磁壁素子10を1画素とする構成であるため、低電流駆動が可能であるとともに開口率の向上が可能である。なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。 Therefore, according to the domain wall moving spatial light modulator 5 according to the present embodiment, one domain wall element 10 in which a plurality of domain wall moving optical modulation elements 100a and 100b are electrically connected in series by a connection wiring 111 is connected. Therefore, it is possible to drive with a low current and improve the aperture ratio. The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention. The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.

<第2実施形態>
図10は、本発明の第2実施形態に係る磁壁移動型空間光変調器5Aの平面図である。本実施形態に係る磁壁移動型空間光変調器5Aは、上述の第1実施形態に係る磁壁移動型空間光変調器5と比べて、磁壁移動型光変調素子100cをさらに備える点と、磁壁移動型光変調素子100bと磁壁移動型光変調素子100cとを直列に電気的に接続する接続部としての接続用配線113をさらに備える点と、が相違する以外は、第1実施形態に係る磁壁移動型空間光変調器5と同様の構成である。即ち、本実施形態に係る磁壁移動型空間光変調器5Aは、3つの磁壁移動型光変調素子100a,100b,100cが直列に電気的に接続した連結磁壁素子10Aを備える。なお、以下の本実施形態の説明において、第1実施形態と共通する構成については、その説明を省略する。
<Second Embodiment>
FIG. 10 is a plan view of the domain wall moving type spatial light modulator 5A according to the second embodiment of the present invention. The magnetic wall movable spatial light modulator 5A according to the present embodiment further includes a magnetic wall movable light modulator 100c as compared with the magnetic wall movable spatial light modulator 5 according to the first embodiment described above, and the magnetic wall movement. The magnetic wall movement according to the first embodiment, except that the connection wiring 113 is further provided as a connection portion for electrically connecting the light modulation element 100b and the magnetic wall movement type light modulation element 100c in series. It has the same configuration as the type spatial light modulator 5. That is, the domain wall moving spatial light modulator 5A according to the present embodiment includes a connecting domain wall element 10A in which three domain wall moving light modulation elements 100a, 100b, and 100c are electrically connected in series. In the following description of the present embodiment, the description of the configuration common to the first embodiment will be omitted.

図11は、本発明の第2実施形態に係る連結磁壁素子10Aの平面図である。磁壁移動型光変調素子100cの基本構成は、磁壁移動型光変調素子100a,100bと同一であり、対応する各構成の符号にはcを付している。 FIG. 11 is a plan view of the connecting domain wall element 10A according to the second embodiment of the present invention. The basic configuration of the domain wall-moving light modulation element 100c is the same as that of the domain wall-moving light modulation elements 100a and 100b, and c is added to the reference numerals of the corresponding configurations.

図11に示されるように、磁壁移動型光変調素子100cは、磁壁移動型光変調素子100a,100bと長手方向が平行となるように整列配置される。より詳しくは、磁壁移動型光変調素子100cは、磁壁移動型光変調素子100bに対して逆向きとなるように配置され、磁壁移動型光変調素子100aに対しては同じ向きに配置される。即ち、所定方向(図11中の左右方向)に直交する方向(図11中の上下方向)に、第1強磁性交換結合部1aと第2強磁性交換結合部2bと第1強磁性交換結合部1cがこの順に並んで配置され、第2強磁性交換結合部2aと第1強磁性交換結合部1bと第2強磁性交換結合部2cがこの順に並んで配置される。 As shown in FIG. 11, the domain wall moving light modulation elements 100c are aligned and arranged so as to be parallel to the domain wall moving light modulation elements 100a and 100b in the longitudinal direction. More specifically, the domain wall moving light modulation element 100c is arranged so as to be opposite to the domain wall moving light modulation element 100b, and is arranged in the same direction with respect to the domain wall moving light modulation element 100a. That is, in a direction (vertical direction in FIG. 11) orthogonal to a predetermined direction (horizontal direction in FIG. 11), the first ferromagnetic exchange coupling portion 1a, the second ferromagnetic exchange coupling portion 2b, and the first ferromagnetic exchange coupling The parts 1c are arranged side by side in this order, and the second ferromagnetic exchange coupling part 2a, the first ferromagnetic exchange coupling part 1b, and the second ferromagnetic exchange coupling part 2c are arranged side by side in this order.

また、磁壁移動型空間光変調器5Aは、隣接する磁壁移動型光変調素子100b,100c同士の一端側(図11中の左方向端部)において、隣接する第1強磁性交換結合部1cの第1磁化固定層11cと第2強磁性交換結合部2bの第2磁化固定層21bと、を電気的に接続する接続部としての接続用配線113をさらに備える。この接続用配線113により、磁壁移動型光変調素子100b,100cは直列に電気的に接続される。 Further, in the domain wall moving type spatial light modulator 5A, on one end side (leftward end portion in FIG. 11) of the adjacent magnetic wall moving type optical modulators 100b and 100c, the adjacent first ferromagnetic exchange coupling portion 1c Further, a connection wiring 113 is further provided as a connection portion for electrically connecting the first magnetization fixing layer 11c and the second magnetization fixing layer 21b of the second ferromagnetic exchange coupling portion 2b. The domain wall moving light modulation elements 100b and 100c are electrically connected in series by the connection wiring 113.

接続用配線113は、上述の接続用配線111と同様に、第1強磁性交換結合部1cの第1磁化固定層11cの光変調層30cとは反対側の面と、第2強磁性交換結合部2bの第2磁化固定層21bの光変調層30bとは反対側の面と、を電気的に接続するように構成される。接続用配線113は、磁壁移動型光変調素子100a,100b,100cの延びる方向(長手方向)である所定方向(図11中の左右方向)に直交する方向(図11中の上下方向)に延びて形成される。接続用配線113を構成する材料としては、上述した接続用配線111と同様の材料が用いられる。 Similar to the connection wiring 111 described above, the connection wiring 113 has a second ferromagnetic exchange coupling with the surface of the first magnetization fixed layer 11c of the first ferromagnetic exchange coupling portion 1c opposite to the optical modulation layer 30c. It is configured to electrically connect the surface of the second magnetization fixed layer 21b of the part 2b opposite to the photomodulation layer 30b. The connection wiring 113 extends in a direction (vertical direction in FIG. 11) orthogonal to a predetermined direction (horizontal direction in FIG. 11) which is an extension direction (longitudinal direction) of the magnetic wall movable light modulation elements 100a, 100b, 100c. Is formed. As the material constituting the connection wiring 113, the same material as the connection wiring 111 described above is used.

また、第1磁化固定層11aと第2磁化固定層21cには、パルス電流源19Aが接続されている。より具体的には、パルス電流源19Aは、第1磁化固定層11aと第2磁化固定層21cのそれぞれの下面側に設けられた不図示の電極を介して、第1磁化固定層11aと第2磁化固定層21cに接続されている。これにより、磁壁移動型光変調素子100a,100b,100cに対してパルス電流(駆動電流)が印加可能となっている。 Further, a pulse current source 19A is connected to the first magnetization fixing layer 11a and the second magnetization fixing layer 21c. More specifically, the pulse current source 19A has the first magnetization-fixed layer 11a and the first magnetization-fixed layer 11a via electrodes (not shown) provided on the lower surfaces of the first magnetization-fixed layer 11a and the second magnetization-fixed layer 21c. It is connected to the two-magnetized fixed layer 21c. As a result, a pulse current (driving current) can be applied to the magnetic domain wall moving type light modulation elements 100a, 100b, 100c.

磁壁移動型光変調素子100a及び磁壁移動型光変調素子100bにおける磁化方向は、第1実施形態で説明した通りである。また、磁壁移動型光変調素子100cでは、第1強磁性交換結合部1cの磁化方向は上向きであり、第2強磁性交換結合部2cの磁化方向は下向きである。磁壁33cの第1強磁性交換結合部1c側に配置される磁区31cの磁化方向は下向きの磁化方向D1であり、磁壁33cの第2強磁性交換結合部2c側に配置される磁区32cの磁化方向は上向きの磁化方向D2である。 The magnetization directions in the domain wall moving light modulation element 100a and the domain wall moving light modulation element 100b are as described in the first embodiment. Further, in the domain wall moving light modulation element 100c, the magnetization direction of the first ferromagnetic exchange coupling portion 1c is upward, and the magnetization direction of the second ferromagnetic exchange coupling portion 2c is downward. The magnetization direction of the magnetic domain 31c arranged on the first ferromagnetic exchange coupling portion 1c side of the domain wall 33c is the downward magnetization direction D1, and the magnetization of the magnetic domain 32c arranged on the second ferromagnetic exchange coupling portion 2c side of the domain wall 33c. The direction is the upward magnetization direction D2.

本実施形態に係る磁壁移動型空間光変調器5Aの製造方法については、上述の第1実施形態に係る磁壁移動型空間光変調器5と基本的には同様である。即ち、磁壁移動型光変調素子100cを磁壁移動型光変調素子100a,100bと同様の製造方法により製造可能であり、接続用配線113を接続用配線111と同様の製造方法により製造可能である。 The method of manufacturing the domain wall moving spatial light modulator 5A according to the present embodiment is basically the same as that of the domain wall moving spatial light modulator 5 according to the first embodiment described above. That is, the domain wall moving light modulation element 100c can be manufactured by the same manufacturing method as the domain wall moving light modulation elements 100a and 100b, and the connection wiring 113 can be manufactured by the same manufacturing method as the connection wiring 111.

本実施形態に係る連結磁壁素子10Aの動作及び効果について説明する。
パルス電流源19Aによりパルス電流(駆動電流)を連結磁壁素子10Aに印加すると、図11中の破線矢印で示されるように、パルス電流(駆動電流)は、磁壁移動型光変調素子100aの第1強磁性交換結合部1aから光変調部3aを通って第2強磁性交換結合部2aへと流れる。次いで、パルス電流(駆動電流)は、接続用配線111を介して磁壁移動型光変調素子100bの第1強磁性交換結合部1bから光変調部3bを通って第2強磁性交換結合部2bへと流れる。次いで、パルス電流(駆動電流)は、接続用配線113を介して磁壁移動型光変調素子100cの第1強磁性交換結合部1cから光変調部3cを通って第2強磁性交換結合部2cへと流れる。
The operation and effect of the connecting domain wall element 10A according to the present embodiment will be described.
When a pulse current (drive current) is applied to the connecting domain wall element 10A by the pulse current source 19A, the pulse current (drive current) is the first of the domain wall moving type optical modulation element 100a as shown by the broken line arrow in FIG. It flows from the ferromagnetic exchange coupling portion 1a through the optical modulation portion 3a to the second ferromagnetic exchange coupling portion 2a. Next, the pulse current (drive current) is transferred from the first ferromagnetic exchange coupling portion 1b of the magnetic domain wall moving light modulation element 100b to the second ferromagnetic exchange coupling portion 2b through the optical modulation portion 3b via the connection wiring 111. Flows. Next, the pulse current (drive current) is transferred from the first ferromagnetic exchange coupling portion 1c of the magnetic domain wall moving light modulation element 100c to the second ferromagnetic exchange coupling portion 2c through the optical modulation portion 3c via the connection wiring 113. Flows.

上記のようにパルス電流(駆動電流)が流れると、磁壁移動型光変調素子100aの磁壁33aは、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)、具体的には、第2強磁性交換結合部2a側から第1強磁性交換結合部1a側に向かって移動する。また、磁壁移動型光変調素子100bの磁壁33bは、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)、具体的には、第1強磁性交換結合部1b側から第2強磁性交換結合部2b側に向かって移動する。また、磁壁移動型光変調素子100cの磁壁33cは、パルス電流(駆動電流)の向きと逆向き(電子の流れと同じ向き)、具体的には、第2強磁性交換結合部2c側から第1強磁性交換結合部1c側に向かって移動する。 When the pulse current (driving current) flows as described above, the magnetic wall 33a of the magnetic wall moving type optical modulation element 100a is in the direction opposite to the direction of the pulse current (driving current) (the same direction as the electron flow), specifically, , Moves from the second ferromagnetic exchange coupling portion 2a side toward the first ferromagnetic exchange coupling portion 1a side. Further, the magnetic wall 33b of the magnetic wall moving type light modulation element 100b is in the direction opposite to the direction of the pulse current (driving current) (the same direction as the flow of electrons), specifically, from the first ferromagnetic exchange coupling portion 1b side to the first. 2 Moves toward the ferromagnetic exchange coupling portion 2b side. Further, the magnetic wall 33c of the magnetic wall moving type light modulation element 100c is in the direction opposite to the direction of the pulse current (driving current) (the same direction as the flow of electrons), specifically, from the second ferromagnetic exchange coupling portion 2c side. 1 It moves toward the ferromagnetic exchange coupling portion 1c side.

即ち、磁壁移動型光変調素子100a,100b,100cいずれにおいても、光変調層30a,30b,30cは屈曲部を有さない直線形状であるため、磁壁33a,33b,33cを直線的にのみ移動させることができるため、磁壁33a,33b,33cが屈曲部で引っ掛かってトラップされるのを回避できる。 That is, in any of the magnetic wall moving type light modulation elements 100a, 100b, 100c, since the optical modulation layers 30a, 30b, 30c have a linear shape having no bent portion, the magnetic wall 33a, 33b, 33c can be moved only linearly. Therefore, it is possible to prevent the domain walls 33a, 33b, 33c from being caught at the bent portion and trapped.

加えて、磁壁移動型光変調素子100a,100b,100cいずれにおいても、図5及び図6に示されるような屈曲部を有する従来のものと比べて、磁壁33a,33b,33cの移動距離を短くすることができるため、低電流駆動が可能である。 In addition, in any of the magnetic wall moving type light modulation elements 100a, 100b, 100c, the moving distance of the magnetic wall 33a, 33b, 33c is shorter than that of the conventional one having a bent portion as shown in FIGS. 5 and 6. Therefore, low current drive is possible.

従って、本実施形態に係る連結磁壁素子10Aによれば、複数の磁壁移動型光変調素子100a,100b,100cを接続用配線111,113によって直列に電気的に接続することにより、さらなる低電流駆動が可能であるとともに開口率の向上が可能である。なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。 Therefore, according to the connecting domain wall element 10A according to the present embodiment, the plurality of domain wall moving light modulation elements 100a, 100b, 100c are electrically connected in series by the connection wirings 111, 113 to further reduce the current drive. It is possible to improve the aperture ratio as well as. The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention. The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。
例えば、第1実施形態では2つの磁壁移動型光変調素子100a,100bを直列に電気的に接続し、第2実施形態では3つの磁壁移動型光変調素子100a,100b,100cを直列に電気的に接続したが、これに限定されず、4つ以上の磁壁移動型光変調素子を直列に電気的に接続してもよい。
The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.
For example, in the first embodiment, two domain wall moving light modulation elements 100a, 100b are electrically connected in series, and in the second embodiment, three domain wall moving light modulation elements 100a, 100b, 100c are electrically connected in series. However, the present invention is not limited to this, and four or more domain wall-moving light modulation elements may be electrically connected in series.

1,1a,1b,1c 第1強磁性交換結合部
2,2a,2b,2c 第2強磁性交換結合部
3,3a,3b,3c 光変調部
5,5A, 磁壁移動型空間光変調器
10,10A 連結式磁壁移動型光変調素子
11,11a,11b,11c 第1磁化固定層(第1強磁性層)
21,21a,21b,21c 第2磁化固定層(第1強磁性層)
30,30a,30b,30c 光変調層(第2強磁性層)
33,33a,33b,33c 磁壁
100,100a,100b,100c 磁壁移動型光変調素子
111,113 接続用配線(接続部)
1,1a, 1b, 1c 1st ferromagnetic exchange coupling part 2,2a, 2b, 2c 2nd ferromagnetic exchange coupling part 3,3a, 3b, 3c Optical modulator 5,5A, Domain wall moving spatial light modulator 10 , 10A Connected domain wall moving light modulator 11, 11a, 11b, 11c First magnetization fixed layer (first ferromagnetic layer)
21,21a, 21b, 21c Second magnetization fixed layer (first ferromagnetic layer)
30, 30a, 30b, 30c optical modulation layer (second ferromagnetic layer)
33, 33a, 33b, 33c Domain wall 100, 100a, 100b, 100c Domain wall moving light modulation element 111, 113 Connection wiring (connection part)

Claims (2)

所定方向に延び、入射した光の偏光の向きを変化させて出射する光変調部と、
前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、
複数の磁壁移動型光変調素子と、を備える磁壁移動型空間光変調器であって、
前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、
強磁性材料からなる第1強磁性層と、
前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有し、
前記複数の磁壁移動型光変調素子は、前記所定方向に直交する方向に前記第1強磁性交換結合部と前記第2強磁性交換結合部とが交互に位置するように並んで配置され、
前記磁壁移動型空間光変調器は、隣接する前記磁壁移動型光変調素子同士の一端側において、隣接する前記第1強磁性交換結合部の第1強磁性層と前記第2強磁性交換結合部の第1強磁性層とを電気的に接続する接続部をさらに備える、磁壁移動型空間光変調器。
An optical modulator that extends in a predetermined direction and emits light by changing the direction of polarized light.
The first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion, which are arranged at both ends of the optical modulation section and have different coercive forces,
A domain wall moving spatial light modulator comprising a plurality of domain wall moving light modulators.
Both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion
The first ferromagnetic layer made of ferromagnetic material and
It has a second ferromagnetic layer that is formed on the first ferromagnetic layer and is made of a ferromagnetic material so that it has a ferromagnetic exchange coupling with the first ferromagnetic layer.
The plurality of magnetic domain wall moving light modulation elements are arranged side by side so that the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion are alternately positioned in a direction orthogonal to the predetermined direction.
In the domain wall moving space optical modulator, the first ferromagnetic layer of the adjacent first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion are located on one end side of the adjacent magnetic wall moving optical modulation elements. A domain wall mobile space optical modulator further comprising a connection portion for electrically connecting to the first ferromagnetic layer of the above.
前記接続部は、隣接する前記第1強磁性層の前記第2強磁性層とは反対側の面同士を電気的に接続する接続用配線である、請求項1に記載の磁壁移動型空間光変調器。 The magnetic wall movable spatial light according to claim 1, wherein the connecting portion is a connection wiring for electrically connecting the surfaces of the adjacent first ferromagnetic layer opposite to the second ferromagnetic layer. Modulator.
JP2020001307A 2020-01-08 2020-01-08 Domain wall displacement type spatial light modulator Pending JP2021110787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020001307A JP2021110787A (en) 2020-01-08 2020-01-08 Domain wall displacement type spatial light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020001307A JP2021110787A (en) 2020-01-08 2020-01-08 Domain wall displacement type spatial light modulator

Publications (1)

Publication Number Publication Date
JP2021110787A true JP2021110787A (en) 2021-08-02

Family

ID=77059778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020001307A Pending JP2021110787A (en) 2020-01-08 2020-01-08 Domain wall displacement type spatial light modulator

Country Status (1)

Country Link
JP (1) JP2021110787A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192505A1 (en) * 2001-06-13 2002-12-19 Optware Corporation Spatial light modulator
JP2012014074A (en) * 2010-07-02 2012-01-19 Sony Corp Spatial light modulator
JP2013195594A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195593A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
WO2015182071A1 (en) * 2014-05-27 2015-12-03 日本電気株式会社 Magnetic substance element, initialization method therefor, and semiconductor integrated circuit
JP2017167430A (en) * 2016-03-17 2017-09-21 日本放送協会 Optical modulation element and spatial light modulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192505A1 (en) * 2001-06-13 2002-12-19 Optware Corporation Spatial light modulator
JP2012014074A (en) * 2010-07-02 2012-01-19 Sony Corp Spatial light modulator
JP2013195594A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195593A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
WO2015182071A1 (en) * 2014-05-27 2015-12-03 日本電気株式会社 Magnetic substance element, initialization method therefor, and semiconductor integrated circuit
JP2017167430A (en) * 2016-03-17 2017-09-21 日本放送協会 Optical modulation element and spatial light modulator

Similar Documents

Publication Publication Date Title
JP6845300B2 (en) Spin current magnetization reversing element
Aoshima et al. Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons
JP4939489B2 (en) Magneto-optic spatial light modulator
JP2012078579A (en) Light modulation element and spatial light modulator using the same
JP2003007980A (en) Modulation method for magnetic characteristic and magnetiic functional device
JP4939149B2 (en) Multi-element spatial light modulator and video display device having the same
JP5001807B2 (en) Spatial light modulator
JP2010286729A (en) Magneto-optical spatial light modulator and method of manufacturing the same
JP2018074139A (en) Current magnetic field assist spin current magnetization reversal element, magnetoresistance effect element, magnetic memory and high frequency filter
JP2012128396A (en) Spatial light modulator and pixel drive method thereof
JP2012014074A (en) Spatial light modulator
JP2021110787A (en) Domain wall displacement type spatial light modulator
JP7149055B2 (en) Ferromagnetic exchange-coupled device and manufacturing method thereof
JP2011180355A (en) Optical modulation element and spatial light modulator
JP6017165B2 (en) Spatial light modulator
JP2020160220A (en) Domain wall displacement type spatial optical modulation element and domain wall displacement type spatial light modulator
JP5054639B2 (en) Light modulator and spatial light modulator
JP5281522B2 (en) Spatial light modulator
JP2023136628A (en) Domain wall movement type spatial light modulator
JP6865544B2 (en) Spatial Light Modulators and Methods for Manufacturing Spatial Light Modulators
JP2023136629A (en) Domain wall movement type spatial light modulator
JP2024017570A (en) Magnetic domain wall displacement type spatial light modulator
JP2018205515A (en) Optical modulation element, space optical modulator and space optical modulation system
JP2019220544A (en) Domain wall displacement type spatial light modulator
JP7168359B2 (en) Aperture improvement structure of domain wall motion type spatial light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130