JP2021106193A - Soi wafer single side polishing system and soi wafer single side polishing method using the same - Google Patents

Soi wafer single side polishing system and soi wafer single side polishing method using the same Download PDF

Info

Publication number
JP2021106193A
JP2021106193A JP2019236042A JP2019236042A JP2021106193A JP 2021106193 A JP2021106193 A JP 2021106193A JP 2019236042 A JP2019236042 A JP 2019236042A JP 2019236042 A JP2019236042 A JP 2019236042A JP 2021106193 A JP2021106193 A JP 2021106193A
Authority
JP
Japan
Prior art keywords
polishing
film thickness
soi
soi wafer
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019236042A
Other languages
Japanese (ja)
Other versions
JP6885453B1 (en
Inventor
昭太 大槻
Shota Otsuki
昭太 大槻
秀光 岡部
Hidemitsu Okabe
秀光 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2019236042A priority Critical patent/JP6885453B1/en
Application granted granted Critical
Publication of JP6885453B1 publication Critical patent/JP6885453B1/en
Publication of JP2021106193A publication Critical patent/JP2021106193A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an SOI wafer single side polishing system and an SOI wafer single side polishing method using the same that are capable of further making a film thickness distribution of an SOI layer uniform.SOLUTION: A single side polishing system comprises a surface plate, a polishing pad, a polishing head, a polishing head drive mechanism, an optical film thickness measurement unit, a control unit, and a storage unit. The control unit moves an SOI wafer held on the polishing head to a position over a window part of the surface plate by using the polishing head drive mechanism and, via the window part, measures a film thickness distribution in at least a radial direction of an SOI layer of the SOI wafer by the optical film thickness measurement unit and stores the film thickness distribution in the storage unit; on the basis of the film thickness distribution stored in the storage unit, determines an execution pressurization distribution for making the film thickness distribution uniform and sets the execution pressurization distribution as a pressurization distribution for the polishing head; and polishes a surface of the SOI layer of the SOI wafer held on the polishing head.SELECTED DRAWING: Figure 1

Description

本発明は、SOIウェーハの片面研磨システム及びそれを用いたSOIウェーハの片面研磨方法に関する。 The present invention relates to a single-sided polishing system for SOI wafers and a single-sided polishing method for SOI wafers using the same.

近年、高集積CMOS素子、高耐圧素子、イメージセンサ等の種々の半導体デバイス用途において、SOI(Silicon on Insulator)構造を有するSOIウェーハが注目されている。 In recent years, SOI wafers having an SOI (Silicon on Insulator) structure have attracted attention in various semiconductor device applications such as highly integrated CMOS elements, high withstand voltage elements, and image sensors.

SOIウェーハは一般的に、単結晶シリコンウェーハからなる支持基板ウェーハ上に、酸化シリコン(SiO)等の絶縁層及びデバイス活性層として使用される単結晶シリコン層などの半導体層が順次形成された構造を有する。なお、この半導体層は活性層又はSOI層とも呼ばれ、以下、本明細書では「SOI層」と称する。バルクの単結晶シリコンウェーハでは素子と基板部分との間に発生し得る寄生容量が比較的大きいものの、SOI層は絶縁層上に設けられるために寄生容量を大幅に低減できる。そのため、SOIウェーハはデバイスの高速化、高耐圧化、低消費電力化等の点で有利である。 In a SOI wafer, generally, a semiconductor layer such as an insulating layer such as silicon oxide (SiO 2 ) and a single crystal silicon layer used as a device active layer are sequentially formed on a support substrate wafer made of a single crystal silicon wafer. Has a structure. In addition, this semiconductor layer is also called an active layer or an SOI layer, and is hereinafter referred to as an "SOI layer" in the present specification. In a bulk single crystal silicon wafer, the parasitic capacitance that can be generated between the element and the substrate portion is relatively large, but since the SOI layer is provided on the insulating layer, the parasitic capacitance can be significantly reduced. Therefore, the SOI wafer is advantageous in terms of speeding up the device, increasing the withstand voltage, reducing the power consumption, and the like.

半導体デバイスの高集積化はますます加速しており、半導体ウェーハの平坦度などの表面品質の改善が求められている。この要望に応えるため、半導体ウェーハの研磨装置及び研磨方法の改良が幅広く行われている。 High integration of semiconductor devices is accelerating, and improvement of surface quality such as flatness of semiconductor wafers is required. In order to meet this demand, a wide range of improvements have been made to the polishing apparatus and polishing method for semiconductor wafers.

例えば特許文献1に記載の半導体ウェーハの研磨装置では、研磨圧力に伴う半導体ウェーハの変形を防止するため、複数の圧力室を具える研磨ヘッドが用いられている。 For example, in the semiconductor wafer polishing apparatus described in Patent Document 1, a polishing head provided with a plurality of pressure chambers is used in order to prevent deformation of the semiconductor wafer due to polishing pressure.

また、特許文献2には、半導体ウェーハの周方向における膜厚分布を取得し、この周方向膜厚分布に基づいて、第1の領域を決定し、研磨パッドが貼付された定盤を回転させ、研磨ヘッドで半導体ウェーハを回転させながら、この半導体ウェーハの表面を研磨パッドに押し付け、上記第1の領域を、半導体ウェーハの表面内の第2の領域の除去レートとは異なる除去レートで研磨する研磨方法が開示されている。特許文献2に記載の研磨方法では、定盤及び研磨ヘッドの回転を利用しつつ、定盤に設けられた膜厚センサを用いて上記周方向膜厚分布を測定することにより、周方向に沿った膜厚分布のばらつきを研磨によって解消しようとするものである。 Further, in Patent Document 2, the film thickness distribution in the circumferential direction of the semiconductor wafer is acquired, the first region is determined based on the film thickness distribution in the circumferential direction, and the platen to which the polishing pad is attached is rotated. While rotating the semiconductor wafer with the polishing head, the surface of the semiconductor wafer is pressed against the polishing pad, and the first region is polished at a removal rate different from the removal rate of the second region in the surface of the semiconductor wafer. The polishing method is disclosed. In the polishing method described in Patent Document 2, the film thickness distribution in the circumferential direction is measured by using a film thickness sensor provided on the surface plate while utilizing the rotation of the surface plate and the polishing head. This is an attempt to eliminate variations in the film thickness distribution by polishing.

また、特にSOIウェーハの場合、SOI層の優れた膜厚均一性も要求されており、SOIウェーハに特化した研磨方法の改善も試みられている(例えば特許文献3、4を参照)。 Further, particularly in the case of an SOI wafer, excellent film thickness uniformity of the SOI layer is also required, and improvement of a polishing method specialized for the SOI wafer is also attempted (see, for example, Patent Documents 3 and 4).

特開2009−131920号公報Japanese Unexamined Patent Publication No. 2009-131920 特開2017−64801号公報Japanese Unexamined Patent Publication No. 2017-64801 特開2014−63894号公報Japanese Unexamined Patent Publication No. 2014-63894 特開2014−63878号公報Japanese Unexamined Patent Publication No. 2014-63878

ところで、SOIウェーハのSOI層の膜厚分布は支持基板ウェーハの凹凸形状の影響及び研磨前の製造工程の影響を受けやすい。特許文献3、4に記載されるように特定方向にテーパ状に膜厚分布がばらつく場合もある一方で、径方向にばらつく場合も見られる。また、SOIウェーハでは、上述のとおりSOI層の膜厚均一化が求められており、SOIウェーハ全体の厚さ分布のばらつきを一部犠牲にしてでも、SOI層の膜厚均一化を優先する必要がある。先に参照した特許文献2に開示される研磨方法は、半導体ウェーハ全体の周方向膜厚分布のばらつきを解消しようとするものである。そのため、SOIウェーハのSOI層の膜厚分布をより均一化するためには、そのままでは当該研磨方法を適用することはできない。 By the way, the film thickness distribution of the SOI layer of the SOI wafer is easily affected by the uneven shape of the support substrate wafer and the manufacturing process before polishing. As described in Patent Documents 3 and 4, the film thickness distribution may vary in a taper shape in a specific direction, but it may also vary in the radial direction. Further, in the SOI wafer, as described above, the uniform film thickness of the SOI layer is required, and even if the variation in the thickness distribution of the entire SOI wafer is partially sacrificed, it is necessary to give priority to the uniform film thickness of the SOI layer. There is. The polishing method disclosed in Patent Document 2 referred to above is intended to eliminate variations in the circumferential film thickness distribution of the entire semiconductor wafer. Therefore, in order to make the film thickness distribution of the SOI layer of the SOI wafer more uniform, the polishing method cannot be applied as it is.

そこで本発明は、SOI層の膜厚分布をより均一化できるSOIウェーハの片面研磨システム及びそれを用いたSOIウェーハの片面研磨方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a single-sided polishing system for SOI wafers capable of making the thickness distribution of the SOI layer more uniform, and a single-sided polishing method for SOI wafers using the same.

上記課題を解決すべく本発明者らは鋭意検討した。そして、定盤に設けられた窓部を介して、少なくとも径方向におけるSOI層の膜厚分布を研磨に先立って測定し、この測定結果に基づいて研磨ヘッドにおける加圧制御室の加圧分布を適正制御すれば、SOI層の膜厚分布を均一化できることを本発明者らは知見した。上記知見に基づき完成した本発明の要旨構成は以下のとおりである。 The present inventors have diligently studied to solve the above problems. Then, the film thickness distribution of the SOI layer in at least the radial direction is measured prior to polishing through the window portion provided on the surface plate, and the pressurization distribution of the pressurization control chamber in the polishing head is measured based on the measurement result. The present inventors have found that the film thickness distribution of the SOI layer can be made uniform if properly controlled. The abstract structure of the present invention completed based on the above findings is as follows.

(1)支持基板ウェーハと、前記支持基板ウェーハの一方の表面に設けられた絶縁層と、前記絶縁層の表面に設けられたSOI層とを有するSOIウェーハの、前記SOI層の表面を研磨するSOIウェーハの片面研磨システムであって、
前記片面研磨システムは、定盤と、研磨パッドと、研磨ヘッドと、研磨ヘッド駆動機構と、光学式膜厚測定部と、制御部と、記憶部と、を備え、
前記定盤は窓部を有し、
前記研磨パッドは前記定盤の片面に貼付され、
前記研磨ヘッドは、ヘッド本体部と、前記ヘッド本体部の下面中央部に設けられ、前記支持基板ウェーハの他方の面を吸着可能なバッキングプレートを有し、前記ヘッド本体部は前記バッキングプレートを介して径方向の複数領域のそれぞれに加圧分布を設定可能な加圧制御室を具え、
前記研磨ヘッド駆動機構は前記研磨ヘッドに連結して、前記研磨ヘッドを並進駆動及び回転駆動可能であり、
前記制御部は、
(i)前記研磨ヘッド駆動機構を用いて、前記研磨ヘッドに保持された前記SOIウェーハを前記定盤の前記窓部の上に移動させるとともに、前記窓部を介して、前記光学式膜厚測定部によって前記SOI層の少なくとも径方向の膜厚分布を測定して、前記記憶部に前記膜厚分布を記録し、
(ii)前記記憶部に記録させた前記膜厚分布に基づき、前記膜厚分布を均一化する実行用加圧分布を決定し、
(iii)前記実行用加圧分布を、前記加圧制御室の前記加圧分布に設定し、
(iv)前記研磨ヘッドに保持された前記SOIウェーハの前記SOI層の表面を前記研磨パッドに擦り当てて研磨する
ことを特徴とするSOIウェーハの片面研磨システム。
(1) Polishing the surface of the SOI layer of an SOI wafer having a support substrate wafer, an insulating layer provided on one surface of the support substrate wafer, and an SOI layer provided on the surface of the insulating layer. A single-sided polishing system for SOI wafers
The single-sided polishing system includes a surface plate, a polishing pad, a polishing head, a polishing head drive mechanism, an optical film thickness measuring unit, a control unit, and a storage unit.
The surface plate has a window portion and has a window portion.
The polishing pad is attached to one side of the surface plate and is attached.
The polishing head has a head main body and a backing plate provided at the center of the lower surface of the head main body and capable of adsorbing the other surface of the support substrate wafer, and the head main body is via the backing plate. It is equipped with a pressurization control chamber that can set the pressurization distribution in each of multiple radial regions.
The polishing head drive mechanism can be connected to the polishing head to translate and rotate the polishing head.
The control unit
(I) Using the polishing head drive mechanism, the SOI wafer held by the polishing head is moved onto the window portion of the surface plate, and the optical film thickness measurement is performed through the window portion. The film thickness distribution in at least the radial direction of the SOI layer was measured by the unit, and the film thickness distribution was recorded in the storage unit.
(Ii) Based on the film thickness distribution recorded in the storage unit, an execution pressure distribution for making the film thickness distribution uniform is determined.
(Iii) The pressure distribution for execution is set to the pressure distribution in the pressure control chamber.
(Iv) A single-sided polishing system for an SOI wafer, characterized in that the surface of the SOI layer of the SOI wafer held by the polishing head is rubbed against the polishing pad to be polished.

(2)前記制御部は、(i)前記SOI層の全面の膜厚分布を測定する、前記(1)に記載のSOIウェーハの片面研磨システム。 (2) The single-sided polishing system for an SOI wafer according to (1), wherein the control unit (i) measures the film thickness distribution on the entire surface of the SOI layer.

(3)前記SOIウェーハの片面研磨システムは、前記研磨パッドの表面に研磨スラリーを供給可能なスラリー供給ノズルをさらに備え、
前記制御部は、(iv)前記スラリー供給ノズルから前記研磨パッドへ前記研磨スラリーを供給しながら、前記SOI層の表面を研磨する、前記(1)又は(2)に記載のSOIウェーハの片面研磨システム。
(3) The single-sided polishing system for the SOI wafer further includes a slurry supply nozzle capable of supplying a polishing slurry to the surface of the polishing pad.
The control unit (iv) polishes the surface of the SOI layer while supplying the polishing slurry from the slurry supply nozzle to the polishing pad, and single-sided polishing of the SOI wafer according to (1) or (2). system.

(4)前記光学式膜厚測定部は、前記窓部を介して測定光を入射可能な光源と、前記測定光の反射光を受光可能な受光センサとを有し、
前記制御部は、(i)前記SOIウェーハが前記窓部の上に位置したときに前記測定光を入射する、前記(1)〜(3)のいずれかに記載のSOIウェーハの片面研磨システム。
(4) The optical film thickness measuring unit includes a light source capable of incident measurement light through the window unit and a light receiving sensor capable of receiving reflected light of the measurement light.
The single-sided polishing system for an SOI wafer according to any one of (1) to (3) above, wherein the control unit (i) incidents the measurement light when the SOI wafer is located on the window portion.

(5)前記(1)〜(4)のいずれか1項に記載のSOIウェーハの片面研磨システムを用いて、前記SOIウェーハの前記SOI層を片面研磨することを特徴とするSOIウェーハの片面研磨方法。 (5) Single-sided polishing of an SOI wafer, which comprises single-sided polishing of the SOI layer of the SOI wafer using the single-sided polishing system for the SOI wafer according to any one of (1) to (4). Method.

本発明によれば、SOI層の膜厚分布をより均一化できるSOIウェーハの片面研磨システム及びそれを用いたSOIウェーハの片面研磨方法を提供することができる。 According to the present invention, it is possible to provide a single-sided polishing system for an SOI wafer capable of making the thickness distribution of the SOI layer more uniform, and a single-sided polishing method for an SOI wafer using the system.

本発明の一実施形態に従うSOIウェーハの片面研磨システムの模式図である。It is a schematic diagram of the single-sided polishing system of the SOI wafer according to one Embodiment of this invention. 本発明の一実施形態に従うSOIウェーハの片面研磨システムにおける拡大図である。It is an enlarged view in the single-sided polishing system of the SOI wafer according to one Embodiment of this invention. 本発明の一実施形態に従うSOIウェーハの片面研磨システムにおける加圧制御室の模式平面図である。It is a schematic plan view of the pressure control chamber in the single-sided polishing system of the SOI wafer according to one Embodiment of this invention. (A)、(B)はそれぞれ、本発明の一実施形態に従うSOIウェーハの片面研磨システムにおける加圧分布の模式図である。(A) and (B) are schematic views of the pressure distribution in the single-sided polishing system of the SOI wafer according to the embodiment of the present invention, respectively. (A)、(B)はそれぞれ、本発明の一実施形態に従うSOIウェーハの片面研磨システムを用いて研磨することにより得られる研磨取代の一例である。Each of (A) and (B) is an example of a polishing allowance obtained by polishing using a single-sided polishing system for an SOI wafer according to an embodiment of the present invention. 実施例1において測定した研磨前後におけるSOI層の径方向膜厚分布である。It is a radial film thickness distribution of the SOI layer before and after polishing measured in Example 1. 実施例1及び比較例1において測定したSOI層の膜厚の変動幅を示すグラフであり、(A)は研磨前を示し、(B)は研磨後を示す。It is a graph which shows the fluctuation width of the film thickness of the SOI layer measured in Example 1 and Comparative Example 1, (A) shows before polishing, (B) shows after polishing.

以下、図面を参照しつつ本発明の実施形態を詳細に説明する。なお、同一の構成要素には原則として同一の参照番号を付して、重複する説明を省略する。また、図1〜図4に図示した各構成は模式図であり、実際の縦横比とは異なる。なお、図2は、図1に模式的に図示するSOIウェーハ10が研磨ヘッド40に保持されつつ、SOIウェーハ10が定盤20の窓部21上に位置するときの様子を図示した拡大模式図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In principle, the same components are given the same reference number, and duplicate explanations are omitted. Further, each configuration shown in FIGS. 1 to 4 is a schematic view and is different from the actual aspect ratio. Note that FIG. 2 is an enlarged schematic view illustrating a state in which the SOI wafer 10 schematically shown in FIG. 1 is held by the polishing head 40 and the SOI wafer 10 is located on the window portion 21 of the surface plate 20. Is.

(SOIウェーハの片面研磨システム)
図1及び図2を参照する。本発明の一実施形態に従うSOIウェーハの片面研磨システム100の研磨対象は、支持基板ウェーハ11と、支持基板ウェーハ11の一方の表面に設けられた絶縁層12と、絶縁層12の表面に設けられたSOI層13とを有するSOIウェーハ10の、SOI層13の表面である。そして、このSOIウェーハの片面研磨システム100(以下、「片面研磨システム100」)は、定盤20と、研磨パッド30と、研磨ヘッド40と、研磨ヘッド駆動機構50と、光学式膜厚測定部60と、制御部70と、記憶部80と、を少なくとも備える。そして、制御部70を介して、光学式膜厚測定部60によりSOI層13の少なくとも径方向の膜厚分布を測定し、これに基づき研磨ヘッド40によるSOIウェーハ10への加圧分布を制御してSOI層13の表面を研磨する。こうすることで、SOI層の膜厚分布を均一化することができる。以下、各構成の詳細を順次説明する。
(Single-sided polishing system for SOI wafers)
See FIGS. 1 and 2. The objects to be polished by the single-sided polishing system 100 of the SOI wafer according to the embodiment of the present invention are provided on the surface of the support substrate wafer 11, the insulating layer 12 provided on one surface of the support substrate wafer 11, and the surface of the insulating layer 12. This is the surface of the SOI layer 13 of the SOI wafer 10 having the SOI layer 13. The single-sided polishing system 100 (hereinafter, "single-sided polishing system 100") of this SOI wafer includes a surface plate 20, a polishing pad 30, a polishing head 40, a polishing head drive mechanism 50, and an optical film thickness measuring unit. 60, a control unit 70, and a storage unit 80 are provided at least. Then, the film thickness distribution of the SOI layer 13 in at least the radial direction is measured by the optical film thickness measuring unit 60 via the control unit 70, and the pressure distribution on the SOI wafer 10 by the polishing head 40 is controlled based on this. The surface of the SOI layer 13 is polished. By doing so, the film thickness distribution of the SOI layer can be made uniform. Hereinafter, details of each configuration will be described in sequence.

<定盤>
片面研磨システム100は定盤20を備える。この定盤20は窓部21を有する。一般的な半導体ウェーハの片面研磨装置に用いられる定盤を、片面研磨システム100の定盤20に適用することができる。定盤20における窓部21の位置は特に制限されず、研磨ヘッド駆動機構50による研磨ヘッド40の移動により、SOIウェーハ10の少なくとも直径全域を走査できる位置であればよい。この窓部21を介して、光学式膜厚測定部60がSOIウェーハ10のSOI層13の膜厚を測定することになる。窓部21の大きさ及び形状は光学式膜厚測定部60による測定が可能であれば特に制限されない。窓部21は貫通孔であってもよいし、可視光又は赤外光等の測定光60Lを透過できる透明部材で構成されていてもよい。また、図1に図示されるように、定盤に20の下面には回転軸25が設けられることが一般的であり、回転軸25の回転により定盤20を回転させることができる。
<Surface plate>
The single-sided polishing system 100 includes a surface plate 20. The surface plate 20 has a window portion 21. A surface plate used in a general single-sided polishing apparatus for a semiconductor wafer can be applied to the surface plate 20 of the single-sided polishing system 100. The position of the window portion 21 on the surface plate 20 is not particularly limited as long as it can scan at least the entire diameter of the SOI wafer 10 by moving the polishing head 40 by the polishing head drive mechanism 50. Through the window portion 21, the optical film thickness measuring unit 60 measures the film thickness of the SOI layer 13 of the SOI wafer 10. The size and shape of the window portion 21 are not particularly limited as long as they can be measured by the optical film thickness measuring unit 60. The window portion 21 may be a through hole, or may be made of a transparent member capable of transmitting 60 L of measurement light such as visible light or infrared light. Further, as shown in FIG. 1, the surface plate 20 is generally provided with a rotating shaft 25 on the lower surface of the surface plate 20, and the surface plate 20 can be rotated by the rotation of the rotating shaft 25.

<研磨パッド>
片面研磨システム100は研磨パッド30を備える。この研磨パッド30は定盤20の片面に貼付される。なお、研磨パッド30には窓部21に合わせた穴の加工が施されており、その穴と窓部21の位置とを合わせて、貼付を行えばよい。また、例えば、研磨パッド30には、ポリエステル製の不織布からなるパッド、ポリウレタン製のパッド等の、一般的な半導体ウェーハの片面研磨装置に用いられる研磨パッドを適用することができる。
<Polishing pad>
The single-sided polishing system 100 includes a polishing pad 30. The polishing pad 30 is attached to one side of the surface plate 20. The polishing pad 30 is processed with a hole that matches the window portion 21, and the hole may be aligned with the position of the window portion 21 for attachment. Further, for example, a polishing pad used in a general single-sided polishing apparatus for a semiconductor wafer, such as a pad made of a non-woven fabric made of polyester or a pad made of polyurethane, can be applied to the polishing pad 30.

<研磨ヘッド>
図2を特に参照する。片面研磨システム100は研磨ヘッド40を備え、研磨ヘッド40によってSOIウェーハ10を保持することができる。この研磨ヘッド40は、ヘッド本体部41と、ヘッド本体部41の下面中央部に設けられ、支持基板ウェーハ11の他方の面(すなわち、絶縁層12とは反対側の面)を吸着可能なバッキングプレート43を有する。バッキングプレート43は浸透可能な多孔質の発泡樹脂パッドやメンブレンゴム等の弾性体を具えることが一般的である。なお、バッキングプレート43のチャック方式は水等の液体を用いた表面張力による吸着方式および真空チャック方式など、任意である。
<Polishing head>
Particular reference is made to FIG. The single-sided polishing system 100 includes a polishing head 40, and the SOI wafer 10 can be held by the polishing head 40. The polishing head 40 is provided at the center of the lower surface of the head main body 41 and the head main body 41, and is backing capable of adsorbing the other surface of the support substrate wafer 11 (that is, the surface opposite to the insulating layer 12). It has a plate 43. The backing plate 43 is generally provided with an elastic body such as a permeable porous foamed resin pad or membrane rubber. The chucking method of the backing plate 43 is arbitrary, such as an adsorption method using surface tension using a liquid such as water and a vacuum chucking method.

また、研磨ヘッド40には、研磨中のSOIウェーハ10の飛び出しを防止するためのリテーナリング47を設けてもよい。図1及び図2では、リテーナリング47はヘッド本体部41の下面周縁部に設けられているが、これは一例にすぎない。一般的な半導体ウェーハの片面研磨装置の研磨ヘッドに用いられるリテーナリング(ガイドリング又はテンプレートとも呼ばれる)を、リテーナリング47に適用することができる。 Further, the polishing head 40 may be provided with a retainer ring 47 for preventing the SOI wafer 10 from popping out during polishing. In FIGS. 1 and 2, the retainer ring 47 is provided on the lower peripheral edge of the head main body 41, but this is only an example. The retainer ring (also referred to as a guide ring or template) used for the polishing head of a general semiconductor wafer single-sided polishing apparatus can be applied to the retainer ring 47.

<<加圧制御室>>
そして、ヘッド本体部41はこのバッキングプレート43を介して径方向の複数領域のそれぞれに加圧分布を設定可能な加圧制御室45(45A、45B、45C、45D)を具える(図2参照)。加圧制御室45の模式平面図を図3に図示する。なお、図2及び図3では、径方向に対称に配置された圧力制御室45A、45B、45C、45Dが加圧制御室45を構成する場合を図示するもののが、これは例示に過ぎない。2以上の圧力制御室があれば加圧分布を設定することは可能である。圧力制御室45A、45B、45C、45Dを隔壁膜などにより区分することができ、加圧空気などの流体によって各圧力制御室の加圧力を制御することができる。図4(A)及び図4(B)に、加圧制御室45による加圧分布の一例を図示する。図4(A)は、SOIウェーハ10の周縁部(エッジ部)の研磨取代を大きくするために、SOIウェーハ10の中央部の加圧を小さく、かつ、SOIウェーハ10の周縁部の加圧を大きくする場合の加圧分布を模式的に図示した。図中の矢印が加圧力を意味する。また、図4(B)は、図4(A)の場合とは反対に、SOIウェーハ10の中央部の研磨取代を大きくするために、SOIウェーハ10の中央部の加圧を大きく、かつ、SOIウェーハ10の周縁部の加圧を小さくする場合の加圧分布を模式的に図示した。
<< Pressurization control room >>
The head main body 41 is provided with a pressure control chamber 45 (45A, 45B, 45C, 45D) capable of setting a pressure distribution in each of a plurality of radial regions via the backing plate 43 (see FIG. 2). ). A schematic plan view of the pressurization control chamber 45 is shown in FIG. Note that, in FIGS. 2 and 3, the case where the pressure control chambers 45A, 45B, 45C, and 45D arranged symmetrically in the radial direction constitute the pressurization control chamber 45 is illustrated, but this is only an example. It is possible to set the pressure distribution if there are two or more pressure control chambers. The pressure control chambers 45A, 45B, 45C, and 45D can be classified by a partition membrane or the like, and the pressure applied to each pressure control chamber can be controlled by a fluid such as pressurized air. 4 (A) and 4 (B) show an example of the pressure distribution by the pressure control chamber 45. In FIG. 4A, in order to increase the polishing allowance of the peripheral portion (edge portion) of the SOI wafer 10, the pressure applied to the central portion of the SOI wafer 10 is reduced and the pressure applied to the peripheral portion of the SOI wafer 10 is increased. The pressure distribution when the pressure is increased is schematically shown. The arrow in the figure means the pressing force. Further, in FIG. 4B, contrary to the case of FIG. 4A, in order to increase the polishing allowance in the central portion of the SOI wafer 10, the pressure in the central portion of the SOI wafer 10 is increased and the pressure in the central portion of the SOI wafer 10 is increased. The pressure distribution when the pressure on the peripheral edge of the SOI wafer 10 is reduced is schematically shown.

<研磨ヘッド駆動機構>
図1に戻る。片面研磨システム100は研磨ヘッド駆動機構50を備え、研磨ヘッド駆動機構50は研磨ヘッド40に連結して、研磨ヘッド40を並進駆動及び回転駆動させる。SOIウェーハ10を保持するとき、SOIウェーハ10におけるSOI層13の膜厚分布を測定するとき、SOI層13を研磨するとき、などの種々の用途で用いるものであり、一般的な半導体ウェーハの片面研磨装置の研磨ヘッド駆動機構を用いることができる。
<Polishing head drive mechanism>
Return to FIG. The single-sided polishing system 100 includes a polishing head drive mechanism 50, and the polishing head drive mechanism 50 is connected to the polishing head 40 to translate and rotate the polishing head 40. It is used for various purposes such as holding the SOI wafer 10, measuring the film thickness distribution of the SOI layer 13 on the SOI wafer 10, polishing the SOI layer 13, and the like, and is used for one side of a general semiconductor wafer. The polishing head drive mechanism of the polishing apparatus can be used.

<光学式膜厚測定部>
片面研磨システム100は光学式膜厚測定部60を備える。SOI層13の膜厚を測定できるものであれば特に制限されないが、光学式膜厚測定部60は、例えば測定光60Lを入射可能な光源61及びこの測定光60Lの反射光を受光可能な受光センサ62を有することができる(図2参照)。窓部21上に位置する部分のSOI層13の膜厚を測定するときの測定態様の一例を説明する。光源61からの測定光60Lの入射光を、光ファイバ63を経由してレンズ65により集光し、定盤20の窓部21を介して測定光60LをSOIウェーハ10のSOI層13の露出面に入射する。絶縁層12によって測定光60Lは反射され、レンズ65及び光ファイバ63を経由した後、受光センサ62が測定光60Lの反射光を受光する。こうしてSOI層13の膜厚を求めることができる。SOIウェーハ10を研磨ヘッド駆動機構50によって移動させた後、光学式膜厚測定部60による同様の測定を行えば、SOI層13の膜厚分布を求めることができる。なお、光源61の波長は、例えば可視光域であり、赤外光域であってもよい。
<Optical film thickness measuring unit>
The single-sided polishing system 100 includes an optical film thickness measuring unit 60. The thickness of the SOI layer 13 is not particularly limited as long as it can be measured, but the optical film thickness measuring unit 60 is, for example, a light source 61 capable of incident measurement light 60L and a light receiving light capable of receiving reflected light of the measurement light 60L. It can have a sensor 62 (see FIG. 2). An example of a measurement mode when measuring the film thickness of the SOI layer 13 of the portion located on the window portion 21 will be described. The incident light of the measurement light 60L from the light source 61 is collected by the lens 65 via the optical fiber 63, and the measurement light 60L is collected through the window portion 21 of the platen 20 on the exposed surface of the SOI layer 13 of the SOI wafer 10. Incident in. The measurement light 60L is reflected by the insulating layer 12, and after passing through the lens 65 and the optical fiber 63, the light receiving sensor 62 receives the reflected light of the measurement light 60L. In this way, the film thickness of the SOI layer 13 can be obtained. After moving the SOI wafer 10 by the polishing head drive mechanism 50, the film thickness distribution of the SOI layer 13 can be obtained by performing the same measurement by the optical film thickness measuring unit 60. The wavelength of the light source 61 is, for example, a visible light region and may be an infrared light region.

<制御部>
片面研磨システム100は制御部70を備える。制御部70は、1つ以上のプロセッサを含めばよく、マイクロプロセッサ等によって実現することができる。制御部70は、片面研磨システム100全体の動作を制御し、具体的な制御プロセスについては後述する。
<Control unit>
The single-sided polishing system 100 includes a control unit 70. The control unit 70 may include one or more processors, and can be realized by a microprocessor or the like. The control unit 70 controls the operation of the entire single-side polishing system 100, and the specific control process will be described later.

<記憶部>
片面研磨システム100は記憶部80を備え、記憶部80は1つ以上のメモリを含めばよい。記憶部80に含まれうる各メモリには、主記憶装置、補助記憶装置、キャッシュメモリ等を用いることができる。
<Memory>
The single-sided polishing system 100 includes a storage unit 80, and the storage unit 80 may include one or more memories. A main storage device, an auxiliary storage device, a cache memory, or the like can be used for each memory that can be included in the storage unit 80.

<制御プロセス>
上述した片面研磨システム100の各構成を用いた制御部70による制御プロセスを説明する。概略すれば、制御部70は、(i)SOI層13の膜厚分布を測定して記録し、(ii)測定した膜厚分布に基づき実行用加圧分布を決定し、(iii)決定した実行用加圧分布を、加圧制御室45の加圧分布に設定し、(iv)この加圧分布を用いてSOI層13の研磨を行う。
<Control process>
The control process by the control unit 70 using each configuration of the single-sided polishing system 100 described above will be described. Roughly speaking, the control unit 70 (i) measures and records the film thickness distribution of the SOI layer 13, (ii) determines the pressure distribution for execution based on the measured film thickness distribution, and (iii) determines. The pressure distribution for execution is set to the pressure distribution of the pressure control chamber 45, and (iv) the SOI layer 13 is polished using this pressure distribution.

<<(i)膜厚分布測定>>
まず、制御部70は研磨ヘッド駆動機構50を用いて、研磨ヘッド40に保持されたSOIウェーハ10を定盤20の窓部21の上に移動させる。そして、窓部21を介して、光学式膜厚測定部60によって窓部21上に位置するSOI層13の膜厚を測定する。制御部70は、SOIウェーハ10が窓部21の上に位置するときに、光学式膜厚測定部60から測定光60LをSOI層13に入射させればよい。そして、研磨ヘッド駆動機構50を用いて研磨ヘッド40ごとSOIウェーハ10を移動し、この膜厚測定を繰り返し行うことで、SOI層13の少なくとも径方向の膜厚分布を測定する。そして、制御部70は、記憶部80に測定した膜厚分布を記録する。SOI層13の全面の膜厚分布を測定することも好ましい。この場合、周方向でのSOI層13の膜厚を平均化して、径方向の加圧分布に反映することが好ましい。
<< (i) Film thickness distribution measurement >>
First, the control unit 70 uses the polishing head drive mechanism 50 to move the SOI wafer 10 held by the polishing head 40 onto the window portion 21 of the surface plate 20. Then, the film thickness of the SOI layer 13 located on the window portion 21 is measured by the optical film thickness measuring unit 60 via the window portion 21. When the SOI wafer 10 is located on the window portion 21, the control unit 70 may make the measurement light 60L incident on the SOI layer 13 from the optical film thickness measuring unit 60. Then, the SOI wafer 10 is moved together with the polishing head 40 by using the polishing head drive mechanism 50, and the film thickness measurement is repeated to measure the film thickness distribution of the SOI layer 13 in at least the radial direction. Then, the control unit 70 records the measured film thickness distribution in the storage unit 80. It is also preferable to measure the film thickness distribution on the entire surface of the SOI layer 13. In this case, it is preferable to average the film thickness of the SOI layer 13 in the circumferential direction and reflect it in the pressure distribution in the radial direction.

<<(ii)実行用加圧分布の決定>>
次に、制御部70は、記憶部80に記録させた膜厚分布に基づき、膜厚分布を均一化するための、研磨に用いる実行用加圧分布を決定する。制御部70は、実行用加圧分布を、記憶部80に予め記憶された加圧分布候補群の中から選択してもよい。また、制御部70は、記憶部80に記録させた膜厚分布から径方向の膜厚ばらつきが解消するよう実行用加圧分布を演算してもよい。いずれの場合も、測定結果に基づく膜厚分布の平均膜厚よりも膜厚が大きい部分の加圧を大きくし、平均膜厚よりも膜厚が小さい部分の加圧を小さくした実行用加圧分布を採用すればよい。
<< (ii) Determination of pressure distribution for execution >>
Next, the control unit 70 determines the execution pressure distribution used for polishing to make the film thickness distribution uniform, based on the film thickness distribution recorded in the storage unit 80. The control unit 70 may select the execution pressure distribution from the pressure distribution candidate group stored in advance in the storage unit 80. Further, the control unit 70 may calculate the execution pressure distribution from the film thickness distribution recorded in the storage unit 80 so that the film thickness variation in the radial direction is eliminated. In either case, the pressure applied to the portion where the film thickness is larger than the average film thickness of the film thickness distribution based on the measurement result is increased, and the pressure applied to the portion whose film thickness is smaller than the average film thickness is decreased. The distribution may be adopted.

<<(iii)加圧分布の設定>>
その後、制御部70は、実行用加圧分布を、加圧制御室45の加圧分布に設定する。例えば、加圧制御室45の各圧力制御室の圧力を実行用加圧分布に対応させればよい。
<< (iii) Pressurization distribution setting >>
After that, the control unit 70 sets the pressure distribution for execution to the pressure distribution of the pressure control chamber 45. For example, the pressure in each pressure control chamber of the pressurization control chamber 45 may correspond to the pressure distribution for execution.

<<(iv)研磨>>
そして、制御部70は、研磨ヘッド40に保持されたSOIウェーハ10のSOI層13の表面を研磨パッド30に擦り当てて研磨する。一般的には、図1と同様に、研磨ヘッド40の回転方向と、定盤の回転方向とは同方向である。また、研磨中、研磨ヘッド40を揺動させることも好ましい。
<< (iv) polishing >>
Then, the control unit 70 rubs the surface of the SOI layer 13 of the SOI wafer 10 held by the polishing head 40 against the polishing pad 30 to polish it. Generally, as in FIG. 1, the rotation direction of the polishing head 40 and the rotation direction of the surface plate are the same. It is also preferable to swing the polishing head 40 during polishing.

これまで説明した片面研磨システム100は、制御部70を介して、光学式膜厚測定部60によりSOI層13の少なくとも径方向の膜厚分布を測定する。そして、この測定結果に基づき研磨ヘッド40によるSOIウェーハ10への加圧分布を制御してSOI層13の表面を研磨する。したがって、片面研磨システム100を用いた片面研磨では、SOI層13の径方向の膜厚分布のばらつきを考慮しつつ、これを解消するための加圧分布を設定するため、SOI層13の膜厚分布をより均一化することができる。また、この片面研磨システム100を用いれば、工程数を過剰に増大させることなく、SOI層13の研磨前の膜厚分布を測定できる点でも有利である。研磨前のSOI層13の平均膜厚は概ね10μm〜100μmまで薄膜化されており、別途の膜厚測定器を用いてSOI層13の膜厚を測定すると膜厚測定器のステージの影響を受けやすい。しかしながら、片面研磨システム100を用いればSOIウェーハ10を研磨ヘッド40に装着したまま膜厚測定及び研磨を行うことができるため、ステージの影響による測定誤差も排除できる。 In the single-sided polishing system 100 described so far, the film thickness distribution of the SOI layer 13 in at least the radial direction is measured by the optical film thickness measuring unit 60 via the control unit 70. Then, based on this measurement result, the pressure distribution on the SOI wafer 10 by the polishing head 40 is controlled to polish the surface of the SOI layer 13. Therefore, in single-sided polishing using the single-sided polishing system 100, the film thickness of the SOI layer 13 is set in order to set the pressure distribution to eliminate the variation in the film thickness distribution in the radial direction of the SOI layer 13. The distribution can be made more uniform. Further, using this single-sided polishing system 100 is also advantageous in that the film thickness distribution of the SOI layer 13 before polishing can be measured without excessively increasing the number of steps. The average film thickness of the SOI layer 13 before polishing is thinned to approximately 10 μm to 100 μm, and when the film thickness of the SOI layer 13 is measured using a separate film thickness measuring device, it is affected by the stage of the film thickness measuring device. Cheap. However, if the single-sided polishing system 100 is used, the film thickness can be measured and polished while the SOI wafer 10 is mounted on the polishing head 40, so that a measurement error due to the influence of the stage can be eliminated.

<スラリー供給ノズル>
なお、図1に図示するとおり、片面研磨システム100は、研磨パッド30の表面に研磨スラリー91を供給可能なスラリー供給ノズル90をさらに備えることも好ましい。遊離砥粒を含むアルカリ性水溶液などを研磨スラリー91に用いることができる。SOI層13の研磨中に研磨スラリー91を供給することで、化学機械研磨(CMP; Chemical Mechanical Polishing)を行うことができるためである。この場合、制御部70は、(iv)スラリー供給ノズル90から研磨パッド30へ研磨スラリー91を供給しながら、SOI層13の表面を研磨すればよい。ただし、SOI層13の膜厚分布を正確に測定するためには、(i)膜厚分布測定の場合には、制御部70は研磨スラリー91を供給せず、スラリー供給ノズル90を閉塞することが好ましい。
<Slurry supply nozzle>
As shown in FIG. 1, it is also preferable that the single-sided polishing system 100 further includes a slurry supply nozzle 90 capable of supplying the polishing slurry 91 to the surface of the polishing pad 30. An alkaline aqueous solution or the like containing free abrasive grains can be used for the polishing slurry 91. This is because chemical mechanical polishing (CMP) can be performed by supplying the polishing slurry 91 during the polishing of the SOI layer 13. In this case, the control unit 70 may polish the surface of the SOI layer 13 while supplying the polishing slurry 91 from the (iv) slurry supply nozzle 90 to the polishing pad 30. However, in order to accurately measure the film thickness distribution of the SOI layer 13, in the case of (i) film thickness distribution measurement, the control unit 70 does not supply the polishing slurry 91 and closes the slurry supply nozzle 90. Is preferable.

<SOIウェーハ>
上述のとおり、片面研磨システム100の研磨対象であるSOIウェーハ10は、支持基板ウェーハ11と、支持基板ウェーハ11の一方の表面に設けられた絶縁層12と、絶縁層12の表面に設けられたSOI層13とを有する。周方向ばらつきよりも径方向ばらつきが大きいSOIウェーハの研磨に片面研磨システム100を適用することが好ましい。もっとも、周方向ばらつきの方が径方向ばらつきより大きいとしても、研磨前の状態で径方向ばらつきのないSOIウェーハは事実上皆無であり、片面研磨システム100の効果が失われるわけではない。なお、研磨前のSOIウェーハの全体の厚みは概ね700〜1200μm程度である。以下では、SOIウェーハ10の具体的態様を説明する。ただし、本発明が以下の具体例に限定されないことは当然に理解される。
<SOI wafer>
As described above, the SOI wafer 10 to be polished by the single-sided polishing system 100 is provided on the surface of the support substrate wafer 11, the insulating layer 12 provided on one surface of the support substrate wafer 11, and the surface of the insulating layer 12. It has an SOI layer 13. It is preferable to apply the single-sided polishing system 100 to the polishing of the SOI wafer in which the radial variation is larger than the circumferential variation. However, even if the circumferential variation is larger than the radial variation, there is virtually no SOI wafer with no radial variation in the state before polishing, and the effect of the single-sided polishing system 100 is not lost. The total thickness of the SOI wafer before polishing is about 700 to 1200 μm. Hereinafter, specific embodiments of the SOI wafer 10 will be described. However, it is naturally understood that the present invention is not limited to the following specific examples.

<<支持基板ウェーハ>>
シリコン単結晶からなる単結晶シリコンウェーハを支持基板ウェーハ11に用いることができる。単結晶シリコンウェーハは、チョクラルスキー法(CZ法)や浮遊帯域溶融法(FZ法)等により育成された単結晶シリコンインゴットをワイヤーソー等でスライスしたものを使用することができる。また、単結晶シリコンウェーハには炭素および/または窒素が添加されていてもよい。さらに、任意の不純物を添加して、n型またはp型としてもよい。
<< Support substrate wafer >>
A single crystal silicon wafer made of a silicon single crystal can be used for the support substrate wafer 11. As the single crystal silicon wafer, one obtained by slicing a single crystal silicon ingot grown by a Czochralski method (CZ method), a floating zone melting method (FZ method) or the like with a wire saw or the like can be used. Further, carbon and / or nitrogen may be added to the single crystal silicon wafer. Further, any impurities may be added to obtain n-type or p-type.

<<絶縁層>>
絶縁層12は、酸化雰囲気で熱処理を行うなどして、支持基板ウェーハ11の表面に形成することができる。また、絶縁層12は熱処理により形成される酸化シリコンに限られず、種々の電気的絶縁体を用いることができ、例えば、窒化シリコンを用いてもよいし、ダイヤモンドライクカーボン(DLC; Diamond Like Carbon)などを用いることもできる。なお、絶縁層12の膜厚は制限されないが、一般的には0.1μm〜5μmである。
<< Insulation layer >>
The insulating layer 12 can be formed on the surface of the support substrate wafer 11 by performing heat treatment in an oxidizing atmosphere or the like. Further, the insulating layer 12 is not limited to silicon oxide formed by heat treatment, and various electric insulators can be used. For example, silicon nitride may be used, or diamond-like carbon (DLC) may be used. Etc. can also be used. The film thickness of the insulating layer 12 is not limited, but is generally 0.1 μm to 5 μm.

<<SOI層>>
SOI層13は、シリコン単結晶からなる単結晶シリコンウェーハを、絶縁層12を介して支持基板ウェーハ11と貼合せた後、研削するなどして薄膜化したものである。支持基板ウェーハと導電型(p型およびn型)を揃えてもよいし、異ならせても構わない。
<< SOI layer >>
The SOI layer 13 is a thin film obtained by bonding a single crystal silicon wafer made of a silicon single crystal to a support substrate wafer 11 via an insulating layer 12 and then grinding the wafer. The support substrate wafer and the conductive type (p type and n type) may be aligned or different.

(SOIウェーハの片面研磨方法)
また、本発明の一実施形態に従うSOIウェーハの片面研磨方法は、上述したSOIウェーハの片面研磨システム100を用いて、SOIウェーハ10のSOI層13を片面研磨する。この片面研磨方法は、SOI層13の膜厚分布を測定する工程と、測定した膜厚分布に基づき実行用加圧分布を決定する工程と、決定した実行用加圧分布を、加圧制御室45の加圧分布に設定する工程と、この加圧分布を用いてSOI層13を研磨する工程と、を含むことができる。この片面研磨方法によりSOI層13の膜厚分布をより均一化することができる。
(Single-sided polishing method for SOI wafers)
Further, in the single-sided polishing method of the SOI wafer according to the embodiment of the present invention, the SOI layer 13 of the SOI wafer 10 is single-sided polished by using the single-sided polishing system 100 of the SOI wafer described above. In this single-sided polishing method, a step of measuring the film thickness distribution of the SOI layer 13, a step of determining the execution pressure distribution based on the measured film thickness distribution, and a step of determining the execution pressure distribution are determined in the pressurization control room. A step of setting the pressure distribution of 45 and a step of polishing the SOI layer 13 using this pressure distribution can be included. By this single-sided polishing method, the film thickness distribution of the SOI layer 13 can be made more uniform.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

(実施例1)
上述したSOIウェーハの片面研磨システム100を用いて1枚のSOIウェーハの片面研磨を行った。まず、SOI層13の全面の膜厚分布を測定し、測定結果に基づき実行用加圧分布を、記憶部80に予め記憶させた加圧分布候補群の中から選択して、SOI層13の片面をCMP研磨した。記憶部80に記憶された加圧分布候補群を選択した際に得られる研磨取代分布の一例を、図5(A)及び図5(B)に示す。図5(A)は、SOI層13の膜厚分布において、中心部の膜厚が周縁部よりも約0.1μm薄い場合に選択される加圧分布候補群から得られる径方向の研磨取代分布である。また、図5(B)は、SOI層13の膜厚分布において、中心部の膜厚が周縁部よりも0.2μm厚い場合に選択される加圧分布候補群から得られる径方向の研磨取代分布である。なお、加圧制御室45における圧力制御室の個数は、例示的に図示した図2等と同様に4つであり、径方向に圧力分布を設定可能である。
(Example 1)
Single-sided polishing of one SOI wafer was performed using the single-sided polishing system 100 of the SOI wafer described above. First, the film thickness distribution on the entire surface of the SOI layer 13 is measured, and the execution pressure distribution is selected from the pressure distribution candidate group stored in advance in the storage unit 80 based on the measurement result, and the SOI layer 13 is selected. One side was CMP polished. An example of the polishing allowance distribution obtained when the pressure distribution candidate group stored in the storage unit 80 is selected is shown in FIGS. 5 (A) and 5 (B). FIG. 5A shows a radial polishing allowance distribution obtained from a pressure distribution candidate group selected when the film thickness of the central portion is about 0.1 μm thinner than that of the peripheral portion in the film thickness distribution of the SOI layer 13. Is. Further, FIG. 5B shows a radial polishing allowance obtained from the pressure distribution candidate group selected when the film thickness of the central portion is 0.2 μm thicker than that of the peripheral portion in the film thickness distribution of the SOI layer 13. It is a distribution. The number of pressure control chambers in the pressurization control chamber 45 is four as in FIG. 2 and the like illustrated as an example, and the pressure distribution can be set in the radial direction.

実施例1による片面研磨を行う前後での径方向膜厚分布を図6に示す。なお、この研磨前の膜厚分布では、中心部の膜厚が周縁部よりも約0.2μm大きかったので、図5(B)のグラフに図示した研磨取代分布が得られる加圧分布を採用した。図6から、研磨後のSOI層の膜厚分布を均一化できていることが確認される。 FIG. 6 shows the radial film thickness distribution before and after performing single-sided polishing according to Example 1. In the film thickness distribution before polishing, the film thickness at the central portion was about 0.2 μm larger than that at the peripheral portion, so a pressure distribution was adopted to obtain the polishing allowance distribution shown in the graph of FIG. 5 (B). did. From FIG. 6, it is confirmed that the film thickness distribution of the SOI layer after polishing can be made uniform.

(比較例1)
SOI層13の膜厚分布を測定することなく、SOIウェーハ10の全体の厚さ分布が均一となるよう、SOI層13の片面をCMP研磨した。装置構成は膜厚分布測定及び加圧分布制御を伴う制御手法を除き、実施例1と同様である。
(Comparative Example 1)
One side of the SOI layer 13 was CMP-polished so that the overall thickness distribution of the SOI wafer 10 was uniform without measuring the film thickness distribution of the SOI layer 13. The apparatus configuration is the same as that of the first embodiment except for the control method including the film thickness distribution measurement and the pressure distribution control.

図7(A)及び図7(B)のグラフに、実施例1及び比較例1において測定したSOI層の膜厚の変動幅を示す。なお、これらグラフは、実施例1及び比較例1のそれぞれのSOIウェーハの全面における膜厚の測定値を各点毎にプロットしたものであり、それぞれ1枚のSOIウェーハから得た測定値である。図7(A)は研磨前の膜厚分布の変動幅を示し、(B)は研磨後の膜厚の変動幅を示す。ロットの違いもあり、研磨前のSOI層の膜厚の変動幅は、比較例1の方が少ない。こうした事情があるにも関わらず、研磨後のSOI層の膜厚分布の変動幅を実施例1と比較例1とで比較すると、実施例1の方が膜厚の変動幅の方が小さく、大幅な膜厚精度の向上を確認することができた。なお、SOI層の膜厚の変動幅における標準偏差は、実施例1では0.014μmであり、比較例1では0.032μmであった。 The graphs of FIGS. 7 (A) and 7 (B) show the fluctuation range of the film thickness of the SOI layer measured in Example 1 and Comparative Example 1. It should be noted that these graphs are plots of the measured values of the film thickness on the entire surface of each of the SOI wafers of Example 1 and Comparative Example 1 for each point, and are the measured values obtained from one SOI wafer. .. FIG. 7A shows the fluctuation range of the film thickness distribution before polishing, and FIG. 7B shows the fluctuation range of the film thickness after polishing. Due to the difference in lots, the fluctuation range of the film thickness of the SOI layer before polishing is smaller in Comparative Example 1. Despite these circumstances, when the fluctuation range of the film thickness distribution of the SOI layer after polishing is compared between Example 1 and Comparative Example 1, the variation range of the film thickness is smaller in Example 1. It was confirmed that the film thickness accuracy was significantly improved. The standard deviation in the fluctuation range of the film thickness of the SOI layer was 0.014 μm in Example 1 and 0.032 μm in Comparative Example 1.

本発明によれば、SOI層の膜厚分布をより均一化できるSOIウェーハの片面研磨システム及びそれを用いたSOIウェーハの片面研磨方法を提供することができる。 According to the present invention, it is possible to provide a single-sided polishing system for an SOI wafer capable of making the thickness distribution of the SOI layer more uniform, and a single-sided polishing method for an SOI wafer using the system.

10 SOIウェーハ
20 定盤
21 窓部
30 研磨パッド
40 研磨ヘッド
41 ヘッド本体部
43 バッキングプレート
45 加圧制御室
50 研磨ヘッド駆動機構
60 光学式膜厚測定部
70 制御部
80 記憶部
90 スラリー供給ノズル
91 研磨スラリー
100 SOIウェーハの片面研磨システム
10 SOI wafer 20 Surface plate 21 Window part 30 Polishing pad 40 Polishing head 41 Head body part 43 Backing plate 45 Pressurization control room 50 Polishing head drive mechanism 60 Optical film thickness measuring unit 70 Control unit 80 Storage unit 90 Slurry supply nozzle 91 Polishing Slurry 100 Single-sided polishing system for SOI wafers

Claims (5)

支持基板ウェーハと、前記支持基板ウェーハの一方の表面に設けられた絶縁層と、前記絶縁層の表面に設けられたSOI層とを有するSOIウェーハの、前記SOI層の表面を研磨するSOIウェーハの片面研磨システムであって、
前記片面研磨システムは、定盤と、研磨パッドと、研磨ヘッドと、研磨ヘッド駆動機構と、光学式膜厚測定部と、制御部と、記憶部と、を備え、
前記定盤は窓部を有し、
前記研磨パッドは前記定盤の片面に貼付され、
前記研磨ヘッドは、ヘッド本体部と、前記ヘッド本体部の下面中央部に設けられ、前記支持基板ウェーハの他方の面を吸着可能なバッキングプレートを有し、前記ヘッド本体部は前記バッキングプレートを介して径方向の複数領域のそれぞれに加圧分布を設定可能な加圧制御室を具え、
前記研磨ヘッド駆動機構は前記研磨ヘッドに連結して、前記研磨ヘッドを並進駆動及び回転駆動可能であり、
前記制御部は、
(i)前記研磨ヘッド駆動機構を用いて、前記研磨ヘッドに保持された前記SOIウェーハを前記定盤の前記窓部の上に移動させるとともに、前記窓部を介して、前記光学式膜厚測定部によって前記SOI層の少なくとも径方向の膜厚分布を測定して、前記記憶部に前記膜厚分布を記録し、
(ii)前記記憶部に記録させた前記膜厚分布に基づき、前記膜厚分布を均一化する実行用加圧分布を決定し、
(iii)前記実行用加圧分布を、前記加圧制御室の前記加圧分布に設定し、
(iv)前記研磨ヘッドに保持された前記SOIウェーハの前記SOI層の表面を前記研磨パッドに擦り当てて研磨する
ことを特徴とするSOIウェーハの片面研磨システム。
An SOI wafer for polishing the surface of an SOI layer of an SOI wafer having a support substrate wafer, an insulating layer provided on one surface of the support substrate wafer, and an SOI layer provided on the surface of the insulating layer. It is a single-sided polishing system
The single-sided polishing system includes a surface plate, a polishing pad, a polishing head, a polishing head drive mechanism, an optical film thickness measuring unit, a control unit, and a storage unit.
The surface plate has a window portion and has a window portion.
The polishing pad is attached to one side of the surface plate and is attached.
The polishing head has a head main body and a backing plate provided at the center of the lower surface of the head main body and capable of adsorbing the other surface of the support substrate wafer, and the head main body is via the backing plate. It is equipped with a pressurization control chamber that can set the pressurization distribution in each of multiple radial regions.
The polishing head drive mechanism can be connected to the polishing head to translate and rotate the polishing head.
The control unit
(I) Using the polishing head drive mechanism, the SOI wafer held by the polishing head is moved onto the window portion of the surface plate, and the optical film thickness measurement is performed through the window portion. The film thickness distribution in at least the radial direction of the SOI layer was measured by the unit, and the film thickness distribution was recorded in the storage unit.
(Ii) Based on the film thickness distribution recorded in the storage unit, an execution pressure distribution for making the film thickness distribution uniform is determined.
(Iii) The pressure distribution for execution is set to the pressure distribution in the pressure control chamber.
(Iv) A single-sided polishing system for an SOI wafer, characterized in that the surface of the SOI layer of the SOI wafer held by the polishing head is rubbed against the polishing pad to be polished.
前記制御部は、(i)前記SOI層の全面の膜厚分布を測定する、請求項1に記載のSOIウェーハの片面研磨システム。 The single-sided polishing system for an SOI wafer according to claim 1, wherein the control unit (i) measures the film thickness distribution on the entire surface of the SOI layer. 前記SOIウェーハの片面研磨システムは、前記研磨パッドの表面に研磨スラリーを供給可能なスラリー供給ノズルをさらに備え、
前記制御部は、(iv)前記スラリー供給ノズルから前記研磨パッドへ前記研磨スラリーを供給しながら、前記SOI層の表面を研磨する、請求項1又は2に記載のSOIウェーハの片面研磨システム。
The single-sided polishing system for an SOI wafer further includes a slurry supply nozzle capable of supplying a polishing slurry to the surface of the polishing pad.
The single-sided polishing system for an SOI wafer according to claim 1 or 2, wherein the control unit (iv) polishes the surface of the SOI layer while supplying the polishing slurry from the slurry supply nozzle to the polishing pad.
前記光学式膜厚測定部は、前記窓部を介して測定光を入射可能な光源と、前記測定光の反射光を受光可能な受光センサとを有し、
前記制御部は、(i)前記SOIウェーハが前記窓部の上に位置したときに前記測定光を入射する、請求項1〜3のいずれか1項に記載のSOIウェーハの片面研磨システム。
The optical film thickness measuring unit includes a light source capable of incident measurement light through the window unit and a light receiving sensor capable of receiving reflected light of the measurement light.
The single-sided polishing system for an SOI wafer according to any one of claims 1 to 3, wherein the control unit (i) incidents the measurement light when the SOI wafer is located on the window portion.
請求項1〜4のいずれか1項に記載のSOIウェーハの片面研磨システムを用いて、前記SOIウェーハの前記SOI層を片面研磨することを特徴とするSOIウェーハの片面研磨方法。
A method for single-sided polishing of an SOI wafer, which comprises single-sided polishing of the SOI layer of the SOI wafer using the single-sided polishing system for the SOI wafer according to any one of claims 1 to 4.
JP2019236042A 2019-12-26 2019-12-26 Single-sided polishing system for SOI wafers and single-sided polishing method for SOI wafers using it Active JP6885453B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236042A JP6885453B1 (en) 2019-12-26 2019-12-26 Single-sided polishing system for SOI wafers and single-sided polishing method for SOI wafers using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236042A JP6885453B1 (en) 2019-12-26 2019-12-26 Single-sided polishing system for SOI wafers and single-sided polishing method for SOI wafers using it

Publications (2)

Publication Number Publication Date
JP6885453B1 JP6885453B1 (en) 2021-06-16
JP2021106193A true JP2021106193A (en) 2021-07-26

Family

ID=76310126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236042A Active JP6885453B1 (en) 2019-12-26 2019-12-26 Single-sided polishing system for SOI wafers and single-sided polishing method for SOI wafers using it

Country Status (1)

Country Link
JP (1) JP6885453B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223579A (en) * 1997-02-13 1998-08-21 Toshiba Corp Method and device for flattening substrate
JP2007048862A (en) * 2005-08-09 2007-02-22 Tokyo Seimitsu Co Ltd Polishing system and method thereof
JP2008137103A (en) * 2006-11-30 2008-06-19 Ebara Corp Substrate holding device, substrate polishing device, and substrate polishing method
JP2019102518A (en) * 2017-11-29 2019-06-24 株式会社荏原製作所 Substrate processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223579A (en) * 1997-02-13 1998-08-21 Toshiba Corp Method and device for flattening substrate
JP2007048862A (en) * 2005-08-09 2007-02-22 Tokyo Seimitsu Co Ltd Polishing system and method thereof
JP2008137103A (en) * 2006-11-30 2008-06-19 Ebara Corp Substrate holding device, substrate polishing device, and substrate polishing method
JP2019102518A (en) * 2017-11-29 2019-06-24 株式会社荏原製作所 Substrate processing apparatus

Also Published As

Publication number Publication date
JP6885453B1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP5303491B2 (en) Polishing head and polishing apparatus
KR20020010881A (en) Substrate holding apparatus and substrate polishing apparatus
JP4264289B2 (en) Wafer polishing apparatus, polishing head thereof, and wafer polishing method
KR101591803B1 (en) Membrane, polishing head, apparatus and method of polishing work, and silicon wafer
US20050014455A1 (en) Method and pad for polishing wafer
JPWO2005055302A1 (en) Manufacturing method for single-sided mirror wafer
US6224712B1 (en) Polishing apparatus
JP6885453B1 (en) Single-sided polishing system for SOI wafers and single-sided polishing method for SOI wafers using it
JP2002217149A (en) Wafer polishing apparatus and method
JP2004193289A (en) Polishing method
JP3797065B2 (en) Method for producing single-sided mirror wafer
JP2013507764A (en) Wafer support member, manufacturing method thereof, and wafer polishing unit including the same
JPH08216016A (en) Method of polishing semiconductor wafer and polishing device
JPH10315131A (en) Polishing method of semiconductor wafer and device therefor
JP2002100594A (en) Method and device for grinding plane
CN112372509B (en) Method and apparatus for changing initial state of polishing pad to hydrophilicity
US7291055B2 (en) Wafer polishing method and apparatus
JP4110801B2 (en) Semiconductor wafer polishing method
JP3463345B2 (en) Polishing apparatus, polishing method and bonding method
JP2007061975A (en) Polishing device and polishing method
JP3820432B2 (en) Wafer polishing method
JP3902715B2 (en) Polishing device
JP3821944B2 (en) Wafer single wafer polishing method and apparatus
JP3916212B2 (en) Manufacturing method of semiconductor wafer
JP4302590B2 (en) Polishing apparatus and retainer mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210317

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150