JP2010286729A - Magneto-optical spatial light modulator and method of manufacturing the same - Google Patents

Magneto-optical spatial light modulator and method of manufacturing the same Download PDF

Info

Publication number
JP2010286729A
JP2010286729A JP2009141484A JP2009141484A JP2010286729A JP 2010286729 A JP2010286729 A JP 2010286729A JP 2009141484 A JP2009141484 A JP 2009141484A JP 2009141484 A JP2009141484 A JP 2009141484A JP 2010286729 A JP2010286729 A JP 2010286729A
Authority
JP
Japan
Prior art keywords
light
electrode
modulation element
light modulation
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009141484A
Other languages
Japanese (ja)
Other versions
JP5238619B2 (en
Inventor
Kenichi Aoshima
賢一 青島
Nobuhiko Funabashi
信彦 船橋
Kenji Machida
賢司 町田
Atsushi Kuga
淳 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2009141484A priority Critical patent/JP5238619B2/en
Publication of JP2010286729A publication Critical patent/JP2010286729A/en
Application granted granted Critical
Publication of JP5238619B2 publication Critical patent/JP5238619B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magneto-optical spatial light modulator causing little variation between pixels and exhibiting excellent response speed. <P>SOLUTION: The spatial light modulator 1 includes a plurality of pixels 4 arranged in two dimensions on a transparent substrate 7 and reflects light incident from the substrate 7 side to emit the light. A pixel 4 includes a light modulation element 5 changing the polarization direction of the incident light to emit the light, a lower electrode 3 arranged below the light modulation element and containing a crystalline transparent electrode material formed by heating film formation, and an upper electrode 2 arranged on the light modulation element 5 and formed of a metal electrode material. The light transmitted through the substrate 7 to be incident on the pixel 4 is further transmitted through the lower electrode 3 to be incident on the light modulation element 5, and the light further transmitted through the light modulation element 5 is reflected on the upper electrode 2 to be emitted after being transmitted again through the light modulation element 5, the lower electrode 3, and the substrate 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器に関する。   The present invention relates to a spatial light modulator that emits incident light by spatially modulating the phase and amplitude of the light by a magneto-optic effect.

空間光変調器は、画素として光学素子(光変調素子)を用い、これを2次元アレイ状に配列して光の位相や振幅等を空間的に変調するものであって、ホログラフィー装置等の露光装置、ディスプレイ技術、記録技術等の分野で広く利用されている。また、2次元で並列に光情報を処理することができることから光情報処理技術への応用も研究されている。空間光変調器として、従来より液晶が用いられ、表示装置として広く利用されているが、ホログラフィーや光情報処理用としては、応答速度や画素の高精細性が不十分であるため、近年では、高速処理かつ画素の微細化の可能性が期待される磁気光学材料を用いた磁気光学式空間光変調器の開発が進められている(例えば、特許文献1〜3)。   A spatial light modulator uses optical elements (light modulation elements) as pixels and arranges them in a two-dimensional array to spatially modulate the phase, amplitude, etc. of light. Widely used in fields such as equipment, display technology, and recording technology. In addition, since optical information can be processed in two dimensions in parallel, its application to optical information processing technology is also being studied. As a spatial light modulator, liquid crystal has been conventionally used and widely used as a display device, but for holography and optical information processing, since response speed and high definition of pixels are insufficient, in recent years, Development of a magneto-optical spatial light modulator using a magneto-optical material that is expected to be capable of high-speed processing and pixel miniaturization (for example, Patent Documents 1 to 3).

磁気光学式空間光変調器においては、磁気光学材料すなわち磁性体に入射した光が透過または反射する際にその偏光の向きを変化させて出射する、ファラデー効果(反射の場合はカー効果)を利用している。すなわち、選択された画素(選択画素)における光変調素子の磁化方向とそれ以外の画素(非選択画素)における光変調素子の磁化方向を異なるものとして、選択画素から出射した光と非選択画素から出射した光で、その偏光の回転角(旋光角)に差を生じさせる。光変調素子の磁化方向を変化させる方法として、光変調素子に磁界を印加する方法(特許文献1,2)の他に、近年では光変調素子にスピンを注入する方法(特許文献3)がある。   The magneto-optic spatial light modulator uses the Faraday effect (Kerr effect in the case of reflection), which is emitted when the direction of polarization of the magneto-optic material, ie, the light incident on the magnetic material is transmitted or reflected. is doing. That is, assuming that the magnetization direction of the light modulation element in the selected pixel (selected pixel) is different from the magnetization direction of the light modulation element in the other pixel (non-selected pixel), the light emitted from the selected pixel and the non-selected pixel The emitted light causes a difference in the rotation angle (rotation angle) of the polarized light. As a method of changing the magnetization direction of the light modulation element, in addition to a method of applying a magnetic field to the light modulation element (Patent Documents 1 and 2), there is a method of injecting spin into the light modulation element (Patent Document 3) in recent years. .

画素毎の光変調素子に磁界を印加するために、特許文献1,2では、電極配線を各画素の周縁に張り巡らせて光変調素子の周囲に電流を供給している。また、このように画素間に配線を配置することで、光変調素子への入射光および出射光が金属配線に遮られることがない。一方、スピンを注入する場合は、GMR(Giant MagnetoResistance:巨大磁気抵抗)素子等のスピン注入磁化反転素子(非特許文献1)を光変調素子として、この光変調素子の上下に一対の電極を接続して膜面に垂直に電流を供給する。なお、このような光変調素子(スピン注入磁化反転素子)は、一旦、所定の大きさおよび向きの電流を供給されれば、逆向きの電流が供給されるまで磁化方向は保持されるため、特許文献3のように、上側と下側にそれぞれ縦、横に帯状の電極を格子状に配置することで、画素毎の光変調素子に個別に磁化方向を変化させる電流を供給することができる。また、このように、スピン注入による磁気光学式空間光変調器においては、光変調素子の上および下に電極を配置するため、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)等の透明電極材料を使用して、光が電極を透過して光変調素子に入射するように構成される。   In order to apply a magnetic field to the light modulation element for each pixel, in Patent Documents 1 and 2, current is supplied to the periphery of the light modulation element by extending electrode wiring around the periphery of each pixel. Further, by arranging the wiring between the pixels in this way, incident light and outgoing light to the light modulation element are not blocked by the metal wiring. On the other hand, when spins are injected, a spin injection magnetization reversal element (Non-patent Document 1) such as a GMR (Giant MagnetoResistance) element is used as a light modulation element, and a pair of electrodes are connected above and below the light modulation element. Then, a current is supplied perpendicular to the film surface. In addition, since such a light modulation element (spin injection magnetization reversal element) is once supplied with a current having a predetermined magnitude and direction, the magnetization direction is maintained until a reverse current is supplied. As in Patent Document 3, by arranging strip-like electrodes vertically and horizontally on the upper side and the lower side, respectively, a current that changes the magnetization direction can be supplied to the light modulation element for each pixel. . In this way, in the magneto-optical spatial light modulator using spin injection, a transparent electrode material such as indium zinc oxide (IZO) is used in order to dispose electrodes above and below the light modulation element. In use, the light is configured to pass through the electrode and enter the light modulation element.

特開2005−70101号公報(請求項2、図5)Japanese Patent Laying-Open No. 2005-70101 (Claim 2, FIG. 5) 特開2005−221841号公報(請求項1、図6)JP 2005-221841 A (Claim 1, FIG. 6) 特開2008−83686号公報(段落0067〜0072、図4)Japanese Patent Laying-Open No. 2008-83686 (paragraphs 0067 to 0072, FIG. 4)

E.B.Myers, D.C.Ralph, J.A.Katine, R.N.Louie, R.A.Buhrman, “Current-Induced Switching of Domains in Magnetic Multilayer Devices”, Science August 6, 1999, Vol.285, No.5429, p.867-870E.B.Myers, D.C.Ralph, J.A.Katine, R.N.Louie, R.A.Buhrman, “Current-Induced Switching of Domains in Magnetic Multilayer Devices”, Science August 6, 1999, Vol.285, No.5429, p.867-870

特許文献1,2に記載された空間光変調器では、XY駆動ラインをピクセルの外周に沿って配する構造となっているために、数μm以下の微細な画素を形成することが困難であり、また、電流による合成磁界を利用するために、画素のいっそうの微細化を行うと隣接画素へのクロストークが大きくなるという問題がある。   The spatial light modulators described in Patent Documents 1 and 2 have a structure in which the XY drive lines are arranged along the outer periphery of the pixel, so that it is difficult to form a fine pixel of several μm or less. In addition, if the pixels are further miniaturized in order to use a combined magnetic field by current, there is a problem that crosstalk to adjacent pixels increases.

これに対して、特許文献3に記載された空間光変調器は、光変調素子の膜面に垂直に電流を供給するため、画素の微細化に対応できるものである。しかしながら、光変調素子への入射光および出射光の光路上に電極を配置するため、金属電極材料に比べて導電性に大きく劣る透明電極材料を用いる必要があり、このような導電性の低い材料を電極配線に用いると、光変調素子の動作電流に対して高い電圧を印加する必要があり、また画素アレイ中の画素間で動作にばらつきが生じる虞があって、改良の余地があった。   On the other hand, since the spatial light modulator described in Patent Document 3 supplies current perpendicularly to the film surface of the light modulation element, it can cope with pixel miniaturization. However, since the electrodes are arranged on the optical paths of the incident light and the outgoing light to the light modulation element, it is necessary to use a transparent electrode material that is greatly inferior in conductivity as compared with the metal electrode material. Is used for the electrode wiring, it is necessary to apply a high voltage with respect to the operating current of the light modulation element, and there is a possibility that the operation may vary among pixels in the pixel array, so there is room for improvement.

本発明は前記問題点に鑑み創案されたもので、スピン注入磁化反転素子を画素に適用することにより、高精細かつ高速応答を可能とすると共に、省電力化および画素間の動作ばらつきの低減が可能な磁気光学式空間光変調器を提供することを目的とする。   The present invention was devised in view of the above problems, and by applying a spin-injection magnetization reversal element to a pixel, high-definition and high-speed response can be realized, and power saving and operation variation between pixels can be reduced. An object is to provide a possible magneto-optical spatial light modulator.

前記課題を解決するために、本発明者らは、透明電極材料を高温処理することで導電性を向上させることとし、この高温処理で光変調素子がダメージを受けることのないように、光変調素子の形成前に透明電極材料からなる電極を形成するべく、光変調素子の下に配置される下部電極に透明電極材料を適用し、この下部電極側から光を入射させる構成とすることに至った。   In order to solve the above-mentioned problems, the present inventors have improved the conductivity by treating the transparent electrode material at a high temperature, and the light modulation is performed so that the light modulation element is not damaged by the high temperature treatment. In order to form an electrode made of a transparent electrode material before forming the element, a transparent electrode material is applied to the lower electrode disposed under the light modulation element, and light is incident from the lower electrode side. It was.

すなわち、本発明に係る磁気光学式空間光変調器は、光を透過させる基板と、この基板上に2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備え、前記基板を透過して前記複数の画素に入射した光を反射させて出射する。この磁気光学式空間光変調器において、前記画素は、前記画素選択手段に選択されたときに入射した光をその偏光方向を特定の方向に変化させて出射する光変調素子と、この光変調素子の上下に接続された上部電極および下部電極とを備え、前記下部電極は、前記基板側から入射した光を透過させかつ前記光変調素子から出射した光を透過させるように、少なくとも一部が透明電極材料で形成され、前記上部電極は、前記光変調素子から入射した光を反射させるように金属電極材料からなることを特徴とする。   That is, a magneto-optical spatial light modulator according to the present invention includes a substrate that transmits light, a plurality of pixels that are two-dimensionally arranged on the substrate, and a pixel that selects one or more pixels from the plurality of pixels. A selection unit; and a current supply unit that supplies a predetermined current to the pixel selected by the pixel selection unit, and reflects and emits the light that passes through the substrate and enters the plurality of pixels. In this magneto-optical spatial light modulator, the pixel has a light modulation element that emits light that has been incident upon selection by the pixel selection unit and changes its polarization direction to a specific direction, and the light modulation element. An upper electrode and a lower electrode connected to the upper and lower sides of the substrate, wherein the lower electrode is at least partially transparent so as to transmit light incident from the substrate side and transmit light emitted from the light modulation element The upper electrode is made of a metal electrode material so as to reflect light incident from the light modulation element.

かかる構成により、磁気光学式空間光変調器は、光が基板および下部電極を透過して基板側から光が入射および出射する構成としたので、光変調素子の下に配置する下部電極のみに透明電極材料を備える。したがって、基板上に透明電極を形成した後で光変調素子を積層するので、光変調素子にダメージを与えることなく、透明電極材料に熱処理等を施して抵抗を低減することができる。   With this configuration, the magneto-optical spatial light modulator is configured such that light is transmitted through the substrate and the lower electrode and light is incident and emitted from the substrate side, so that only the lower electrode disposed under the light modulation element is transparent. An electrode material is provided. Therefore, since the light modulation element is laminated after forming the transparent electrode on the substrate, the resistance can be reduced by applying heat treatment or the like to the transparent electrode material without damaging the light modulation element.

さらに、本発明に係る磁気光学式空間光変調器において、前記下部電極は、平面視で前記光変調素子に重なる領域に貫通孔が形成された金属電極と、前記金属電極の貫通孔に配されて前記光変調素子に電気的に接続する前記透明電極材料で形成された透明電極とを備えることが好ましい。   Furthermore, in the magneto-optic spatial light modulator according to the present invention, the lower electrode is disposed in a metal electrode having a through hole formed in a region overlapping the light modulation element in a plan view, and the through hole of the metal electrode. And a transparent electrode formed of the transparent electrode material electrically connected to the light modulation element.

かかる構成により、磁気光学式空間光変調器は、下部電極において、光路となる部分のみに透明電極を設けて入射光および出射光を遮ることなく、光路となる部分以外には透明電極より低抵抗の金属電極を用いることができる。したがって、下部電極の導電性を向上させることができる。   With this configuration, the magneto-optical spatial light modulator has a lower electrode than the transparent electrode except for the portion that becomes the optical path without providing incident light and outgoing light by providing the transparent electrode only in the portion that becomes the optical path in the lower electrode. These metal electrodes can be used. Therefore, the conductivity of the lower electrode can be improved.

また、本発明に係る磁気光学式空間光変調器において、前記下部電極を形成する透明電極材料は、結晶性材料であることが好ましく、さらに加熱成膜により成膜されている、またはポストアニールが施されていることがより好ましい。   In the magneto-optic spatial light modulator according to the present invention, the transparent electrode material forming the lower electrode is preferably a crystalline material, and is further formed by heating film formation or post-annealing. More preferably, it is applied.

かかる構成により、磁気光学式空間光変調器は、金属電極材料より高抵抗の透明電極材料を用いても、熱処理により抵抗を低減することができるので、下部電極の導電性を向上させることができる。   With this configuration, the magneto-optical spatial light modulator can reduce the resistance by heat treatment even when a transparent electrode material having a higher resistance than the metal electrode material is used, so that the conductivity of the lower electrode can be improved. .

また、本発明に係る磁気光学式空間光変調器の製造方法は、下側から基板を透過して当該基板上に2次元配列された複数の画素に入射した光を反射させて出射する磁気光学式空間光変調器の製造方法であって、少なくとも一部が透明電極材料で形成される下部電極を前記基板上に形成する下部電極形成工程と、前記下部電極上に光変調素子を形成する光変調素子形成工程と、前記光変調素子上に金属電極材料からなる上部電極を形成する上部電極形成工程を行い、前記下部電極形成工程において、前記透明電極材料を加熱成膜により成膜する、または前記透明電極材料を成膜後にポストアニールを行うことを特徴とする。   The magneto-optic spatial light modulator manufacturing method according to the present invention also includes a magneto-optic that reflects and emits light incident on a plurality of pixels that are two-dimensionally arranged on the substrate through the substrate from below. A method of manufacturing a spatial light modulator, wherein a lower electrode forming step for forming a lower electrode, at least a part of which is made of a transparent electrode material, on the substrate, and light for forming a light modulation element on the lower electrode A modulation element formation step and an upper electrode formation step of forming an upper electrode made of a metal electrode material on the light modulation element, and in the lower electrode formation step, the transparent electrode material is formed by heating film formation, or Post-annealing is performed after forming the transparent electrode material.

かかる構成により、光変調素子の形成前に、透明電極材料に熱処理を施すため、光変調素子にダメージを与えることなく、透明電極材料の抵抗を低減することができるので、下部電極の導電性を向上させた磁気光学式空間光変調器を製造することができる。   With this configuration, since the transparent electrode material is heat-treated before the light modulation element is formed, the resistance of the transparent electrode material can be reduced without damaging the light modulation element. An improved magneto-optic spatial light modulator can be manufactured.

本発明に係る磁気光学式空間光変調器によれば、数μm以下からさらに可視光波長サイズ(青色:400nm)の高精細と、原理的に数ps程度となる高速応答とを同時に可能とする画素を備え、省電力化を可能とし、画素間の動作のばらつきを低減することができる。そして、本発明に係る磁気光学式空間光変調器の製造方法によれば、前記特徴を有する磁気光学式空間光変調器を製造することができる。   According to the magneto-optical spatial light modulator according to the present invention, it is possible to simultaneously achieve a high-definition having a visible light wavelength size (blue: 400 nm) from several μm or less and a high-speed response that is theoretically about several ps. A pixel is provided, power saving can be achieved, and variation in operation between pixels can be reduced. According to the method for manufacturing a magneto-optical spatial light modulator according to the present invention, the magneto-optical spatial light modulator having the above characteristics can be manufactured.

第1実施形態に係る空間光変調器の構成を模式的に示す底面図である。It is a bottom view showing typically the composition of the spatial light modulator concerning a 1st embodiment. 第1実施形態に係る空間光変調器の画素の拡大図で、図1のB−B部分断面図である。FIG. 2 is an enlarged view of a pixel of the spatial light modulator according to the first embodiment, and is a partial cross-sectional view taken along line BB in FIG. 第1実施形態に係る空間光変調器を用いた表示装置の構成および画素選択の動作を説明する模式図で、図1のA−A断面図に対応する図である。It is a schematic diagram explaining the structure of a display apparatus using the spatial light modulator which concerns on 1st Embodiment, and the operation | movement of pixel selection, and is a figure corresponding to AA sectional drawing of FIG. 第2実施形態に係る空間光変調器の画素アレイの底面模式図である。It is a bottom face schematic diagram of a pixel array of a spatial light modulator concerning a 2nd embodiment. 第2実施形態に係る空間光変調器の画素アレイの仰瞰図である。It is a top view of the pixel array of the spatial light modulator which concerns on 2nd Embodiment. 第2実施形態に係る空間光変調器の画素の拡大図で、図4のD−D部分断面図である。FIG. 6 is an enlarged view of a pixel of a spatial light modulator according to a second embodiment, and is a DD partial cross-sectional view of FIG. 4. 第2実施形態に係る空間光変調器の画素アレイの製造方法における下部電極形成工程を説明する模式図で、(a)〜(c)、(e)〜(g)は図4のC−C部分断面図、(d)、(h)は平面図である。FIGS. 4A and 4B are schematic diagrams for explaining a lower electrode forming step in a method for manufacturing a pixel array of a spatial light modulator according to the second embodiment, wherein FIGS. 4A to 4C and FIGS. Partial sectional views (d) and (h) are plan views. 第2実施形態に係る空間光変調器の画素アレイの製造方法における光変調素子形成工程および上部電極形成工程を説明する模式図で、(a)〜(c)、(e)は図4のC−C部分断面図、(d)、(f)は平面図である。FIGS. 4A and 4B are schematic diagrams for explaining a light modulation element forming step and an upper electrode forming step in the method for manufacturing a pixel array of the spatial light modulator according to the second embodiment. FIGS. -C partial sectional view, (d), (f) are plan views. 第2実施形態に係る空間光変調器の画素アレイの製造方法における別の下部電極形成工程を説明する模式図で、(a)、(c)、(d)は図4のC−C部分断面図、(b)は平面図である。FIGS. 4A and 4B are schematic views for explaining another lower electrode forming step in the method for manufacturing the pixel array of the spatial light modulator according to the second embodiment, and FIGS. FIG. 4B is a plan view. 第2実施形態に係る空間光変調器の画素アレイの製造方法における別の下部電極形成工程を説明する模式図で、(a)、(c)〜(e)は図4のC−C部分断面図、(b)、(f)は平面図である。FIGS. 4A and 4B are schematic views for explaining another lower electrode forming step in the method for manufacturing a pixel array of the spatial light modulator according to the second embodiment, and FIGS. Figures (b) and (f) are plan views. 実施例の画素における透明電極の膜厚と駆動電圧との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of the transparent electrode and drive voltage in the pixel of an Example.

以下、本発明に係る磁気光学式空間光変調器(以下、適宜、空間光変調器という)を実現するための実施形態について、図を参照して説明する。   Hereinafter, an embodiment for realizing a magneto-optical spatial light modulator according to the present invention (hereinafter referred to as a spatial light modulator as appropriate) will be described with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態に係る空間光変調器の構成を模式的に示す底面図である。なお、本明細書における底面(下面)は、空間光変調器の光の入射面である。また、底面視および平面視での縦、横は、図1における縦、横をそれぞれ示す。図2は本発明の第1実施形態に係る空間光変調器の画素の拡大図で、図1のB−B部分断面図である。以下に、本発明に係る空間光変調器を構成する各要素について説明する。
[First Embodiment]
FIG. 1 is a bottom view schematically showing the configuration of the spatial light modulator according to the first embodiment of the present invention. Note that the bottom surface (lower surface) in this specification is a light incident surface of the spatial light modulator. Further, the vertical and horizontal directions in the bottom view and the plan view indicate the vertical and horizontal directions in FIG. 1, respectively. FIG. 2 is an enlarged view of a pixel of the spatial light modulator according to the first embodiment of the present invention, and is a partial cross-sectional view taken along line BB in FIG. Below, each element which comprises the spatial light modulator which concerns on this invention is demonstrated.

空間光変調器1は、基板7上に、図1に示すように2次元アレイ状に配列された画素4からなる画素アレイ40を備える。さらに空間光変調器1は、画素アレイ40から1つ以上の画素4を選択して駆動する電流制御部10を備える。なお、基板7は図1において、画素アレイ40の手前に配置されている(図示省略)。また、本明細書における画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。   The spatial light modulator 1 includes a pixel array 40 including pixels 4 arranged in a two-dimensional array on a substrate 7 as shown in FIG. Further, the spatial light modulator 1 includes a current control unit 10 that selects and drives one or more pixels 4 from the pixel array 40. Note that the substrate 7 is disposed in front of the pixel array 40 in FIG. 1 (not shown). Further, the pixel in this specification refers to a means for displaying information (bright / dark) in the minimum unit of display by the spatial light modulator.

図1に示すように、画素アレイ40は、平面視でストライプ状の複数の上部電極2,2,…と、同じくストライプ状で、平面(底面)視で上部電極2と直交する複数の下部電極3,3,…と、を備え、上部電極2と下部電極3との交点毎に1つの画素4を設ける。したがって、画素4は、空間光変調器1の光の入射面に、2次元アレイ状に配列されて画素アレイ40を構成する。本実施形態では、画素アレイ40は、5行×5列の25個の画素4からなる構成で例示される。なお、上部電極2と下部電極3は、適宜、両者をまとめて電極2,3と称する。そして、図1および図2に示すように、画素4は、当該画素4における一対の電極としての上部電極2および下部電極3と、これらの電極2,3に上下から挟まれた光変調素子5を備える。また、隣り合う上部電極2,2間、光変調素子5,5間、および下部電極3,3間は、絶縁部材6で埋められている。   As shown in FIG. 1, the pixel array 40 includes a plurality of upper electrodes 2, 2,... Striped in plan view, and a plurality of lower electrodes that are also striped and orthogonal to the upper electrode 2 in plan (bottom) view. .., And one pixel 4 is provided for each intersection of the upper electrode 2 and the lower electrode 3. Therefore, the pixels 4 are arranged in a two-dimensional array on the light incident surface of the spatial light modulator 1 to form the pixel array 40. In the present embodiment, the pixel array 40 is exemplified by a configuration including 25 pixels 4 of 5 rows × 5 columns. The upper electrode 2 and the lower electrode 3 are collectively referred to as electrodes 2 and 3 as appropriate. As shown in FIGS. 1 and 2, the pixel 4 includes an upper electrode 2 and a lower electrode 3 as a pair of electrodes in the pixel 4, and a light modulation element 5 sandwiched between the electrodes 2 and 3 from above and below. Is provided. Further, the insulating members 6 are buried between the adjacent upper electrodes 2 and 2, between the light modulation elements 5 and 5, and between the lower electrodes 3 and 3.

図1に示すように、電流制御部10は、上部電極2を選択する上部電極選択部12と、下部電極3を選択する下部電極選択部13と、これらの電極選択部12,13を制御する画素選択部(画素選択手段)14と、電極2,3に電流を供給する電源(電流供給手段)11と、を備える。これらはそれぞれ公知のものでよく、光変調素子5を磁化反転させるために適正な電圧・電流を供給するものとする。   As shown in FIG. 1, the current control unit 10 controls the upper electrode selection unit 12 that selects the upper electrode 2, the lower electrode selection unit 13 that selects the lower electrode 3, and the electrode selection units 12 and 13. A pixel selection unit (pixel selection means) 14 and a power supply (current supply means) 11 for supplying current to the electrodes 2 and 3 are provided. These may be known ones, and appropriate voltages and currents are supplied to reverse the magnetization of the light modulation element 5.

上部電極選択部12は、上部電極2の1つ以上を選択し、下部電極選択部13は、下部電極3の1つ以上を選択し、それぞれに電源11から所定の電流を供給させる。画素選択部14は、例えば図示しない外部からの信号に基づいて画素アレイ40の特定の1つ以上の画素4を選択し、選択した画素4に接続する電極2,3を電極選択部12,13に選択させる。電源11は、選択した画素4に備えられる光変調素子5を磁化反転させるために適正な電圧・電流を供給する。このような構成により、特定の画素4が選択され、この画素4の光変調素子5に、所定の電流が供給されて磁化反転させる。なお、図1において、電源11は、電極2,3のそれぞれ一端に電極選択部12,13を介して接続されているが、両端に接続されていてもよい。両端に接続されることにより、応答速度を上げ、画素間の動作ばらつきも低減できる。   The upper electrode selection unit 12 selects one or more of the upper electrodes 2, and the lower electrode selection unit 13 selects one or more of the lower electrodes 3, and each supplies a predetermined current from the power source 11. For example, the pixel selection unit 14 selects one or more specific pixels 4 of the pixel array 40 based on an external signal (not shown), and connects the electrodes 2 and 3 connected to the selected pixel 4 to the electrode selection units 12 and 13. To select. The power supply 11 supplies an appropriate voltage / current to reverse the magnetization of the light modulation element 5 provided in the selected pixel 4. With such a configuration, a specific pixel 4 is selected, and a predetermined current is supplied to the light modulation element 5 of this pixel 4 to reverse the magnetization. In FIG. 1, the power source 11 is connected to one end of each of the electrodes 2 and 3 via the electrode selection units 12 and 13, but may be connected to both ends. By connecting to both ends, the response speed can be increased and the operation variation between pixels can be reduced.

次に、本発明の第1実施形態に係る空間光変調器の画素の構成の詳細を図1および図2を参照して説明する。   Next, details of the pixel configuration of the spatial light modulator according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

上部電極2は、図2に示すように光変調素子5の上に配され、図1に示すように横方向に帯状に延設される。1つの上部電極2は、横1行に配置された複数の画素4,4,…のそれぞれの光変調素子5に電流を供給する。一方、下部電極3は、光変調素子5の下に配され、縦方向に帯状に延設される。1つの下部電極3は、縦1列に配置された複数の画素4,4,…のそれぞれの光変調素子5に電流を供給する。下部電極3は、光変調素子5への入射光および出射光を遮らないように透明電極材料で構成される。一方、上部電極2は、下方(下部電極3側)から光変調素子5を透過して到達した光を反射して再び下方へ出射させるため、反射率の高い金属電極材料で構成される。   The upper electrode 2 is disposed on the light modulation element 5 as shown in FIG. 2, and extends in a strip shape in the lateral direction as shown in FIG. One upper electrode 2 supplies current to each of the light modulation elements 5 of the plurality of pixels 4, 4,... Arranged in one horizontal row. On the other hand, the lower electrode 3 is arranged under the light modulation element 5 and extends in a strip shape in the vertical direction. One lower electrode 3 supplies a current to each of the light modulation elements 5 of the plurality of pixels 4, 4,... Arranged in one vertical column. The lower electrode 3 is made of a transparent electrode material so as not to block incident light and outgoing light to the light modulation element 5. On the other hand, the upper electrode 2 is made of a metal electrode material having a high reflectivity in order to reflect the light transmitted through the light modulation element 5 from the lower side (the lower electrode 3 side) and reach the lower side again.

上部電極2は、例えば、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な電極用金属材料からなる。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状に加工される。   The upper electrode 2 is made of a general electrode metal material such as a metal such as Cu, Al, Au, Ag, Ta, or Cr, or an alloy thereof. Then, it is processed into a stripe shape by a known method such as a sputtering method, by film formation, photolithography, etching, lift-off method, or the like.

下部電極3は、図2に示すように、透明電極材料からなる透明電極31と、この透明電極31と光変調素子5との間に積層された金属膜である下地層32と、からなる。このように、電極(配線)を透明電極材料で構成する場合、電極とこの電極に接続する光変調素子5との間に金属膜を設けることが好ましい。光変調素子5との間に金属膜である下地層32を介在させることで、金属電極材料より抵抗が大きい透明電極材料からなる透明電極31においても、下部電極3−光変調素子5間の接触抵抗を低減させて応答速度を上げることができる。   As shown in FIG. 2, the lower electrode 3 includes a transparent electrode 31 made of a transparent electrode material, and a base layer 32 that is a metal film laminated between the transparent electrode 31 and the light modulation element 5. Thus, when an electrode (wiring) is comprised with a transparent electrode material, it is preferable to provide a metal film between an electrode and the light modulation element 5 connected to this electrode. By interposing the base layer 32, which is a metal film, between the light modulation element 5 and the transparent electrode 31 made of a transparent electrode material having a resistance higher than that of the metal electrode material, the contact between the lower electrode 3 and the light modulation element 5 is achieved. The response speed can be increased by reducing the resistance.

透明電極31は、例えば、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、ガリウム−酸化亜鉛(Gallium Zinc Oxide:GZO)、酸化アルミニウム−酸化亜鉛(Aluminum oxide - Zinc Oxide:AZO)等の公知の結晶性の透明電極材料からなる。結晶性材料を適用することで、加熱成膜または成膜後のポストアニールにより抵抗を低減することができる。これらの透明電極材料は、後記するように、高温にてスパッタリング法や真空蒸着法等の公知の方法により成膜される。あるいは、室温等の低温(無加熱)にて前記方法や塗布法等により成膜された後にポストアニールを施す。そして、フォトリソグラフィおよびエッチング等により下部電極3の形状すなわちストライプ状に加工される。   The transparent electrode 31 is, for example, known indium tin oxide (ITO), gallium zinc oxide (GZO), aluminum oxide-zinc oxide (AZO), or the like. It consists of a crystalline transparent electrode material. By using a crystalline material, resistance can be reduced by heat deposition or post-annealing after deposition. As will be described later, these transparent electrode materials are formed at a high temperature by a known method such as a sputtering method or a vacuum deposition method. Alternatively, post-annealing is performed after the film is formed by the method or the coating method at a low temperature (no heating) such as room temperature. Then, the shape of the lower electrode 3 is processed into a stripe shape by photolithography and etching.

下地層32を構成する金属としては、例えば、Au,Ru,Ta、またはそれらの金属の2種以上からなる合金等を用いることができ、これらの金属はスパッタリング法等の公知の方法により成膜される。そして、下地層32とその上の層すなわち後記の光変調素子5の最下層である磁化自由層53との密着性をよくして接触抵抗をさらに低減するため、下地層32となる金属膜は、磁化自由層53となる磁性材料と連続的に真空処理室にて成膜されることが好ましい。連続して成膜された膜は、通常、一緒に加工されるため、図2に示すように、下地層32は光変調素子5と同じ平面視形状となるが、例えば透明電極31(下部電極3)と同じ平面視形状(帯状)であってもよい。詳細は、画素4の製造方法において説明する。下地層32の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えると光の透過量を低下させる。したがって、下地層32の好ましい厚さは1〜10nmである。   As the metal constituting the underlayer 32, for example, Au, Ru, Ta, or an alloy composed of two or more of these metals can be used, and these metals are formed by a known method such as a sputtering method. Is done. In order to further reduce the contact resistance by improving the adhesion between the base layer 32 and the layer above it, that is, the magnetization free layer 53 which is the lowermost layer of the light modulation element 5 described later, the metal film that becomes the base layer 32 is It is preferable to form a film continuously with the magnetic material to be the magnetization free layer 53 in a vacuum processing chamber. Since the continuously formed films are usually processed together, as shown in FIG. 2, the underlayer 32 has the same planar view shape as the light modulation element 5, but for example, the transparent electrode 31 (lower electrode) The same planar view shape (band shape) as 3) may be used. Details will be described in the manufacturing method of the pixel 4. If the thickness of the underlayer 32 is less than 1 nm, it is difficult to form a continuous film, while if it exceeds 10 nm, the amount of transmitted light is reduced. Therefore, the preferable thickness of the foundation layer 32 is 1 to 10 nm.

本発明に係る空間光変調器1においては、下方すなわち基板7側から光を画素4に入射し、さらに画素4で反射した光を同じく基板7側へ出射するので、基板7は透明な材料からなる。また、基板7は、下部電極3の透明電極31の形成における高温処理に対応可能な耐熱性を有し、例えば、ガラス、SiO2、Al23、MgO等の材料が挙げられる。絶縁部材6は、隣り合う上部電極2,2間、光変調素子5,5間、および下部電極3,3間(図2不図示)に配され、例えば、SiO2やAl23等からなる。 In the spatial light modulator 1 according to the present invention, light is incident on the pixel 4 from the lower side, that is, the substrate 7 side, and the light reflected by the pixel 4 is emitted to the substrate 7 side, so that the substrate 7 is made of a transparent material. Become. In addition, the substrate 7 has heat resistance that can cope with high-temperature processing in the formation of the transparent electrode 31 of the lower electrode 3, and examples thereof include glass, SiO 2 , Al 2 O 3 , and MgO. The insulating member 6 is disposed between the adjacent upper electrodes 2 and 2, between the light modulation elements 5 and 5, and between the lower electrodes 3 and 3 (not shown in FIG. 2), and is made of, for example, SiO 2 or Al 2 O 3. Become.

光変調素子5は、図1に示すように、平面(底面)視で上部電極2と下部電極3の重なる部分に配され、この電極2,3に上下から挟まれて接続されている。光変調素子5の平面視形状は、本実施形態においては正方形であるが、これに限定されるものではない。また、1個の画素4につき1個の光変調素子5が配されているが、例えば1つの画素4に面方向で(1×3)個、(2×2)個等の複数の光変調素子5を備えてもよい。光変調素子5はスピン注入磁化反転素子であり、CPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子、TMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子等の公知の素子からなる。光変調素子5の構成は、図2に示すように、下部電極3の上に、磁化自由層53、中間層52、磁化固定層51、保護層54の順に積層されてなる。これらの各層は、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法によりそれぞれ成膜されて、積層され、電子線リソグラフィ等により前記形状に加工される。   As shown in FIG. 1, the light modulation element 5 is arranged in a portion where the upper electrode 2 and the lower electrode 3 overlap in a plan (bottom) view, and is sandwiched and connected to the electrodes 2 and 3 from above and below. The planar view shape of the light modulation element 5 is a square in the present embodiment, but is not limited to this. In addition, one light modulation element 5 is arranged for one pixel 4. For example, a plurality of light modulation elements such as (1 × 3), (2 × 2), and the like are provided in one pixel 4 in the surface direction. An element 5 may be provided. The light modulation element 5 is a spin-injection magnetization reversal element, and is a known element such as a CPP-GMR (Current Perpendicular to the Plane Giant MagnetoResistance) element or a TMR (Tunnel MagnetoResistance) element. Become. As shown in FIG. 2, the configuration of the light modulation element 5 is formed by laminating a magnetization free layer 53, an intermediate layer 52, a magnetization fixed layer 51, and a protective layer 54 in this order on the lower electrode 3. Each of these layers is formed into a film by a known method such as a sputtering method or a molecular beam epitaxy (MBE) method, stacked, and processed into the shape by electron beam lithography or the like.

磁化固定層51および磁化自由層53は磁性体であり、共に面内磁気異方性を有するか、または共に垂直磁気異方性を有する。そして、磁化固定層51の磁化方向は固定されているのに対し、磁化自由層53の磁化方向は固定されておらず、スピン注入によって容易に回転(反転)させることができる。これら2層の間に設けられる中間層52は、光変調素子5がTMR素子であれば絶縁体、CPP−GMR素子であれば非磁性の導体で形成される。これら3層でスピン注入磁化反転素子として動作するが、製造工程におけるダメージからこれらの層(特に磁化固定層51)を保護するために、最上層に保護層54が設けられる。   The magnetization fixed layer 51 and the magnetization free layer 53 are magnetic bodies, and both have in-plane magnetic anisotropy or both have perpendicular magnetic anisotropy. And while the magnetization direction of the magnetization fixed layer 51 is fixed, the magnetization direction of the magnetization free layer 53 is not fixed and can be easily rotated (reversed) by spin injection. The intermediate layer 52 provided between these two layers is formed of an insulator if the light modulation element 5 is a TMR element, and a nonmagnetic conductor if it is a CPP-GMR element. Although these three layers operate as spin injection magnetization reversal elements, a protective layer 54 is provided as the uppermost layer in order to protect these layers (particularly the magnetization fixed layer 51) from damage in the manufacturing process.

磁化固定層51は、その厚さは数〜数十nmであり、面内磁気異方性を有する磁化固定層51とする場合は、強磁性金属(FM)や磁性半導体からなる。強磁性金属としては、Fe,Co,Ni等の遷移金属およびそれらを含む合金、FM/PtMn、FM/Ru/FM/PtMn(シンセティックピン層、積層フェリ構造)のような多層膜、さらにIrMn等の磁化固着層を上層に設けたFM/IrMn、FM/Ru/FM/IrMnが挙げられる。また、磁性半導体としては、ZnO:Mn、ZnO:Mn1-XFeX、ZnO:Cr1-XMnX等のZnOを母体とするもの、III-V族化合物半導体を母体とするもの、TiOを母体とするもの、II−VI族化合物半導体を母体とするものが挙げられる。一方、垂直磁気異方性を有する磁化固定層51とする場合は、Fe,Co,Ni等の遷移金属およびそれらを含む合金、[Fe/Pt]×n、[Co/Pt]×nの多層膜、Sm,Eu,Gd,Tb等の希土類を含む合金のような強磁性金属が挙げられる。 The magnetization fixed layer 51 has a thickness of several to several tens of nm. When the magnetization fixed layer 51 has in-plane magnetic anisotropy, the magnetization fixed layer 51 is made of a ferromagnetic metal (FM) or a magnetic semiconductor. Ferromagnetic metals include transition metals such as Fe, Co, Ni and alloys containing them, multilayer films such as FM / PtMn, FM / Ru / FM / PtMn (synthetic pin layers, laminated ferristructure), IrMn, etc. And FM / IrMn and FM / Ru / FM / IrMn, each of which has a magnetic pinned layer of the above structure. In addition, examples of magnetic semiconductors include ZnO: Mn, ZnO: Mn 1-X Fe X , ZnO: Cr 1-X Mn X and the like based on ZnO, III-V group compound semiconductors as the base, TiO And those based on II-VI group compound semiconductors. On the other hand, in the case of the magnetization fixed layer 51 having perpendicular magnetic anisotropy, a transition metal such as Fe, Co, Ni, and an alloy containing them, a multilayer of [Fe / Pt] × n and [Co / Pt] × n Examples thereof include ferromagnetic metals such as films and alloys containing rare earth such as Sm, Eu, Gd, and Tb.

中間層52は、磁化固定層51と磁化自由層53との間に設けられる。光変調素子5がTMR素子であれば、中間層52は、MgO,Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜からなり、その厚さは0.5〜3nm程度である。また、光変調素子5がCPP−GMR素子であれば、中間層52は、Cu,Au,Agのような非磁性金属からなり、その厚さは3〜20nm程度である。 The intermediate layer 52 is provided between the magnetization fixed layer 51 and the magnetization free layer 53. If the light modulation element 5 is a TMR element, the intermediate layer 52 is made of an insulator such as MgO, Al 2 O 3 , HfO 2 or a laminated film containing an insulator such as Mg / MgO / Mg. The thickness is about 0.5 to 3 nm. If the light modulation element 5 is a CPP-GMR element, the intermediate layer 52 is made of a nonmagnetic metal such as Cu, Au, or Ag and has a thickness of about 3 to 20 nm.

磁化自由層53は、強磁性金属や磁性半導体からなり、その厚さは1〜20nm程度である。面内磁気異方性を有する磁化自由層53とする場合の材料としては、Fe,Co,Ni等の遷移金属およびそれらを含むCoFe,CoFeB,NiFe等の合金、これらの材料の2種以上からなる積層膜、FM/Ru/FM(シンセティックフリー層、積層フェリ構造)のような強磁性金属が挙げられる。または、ZnO:Mn、ZnO:Mn1-XFeX、ZnO:Cr1-XMnX等のZnOを母体とする磁性半導体、III-V族化合物半導体やII−VI族化合物半導体を母体とするものが挙げられる。一方、垂直磁気異方性を有する磁化自由層53とする場合の材料としては、Fe,Co,Ni等の遷移金属およびそれらを含む合金、CoPt,CoCr基合金(CoCr,CoCrPt,CoCrTa等)、[Fe/Pt]×n、[Co/Pt]×nの多層膜、Sm,Eu,Gd,Tb等の希土類を含む合金、MnBiのような強磁性金属が挙げられる。 The magnetization free layer 53 is made of a ferromagnetic metal or a magnetic semiconductor and has a thickness of about 1 to 20 nm. As a material for forming the magnetization free layer 53 having in-plane magnetic anisotropy, transition metals such as Fe, Co, and Ni, alloys including them such as CoFe, CoFeB, and NiFe, and two or more of these materials are used. And a ferromagnetic metal such as FM / Ru / FM (synthetic free layer, laminated ferrimagnetic structure). Alternatively, a magnetic semiconductor based on ZnO, such as ZnO: Mn, ZnO: Mn 1-X Fe X , ZnO: Cr 1-X Mn X , III-V group compound semiconductor, or II-VI group compound semiconductor is used as a base. Things. On the other hand, as the material for the magnetization free layer 53 having perpendicular magnetic anisotropy, transition metals such as Fe, Co, Ni and alloys containing them, CoPt, CoCr base alloys (CoCr, CoCrPt, CoCrTa, etc.), Examples include [Fe / Pt] × n and [Co / Pt] × n multilayer films, alloys containing rare earth such as Sm, Eu, Gd, and Tb, and ferromagnetic metals such as MnBi.

保護層54は、Ta,Ru,Cuの単層、または、Cu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層とする場合は、いずれもCuを内側(下層)とする。保護層54の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くしても効果が飽和する。したがって、保護層54の厚さは1〜10nmが好ましく、3〜5nmがより好ましい。   The protective layer 54 is composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru. In addition, when setting it as the said 2 layer, all make Cu inside (lower layer). If the thickness of the protective layer 54 is less than 1 nm, it is difficult to form a continuous film. On the other hand, the effect is saturated even if the thickness exceeds 10 nm. Therefore, the thickness of the protective layer 54 is preferably 1 to 10 nm, and more preferably 3 to 5 nm.

次に、本発明の第1実施形態に係る空間光変調器の画素選択の動作を、図3を参照して説明する。図3は、第1実施形態に係る空間光変調器を用いた表示装置の構成および画素選択の動作を説明する模式図で、図1のA−A断面図に対応する。電極2,3は、前記の通り、電流制御部10に接続される。また、図3に示すように、第1実施形態に係る空間光変調器1を表示装置に用いるため、画素4(画素アレイ40)の下方には、画素アレイ40に向けて光を照射する光源93と、光源93から照射された光を画素アレイ40に入射する前に偏光とする入射偏光フィルタ91と、画素アレイ40から出射した光から特定の向きの偏光のみを透過する出射偏光フィルタ92と、出射偏光フィルタ92を透過した光を検出する検出器94とが配置される。このように、空間光変調器1は、画素アレイ40の下方から入射した光を反射する反射型の空間光変調器である。   Next, the pixel selection operation of the spatial light modulator according to the first embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic diagram for explaining the configuration of the display device using the spatial light modulator and the pixel selection operation according to the first embodiment, and corresponds to a cross-sectional view taken along the line AA in FIG. The electrodes 2 and 3 are connected to the current control unit 10 as described above. 3, since the spatial light modulator 1 according to the first embodiment is used for a display device, a light source that irradiates light toward the pixel array 40 below the pixels 4 (pixel array 40). 93, an incident polarization filter 91 that polarizes the light emitted from the light source 93 before entering the pixel array 40, and an output polarization filter 92 that transmits only polarized light in a specific direction from the light emitted from the pixel array 40. A detector 94 that detects light transmitted through the output polarization filter 92 is disposed. Thus, the spatial light modulator 1 is a reflective spatial light modulator that reflects light incident from below the pixel array 40.

本実施形態において、光変調素子5は、面内磁気異方性すなわち膜面方向の磁化を有する磁化固定層51および磁化自由層53を備えるスピン注入磁化反転素子とする。図3においては、磁化固定層51および磁化自由層53のそれぞれの磁化方向を右向きまたは左向きの矢印で示す。また、図3において、光変調素子5の保護層54は図示を省略する。   In this embodiment, the light modulation element 5 is a spin-injection magnetization reversal element including a magnetization fixed layer 51 and a magnetization free layer 53 having in-plane magnetic anisotropy, that is, magnetization in the film surface direction. In FIG. 3, the magnetization directions of the magnetization fixed layer 51 and the magnetization free layer 53 are indicated by rightward or leftward arrows. In FIG. 3, the protective layer 54 of the light modulation element 5 is not shown.

光源93から照射された光(レーザー光等)は様々な偏光成分を含んでいるので、これを画素アレイ40の手前の入射偏光フィルタ91を透過させて、1つの偏光成分の光とする。以下、1つの偏光成分の光を偏光と称する。この偏光(入射偏光)は、基板7を透過し、画素アレイ40のすべての画素4に所定の入射角で入射する。それぞれの画素4において、入射偏光は、下部電極3を透過して光変調素子5に入射し、光変調素子5またはその上の上部電極2で反射して、光変調素子5から出射偏光として出射し、再び下部電極3を透過して画素4から出射する。それぞれの画素4から出射したすべての出射偏光は、再び基板7を透過して出射偏光フィルタ92に到達する。出射偏光フィルタ92は、特定の偏光、ここでは入射偏光に対して角度θap旋光した偏光のみを透過させ、この透過した出射偏光が検出器94に入射される。偏光フィルタ91,92はそれぞれ偏光板等であり、検出器94はスクリーン等の画像表示手段である。あるいは、検出器94はカメラ等の撮像手段としてもよい。   Since light (laser light or the like) emitted from the light source 93 includes various polarization components, the light is transmitted through the incident polarization filter 91 in front of the pixel array 40 to be light of one polarization component. Hereinafter, light of one polarization component is referred to as polarization. This polarized light (incident polarized light) passes through the substrate 7 and enters all the pixels 4 of the pixel array 40 at a predetermined incident angle. In each pixel 4, the incident polarized light passes through the lower electrode 3 and enters the light modulation element 5, is reflected by the light modulation element 5 or the upper electrode 2 thereon, and is emitted from the light modulation element 5 as outgoing polarization. Then, the light passes through the lower electrode 3 again and is emitted from the pixel 4. All the outgoing polarized light emitted from each pixel 4 passes through the substrate 7 again and reaches the outgoing polarization filter 92. The outgoing polarization filter 92 transmits only specific polarized light, here polarized light whose angle θap is rotated with respect to incident polarized light, and this transmitted outgoing polarized light is incident on the detector 94. The polarizing filters 91 and 92 are polarizing plates, respectively, and the detector 94 is an image display means such as a screen. Alternatively, the detector 94 may be imaging means such as a camera.

スピン注入磁化反転素子である光変調素子5は、逆方向のスピンを持つ電子を注入することにより、すなわち電流を反対向きに供給することにより、磁化自由層53の磁化方向を反転(スピン注入磁化反転)させて、磁化固定層51の磁化方向と同じ方向または180°異なる方向にする。具体的には、上部電極2を「−」、下部電極3を「+」にして、磁化自由層53側から磁化固定層51へ電流を供給すると、磁化自由層53の磁化は磁化固定層51の磁化方向と同じ方向になる。以下、この状態を光変調素子5の磁化が平行である(P:Parallel)という。反対に、上部電極2を「+」、下部電極3を「−」にして、磁化固定層51側から磁化自由層53へ電流を供給すると、磁化自由層53の磁化は磁化固定層51の磁化方向と逆方向になる。以下、この状態を光変調素子5の磁化が反平行である(AP:Anti-Parallel)という。図3に示すように、すべての画素4において磁化固定層51の磁化は一方向(右向き)に揃えられているので、電極2,3からの電流の向きに応じて、磁化自由層53の磁化は右向きまたは左向きのいずれかを示す。なお、光変調素子5の磁化が平行、反平行いずれかの磁化を示していれば、その磁化を反転させる電流が供給されるまでは磁化が保持される。このように、光変調素子5において磁化は保持されるため、光変調素子5に供給する電流としては、パルス電流のように、磁化方向を反転させる電流値に一時的に到達する電流を用いることができる。   The light modulation element 5, which is a spin injection magnetization reversal element, reverses the magnetization direction of the magnetization free layer 53 by injecting electrons having spins in the opposite direction, that is, by supplying current in the opposite direction (spin injection magnetization). To the same direction as the magnetization direction of the magnetization fixed layer 51 or a direction different by 180 °. Specifically, when the upper electrode 2 is set to “−” and the lower electrode 3 is set to “+”, and a current is supplied from the magnetization free layer 53 side to the magnetization fixed layer 51, the magnetization of the magnetization free layer 53 is changed to the magnetization fixed layer 51. It becomes the same direction as the magnetization direction. Hereinafter, this state is referred to as that the magnetization of the light modulation element 5 is parallel (P: Parallel). Conversely, when the upper electrode 2 is set to “+” and the lower electrode 3 is set to “−” and a current is supplied from the magnetization fixed layer 51 side to the magnetization free layer 53, the magnetization of the magnetization free layer 53 becomes the magnetization of the magnetization fixed layer 51. The direction is opposite to the direction. Hereinafter, this state is referred to as anti-parallel (AP) where the magnetization of the light modulation element 5 is antiparallel. As shown in FIG. 3, since the magnetization of the magnetization fixed layer 51 is aligned in one direction (rightward) in all the pixels 4, the magnetization of the magnetization free layer 53 according to the direction of the current from the electrodes 2 and 3. Indicates either right-facing or left-facing. In addition, if the magnetization of the light modulation element 5 indicates either parallel or antiparallel magnetization, the magnetization is maintained until a current for inverting the magnetization is supplied. As described above, since the magnetization is held in the light modulation element 5, the current supplied to the light modulation element 5 is a current that temporarily reaches a current value that reverses the magnetization direction, such as a pulse current. Can do.

光変調素子5に入射した偏光が、磁化自由層53、中間層52、磁化固定層51を透過し、上部電極2の下面で反射して、再び磁化固定層51、中間層52、磁化自由層53を透過して出射した場合、磁性体である磁化自由層53および磁化固定層51を透過することで、ファラデー効果により、偏光はその向きが、磁化自由層53および磁化固定層51のそれぞれの所定の角度(旋光角)に回転(旋光)する。さらに、磁化が平行、反平行な光変調素子5にそれぞれ入射した偏光は、磁化自由層53の磁化方向が180°異なるため、前記旋光角で互いに逆方向に回転して出射する。そこで、前記の、磁化が平行、反平行の光変調素子5における旋光角をそれぞれθp,θapと異なる角度で表せる。なお、磁化固定層51の磁化方向は一定であるので、旋光角θp,θapの差は磁化自由層53のみによって決定される。   The polarized light incident on the light modulation element 5 is transmitted through the magnetization free layer 53, the intermediate layer 52, and the magnetization fixed layer 51, reflected by the lower surface of the upper electrode 2, and again the magnetization fixed layer 51, the intermediate layer 52, and the magnetization free layer. 53 is transmitted through the magnetization free layer 53 and the magnetization fixed layer 51, which are magnetic materials, the direction of polarization of each of the magnetization free layer 53 and the magnetization fixed layer 51 depends on the Faraday effect. Rotate (rotate) to a predetermined angle (rotation angle). Furthermore, the polarized light incident on the parallel and antiparallel light modulation elements 5 is emitted by rotating in the opposite directions at the optical rotation angle because the magnetization direction of the magnetization free layer 53 differs by 180 °. Therefore, the optical rotation angles in the light modulation elements 5 having parallel and antiparallel magnetization can be expressed by angles different from θp and θap, respectively. Since the magnetization direction of the magnetization fixed layer 51 is constant, the difference between the optical rotation angles θp and θap is determined only by the magnetization free layer 53.

あるいは、光変調素子5に入射した偏光が、磁化自由層53を透過し、中間層52との界面で反射して、再び磁化自由層53を透過して出射した場合も、磁化方向が変化する磁化自由層53を透過するので、同様に旋光角θp,θapの差が生じる。このように、光変調素子5が磁化反転すると、出射偏光は、同じ向きの入射偏光に対して旋光角θp,θap回転した異なる向きの偏光となる。   Alternatively, when the polarized light incident on the light modulation element 5 is transmitted through the magnetization free layer 53, reflected at the interface with the intermediate layer 52, and transmitted again through the magnetization free layer 53, the magnetization direction changes. Since the magnetization free layer 53 is transmitted, a difference between the optical rotation angles θp and θap is similarly generated. As described above, when the light modulation element 5 is reversed in magnetization, the outgoing polarized light becomes polarized light in different directions rotated by the optical rotation angles θp and θap with respect to the incident polarized light in the same direction.

入射偏光に対して角度θap旋光した図3の左右両端の画素4,4からのそれぞれの出射偏光は、出射偏光フィルタ92を透過して検出器94に到達するので、この画素4は明るく(白く)検出器94に表示される。一方、中央の画素4からの出射偏光は、出射偏光フィルタ92で遮られるので、この画素4は暗く(黒く)、検出器94に表示される。このように、画素毎に明/暗(白/黒)を切り分けられ、電流の向きを切り換えれば明/暗が切り換わる。なお、空間光変調器1の初期状態としては、例えば全体が白く表示されるようにすべての画素4の光変調素子5に下向きの電流を供給するべく、上部電極2のすべてを「+」、下部電極3のすべてを「−」にすればよい。   The outgoing polarized light from the pixels 4 and 4 at both left and right ends of FIG. 3 rotated by an angle θap with respect to the incident polarized light passes through the outgoing polarizing filter 92 and reaches the detector 94, so that the pixel 4 is bright (white). ) Is displayed on the detector 94. On the other hand, since the outgoing polarized light from the central pixel 4 is blocked by the outgoing polarizing filter 92, the pixel 4 is dark (black) and displayed on the detector 94. Thus, light / dark (white / black) can be separated for each pixel, and light / dark can be switched by switching the direction of the current. Note that, as an initial state of the spatial light modulator 1, for example, all the upper electrodes 2 are set to “+” in order to supply a downward current to the light modulation elements 5 of all the pixels 4 so that the whole is displayed white. All of the lower electrode 3 may be set to “−”.

ここで、磁気光学効果は、光の入射角が磁気光学材料の磁化方向に対して平行に近いほど大きい。したがって、面内磁気異方性を有する光変調素子5においては、光(入射偏光)の入射角を、膜面に対して、すなわち画素アレイ40の膜面方向に対して平行に近くするほど、旋光角θp,θapの差を大きくすることができる。しかし、画素アレイ40の構造上、光が光変調素子5の底面から入射するためには、入射角にある程度の傾斜が必要である。したがって、空間光変調器1における画素4への光の入射角は、動作時における光変調素子5の磁化自由層53の磁化方向すなわち磁化固定層51の磁化方向に対して10°〜60°、入射角で30°〜80°の範囲が好ましく、図3に示すように、本実施形態の空間光変調器1は、画素アレイ40に対して斜めに光が入射される。また、入射偏光、出射偏光共に光路が画素アレイ40の下方にあるので、出射偏光フィルタ92および検出器94は入射偏光の光路を遮らない位置に、光源93および入射偏光フィルタ91は、出射偏光の光路を遮らない位置に、それぞれ配置される。   Here, the magneto-optical effect is larger as the incident angle of light is closer to the parallel to the magnetization direction of the magneto-optical material. Therefore, in the light modulation element 5 having in-plane magnetic anisotropy, the closer the incident angle of light (incident polarization) is to be parallel to the film surface, that is, the film surface direction of the pixel array 40, The difference between the optical rotation angles θp and θap can be increased. However, due to the structure of the pixel array 40, in order for light to enter from the bottom surface of the light modulation element 5, a certain degree of inclination is required for the incident angle. Therefore, the incident angle of light to the pixel 4 in the spatial light modulator 1 is 10 ° to 60 ° with respect to the magnetization direction of the magnetization free layer 53 of the light modulation element 5 in operation, that is, the magnetization direction of the magnetization fixed layer 51. The incident angle is preferably in the range of 30 ° to 80 °. As shown in FIG. 3, in the spatial light modulator 1 of this embodiment, light is incident on the pixel array 40 obliquely. In addition, since the optical paths of both the incident polarized light and the outgoing polarized light are below the pixel array 40, the outgoing polarized light filter 92 and the detector 94 are positioned so as not to block the optical path of the incoming polarized light. Each is arranged at a position that does not block the optical path.

なお、光変調素子5が垂直磁気異方性を有する磁化固定層51および磁化自由層53を備える場合、それぞれの磁化は垂直方向であり、磁化自由層53の磁化は上向き/下向きで反転するが、この場合も同様にファラデー効果を生じる。また、このような光変調素子5を備える画素4(画素アレイ40)への偏光の入射角は0°とすることが旋光角を大きくする上で望ましいが、この場合、出射偏光の光路が入射偏光の光路と一致する。そこで、入射角を5°〜30°程度傾けて、出射偏光フィルタ92および検出部94、光源93および入射偏光フィルタ91が、それぞれ入射偏光および出射偏光の光路を遮らない配置となるようにする。すなわち、偏光の入射角は5°〜30°とすることが好ましい。または、入射角0°として、入射偏光フィルタ91と画素アレイ40との間にハーフミラーを配置して、出射偏光のみを側方へ反射させてもよい。この場合、出射偏光フィルタ92および検出器94は画素アレイ40の側方に配置する。   When the light modulation element 5 includes the magnetization fixed layer 51 and the magnetization free layer 53 having perpendicular magnetic anisotropy, the respective magnetizations are in the vertical direction, and the magnetization of the magnetization free layer 53 is reversed in the upward / downward direction. In this case, the Faraday effect is similarly produced. In addition, it is desirable to make the incident angle of polarized light to the pixel 4 (pixel array 40) provided with such a light modulation element 5 0 ° in order to increase the optical rotation angle, but in this case, the optical path of the outgoing polarized light is incident. It coincides with the optical path of polarization. Therefore, the incident angle is inclined by about 5 ° to 30 ° so that the outgoing polarization filter 92, the detection unit 94, the light source 93, and the incoming polarization filter 91 are arranged so as not to block the optical paths of the incoming polarized light and the outgoing polarized light, respectively. That is, the incident angle of polarized light is preferably 5 ° to 30 °. Alternatively, the incident angle may be 0 °, and a half mirror may be disposed between the incident polarization filter 91 and the pixel array 40 to reflect only the outgoing polarized light laterally. In this case, the output polarization filter 92 and the detector 94 are arranged on the side of the pixel array 40.

ここで、光変調素子5をスピン注入磁化反転させる電流を供給するために電極2,3を介して印加する必要最低電圧(駆動電圧)は、画素4の抵抗に比例する。したがって、画素4の抵抗である上部電極2、光変調素子5、下部電極3のそれぞれの抵抗の和が小さいほど印加電圧を低くすることができる。光変調素子5の抵抗は当該光変調素子5の構成で決まり、また上部電極2は金属電極材料からなるので、その抵抗は、光変調素子5、透明電極材料からなる下部電極3と比較すると無視できるほどに小さな値(例えば、Cuの比抵抗:1.68×10-6Ω・cm)であるため、駆動電圧は下部電極3の抵抗に大きく依存することになる。 Here, the necessary minimum voltage (drive voltage) applied through the electrodes 2 and 3 to supply a current for reversing the spin injection magnetization of the light modulation element 5 is proportional to the resistance of the pixel 4. Therefore, the applied voltage can be lowered as the sum of the resistances of the upper electrode 2, the light modulation element 5, and the lower electrode 3, which are the resistances of the pixels 4, is smaller. The resistance of the light modulation element 5 is determined by the configuration of the light modulation element 5, and the upper electrode 2 is made of a metal electrode material. Therefore, the resistance is negligible compared to the light modulation element 5 and the lower electrode 3 made of a transparent electrode material. Since the value is as small as possible (for example, the specific resistance of Cu: 1.68 × 10 −6 Ω · cm), the drive voltage greatly depends on the resistance of the lower electrode 3.

一般的な透明電極材料として、結晶性であるITO,GZO,AZO、非晶質であるIZO等が挙げられる。上部電極として透明電極材料を適用する場合、下層の光変調素子にダメージを与えないような条件で成膜、加工等をする必要があり、温度は200℃程度以下に制限される。このような場合、無加熱(室温等)成膜で比較的良好な導電性が得られるIZO(比抵抗450μΩ・cm)が好適に用いられる。特に、無加熱成膜であれば、レジストマスク上への成膜が可能なので、リフトオフ法による加工も可能となる。一方、ITO等の結晶性導電材料は、加熱成膜や成膜後のポストアニール等の熱処理により、結晶粒径を大きくして、抵抗を低減することができる。例えば、無加熱(室温)で成膜されたITOの比抵抗は700〜800μΩ・cmであるが、350℃(基板温度)でスパッタリング法にて成膜したITOは比抵抗100μΩ・cmとなり、無加熱成膜のITOの約1/8、IZOに対しても1/4以下である。   Common transparent electrode materials include crystalline ITO, GZO, AZO, amorphous IZO, and the like. When a transparent electrode material is applied as the upper electrode, it is necessary to form a film, process, and the like under conditions that do not damage the lower light modulation element, and the temperature is limited to about 200 ° C. or lower. In such a case, IZO (specific resistance: 450 μΩ · cm) that can obtain relatively good conductivity by non-heating (room temperature or the like) film formation is preferably used. In particular, in the case of non-heated film formation, film formation on a resist mask is possible, so that processing by a lift-off method is also possible. On the other hand, a crystalline conductive material such as ITO can increase the crystal grain size and reduce the resistance by heat treatment such as heat film formation or post-annealing after film formation. For example, the specific resistance of ITO formed without heating (room temperature) is 700 to 800 μΩ · cm, but the ITO formed by sputtering at 350 ° C. (substrate temperature) has a specific resistance of 100 μΩ · cm. It is about 1/8 of ITO of heat-deposited film and 1/4 or less for IZO.

第1実施形態に係る空間光変調器1においては、透明電極材料を下部電極3の透明電極31として基板7上に直接成膜することで、基板7の材料の耐久性の範囲内での処理が可能となり、前記加熱成膜やポストアニール等の高温処理が可能となる。具体的には、透明電極材料としてITOを適用する場合において、成膜温度200〜600℃が好ましく、あるいは無加熱での成膜後に、真空中にて200℃で10min以上(大気中であれば30〜60min程度)のポストアニールを施すことが好ましい。また、焼成の必要な塗布法による成膜も可能であり、ITO原料の溶液(例えば金属塩InI3とSnO2を質量比95:5として有機溶剤へ溶解した溶液)を基板7上にスピンコート法等で塗布し、通常の焼成条件、例えば大気中で400〜600℃の熱処理により有機物を分解してITOのみの膜とする。さらにポストアニールとして、焼成温度を保持して、H2を0.05〜0.1%含有させたN2雰囲気に変えて、引き続き熱処理を施すことで、ITO膜中に酸素欠陥を付与して導電性を向上させる。その他の透明電極材料においても、導電性や透過率等の特性が特に優れた状態となるような処理を施すことができる。 In the spatial light modulator 1 according to the first embodiment, the transparent electrode material is directly formed on the substrate 7 as the transparent electrode 31 of the lower electrode 3 so that the processing within the durability range of the material of the substrate 7 is achieved. It becomes possible to perform high-temperature processing such as the above-mentioned heating film formation and post-annealing. Specifically, in the case of applying ITO as the transparent electrode material, a film formation temperature of 200 to 600 ° C. is preferable, or after film formation without heating, at 200 ° C. for 10 min or more in a vacuum (in the atmosphere) It is preferable to perform post annealing for about 30 to 60 minutes. Also, a film can be formed by a coating method that requires firing, and a solution of an ITO raw material (for example, a solution in which a metal salt InI 3 and SnO 2 are dissolved in an organic solvent at a mass ratio of 95: 5) is spin-coated on the substrate 7. The organic substance is decomposed by an ordinary baking condition, for example, a heat treatment at 400 to 600 ° C. in the air to form an ITO-only film. Further, as post-annealing, the firing temperature is maintained, and the N 2 atmosphere containing 0.05 to 0.1% of H 2 is changed into a N 2 atmosphere, followed by heat treatment to give oxygen defects in the ITO film. Improve conductivity. Other transparent electrode materials can also be treated so as to have particularly excellent properties such as conductivity and transmittance.

このように、低抵抗化された透明電極31すなわち低抵抗の下部電極3とすることで、印加電圧を光変調素子5の反転電流密度に対して過剰に高くする必要がなく、空間光変調器1の省電力化が可能となる。また、下部電極3の低抵抗化のために配線の断面積を拡張する必要がないので、配線幅を狭くして画素4のいっそうの微細化が可能となり、また、配線(透明電極31)の薄膜化が可能となり入射光に対する出射光の光量の減衰が抑制される。   Thus, by using the transparent electrode 31 with a reduced resistance, that is, the lower electrode 3 with a low resistance, the applied voltage does not need to be excessively increased with respect to the inversion current density of the light modulation element 5, and the spatial light modulator 1 power saving is possible. Further, since it is not necessary to expand the cross-sectional area of the wiring in order to reduce the resistance of the lower electrode 3, the wiring width can be narrowed to further reduce the size of the pixel 4, and the wiring (transparent electrode 31) can be reduced. Thinning is possible, and attenuation of the amount of outgoing light with respect to incident light is suppressed.

以上のように、第1実施形態によれば、高精細かつ高速応答とすることが可能なスピン注入光変調素子を用いて、省電力化の可能な空間光変調器となる。あるいは、画素のいっそうの微細化や、出射光の光量の減衰の抑制が可能な空間光変調器となる。   As described above, according to the first embodiment, a spatial light modulator capable of saving power is achieved by using a spin injection light modulation element capable of high-definition and high-speed response. Alternatively, a spatial light modulator capable of further miniaturizing pixels and suppressing attenuation of the amount of emitted light is obtained.

[第2実施形態]
図4、図5、および図6を参照して、本発明の第2実施形態について説明する。図4は第2実施形態に係る空間光変調器の画素アレイの構成を模式的に示す底面図で、第1実施形態と同様に5行×5列のアレイ状に25個の画素を配列したものである。図5は第2実施形態に係る空間光変調器の画素の、一部を切り欠いた下方からの拡大斜視図(仰瞰図)である。また、図6は第2実施形態に係る画素の拡大断面図で、図4のD−D部分断面図である。なお、図4は基板を、図5は基板および絶縁部材を、それぞれ図示を省略して示す。第1実施形態(図1〜3参照)と同一の要素については同じ符号を付し、その説明は省略する。図5および図6に示すように、第2実施形態の画素4Aは、下部電極3Aを備えること以外は第1実施形態の画素4と同様の構成である。すなわち、第2実施形態に係る画素アレイ40Aを備える空間光変調器も、第1実施形態と同様に光変調素子5のスピン注入磁化反転により、下方からの入射偏光の旋光の向きを変化させて下方へ出射する反射型の空間光変調器であるため、その動作については説明を省略する(図3参照)。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. 4, 5, and 6. FIG. 4 is a bottom view schematically showing the configuration of the pixel array of the spatial light modulator according to the second embodiment. As in the first embodiment, 25 pixels are arranged in an array of 5 rows × 5 columns. Is. FIG. 5 is an enlarged perspective view (upper view) from below of a pixel of the spatial light modulator according to the second embodiment with a part thereof cut away. FIG. 6 is an enlarged sectional view of a pixel according to the second embodiment, and is a DD partial sectional view of FIG. FIG. 4 shows the substrate, and FIG. 5 shows the substrate and the insulating member without illustration. The same elements as those in the first embodiment (see FIGS. 1 to 3) are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIGS. 5 and 6, the pixel 4 </ b> A of the second embodiment has the same configuration as the pixel 4 of the first embodiment, except that the lower electrode 3 </ b> A is provided. That is, the spatial light modulator including the pixel array 40A according to the second embodiment also changes the direction of optical rotation of incident polarized light from below by the spin injection magnetization reversal of the light modulation element 5 as in the first embodiment. Since it is a reflective spatial light modulator that emits downward, the description of its operation is omitted (see FIG. 3).

第2実施形態の画素アレイ40Aにおいて、下部電極3A,3A,…は、第1実施形態の下部電極3,3,…と同様に縦方向に延設されたストライプ状である。下部電極3Aは、帯状の形状に複数の孔(貫通孔)を形成された金属電極33と、この孔に充填された形状の透明電極31Aとを備える。金属電極33の孔および透明電極31Aは、平面視で光変調素子5に重なる領域、すなわち光変調素子5の直下に備えられる。したがって、1つの金属電極33は、画素4Aの縦方向(行)の数である5個の孔を有する。そして、この金属電極33の孔に、透明電極31Aが光変調素子5の下面に電気的に接続されて設けられている。   In the pixel array 40A of the second embodiment, the lower electrodes 3A, 3A,... Have a stripe shape extending in the vertical direction in the same manner as the lower electrodes 3, 3,. The lower electrode 3A includes a metal electrode 33 in which a plurality of holes (through holes) are formed in a band shape, and a transparent electrode 31A having a shape filled in the holes. The hole of the metal electrode 33 and the transparent electrode 31 </ b> A are provided in a region overlapping the light modulation element 5 in a plan view, that is, immediately below the light modulation element 5. Accordingly, one metal electrode 33 has five holes that are the number of pixels 4A in the vertical direction (row). A transparent electrode 31 </ b> A is provided in the hole of the metal electrode 33 so as to be electrically connected to the lower surface of the light modulation element 5.

金属電極33は、第1、第2実施形態の上部電極2と同様の一般的な電極用金属材料で構成され、透明電極31Aは、第1実施形態の下部電極3の透明電極31と同様の結晶性の透明電極材料で構成されるので、それぞれ説明は省略する。本実施形態において透明電極31Aは、光が光変調素子5に入射、出射するための窓であり、その形状(金属電極33の孔の形状)および大きさは特に限定されないが、平面視形状が光変調素子5の平面視形状に対して小さいと金属電極33が光を遮って出射光の光量が低下し、大きすぎると孔の周縁部で金属電極33が幅狭となって金属電極33の抵抗が大きくなり、下部電極3Aの抵抗が大きくなる。したがって、透明電極31Aの平面視形状は、光変調素子5の平面視形状の相似形で、孔の周縁で金属電極33が幅狭にならない範囲で大きくすることが好ましい。このように、下部電極3Aにおいて、光変調素子5の直下すなわち光路部分のみを透明電極として、抵抗の小さい金属電極を主要材料とすることで、駆動電圧をさらに低くすることができる。また、画素アレイ40Aにおける画素4A同士の位置によるばらつきを低減することができる。   The metal electrode 33 is made of a general electrode metal material similar to the upper electrode 2 of the first and second embodiments, and the transparent electrode 31A is the same as the transparent electrode 31 of the lower electrode 3 of the first embodiment. Since it is comprised with a crystalline transparent electrode material, description is abbreviate | omitted, respectively. In the present embodiment, the transparent electrode 31A is a window through which light enters and exits the light modulation element 5, and the shape (shape of the hole of the metal electrode 33) and size are not particularly limited, but the shape in plan view is If the shape of the light modulation element 5 is small with respect to the plan view, the metal electrode 33 blocks the light and the amount of emitted light is reduced. If it is too large, the metal electrode 33 becomes narrow at the periphery of the hole and the metal electrode 33 The resistance increases and the resistance of the lower electrode 3A increases. Therefore, it is preferable that the planar view shape of the transparent electrode 31 </ b> A is similar to the planar view shape of the light modulation element 5 and is large in the range where the metal electrode 33 does not become narrow at the periphery of the hole. Thus, in the lower electrode 3A, the drive voltage can be further reduced by using the metal electrode having a low resistance as the main material, with the transparent electrode only under the light modulation element 5, that is, the optical path portion. In addition, variations due to the positions of the pixels 4A in the pixel array 40A can be reduced.

なお、図5および図6では透明電極31Aの形状は側面が垂直な四角柱だが、これに限らず、例えば側面の傾斜したメサ形状(四角錐台)としてもよい。このような光変調素子5の側が狭く、基板7の側へ広がる形状にすると、透明電極31Aと金属電極33との接触面積が大きくなって、下部電極3Aにおける接触抵抗を低減させることができる。さらに、第1実施形態に係る空間光変調器1(図3参照)のように、光の入射/出射角が斜め(画素アレイ40Aに非垂直)である場合、入射/出射光の金属電極33に遮られる部分が少なくなるので、出射光の光量が向上する。   5 and 6, the shape of the transparent electrode 31 </ b> A is a quadrangular prism whose side surface is vertical. However, the shape is not limited to this, and for example, a mesa shape (square frustum) whose side surface is inclined may be used. When the light modulation element 5 side is narrow and widens toward the substrate 7, the contact area between the transparent electrode 31A and the metal electrode 33 is increased, and the contact resistance in the lower electrode 3A can be reduced. Furthermore, as in the spatial light modulator 1 according to the first embodiment (see FIG. 3), when the incident / exit angle of light is oblique (non-perpendicular to the pixel array 40A), the metal electrode 33 for incident / exited light is used. As a result, the amount of the emitted light is improved.

また、下部電極3Aは、第1実施形態と同様に、透明電極31Aと光変調素子5との間に金属膜からなる下地層32を設けて接触抵抗を低減させることが好ましい。下地層32は、第1実施形態と同様に透明電極31Aと光変調素子5との間に設けられていればよく、図5および図6に示すように光変調素子5と同じ平面視形状に形成されてもよいし、透明電極31Aと同じ、すなわち金属電極33のそれぞれの孔に充填するように形成されてもよいし、下部電極3Aと同じ平面視形状(帯状)でもよい。下地層32の材料および厚さは第1実施形態の下部電極3の下地層32と同じであるので説明は省略する。   Further, similarly to the first embodiment, the lower electrode 3A is preferably provided with a base layer 32 made of a metal film between the transparent electrode 31A and the light modulation element 5 to reduce the contact resistance. The underlayer 32 only needs to be provided between the transparent electrode 31A and the light modulation element 5 as in the first embodiment, and has the same planar view shape as the light modulation element 5 as shown in FIGS. It may be formed, may be the same as the transparent electrode 31A, that is, may be formed so as to fill each hole of the metal electrode 33, or may have the same planar view shape (band shape) as the lower electrode 3A. Since the material and thickness of the foundation layer 32 are the same as those of the foundation layer 32 of the lower electrode 3 of the first embodiment, description thereof is omitted.

以上のように、第2実施形態によれば、光を遮らない透明電極材料と低抵抗の金属材料の双方の利点を兼ね備えた電極により、駆動電圧の低電圧化および応答速度の高速化がさらに望め、また画素間の動作のばらつきが低減された空間光変調器となる。   As described above, according to the second embodiment, the electrode having the advantages of both the transparent electrode material that does not block light and the low-resistance metal material can further reduce the drive voltage and increase the response speed. The spatial light modulator has a reduced variation in operation between pixels.

[空間光変調器の製造方法]
次に、本発明に係る空間光変調器の画素(画素アレイ)の製造方法として、第2実施形態に係る画素アレイの製造方法の一例を図7〜10を参照して説明する。図7〜10は、第2実施形態に係る画素アレイの製造方法を説明する模式図で、それぞれ図4のC−C部分断面図(以下、断面図)または平面図である。図7は下部電極形成工程における模式図で、(a)〜(c)、(e)〜(g)は断面図、(d)、(h)は平面図である。図8は光変調素子形成工程および上部電極形成工程における模式図で、(a)〜(c)、(e)は断面図、(d)、(f)は平面図である。図9および図10はそれぞれ下部電極形成工程における別の方法を説明する模式図で、図9の(a)、(c)、(d)は断面図、(b)は平面図であり、図10の(a)、(c)〜(e)は断面図、(b)、(f)は平面図である。また、図7〜10において、各要素の成形(加工)前の膜には( )付きの符号を付して示す。
[Method of manufacturing spatial light modulator]
Next, as a method for manufacturing a pixel (pixel array) of the spatial light modulator according to the present invention, an example of a method for manufacturing a pixel array according to the second embodiment will be described with reference to FIGS. 7 to 10 are schematic views for explaining a method of manufacturing the pixel array according to the second embodiment, and are respectively a partial cross-sectional view (hereinafter referred to as a cross-sectional view) or a plan view in FIG. FIGS. 7A and 7B are schematic views in the lower electrode forming step, wherein FIGS. 7A to 7C and FIGS. 7E to 7G are cross-sectional views, and FIGS. 7D and 7H are plan views. FIGS. 8A and 8B are schematic views in the light modulation element forming step and the upper electrode forming step. FIGS. 8A to 8C are sectional views, and FIGS. 8D and 8F are plan views. 9 and 10 are schematic views for explaining another method in the lower electrode forming step, in which (a), (c) and (d) of FIG. 9 are cross-sectional views, and (b) is a plan view. 10 (a), (c)-(e) are sectional views, and (b), (f) are plan views. Moreover, in FIGS. 7-10, the code | symbol with () is attached | subjected and shown to the film | membrane before shaping | molding (processing) of each element.

(下部電極形成工程S10)
下部電極形成工程S10として、下部電極3Aを形成する。
まず、透明電極31Aを形成する(透明電極形成工程S11e0)。基板7上に透明電極材料を高温下でスパッタリング法等により成膜する。この透明電極膜上の、透明電極31Aの窓とする領域にレジスト(PR1)マスクをフォトリソグラフィ等により形成して、イオンミリング法等のエッチングにより透明電極膜を透明電極31Aの形状に加工する(図7(a))。また、透明電極材料を低温(無加熱)で成膜した後にポストアニールを施してもよい。
(Lower electrode forming step S10)
As the lower electrode forming step S10, the lower electrode 3A is formed.
First, the transparent electrode 31A is formed (transparent electrode forming step S11e 0 ). A transparent electrode material is formed on the substrate 7 by sputtering or the like at a high temperature. A resist (PR1) mask is formed on the transparent electrode film in a region to be a window of the transparent electrode 31A by photolithography or the like, and the transparent electrode film is processed into the shape of the transparent electrode 31A by etching such as ion milling ( FIG. 7 (a)). Further, post-annealing may be performed after forming the transparent electrode material at a low temperature (no heating).

次に、金属電極33を形成する(金属電極形成工程S12m)。透明電極31A上のレジストを残した状態で金属電極材料を成膜し(図7(b))、レジスト剥離液等により、前記レジストPR1をその上の金属電極膜(33)ごと除去する(リフトオフ、図7(c)、(d))。そして、金属電極膜(33)+透明電極31A上の、下部電極3Aすなわち配線領域にレジスト(PR2)マスクを形成し(図7(e))、エッチングにより金属電極膜(33)を金属電極33の形状に加工する(図7(f))。   Next, the metal electrode 33 is formed (metal electrode formation step S12m). A metal electrode material is formed with the resist remaining on the transparent electrode 31A (FIG. 7B), and the resist PR1 is removed together with the metal electrode film (33) thereon using a resist stripping solution (lift-off). FIG. 7 (c), (d)). Then, a resist (PR2) mask is formed on the lower electrode 3A, that is, the wiring region on the metal electrode film (33) + the transparent electrode 31A (FIG. 7E), and the metal electrode film (33) is etched to form the metal electrode 33. (Fig. 7 (f)).

次に、金属電極33,33間(下部電極3A,3A間)に、絶縁部材6をリフトオフ法にて形成する(絶縁部材形成工程S13b)。すなわち、レジストPR2を残した状態で絶縁材料を成膜し、前記レジストPR2をその上の絶縁膜ごと除去することにより、下部電極3A,3A間に絶縁部材6を堆積させる(図7(g)、(h))。あるいは、金属電極33の加工後にレジストPR2を除去してから、絶縁材料を成膜して金属電極33,33間に埋め込み、エッチングやCMP(Chemical Mechanical Polishing:化学機械研磨)等により透明電極31Aの上面が露出するまで絶縁膜を除去して絶縁部材6としてもよい。   Next, the insulating member 6 is formed between the metal electrodes 33 and 33 (between the lower electrodes 3A and 3A) by a lift-off method (insulating member forming step S13b). That is, an insulating material is formed with the resist PR2 remaining, and the insulating film 6 is deposited between the lower electrodes 3A and 3A by removing the resist PR2 together with the insulating film thereon (FIG. 7G). (H)). Alternatively, after processing the metal electrode 33, the resist PR2 is removed, and then an insulating material is formed and embedded between the metal electrodes 33 and 33, and the transparent electrode 31A is formed by etching, CMP (Chemical Mechanical Polishing), or the like. The insulating film may be removed to remove the insulating film until the upper surface is exposed.

(光変調素子形成工程S20)
前記したように、下部電極3Aにおける下地層32とその上の光変調素子5となる各層は、連続して成膜されることが好ましいため、基板7上に形成した透明電極31A、金属電極33、および金属電極33,33間の絶縁部材6の上に、下地層32、磁化自由層53、中間層52、磁化固定層51、保護層54、のそれぞれの材料を順に連続して成膜、積層する(図8(a))。保護層膜(54)上の、光変調素子5とする領域にレジスト(PR3)マスクを形成し、保護層膜(54)〜金属膜(32)の積層膜を電子線リソグラフィ等により加工して、光変調素子5および下地層32とする(図8(b))。レジストPR3を残した状態で絶縁材料を成膜し、前記レジストPR3をその上の絶縁膜ごと除去することにより、光変調素子5,5間に絶縁部材6を堆積させる(図8(c)、(d))。あるいは、光変調素子5および下地層32の加工後にレジストPR3を除去してから、絶縁材料を成膜して光変調素子5,5間に埋め込み、エッチングやCMP等により光変調素子5の上面(保護層54)が露出するまで絶縁膜を除去して絶縁部材6としてもよい。
(Light modulation element forming step S20)
As described above, since the base layer 32 and the layers serving as the light modulation element 5 on the lower electrode 3A are preferably formed continuously, the transparent electrode 31A and the metal electrode 33 formed on the substrate 7 are used. On the insulating member 6 between the metal electrodes 33 and 33, the underlayer 32, the magnetization free layer 53, the intermediate layer 52, the magnetization fixed layer 51, and the protective layer 54 are successively formed in sequence. They are stacked (FIG. 8 (a)). A resist (PR3) mask is formed on the protective layer film (54) in the region to be the light modulation element 5, and the laminated film of the protective layer film (54) to the metal film (32) is processed by electron beam lithography or the like. The light modulation element 5 and the base layer 32 are formed (FIG. 8B). An insulating material is formed with the resist PR3 left, and the resist PR3 is removed together with the insulating film thereon, thereby depositing an insulating member 6 between the light modulation elements 5 and 5 (FIG. 8C). (D)). Alternatively, after processing the light modulation element 5 and the base layer 32, the resist PR3 is removed, and then an insulating material is formed and embedded between the light modulation elements 5 and 5, and the upper surface of the light modulation element 5 by etching or CMP ( The insulating film may be removed until the protective layer 54) is exposed to form the insulating member 6.

(上部電極形成工程S30)
次に、上部電極2を形成する。光変調素子5,5間の絶縁部材6の上の、下部電極3Aと直交するストライプ状の配線間(上部電極2,2間)領域にレジストマスクを形成し、その上から金属電極材料を成膜し、前記レジストをその上の金属電極材料ごと除去する(リフトオフ)ことにより、上部電極2とする。最後に、上部電極2,2間(および上)に絶縁部材6を堆積して、画素4A(画素アレイ40A)とする(図8(e)、(f))。
(Upper electrode forming step S30)
Next, the upper electrode 2 is formed. A resist mask is formed on the insulating member 6 between the light modulation elements 5 and 5 in a region between the stripe-shaped wirings orthogonal to the lower electrode 3A (between the upper electrodes 2 and 2), and a metal electrode material is formed thereon. The upper electrode 2 is formed by removing the resist together with the metal electrode material thereon (lift-off). Finally, the insulating member 6 is deposited between the upper electrodes 2 and 2 (and above) to form the pixel 4A (pixel array 40A) (FIGS. 8E and 8F).

なお、第1実施形態に係る画素アレイ40を形成する場合は、下部電極形成工程S10において、基板7上に成膜した透明電極材料を下部電極3の形状のストライプ状に加工して透明電極31とした後、透明電極31,31間(下部電極3,3間)に絶縁部材6を堆積させる。以降は、前記工程S20、S30にて製造できる。   When the pixel array 40 according to the first embodiment is formed, the transparent electrode 31 is formed by processing the transparent electrode material formed on the substrate 7 into a stripe shape of the shape of the lower electrode 3 in the lower electrode formation step S10. After that, the insulating member 6 is deposited between the transparent electrodes 31 and 31 (between the lower electrodes 3 and 3). Thereafter, it can be manufactured in the steps S20 and S30.

下部電極3A(透明電極31A、金属電極33)は、図7および図9を参照して説明する以下の方法で形成することもできる(下部電極形成工程S10A)。
最初に、前記と同様に基板7上に透明電極31Aを形成する(透明電極形成工程S11e)が、ここでは透明電極31Aを形成した(図7(a))後、さらにレジストPR1を除去する。なお、リフトオフ法により透明電極31Aを形成することもできるが、この場合は、透明電極材料を無加熱で成膜して、レジストを除去して以降にポストアニールを行う。
The lower electrode 3A (transparent electrode 31A, metal electrode 33) can also be formed by the following method described with reference to FIGS. 7 and 9 (lower electrode formation step S10A).
First, the transparent electrode 31A is formed on the substrate 7 in the same manner as described above (transparent electrode forming step S11e). Here, after forming the transparent electrode 31A (FIG. 7A), the resist PR1 is further removed. The transparent electrode 31A can also be formed by a lift-off method. In this case, the transparent electrode material is formed without heating, the resist is removed, and post-annealing is performed thereafter.

次に、下部電極3A,3A間となる領域(配線間領域)に、絶縁部材6をリフトオフ法にて形成する(絶縁部材形成工程S12b)。基板7+透明電極31A上の、下部電極3Aとする領域すなわち配線領域にレジスト(PR4)マスクを形成し(図9(a)、(b))、その上から絶縁材料を成膜して、レジストPR4をその上の絶縁膜ごと除去する(図9(c))。   Next, the insulating member 6 is formed by a lift-off method in a region (inter-wiring region) between the lower electrodes 3A and 3A (insulating member forming step S12b). A resist (PR4) mask is formed on the substrate 7 + transparent electrode 31A in the region to be the lower electrode 3A, that is, the wiring region (FIGS. 9A and 9B), and an insulating material is formed on the resist (PR4) mask. PR4 is removed together with the insulating film thereon (FIG. 9C).

次に、金属電極33を形成する(金属電極形成工程S13m)。金属電極材料を成膜して透明電極31A,31A間および絶縁部材6,6間に埋め込み(図9(d))、CMP等により透明電極31Aおよび絶縁部材6の上面が露出するまで金属電極膜(33)を除去して金属電極33とする(図7(g)、(h))。このように、金属電極33を透明電極31Aおよび絶縁部材6の後に形成することにより、ドライエッチングの困難なCuを適用することができる。なお、最初に下部電極3A,3A間領域の絶縁部材6を形成し、その上(基板7+絶縁部材6上)に窓(透明電極31Aとする領域)を空けたレジストマスクを形成して、リフトオフ法とポストアニールにより透明電極31Aを形成して、図9(c)に示す状態とすることもできる。   Next, the metal electrode 33 is formed (metal electrode formation step S13m). A metal electrode film is formed and embedded between the transparent electrodes 31A and 31A and between the insulating members 6 and 6 (FIG. 9D), and until the upper surfaces of the transparent electrode 31A and the insulating member 6 are exposed by CMP or the like (33) is removed to form a metal electrode 33 (FIGS. 7G and 7H). Thus, by forming the metal electrode 33 after the transparent electrode 31A and the insulating member 6, it is possible to apply Cu, which is difficult to dry-etch. First, the insulating member 6 in the region between the lower electrodes 3A and 3A is formed, and a resist mask having a window (region to be the transparent electrode 31A) is formed thereon (on the substrate 7 + insulating member 6), and lift-off is performed. The transparent electrode 31A can be formed by the method and post-annealing to obtain the state shown in FIG.

さらに、下部電極3Aは、金属電極33を先に形成してから、その孔に透明電極材料を埋め込んで透明電極31Aとすることで形成することもできる。図10を参照してその一例を説明する(下部電極形成工程S10B)。   Further, the lower electrode 3A can be formed by forming the metal electrode 33 first and then embedding a transparent electrode material in the hole to form the transparent electrode 31A. An example will be described with reference to FIG. 10 (lower electrode forming step S10B).

最初に、基板7上に、リフトオフ法等により金属電極33を形成する(金属電極形成工程S11m)。次に、金属電極33,33間(下部電極3A,3A間、配線間領域)に絶縁部材6をリフトオフ法にて形成する(絶縁部材形成工程S12b1)。金属電極33およびその孔上の、下部電極3Aとする領域より少し狭い(細い)領域にレジスト(PR5)マスクを形成し(図10(a)、(b))、その上から絶縁材料を成膜し、レジストPR5をその上の絶縁膜ごと除去する(図10(c))。 First, the metal electrode 33 is formed on the substrate 7 by a lift-off method or the like (metal electrode formation step S11m). Next, the insulating member 6 is formed between the metal electrodes 33 and 33 (between the lower electrodes 3A and 3A, the region between the wirings) by a lift-off method (insulating member forming step S12b 1 ). A resist (PR5) mask is formed on the metal electrode 33 and the region above the hole, which is slightly narrower (thin) than the region to be the lower electrode 3A (FIGS. 10A and 10B), and an insulating material is formed thereon. Then, the resist PR5 is removed together with the insulating film thereon (FIG. 10C).

次に、透明電極31Aを形成する(透明電極形成工程S13e)。透明電極材料を金属電極33より少し厚く成膜して金属電極33の孔に埋め込む(図10(d))。透明電極膜(31A)上の、金属電極33の孔の平面視形状より一回り大きい領域にレジスト(PR6)マスクを形成し、エッチングにより透明電極膜(31A)を加工し(図10(e))、レジストPR6を除去する(図10(f))。この方法で形成された下部電極3Aにおいては、透明電極31Aは、その厚さが金属電極33より厚く、孔の周縁で金属電極33の上面に積層された形状となる。   Next, the transparent electrode 31A is formed (transparent electrode forming step S13e). A transparent electrode material is formed to be slightly thicker than the metal electrode 33 and embedded in the hole of the metal electrode 33 (FIG. 10D). A resist (PR6) mask is formed on the transparent electrode film (31A) in a region that is slightly larger than the planar view shape of the hole of the metal electrode 33, and the transparent electrode film (31A) is processed by etching (FIG. 10E). ), The resist PR6 is removed (FIG. 10F). In the lower electrode 3A formed by this method, the transparent electrode 31A has a thickness thicker than that of the metal electrode 33 and is laminated on the upper surface of the metal electrode 33 at the periphery of the hole.

このように金属電極33の孔より大きい領域に透明電極31Aを残すように加工することにより、金属電極33の孔の側面に隙間が生じることなく、金属電極33と透明電極31Aとの接続が確実に保持できる。なお、透明電極形成工程S13eにおいては、透明電極材料を成膜する前に前記レジストPR6の反転パターンのマスクを形成して、リフトオフ、そしてポストアニールを行って透明電極31Aを形成してもよい。さらに、透明電極形成工程S13eを、絶縁部材形成工程S12b1の前に、前記リフトオフ法にて行うこともできる。 By processing so that the transparent electrode 31A is left in a region larger than the hole of the metal electrode 33 in this way, there is no gap on the side surface of the hole of the metal electrode 33, and the connection between the metal electrode 33 and the transparent electrode 31A is ensured. Can be retained. In the transparent electrode forming step S13e, the transparent electrode 31A may be formed by forming a mask having a reverse pattern of the resist PR6, performing lift-off, and post-annealing before forming the transparent electrode material. Further, the transparent electrode formation step S13e, before the insulating member forming step S12b 1, can also be performed by the lift-off method.

以上、本発明を実施するための形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although the form for implementing this invention was described, this invention is not limited to these embodiment, A various change is possible in the range shown to the claim.

本発明の効果を確認するために、計算機を用いたシミュレーションによって、本発明の第2実施形態に係る空間光変調器の画素について、その駆動電圧と透明電極の抵抗との関係を求めた。   In order to confirm the effect of the present invention, the relationship between the drive voltage and the resistance of the transparent electrode was determined for the pixel of the spatial light modulator according to the second embodiment of the present invention by simulation using a computer.

モデルとする画素4Aの仕様として、配線幅1μmとし、下部電極3Aの透明電極31Aは平面視0.5μm角の正方形とした。下部電極3Aは透明電極31A上に下地層32:Ru(3)を備え、光変調素子5は、下層(下部電極3Aの下地層32上)から、磁化自由層53:GdFe(10)、中間層52:Cu(6)、磁化固定層51:CoFe(1)/TbFeCo(20)、保護層54:Ru(3)からなる構成のCPP−GMR素子とした。( )内数値は膜厚(単位nm)を示す。このような構成のCPP−GMR素子のスピン注入磁化反転に要する電流密度は|2|×107A/cm2である。そして、平面視サイズ0.15μm×0.4μmに形成した光変調素子5を、1つの画素4Aに短辺方向に2個並べて備えた。具体的には、平面視において、透明電極31Aの中央上に2個の光変調素子5,5を間隔0.1μmで並べて配置して、それぞれの光変調素子5の3辺(もう1個の光変調素子5と対向する側の辺以外)における透明電極31Aの端部からの距離は0.05μmとした。なお、光変調素子5,5は、互いに電気的・磁気的影響を受けることなく磁化反転するものとみなした。 The specification of the model pixel 4A is a wiring width of 1 μm, and the transparent electrode 31A of the lower electrode 3A is a square of 0.5 μm square in plan view. The lower electrode 3A includes a base layer 32: Ru (3) on the transparent electrode 31A, and the light modulation element 5 starts from the lower layer (on the base layer 32 of the lower electrode 3A) to the magnetization free layer 53: GdFe (10), intermediate A CPP-GMR element constituted of layer 52: Cu (6), magnetization fixed layer 51: CoFe (1) / TbFeCo (20), and protective layer 54: Ru (3) was formed. The numbers in parentheses indicate the film thickness (unit: nm). The current density required for the spin injection magnetization reversal of the CPP-GMR element having such a configuration is | 2 | × 10 7 A / cm 2 . Then, two light modulation elements 5 formed in a plan view size of 0.15 μm × 0.4 μm were arranged in one pixel 4A in the short side direction. Specifically, in plan view, two light modulation elements 5 and 5 are arranged side by side at an interval of 0.1 μm on the center of the transparent electrode 31A, and three sides (another one) of each light modulation element 5 are arranged. The distance from the end of the transparent electrode 31 </ b> A (except the side facing the light modulation element 5) was 0.05 μm. Note that the light modulation elements 5 and 5 were considered to undergo magnetization reversal without being affected by electrical and magnetic influences.

下部電極3Aの金属電極33および上部電極2はCu(比抵抗:1.68×10-6Ω・cm)を適用したものとして、計算上、その抵抗は0とした。また、透明電極31Aには、350℃で成膜したITO(比抵抗ρ=100μΩ・cm)を適用し、さらに無加熱で成膜される透明電極材料の比較例としてIZO(比抵抗ρ=450μΩ・cm)を適用した。また、光変調素子5,5とその下の下地層32,32を合わせた抵抗Rdを1Ωとした。 For the metal electrode 33 and the upper electrode 2 of the lower electrode 3A, Cu (specific resistance: 1.68 × 10 −6 Ω · cm) was applied, and the resistance was set to 0 in the calculation. In addition, ITO (specific resistance ρ = 100 μΩ · cm) formed at 350 ° C. is applied to the transparent electrode 31A, and IZO (specific resistance ρ = 450 μΩ) as a comparative example of a transparent electrode material formed without heating. Cm) was applied. The resistance Rd of the light modulation elements 5 and 5 and the underlying layers 32 and 32 thereunder is 1Ω.

1つの画素4Aにおいて、光変調素子5,5をスピン注入磁化反転させるために必要な電流|ISTS|は、計算上24mAとなる。電流|ISTS|が、平面視0.5μm角の透明電極31Aの平面視中心で光変調素子5に供給される、透明電極31Aの端部(金属電極33との界面)から印加する電圧(駆動電圧)Vを、V=|ISTS|×(Re+Rd)より計算した(Re:透明電極の抵抗)。 In one pixel 4A, the current | I STS | required to reverse the spin injection magnetization of the light modulation elements 5 and 5 is calculated to be 24 mA. The voltage applied from the end of the transparent electrode 31A (interface with the metal electrode 33), which is supplied to the light modulation element 5 at the center of the transparent electrode 31A having a 0.5 μm square when viewed in plan, is the current | I STS | Driving voltage) V was calculated from V = | I STS | × (Re + Rd) (Re: resistance of transparent electrode).

透明電極31Aの抵抗Reは、Re=ρ×(距離)/(断面積)から求めた。透明電極31Aの距離(最大)は平面視の端部から中心までの長さ(0.25μm)であり、断面積は平面視の一辺の長さ(0.5μm)と膜厚の積である。ITO,IZOそれぞれの透明電極31Aについて、膜厚を変化させて駆動電圧を計算した結果を、図11に、横軸を透明電極31Aの膜厚、縦軸を駆動電圧とするグラフで示す。   The resistance Re of the transparent electrode 31A was obtained from Re = ρ × (distance) / (cross-sectional area). The distance (maximum) of the transparent electrode 31A is the length (0.25 μm) from the end to the center in plan view, and the cross-sectional area is the product of the length of one side (0.5 μm) in plan view and the film thickness. . FIG. 11 is a graph showing the result of calculating the driving voltage for each of the transparent electrodes 31A of ITO and IZO with the film thickness changed, with the horizontal axis representing the film thickness of the transparent electrode 31A and the vertical axis representing the driving voltage.

前記より、駆動電圧は、透明電極31Aの比抵抗、および膜厚の逆数にそれぞれ比例するので、図11に示すように、比抵抗の低い加熱成膜によるITOからなる透明電極31Aがより低い駆動電圧で画素4Aを動作させることができ、さらに透明電極31Aの膜厚を厚くするほど駆動電圧を低くすることができた。膜厚0.5μmの透明電極31Aにおいて、IZOを用いた場合の駆動電圧は132mVであり、光変調素子5の端部(距離0.05μm)において|ISTS|に到達する電圧45.6mVに対して約3倍を要する。一方、本発明に係る実施例のITOを用いた場合の駆動電圧は48mVと低電圧で動作可能であり、光変調素子5の端部において28.8mVであるので、画素内における差も小さかった。また、例えば駆動電圧を100mVとする場合、IZOを用いた場合は膜厚0.71μm以上とする必要があるのに対して、加熱成膜によるITOを用いた透明電極31Aでは、膜厚0.158μm以上であればよい。このように、低抵抗化された透明電極を適用できることで、低い駆動電圧で動作させることができ、あるいは透明電極31Aの膜厚を薄くして光の透過量を向上させることができる。 As described above, since the driving voltage is proportional to the specific resistance of the transparent electrode 31A and the reciprocal of the film thickness, as shown in FIG. 11, the transparent electrode 31A made of ITO by heating film formation with a low specific resistance is driven to be lower. The pixel 4A can be operated by voltage, and the driving voltage can be lowered as the film thickness of the transparent electrode 31A is increased. In the transparent electrode 31A having a film thickness of 0.5 μm, the driving voltage when IZO is used is 132 mV, and the voltage reaches 45.6 mV to reach | I STS | at the end of the light modulation element 5 (distance 0.05 μm). It takes about 3 times as much. On the other hand, when the ITO of the embodiment according to the present invention is used, the driving voltage can be operated at a low voltage of 48 mV, and 28.8 mV at the end of the light modulation element 5, so that the difference in the pixels is small. . For example, when the driving voltage is 100 mV, the film thickness needs to be 0.71 μm or more when IZO is used, whereas the transparent electrode 31A using ITO by heating film formation has a film thickness of 0. It may be 158 μm or more. As described above, since the transparent electrode with reduced resistance can be applied, the transparent electrode can be operated with a low driving voltage, or the thickness of the transparent electrode 31A can be reduced to improve the amount of transmitted light.

1 空間光変調器(磁気光学式空間光変調器)
10 電流制御部
11 電源(電流供給手段)
14 画素選択部(画素選択手段)
40,40A 画素アレイ
4,4A 画素
2 上部電極
3,3A 下部電極
31,31A 透明電極
32 下地層
33 金属電極
5 光変調素子
51 磁化固定層
52 中間層
53 磁化自由層
54 保護層
6 絶縁部材
7 基板
1 Spatial light modulator (magneto-optic spatial light modulator)
10 Current control unit 11 Power supply (current supply means)
14 Pixel selection unit (pixel selection means)
40, 40A pixel array 4, 4A pixel 2 upper electrode 3, 3A lower electrode 31, 31A transparent electrode 32 underlayer 33 metal electrode 5 light modulation element 51 magnetization fixed layer 52 intermediate layer 53 magnetization free layer 54 protective layer 6 insulating member 7 substrate

Claims (5)

光を透過させる基板と、この基板上に2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備え、前記基板を透過して前記複数の画素に入射した光を反射させて出射する磁気光学式空間光変調器であって、
前記画素は、前記画素選択手段に選択されたときに入射した光をその偏光方向を特定の方向に変化させて出射する光変調素子と、この光変調素子の上下に接続された上部電極および下部電極と、を備え、
前記下部電極は、前記基板側から入射した光を透過させ、かつ前記光変調素子から出射した光を透過させるように、少なくとも一部が透明電極材料で形成され、
前記上部電極は、前記光変調素子から入射した光を反射させるように金属電極材料からなることを特徴とする磁気光学式空間光変調器。
A substrate that transmits light, a plurality of pixels that are two-dimensionally arranged on the substrate, a pixel selection unit that selects one or more pixels from the plurality of pixels, and a pixel selected by the pixel selection unit A magneto-optical spatial light modulator that reflects and emits light that has passed through the substrate and is incident on the plurality of pixels.
The pixel includes a light modulation element that emits light that is incident upon being selected by the pixel selection unit with its polarization direction changed to a specific direction, and an upper electrode and a lower part that are connected above and below the light modulation element. An electrode,
The lower electrode is formed of a transparent electrode material so as to transmit light incident from the substrate side and transmit light emitted from the light modulation element,
The magneto-optical spatial light modulator according to claim 1, wherein the upper electrode is made of a metal electrode material so as to reflect light incident from the light modulation element.
前記下部電極は、平面視で前記光変調素子に重なる領域に貫通孔が形成された金属電極と、前記金属電極の貫通孔に配されて前記光変調素子に電気的に接続する前記透明電極材料で形成された透明電極と、を備えることを特徴とする請求項1に記載の磁気光学式空間光変調器。   The lower electrode includes a metal electrode having a through hole formed in a region overlapping the light modulation element in plan view, and the transparent electrode material disposed in the through hole of the metal electrode and electrically connected to the light modulation element The magneto-optical spatial light modulator according to claim 1, further comprising: a transparent electrode formed by: 前記下部電極を形成する透明電極材料は、結晶性材料であることを特徴とする請求項1または請求項2に記載の磁気光学式空間光変調器。   The magneto-optical spatial light modulator according to claim 1, wherein the transparent electrode material forming the lower electrode is a crystalline material. 前記下部電極を形成する透明電極材料は、加熱成膜により成膜されている、またはポストアニールが施されていることを特徴とする請求項3に記載の磁気光学式空間光変調器。   4. The magneto-optical spatial light modulator according to claim 3, wherein the transparent electrode material forming the lower electrode is formed by heating film formation or post-annealing. 下側から基板を透過して当該基板上に2次元配列された複数の画素に入射した光を反射させて出射する磁気光学式空間光変調器の製造方法において、
少なくとも一部が透明電極材料で形成される下部電極を前記基板上に形成する下部電極形成工程と、前記下部電極上に光変調素子を形成する光変調素子形成工程と、前記光変調素子上に金属電極材料からなる上部電極を形成する上部電極形成工程と、を行い、
前記下部電極形成工程において、前記透明電極材料を加熱成膜により成膜する、または前記透明電極材料を成膜後にポストアニールを行うことを特徴とする磁気光学式空間光変調器の製造方法。
In a method for manufacturing a magneto-optical spatial light modulator that transmits light reflected from a lower side and incident on a plurality of pixels arranged two-dimensionally on the substrate, and then emits the reflected light.
A lower electrode forming step of forming a lower electrode, at least a part of which is made of a transparent electrode material, on the substrate; a light modulating element forming step of forming a light modulating element on the lower electrode; and An upper electrode forming step of forming an upper electrode made of a metal electrode material,
In the lower electrode forming step, the transparent electrode material is formed by heating film formation, or post annealing is performed after forming the transparent electrode material.
JP2009141484A 2009-06-12 2009-06-12 Magneto-optic spatial light modulator and manufacturing method thereof Expired - Fee Related JP5238619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141484A JP5238619B2 (en) 2009-06-12 2009-06-12 Magneto-optic spatial light modulator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141484A JP5238619B2 (en) 2009-06-12 2009-06-12 Magneto-optic spatial light modulator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010286729A true JP2010286729A (en) 2010-12-24
JP5238619B2 JP5238619B2 (en) 2013-07-17

Family

ID=43542462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141484A Expired - Fee Related JP5238619B2 (en) 2009-06-12 2009-06-12 Magneto-optic spatial light modulator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5238619B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002604A (en) * 2009-06-18 2011-01-06 Tdk Corp Spin injection type spatial light modulator
JP2013195593A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195592A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195594A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195591A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195589A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195590A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221841A (en) * 2004-02-06 2005-08-18 Fdk Corp Magneto optical spatial light modulator
JP2006023388A (en) * 2004-07-06 2006-01-26 Kobe Steel Ltd Display device and method for manufacturing the same
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2008145748A (en) * 2006-12-11 2008-06-26 Nippon Hoso Kyokai <Nhk> Magnetooptical spatial light modulator
JP2009109756A (en) * 2007-10-30 2009-05-21 Fdk Corp Magneto-optic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221841A (en) * 2004-02-06 2005-08-18 Fdk Corp Magneto optical spatial light modulator
JP2006023388A (en) * 2004-07-06 2006-01-26 Kobe Steel Ltd Display device and method for manufacturing the same
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2008145748A (en) * 2006-12-11 2008-06-26 Nippon Hoso Kyokai <Nhk> Magnetooptical spatial light modulator
JP2009109756A (en) * 2007-10-30 2009-05-21 Fdk Corp Magneto-optic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012055240; 青島賢一: 'スピン偏極電流を利用した超高精細光変調素子' NHK技研R&D No.110, 20080715, p.10-15 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002604A (en) * 2009-06-18 2011-01-06 Tdk Corp Spin injection type spatial light modulator
JP2013195593A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195592A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195594A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195591A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195589A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator
JP2013195590A (en) * 2012-03-17 2013-09-30 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator

Also Published As

Publication number Publication date
JP5238619B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
JP5567969B2 (en) Light modulator and spatial light modulator using the same
JP4791945B2 (en) Magneto-optic spatial light modulator
JP5852363B2 (en) Spatial light modulator
JP2008064825A (en) Multi-element spatial light modulator and video display device with the same
JP5507894B2 (en) Magneto-optical element, optical modulator, magneto-optical control element, and image display apparatus
JP6017190B2 (en) Manufacturing method of light modulation element
JP4939502B2 (en) Magneto-optical spatial light modulator and magneto-optical imaging device
JP5054639B2 (en) Light modulator and spatial light modulator
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP2010145462A (en) Multi-element spatial light modulator
JP6017165B2 (en) Spatial light modulator
JP4939477B2 (en) Multi-element spatial light modulator
JP5249876B2 (en) Reflective spatial light modulator
JP2012230143A (en) Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP5581171B2 (en) Light modulator and spatial light modulator using the same
JP5567970B2 (en) Light modulator and spatial light modulator using the same
JP2018205515A (en) Optical modulation element, space optical modulator and space optical modulation system
JP5281522B2 (en) Spatial light modulator
JP2011180355A (en) Optical modulation element and spatial light modulator
JP6865544B2 (en) Spatial Light Modulators and Methods for Manufacturing Spatial Light Modulators
JP5238616B2 (en) Light modulation element
JP6329384B2 (en) Spin injection magnetization reversal element
JP5054640B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP5836857B2 (en) Light modulator and spatial light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees