JP2021101626A - Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof - Google Patents

Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof Download PDF

Info

Publication number
JP2021101626A
JP2021101626A JP2019233484A JP2019233484A JP2021101626A JP 2021101626 A JP2021101626 A JP 2021101626A JP 2019233484 A JP2019233484 A JP 2019233484A JP 2019233484 A JP2019233484 A JP 2019233484A JP 2021101626 A JP2021101626 A JP 2021101626A
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
group
amino
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019233484A
Other languages
Japanese (ja)
Other versions
JP7502858B2 (en
Inventor
鏡士朗 野中
Kyoshiro Nonaka
鏡士朗 野中
史員 高橋
Fumikazu Takahashi
史員 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019233484A priority Critical patent/JP7502858B2/en
Priority to PCT/JP2020/041581 priority patent/WO2021090925A1/en
Priority to US17/775,331 priority patent/US20220411831A1/en
Priority to CN202080077503.2A priority patent/CN114651066A/en
Publication of JP2021101626A publication Critical patent/JP2021101626A/en
Application granted granted Critical
Publication of JP7502858B2 publication Critical patent/JP7502858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide a polypeptide having excellent 4-aminobenzoic acid hydroxylation activity and a method for using the polypeptide.SOLUTION: A polypeptide having 4-aminobenzoic acid hydroxylation activity is provided, having a specific amino acid sequence or an amino acid sequence having at least 51% identity therewith in which an amino acid residue at position 201 or 222 of the amino acid sequence or at a position corresponding to the position 201 or 222 is phenylalanine.SELECTED DRAWING: None

Description

本発明は4−アミノ安息香酸水酸化活性を有するポリペプチド及びその利用に関する。 The present invention relates to a polypeptide having 4-aminobenzoic acid hydroxide activity and its utilization.

ポリベンズオキサゾール(PBO)は耐熱性や力学強度に優れたエンジニアリングプラスチックとして知られており、繊維材料及び半導体素子の絶縁膜等に利用される(非特許文献1)。 Polybenzoxazole (PBO) is known as an engineering plastic having excellent heat resistance and mechanical strength, and is used as an insulating film for fiber materials and semiconductor devices (Non-Patent Document 1).

ベンズオキサゾール骨格はo−アミノフェノール骨格とカルボン酸との縮合により生成される。そのため、これらの官能基を分子内に有する4−アミノ−3−ヒドロキシ安息香酸(4,3−AHBA)類はPBOモノマーとして有用であると期待される。実際に、4,3−AHBAを用いたポリベンズオキサゾールの合成と物性評価が検討されている(非特許文献2)。 The benzoxazole skeleton is produced by the condensation of an o-aminophenol skeleton with a carboxylic acid. Therefore, 4-amino-3-hydroxybenzoic acid (4,3-AHBA) having these functional groups in the molecule is expected to be useful as a PBO monomer. In fact, the synthesis and evaluation of physical properties of polybenzoxazole using 4,3-AHBA have been studied (Non-Patent Document 2).

近年、地球環境負荷軽減等に向けて再生可能資源を原料とした微生物発酵による化合物の製造方法が注目されている。例えば、4,3−AHBAと類似した構造を有する3−アミノ−4−ヒドロキシ安息香酸(3,4−AHBA)の微生物による生産とポリマー化の検討が行われている(特許文献1)。 In recent years, a method for producing a compound by microbial fermentation using renewable resources as a raw material has attracted attention in order to reduce the burden on the global environment. For example, the production and polymerization of 3-amino-4-hydroxybenzoic acid (3,4-AHBA) having a structure similar to 4,3-AHBA by microorganisms has been studied (Patent Document 1).

4,3−AHBAの製造に関してはこれまで化学的にニトロ芳香族を還元し合成する方法等が知られている(特許文献2)。微生物法による4,3−AHBA発酵生産を可能にする方策としては、微生物内での生合成が可能な4−アミノ安息香酸(4−ABA)の3位を水酸化することが考えられるが、このような反応に関しては、一部の4−ヒドロキシ安息香酸水酸化酵素がわずかに活性を有することが報告されているのみであった(非特許文献3,4)。 Regarding the production of 4,3-AHBA, a method of chemically reducing and synthesizing a nitro aromatic substance has been known so far (Patent Document 2). As a measure to enable 4,3-AHBA fermentation production by the microbial method, it is conceivable to hydroxylate the 3-position of 4-aminobenzoic acid (4-ABA), which can be biosynthesized in the microorganism. Regarding such a reaction, it has only been reported that some 4-hydroxybenzoic acid hydroxylases have slight activity (Non-Patent Documents 3 and 4).

特許第5445453号公報Japanese Patent No. 5445453 特許第3821350号公報Japanese Patent No. 3821350

村瀬浩貴,SENI GAKKAISHI(繊維と工業), Vol.66, No.6 (2010)Hiroki Murase, SENI GAKKAISHI (Textiles and Industry), Vol. 66, No. 6 (2010) Lon J. Mathias et al., Macromolecules, Vol.18, No.4, pp.616−622 (1985)Lon J. Mathias et al. , Macromolecules, Vol. 18, No. 4, pp. 616-622 (1985) Barrie Entsch et al., The Journal of Biological Chemistry, Vol.262, No.13, pp.6060−6068 (1987)Barrie Ensch et al. , The Journal of Biological Chemistry, Vol. 262, No. 13, pp. 6060-6068 (1987) Domenico L. Gatti et al., Biochemistry, Vol.35, No.2, pp.567−578 (1996)Domenico L. Gatti et al. , Biochemistry, Vol. 35, No. 2, pp. 567-578 (1996)

本発明は、優れた4−アミノ安息香酸水酸化活性を有するポリペプチド及びその利用法を提供することに関する。 The present invention relates to providing a polypeptide having excellent 4-aminobenzoic acid hydroxylation activity and a usage thereof.

本発明者らは、特定のアミノ酸配列を有する4−ヒドロキシ安息香酸水酸化酵素の変異体が、優れた4−アミノ安息香酸水酸化活性を有し、4−アミノ−3−ヒドロキシ安息香酸類の製造に有用であることを見出した。 The present inventors have produced a 4-amino-3-hydroxybenzoic acid in which a variant of 4-hydroxybenzoic acid hydroxylase having a specific amino acid sequence has excellent 4-aminobenzoic acid hydroxylation activity. It was found to be useful for.

すなわち、本発明は以下の1)〜7)に係るものである。
1)配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンである、4−アミノ安息香酸水酸化活性を有するポリペプチド。
2)配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ安息香酸水酸化活性を有する変異ポリペプチドの製造方法。
3)配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ安息香酸水酸化活性の向上方法。
4)1)のポリペプチドをコードするポリヌクレオチド。
5)4)のポリヌクレオチドを含むベクター又はDNA断片。
6)5)のベクター又はDNA断片を含有する形質転換細胞。
7)6)の形質転換細胞を培養する工程を含む、4−アミノ−3−ヒドロキシ安息香酸類の製造方法。
That is, the present invention relates to the following 1) to 7).
1) In the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence, the position corresponding to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 2. A polypeptide having 4-aminobenzoic acid hydroxylation activity, wherein the amino acid residue in is phenylalanine.
2) In a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity, the amino acid sequence shown in SEQ ID NO: 2 A method for producing a mutant polypeptide having 4-aminobenzoic acid hydroxylation activity, which comprises substituting phenylalanine for an amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position.
3) In a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity, the amino acid sequence shown in SEQ ID NO: 2 A method for improving 4-aminobenzoic acid hydroxylation activity, which comprises substituting phenylalanine for an amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position.
4) A polynucleotide encoding the polypeptide of 1).
5) A vector or DNA fragment containing the polynucleotide of 4).
6) Transformed cells containing the vector or DNA fragment of 5).
7) A method for producing 4-amino-3-hydroxybenzoic acid, which comprises the step of culturing the transformed cells of 6).

本発明の4−アミノ安息香酸水酸化活性を有するポリペプチドは優れた4−アミノ安息香酸水酸化活性を有することから、これを用いることにより、4−アミノ安息香酸類から効率よく4−アミノ−3−ヒドロキシ安息香酸類を製造することができる。 Since the polypeptide having 4-aminobenzoic acid hydroxylation activity of the present invention has excellent 4-aminobenzoic acid hydroxylation activity, by using this, 4-amino-3 is efficiently derived from 4-aminobenzoic acids. -Hydroxybenzoic acids can be produced.

本明細書において、アミノ酸配列又はヌクレオチド配列の同一性は、Lipman−Pearson法(Science,1985,227:1435−1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGENETYX Ver.12のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。 As used herein, the identity of an amino acid sequence or nucleotide sequence is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, the genetic information processing software GENETYX Ver. It is calculated by performing an analysis using 12 homology analysis (Search homology) programs and setting Unit size to homology (ktup) to 2.

本明細書において、アミノ酸配列又はヌクレオチド配列上の「相当する位置」は、目的配列と参照配列(例えば、配列番号2で示されるアミノ酸配列)とを、最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アミノ酸配列またはヌクレオチド配列のアラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson,J.D.et al,1994,Nucleic Acids Res.22:4673−4680)をデフォルト設定で用いることにより、行うことができる。あるいは、Clustal Wの改訂版であるClustal W2やClustal omegaを使用することもできる。Clustal W、Clustal W2及びClustal omegaは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute:EBI[www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ[www.ddbj.nig.ac.jp/searches−j.html])のウェブサイト上で利用することができる。上述のアラインメントにより参照配列の任意の位置にアラインされた目的配列の位置は、当該任意の位置に「相当する位置」とみなされる。 In the present specification, the "corresponding position" on the amino acid sequence or nucleotide sequence aligns the target sequence and the reference sequence (for example, the amino acid sequence shown by SEQ ID NO: 2) so as to give the maximum homology. ) Can be determined. Amino acid or nucleotide sequence alignments can be performed using known algorithms, the procedure of which is known to those of skill in the art. For example, alignment can be performed by using the Clustal W multiple alignment program (Thompson, JD et al, 1994, Nucleic Acids Res. 22: 4673-4680) with default settings. Alternatively, a revised version of Clustal W, Clustal W2 or Clustal omega, can be used. Clustal W, Clustal W2 and Clustal omega are, for example, the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the DNA data of Japan operated by the National Institute of Genetics. It can be used on the website of the bank (DDBJ [www.dbj.nig.ac.jp/searches-j.html]). The position of the target sequence aligned to any position in the reference sequence by the above alignment is considered to be the "corresponding position" to that arbitrary position.

当業者であれば、上記で得られたアミノ酸配列のアラインメントを、最適化するようにさらに微調整することができる。そのような最適アラインメントは、アミノ酸配列の類似性や挿入されるギャップの頻度等を考慮して決定するのが好ましい。ここでアミノ酸配列の類似性とは、2つのアミノ酸配列をアラインメントしたときにその両方の配列に同一又は類似のアミノ酸残基が存在する位置の数の全長アミノ酸残基数に対する割合(%)をいう。類似のアミノ酸残基とは、タンパク質を構成する20種のアミノ酸のうち、極性や電荷の点で互いに類似した性質を有しており、いわゆる保存的置換を生じるようなアミノ酸残基を意味する。そのような類似のアミノ酸残基からなるグループは当業者にはよく知られており、例えば、アルギニンとリシン又はグルタミン;グルタミン酸とアスパラギン酸又はグルタミン;セリンとトレオニン又はアラニン;グルタミンとアスパラギン又はアルギニン;ロイシンとイソロイシン等がそれぞれ挙げられるが、これらに限定されない。 One of ordinary skill in the art can further fine-tune the alignment of the amino acid sequences obtained above to optimize. Such optimum alignment is preferably determined in consideration of the similarity of amino acid sequences, the frequency of gaps inserted, and the like. Here, the similarity of amino acid sequences means the ratio (%) of the number of positions where the same or similar amino acid residues are present in both sequences when two amino acid sequences are aligned to the total number of amino acid residues. .. The similar amino acid residue means an amino acid residue having properties similar to each other in terms of polarity and charge among the 20 kinds of amino acids constituting the protein and causing so-called conservative substitution. A group of such similar amino acid residues is well known to those skilled in the art, for example: arginine and lysine or glutamine; glutamic acid and aspartic acid or glutamine; serine and threonine or alanine; glutamine and aspartic acid or arginine; leucine; And isoleucine, etc., respectively, but are not limited to these.

本明細書において、「アミノ酸残基」とは、タンパク質を構成する20種のアミノ酸残基、アラニン(Ala又はA)、アルギニン(Arg又はR)、アスパラギン(Asn又はN)、アスパラギン酸(Asp又はD)、システイン(Cys又はC)、グルタミン(Gln又はQ)、グルタミン酸(Glu又はE)、グリシン(Gly又はG)、ヒスチジン(His又はH)、イソロイシン(Ile又はI)、ロイシン(Leu又はL)、リシン(Lys又はK)、メチオニン(Met又はM)、フェニルアラニン(Phe又はF)、プロリン(Pro又はP)、セリン(Ser又はS)、スレオニン(Thr又はT)、トリプトファン(Trp又はW)、チロシン(Tyr又はY)及びバリン(Val又はV)を意味する。 As used herein, the term "amino acid residue" refers to 20 kinds of amino acid residues constituting a protein, alanine (Ala or A), arginine (Arg or R), aspartic acid (Asn or N), aspartic acid (Asp or). D), cysteine (Cys or C), glutamine (Gln or Q), glutamic acid (Glu or E), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L) ), Leucine (Lys or K), methionine (Met or M), phenylalanine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan (Trp or W) , Tyrosine (Tyr or Y) and valine (Val or V).

本明細書において、プロモーター等の制御領域と遺伝子の「作動可能な連結」とは、遺伝子と制御領域とが、該遺伝子が該制御領域の制御の下で発現し得るように連結されていることをいう。遺伝子と制御領域との「作動可能な連結」の手順は当業者に周知である。 In the present specification, a regulatory region such as a promoter and a "operable linkage" of a gene means that the gene and the regulatory region are linked so that the gene can be expressed under the control of the regulatory region. To say. Procedures for "operable linkage" between genes and regulatory regions are well known to those of skill in the art.

本明細書において、遺伝子に関する「上流」及び「下流」とは、該遺伝子の転写方向の上流及び下流をいう。例えば、「プロモーターの下流に配置された遺伝子」とは、DNAセンス鎖においてプロモーターの3’側に該遺伝子が存在することを意味し、遺伝子の上流とは、DNAセンス鎖における該遺伝子の5’側の領域を意味する。 As used herein, the terms "upstream" and "downstream" of a gene refer to upstream and downstream of the gene in the transcription direction. For example, "a gene located downstream of a promoter" means that the gene is present on the 3'side of the promoter in the DNA sense strand, and upstream of the gene means 5'of the gene in the DNA sense strand. Means the area on the side.

本明細書において、細胞の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該細胞に元から存在していることを表すために使用される。対照的に、用語「外来」とは、当該細胞に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、「外来」遺伝子又はポリヌクレオチドとは、細胞に外部から導入された遺伝子又はポリヌクレオチドである。外来遺伝子又はポリヌクレオチドは、それが導入された細胞と同種の生物由来であっても、異種の生物由来(すなわち異種遺伝子又はポリヌクレオチド)であってもよい。 In the present specification, the term "original" used for a cell function, property, or trait is used to indicate that the function, property, or trait originally exists in the cell. In contrast, the term "foreign" is used to describe a function, property, or trait that is not originally present in the cell but is introduced from the outside. For example, a "foreign" gene or polynucleotide is a gene or polynucleotide that has been externally introduced into a cell. The foreign gene or polynucleotide may be of the same species as the cell into which it was introduced, or of a heterologous organism (ie, a heterologous gene or polynucleotide).

<4−アミノ安息香酸水酸化活性を有するポリペプチド>
本発明の4−アミノ安息香酸水酸化活性を有するポリペプチド(「本発明のポリペプチド」と称す)は、配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンであるポリペプチドである。
斯かるポリペプチドは、基準となるポリペプチド、すなわち配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなるポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンに置換された、4−アミノ安息香酸水酸化活性を有する変異ポリペプチドである。
<Polypeptide having 4-aminobenzoic acid hydroxide activity>
The polypeptide having 4-aminobenzoic acid hydroxylation activity of the present invention (referred to as "polypeptide of the present invention") has an amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence having at least 51% identity thereof. , The amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 2 is a polypeptide of phenylalanine.
Such a polypeptide is a reference polypeptide, that is, a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence represented by SEQ ID NO: 2, and is 201 of the amino acid sequence shown in SEQ ID NO: 2. A mutant polypeptide having 4-aminobenzoic acid hydroxylation activity in which the amino acid residue at the position corresponding to the position or position 222, or the position corresponding to position 201 or 222 is replaced with phenylalanine.

本発明において、「4−アミノ安息香酸水酸化活性」とは、4−アミノ安息香酸類の水酸化を触媒する活性、好ましくは4−アミノ安息香酸類の3位の水酸化を触媒する活性を意味する。
4−アミノ安息香酸水酸化活性は、後述する実施例に示すとおり、本発明のポリペプチドを産生する微生物を培養し、生成する4−アミノ−3−ヒドロキシ安息香酸量をHPLC等により測定することによって決定することができる。
In the present invention, "4-aminobenzoic acid hydroxylation activity" means an activity that catalyzes the hydroxylation of 4-aminobenzoic acid, preferably an activity that catalyzes the hydroxylation at the 3-position of 4-aminobenzoic acid. ..
The 4-aminobenzoic acid hydroxylation activity is measured by culturing a microorganism producing the polypeptide of the present invention and measuring the amount of 4-amino-3-hydroxybenzoic acid produced by HPLC or the like, as shown in Examples described later. Can be determined by.

斯かる本発明のポリペプチドは、配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することにより製造できる。
ここで、配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドは、本発明のポリペプチドの「親」ポリペプチドである。
「親」ポリペプチドは、そのアミノ酸残基に所定の変異がなされることにより、本発明のポリペプチドとなる基準ポリペプチドを指す。
Such a polypeptide of the present invention comprises the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence, and has a 4-aminobenzoic acid hydroxylation activity. It can be produced by substituting phenylalanine for the amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence represented by 2.
Here, the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity is the "parent" of the polypeptide of the present invention. It is a polypeptide.
A "parent" polypeptide refers to a reference polypeptide that becomes the polypeptide of the invention by making certain mutations in its amino acid residues.

本発明において、配列番号2で示されるアミノ酸配列(NCBI Reference Sequence:WP_010920262.1)からなるポリペプチドであるHFM122は、4−ヒドロキシ安息香酸−3−モノオキシゲナーゼ(EC1.14.13.2)として知られている。4−ヒドロキシ安息香酸−3−モノオキシゲナーゼは、4−ヒドロキシ安息香酸の3位を水酸化してプロトカテク酸を生成する反応とその逆反応のいずれかまたは両方を促進する触媒活性を有する酵素であり、4−ヒドロキシ安息香酸類の水酸化を触媒する酵素(4−ヒドロキシ安息香酸水酸化酵素)の一種である。
斯かるHFM122は、本出願人により、4−アミノ安息香酸水酸化活性を有することが見出されている(特願2018−171849)。
In the present invention, HFM122, which is a polypeptide consisting of the amino acid sequence (NCBI Reference Sequence: WP_0109202622.1) represented by SEQ ID NO: 2, is designated as 4-hydroxybenzoate-3-monooxygenase (EC1.14.13.2). Are known. 4-Hydroxybenzoic acid-3-monooxygenase is an enzyme having catalytic activity that promotes either or both of the reaction of hydroxylating the 3-position of 4-hydroxybenzoate to produce protocatechuic acid and the reverse reaction. , 4-Hydroxybenzoate is a type of enzyme that catalyzes the hydroxylation of benzoates (4-hydroxybenzoate hydroxylase).
Such HFM122 has been found by the applicant to have 4-aminobenzoic acid hydroxide activity (Japanese Patent Application No. 2018-171849).

配列番号2で示されるアミノ酸配列と少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドとしては、配列番号2で示されるアミノ酸配列と少なくとも51%の同一性、具体的には、51%以上、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列からなる4−アミノ安息香酸水酸化活性を有するポリペプチドが挙げられる。具体的には、例えば、HFM388(配列番号4:配列番号2とのアミノ酸配列同一性は62%、NCBI Reference Sequence:WP_010976283.1)、HFM339(配列番号6:配列番号2とのアミノ酸配列同一性は61%、NCBI Reference Sequence: WP_011157287.1)、HFM77(配列番号8:配列番号2とのアミノ酸配列同一性は51%、NCBI Reference Sequence: WP_011089160.1)等が挙げられ、このうち、本発明のポリペプチドが有する4−アミノ安息香酸水酸化活性の点から、HFM388、HFM339が好ましい。
好適な「親」ポリペプチドとしては、配列番号2で示されるアミノ酸配列の他、配列番号2で示されるアミノ酸配列に対して、90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは98%以上の同一性を有するアミノ酸配列からなり、4−アミノ安息香酸水酸化活性を有するポリペプチドが挙げられる。また、配列番号4、配列番号6若しくは配列番号8で示されるアミノ酸配列、又はこれらのそれぞれに対して90%以上、好ましくは95%以上、より好ましくは96%以上、より好ましくは98%以上の同一性を有するアミノ酸配列からなり、4−アミノ安息香酸水酸化活性を有するポリペプチドが挙げられる。
A polypeptide consisting of an amino acid sequence having at least 51% identity with the amino acid sequence shown in SEQ ID NO: 2 and having 4-aminobenzoic acid hydroxylation activity is at least 51% of the amino acid sequence shown in SEQ ID NO: 2. Identity, specifically 51% or more, preferably 60% or more, more preferably 70% or more, more preferably 80% or more, more preferably 90% or more, more preferably 95% or more, more preferably Examples thereof include a polypeptide having 4-aminobenzoic acid hydroxylation activity consisting of an amino acid sequence having 96% or more, more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more identity. Specifically, for example, HFM388 (SEQ ID NO: 4: amino acid sequence identity with SEQ ID NO: 2 is 62%, NCBI Reference Sequence: WP_010976283.1), HFM339 (SEQ ID NO: 6: amino acid sequence identity with SEQ ID NO: 2). 61%, NCBI Reference Sequence: WP_011157287.1), HFM77 (SEQ ID NO: 8: amino acid sequence identity with SEQ ID NO: 2 is 51%, NCBI Reference Sequence: WP_011089160.1), etc. From the viewpoint of 4-aminobenzoic acid hydroxylation activity of the polypeptide of HFM388, HFM388 and HFM339 are preferable.
Suitable "parent" polypeptides include 90% or more, more preferably 95% or more, more preferably 96% or more, relative to the amino acid sequence set forth in SEQ ID NO: 2 as well as the amino acid sequence set forth in SEQ ID NO: 2. , More preferably a polypeptide consisting of an amino acid sequence having 98% or more identity and having 4-aminobenzoic acid hydroxylation activity. Further, 90% or more, preferably 95% or more, more preferably 96% or more, more preferably 98% or more of the amino acid sequence represented by SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 or each of them. Examples thereof include polypeptides having an amino acid sequence having the same identity and having 4-aminobenzoic acid hydroxylation activity.

該親ポリペプチドは、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置に何れもチロシン残基を有するものが好ましく、本発明のポリペプチドは当該201位若しくは222位、又は201位若しくは222位に相当する位置のチロシンをフェニルアラニンに置換した変異ポリペプチドがより好ましい。配列番号2の201位もしくは222位に相当する位置として、例えば、配列番号4の場合は201位と222位が、配列番号6の場合は201位と222位が、配列番号8の場合は203位と224位がそれらの位置に相当する。
従って、該親ポリペプチドは、配列番号4で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置に何れもチロシン残基を有するものが好ましく、本発明のポリペプチドは当該201位若しくは222位、又は201位若しくは222位に相当する位置のチロシンをフェニルアラニンに置換した変異ポリペプチドがより好ましい。
The parent polypeptide preferably has a tyrosine residue at the 201-position or 222-position, or the position corresponding to the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 2, and the polypeptide of the present invention is said to be the same. A mutant polypeptide in which tyrosine at the 201-position or 222-position, or the position corresponding to the 201- or 222-position is replaced with phenylalanine is more preferable. Positions corresponding to positions 201 or 222 of SEQ ID NO: 2, for example, positions 201 and 222 in the case of SEQ ID NO: 4, positions 201 and 222 in the case of SEQ ID NO: 6, and 203 in the case of SEQ ID NO: 8. The place and the 224th place correspond to those positions.
Therefore, the parent polypeptide preferably has a tyrosine residue at the 201-position or 222-position, or the position corresponding to the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 4, and is the polypeptide of the present invention. Is more preferably a mutant polypeptide in which the tyrosine at the position 201 or 222, or the position corresponding to the position 201 or 222 is replaced with phenylalanine.

また該親ポリペプチドは、配列番号6で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置に何れもチロシン残基を有するものが好ましく、本発明のポリペプチドは当該201位若しくは222位、又は201位若しくは222位に相当する位置のチロシンをフェニルアラニンに置換した変異ポリペプチドがより好ましい。 Further, the parent polypeptide preferably has a tyrosine residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 6, and the polypeptide of the present invention has a tyrosine residue. A mutant polypeptide in which tyrosine at the 201-position or 222-position, or the position corresponding to the 201- or 222-position is replaced with phenylalanine is more preferable.

また該親ポリペプチドは、配列番号8で示されるアミノ酸配列の203位若しくは224位、又は203位若しくは224位に相当する位置に何れもチロシン残基を有するものが好ましく、本発明のポリペプチドは当該203位若しくは224位、又は203位若しくは224位に相当する位置のチロシンをフェニルアラニンに置換した変異ポリペプチドがより好ましい。 Further, the parent polypeptide preferably has a tyrosine residue at the position corresponding to the 203 or 224 position, or the 203 or 224 position of the amino acid sequence shown in SEQ ID NO: 8, and the polypeptide of the present invention has a tyrosine residue. A mutant polypeptide in which the tyrosine at the 203-position or 224-position, or the position corresponding to the 203-position or 224-position is replaced with phenylalanine is more preferable.

<本発明のポリペプチドをコードするポリヌクレオチド>
本発明において、親ポリペプチドのアミノ酸残基を変異させる手段としては、当技術分野で公知の各種変異導入技術を使用することができる。例えば、親ポリペプチドのアミノ酸配列をコードするポリヌクレオチド(以下、親遺伝子ともいう)において、変異すべきアミノ酸残基をコードするヌクレオチド配列を、変異後のアミノ酸残基をコードするヌクレオチド配列に変異させることにより、本発明のポリペプチドをコードするポリヌクレオチドを得ることができる。
<Polynucleotide encoding the polypeptide of the present invention>
In the present invention, various mutagenesis techniques known in the art can be used as means for mutating the amino acid residues of the parent polypeptide. For example, in a polynucleotide encoding the amino acid sequence of the parent polypeptide (hereinafter, also referred to as the parent gene), the nucleotide sequence encoding the amino acid residue to be mutated is mutated to the nucleotide sequence encoding the amino acid residue after the mutation. Thereby, a polynucleotide encoding the polypeptide of the present invention can be obtained.

親遺伝子への目的の変異の導入は、基本的には、当業者に周知の様々な部位特異的変異導入法を用いて行うことができる。部位特異的変異導入法は、例えば、インバースPCR法やアニーリング法などの任意の手法により行うことができる。市販の部位特異的変異導入用キット(例えば、Stratagene社のQuickChange II Site−Directed Mutagenesis Kitや、QuickChange Multi Site−Directed Mutagenesis Kit等)を使用することもできる。 The introduction of the desired mutation into the parent gene can basically be carried out using various site-specific mutation introduction methods well known to those skilled in the art. The site-specific mutagenesis method can be performed by any method such as inverse PCR method or annealing method. Commercially available site-directed mutagenesis kits (eg, Stratage II Site-Directed Mutagenesis Kit, QuickChange Multi Site-Directed Mutagenesis Kit, etc.) can also be used.

親遺伝子への部位特異的変異導入は、最も一般的には、導入すべきヌクレオチド変異を含む変異用プライマーを用いて行うことができる。該変異用プライマーは、親遺伝子における変異すべきアミノ酸残基をコードするヌクレオチド配列を含む領域にアニーリングし、かつその変異すべきアミノ酸残基をコードするヌクレオチド配列(コドン)に代えて変異後のアミノ酸残基をコードするヌクレオチド配列(コドン)を有するヌクレオチド配列を含むように設計すればよい。変異前及び変異後のアミノ酸残基をコードするヌクレオチド配列(コドン)は、当業者であれば通常の教科書等に基づいて適宜認識し選択することができる。あるいは、部位特異的変異導入は、導入すべきヌクレオチド変異を含む相補的な2つのプライマーを別々に用いて変異部位の上流側及び下流側をそれぞれ増幅したDNA断片を、SOE(splicing by overlap extension)−PCR(Gene,1989,77(1):p61−68)により1つに連結する方法を用いることもできる。 Site-specific mutagenesis into the parent gene can most generally be carried out using mutagenesis primers containing the nucleotide mutation to be introduced. The mutation primer is annealed to the region containing the nucleotide sequence encoding the amino acid residue to be mutated in the parent gene, and the amino acid after the mutation is replaced with the nucleotide sequence (codon) encoding the amino acid residue to be mutated. It may be designed to include a nucleotide sequence having a nucleotide sequence (codon) encoding a residue. Nucleotide sequences (codons) encoding amino acid residues before and after mutation can be appropriately recognized and selected by those skilled in the art based on ordinary textbooks and the like. Alternatively, in site-specific mutation introduction, a DNA fragment obtained by amplifying the upstream side and the downstream side of the mutation site by separately using two complementary primers containing the nucleotide mutation to be introduced is subjected to SOE (slicing by overlap extension). A method of linking to one by -PCR (Gene, 1989, 77 (1): p61-68) can also be used.

親遺伝子を含む鋳型DNAは、上述した4−ヒドロキシ安息香酸水酸化酵素を産生する微生物から、常法によりゲノムDNAを抽出するか、又はRNAを抽出し逆転写によりcDNAを合成することによって、調製することができる。あるいは、親ポリペプチドのアミノ酸配列に基づいて、対応するヌクレオチド配列を化学合成して鋳型DNAとして用いてもよい。4−アミノ安息香酸水酸化活性を有するポリペプチドとして既述したHFM122、HFM388、HFM339、HFM77をコードする塩基配列を含むDNA配列を、それぞれ配列番号1、配列番号3、配列番号5及び配列番号7に示した。 The template DNA containing the parent gene is prepared by extracting genomic DNA from the above-mentioned microorganism producing 4-hydroxybenzoic acid hydroxylase by a conventional method or by extracting RNA and synthesizing cDNA by reverse transcription. can do. Alternatively, the corresponding nucleotide sequence may be chemically synthesized and used as a template DNA based on the amino acid sequence of the parent polypeptide. The DNA sequences containing the nucleotide sequences encoding HFM122, HFM388, HFM339, and HFM77 described as the polypeptides having 4-aminobenzoic acid hydroxylation activity are designated as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 and SEQ ID NO: 7, respectively. It was shown to.

変異用プライマーは、ホスホロアミダイト法(Nucleic Acids R4esearch,1989,17:7059−7071)等の周知のオリゴヌクレオチド合成法により作製することができる。そのようなプライマー合成は、例えば市販のオリゴヌクレオチド合成装置(ABI社製など)を用いて実施することもできる。該変異用プライマーを含むプライマーセットを使用し、親遺伝子を鋳型DNAとして上記のような部位特異的変異導入を行うことにより、目的の変異を有する本発明のポリペプチドをコードするポリヌクレオチドを得ることができる。 Mutation primers can be prepared by a well-known oligonucleotide synthesis method such as the phosphoramidite method (Nucleic Acids R4seaarch, 1989, 17: 7059-7071). Such primer synthesis can also be carried out using, for example, a commercially available oligonucleotide synthesizer (manufactured by ABI, etc.). By using a primer set containing the mutation primer and introducing a site-specific mutation as described above using the parent gene as a template DNA, a polynucleotide encoding the polypeptide of the present invention having the desired mutation can be obtained. Can be done.

当該本発明のポリペプチドをコードするポリヌクレオチドは、一本鎖又は2本鎖のDNA、cDNA、RNAもしくは他の人工核酸を含み得る。該DNA、cDNA及びRNAは、化学合成されていてもよい。また当該ポリヌクレオチドは、オープンリーディングフレーム(ORF)に加えて、非翻訳領域(UTR)のヌクレオチド配列を含んでいてもよい。また当該ポリヌクレオチドは、本発明の変異ポリペプチド産生用の形質転換体の種にあわせて、コドン至適化されていてもよい。各種生物が使用するコドンの情報は、Codon Usage Database([www.kazusa.or.jp/codon/])から入手可能である。 The polynucleotide encoding the polypeptide of the invention can include single-stranded or double-stranded DNA, cDNA, RNA or other artificial nucleic acids. The DNA, cDNA and RNA may be chemically synthesized. The polynucleotide may also contain the nucleotide sequence of the untranslated region (UTR) in addition to the open reading frame (ORF). In addition, the polynucleotide may be codon-optimized according to the species of the transformant for producing the mutant polypeptide of the present invention. Information on codons used by various organisms is available from Codon Usage Database ([www.kazusa.or.jp/codon/]).

<ベクター又はDNA断片>
得られた本発明のポリペプチドをコードするポリヌクレオチドはベクターに組み込むことができる。当該ポリヌクレオチドを含有するベクターは、発現ベクターである。また好ましくは、該ベクターは、本発明のポリペプチドをコードするポリヌクレオチドを宿主微生物に導入することができ、かつ宿主微生物内で該ポリヌクレオチドを発現することができる発現ベクターである。好ましくは、該ベクターは、本発明のポリペプチドをコードするポリヌクレオチド、及びこれと作動可能に連結された制御領域を含む。該ベクターは、プラスミド等の染色体外で自立増殖及び複製可能なベクターであってもよく、又は染色体内に組み込まれるベクターであってもよい。
<Vector or DNA fragment>
The obtained polynucleotide encoding the polypeptide of the present invention can be incorporated into a vector. The vector containing the polynucleotide is an expression vector. Also preferably, the vector is an expression vector capable of introducing a polynucleotide encoding the polypeptide of the present invention into a host microorganism and expressing the polynucleotide in the host microorganism. Preferably, the vector comprises a polynucleotide encoding a polypeptide of the invention and a control region operably linked thereto. The vector may be a vector that can grow and replicate independently outside the chromosome, such as a plasmid, or may be a vector that is integrated into the chromosome.

具体的なベクターの例としては、例えば、pBluescript II SK(−)(Stratagene)、pUC18/19、pUC118/119等のpUC系ベクター(タカラバイオ)、pET系ベクター(タカラバイオ)、pGEX系ベクター(GEヘルスケア)、pCold系ベクター(タカラバイオ)、pHY300PLK(タカラバイオ)、pUB110(Mckenzie,T.et al.,1986,Plasmid 15(2):93−103)、pBR322(タカラバイオ)、pRS403(Stratagene)、pMW218/219(ニッポンジーン)、pRI909/910等のpRI系ベクター(タカラバイオ)、pBI系ベクター(クロンテック)、IN3系ベクター(インプランタイノベーションズ)、pPTR1/2(タカラバイオ)、pDJB2(D.J.Ballance et al.,Gene,36,321−331,1985)、pAB4−1(van Hartingsveldt W et al.,Mol Gen Genet,206,71−75,1987)、pLeu4(M.I.G.Roncero et al.,Gene,84,335−343,1989)、pPyr225(C.D.Skory et al.,Mol Genet Genomics,268,397−406,2002)、pFG1(Gruber,F.et al.,Curr Genet,18,447−451,1990)等が挙げられる。 Specific examples of the vector include pUC-based vectors (Takarabio), pET-based vectors (Takarabio), pGEX-based vectors, such as pBluescript II SK (-) (Stratagene), pUC18 / 19, pUC118 / 119, etc. GE Healthcare), pCold vector (Takarabio), pHY300PLK (Takarabio), pUB110 (Mckenzie, T. et al., 1986, plasmid 15 (2): 93-103), pBR322 (Takarabio), pRS403 ( Stratagene), pMW218 / 219 (Nippon Gene), pRI 909/910 and other pRI vectors (Takara Bio), pBI vectors (Clontech), IN3 vectors (Implanter Innovations), pPTR1 / 2 (Takara Bio), pDJB2 (D) J. Ballance et al., Gene, 36, 321-331, 1985), pAB4-1 (van Heartingsveldt W et al., Mol Gen Genet, 206, 71-75, 1987), pLeu4 (MIG). Roncello et al., Gene, 84,335-343,1989), pPyr225 (CD Sky et al., Mol Genet Genetics, 268, 397-406, 2002), pFG1 (Gruber, F. et al.). , Curr Genet, 18, 447-451, 1990) and the like.

また、本発明のポリペプチドをコードするポリヌクレオチドは、これを含むDNA断片として構築されていてもよい。該DNA断片としては、例えば、PCR増幅DNA断片及び制限酵素切断DNA断片が挙げられる。好ましくは、該DNA断片は、本発明のポリペプチドをコードするポリヌクレオチド、及びこれと作動可能に連結された制御領域を含む発現カセットであり得る。 In addition, the polynucleotide encoding the polypeptide of the present invention may be constructed as a DNA fragment containing the same. Examples of the DNA fragment include a PCR-amplified DNA fragment and a restriction enzyme-cleaving DNA fragment. Preferably, the DNA fragment can be an expression cassette containing a polynucleotide encoding the polypeptide of the invention and a control region operably linked thereto.

上記ベクター又はDNA断片に含まれる制御領域は、該ベクター又はDNA断片が導入された宿主細胞内で本発明のポリペプチドをコードするポリヌクレオチドを発現させるための配列であり、例えばプロモーターやターミネーター等の発現調節領域、複製開始点等が挙げられる。該制御領域の種類は、ベクター又はDNA断片を導入する宿主微生物の種類に応じて適宜選択することができる。必要に応じて、該ベクター又はDNA断片はさらに、抗生物質耐性遺伝子、アミノ酸合成関連遺伝子等の選択マーカー(例えば、アンピシリン、ネオマイシン、カナマイシン、クロラムフェニコールなどの薬剤の耐性遺伝子)を有していてもよい。
上記ベクター又はDNA断片には、4−アミノ安息香酸類を生合成するために必要なポリペプチドをコードするポリヌクレオチド配列が含まれていてもよい。4−アミノ安息香酸類を生合成するために必要なポリペプチドとしては、例えば、4−アミノ−4−デオキシコリスミ酸シンターゼ(4-amino-4-deoxychorismate synthase, pabAB)や4−アミノ−4−デオキシコリスミ酸リアーゼ(4-amino-4-deoxychorismate lyase, pabC)等が挙げられる。
The control region contained in the vector or DNA fragment is a sequence for expressing a polynucleotide encoding the polypeptide of the present invention in a host cell into which the vector or DNA fragment has been introduced, and is, for example, a promoter, a terminator, or the like. Expression control regions, replication initiation sites and the like can be mentioned. The type of the control region can be appropriately selected depending on the type of host microorganism into which the vector or DNA fragment is introduced. If desired, the vector or DNA fragment further carries selectable markers such as antibiotic resistance genes, amino acid synthesis related genes (eg, resistance genes for drugs such as ampicillin, neomycin, kanamycin, chloramphenicol). You may.
The vector or DNA fragment may contain a polynucleotide sequence encoding a polypeptide required for biosynthesis of 4-aminobenzoic acids. Polypeptides required for biosynthesis of 4-aminobenzoic acids include, for example, 4-amino-4-deoxychorismate synthase (pabAB) and 4-amino-4-. Examples thereof include 4-amino-4-deoxychorismate lyase (pabC).

本発明のポリペプチドをコードするポリヌクレオチドと上記制御領域や、マーカー遺伝子配列との連結は、上述したSOE−PCR法などの方法によって行うことができる。ベクターへの遺伝子配列の導入手順は、当該分野で周知である。プロモーター領域、ターミネーター、分泌シグナル領域等の制御領域の種類は、特に限定されず、導入する宿主に応じて、通常使用されるプロモーターや分泌シグナル配列を適宜選択して用いることができる。 The polynucleotide encoding the polypeptide of the present invention can be linked to the control region or the marker gene sequence by a method such as the SOE-PCR method described above. Procedures for introducing a gene sequence into a vector are well known in the art. The type of control region such as a promoter region, terminator, and secretory signal region is not particularly limited, and a normally used promoter or secretory signal sequence can be appropriately selected and used depending on the host to be introduced.

該制御領域の好適な例としては、野生型に比較して発現を強化できる強制御領域、例えば公知の高発現プロモーターであるT7プロモーター、lacプロモーター、tacプロモーター、trpプロモーター等が例示されるが、これらに特に限定されない。 Preferable examples of the control region include a strong control region whose expression can be enhanced as compared with the wild type, for example, T7 promoter, lac promoter, tac promoter, trp promoter and the like, which are known high expression promoters. It is not particularly limited to these.

<形質転換細胞>
本発明のポリペプチドをコードするポリヌクレオチドを含むベクターを宿主へ導入するか、又は本発明のポリペプチドをコードするポリヌクレオチドを含むDNA断片を宿主のゲノムに導入することにより、本発明の形質転換細胞を得ることができる。
斯かる形質転換細胞は、本発明のポリペプチドをコードするポリヌクレオチドが発現可能なように導入された細胞であり、当該ポリヌクレオチドの発現が強化された細胞、ひいては本発明のポリペプチドの発現が強化された細胞であると言える。
<Transformed cells>
Transformation of the present invention by introducing a vector containing a polynucleotide encoding a polynucleotide of the present invention into a host, or by introducing a DNA fragment containing a polynucleotide encoding a polynucleotide of the present invention into the genome of a host. Cells can be obtained.
Such a transformed cell is a cell into which a polynucleotide encoding a polynucleotide of the present invention can be expressed so that the polynucleotide encoding the polynucleotide of the present invention can be expressed, and a cell in which the expression of the polynucleotide is enhanced, and thus the expression of the polypeptide of the present invention can be expressed. It can be said that it is a fortified cell.

宿主細胞としては、真菌、酵母、放線菌、大腸菌、枯草菌等、いずれを用いてもよいが、大腸菌、放線菌が好ましい。放線菌としては、コリネバクテリウム属菌、マイコバクテリウム属菌、ロドコッカス属菌、ストレプトマイセス属菌、プロピオニバクテリウム属菌等が挙げられ、好ましくはコリネバクテリウム属菌であり、より好ましくはコリネバクテリウム・グルタミカムである。
中でも、4−アミノ−3−ヒドロキシ安息香酸類の生合成の基質となる4−アミノ安息香酸類を供給できる微生物が好ましく、4−アミノ安息香酸類の供給能が強化された微生物がより好ましい。微生物の4−アミノ安息香酸類の供給能を強化する方法としては、例えば、4−アミノ安息香酸類を生合成するために必要なポリペプチドをコードするポリヌクレオチド及びこれと作動可能に連結された制御領域を含むベクターを微生物に導入する方法や、微生物が本来有する4−アミノ安息香酸類を生合成するために必要なポリペプチドをコードするポリヌクレオチドの制御領域を強発現プロモーターに置換する方法などが挙げられる。
As the host cell, fungi, yeast, actinomycetes, Escherichia coli, Bacillus subtilis and the like may be used, but Escherichia coli and actinomycetes are preferable. Examples of actinomycetes include Corynebacterium spp., Mycobacterium spp., Rhodococcus spp., Streptomyces spp., Propionibacterium spp., And more preferably Corynebacterium spp. Is Corynebacterium glutamicum.
Among them, a microorganism capable of supplying 4-aminobenzoic acid, which is a substrate for biosynthesis of 4-amino-3-hydroxybenzoic acid, is preferable, and a microorganism having an enhanced supply capacity of 4-aminobenzoic acid is more preferable. Methods of enhancing the ability of microorganisms to supply 4-aminobenzoic acids include, for example, polynucleotides encoding polypeptides required for biosynthesis of 4-aminobenzoic acids and control regions operably linked thereto. Examples thereof include a method of introducing a vector containing the above into a microorganism and a method of substituting a strong expression promoter for a control region of a polynucleotide encoding a polypeptide necessary for biosynthesis of 4-aminobenzoic acids originally possessed by the microorganism. ..

宿主へのベクター又はDNA断片の導入の方法としては、例えばエレクトロポレーション法、トランスフォーメーション法、トランスフェクション法、接合法、プロトプラスト法、パーティクル・ガン法、アグロバクテリウム法等を用いることができる。 As a method for introducing the vector or DNA fragment into the host, for example, an electroporation method, a transformation method, a transfection method, a joining method, a protoplast method, a particle gun method, an Agrobacterium method and the like can be used.

また、ポリヌクレオチドを宿主のゲノムに導入する方法としては、特に限定されないが、例えば、該ポリヌクレオチドを含むDNA断片を用いた2重交差法が挙げられる。該DNA断片は、上述する宿主細胞において発現量の多い遺伝子のプロモーター配列の下流に導入されてもよく、あるいは、予め該DNA断片と上述した制御領域とを作動可能に連結した断片を作製し、当該連結断片を宿主のゲノムに導入してもよい。さらに、該DNA断片は、本発明のポリヌクレオチドが適切に導入された細胞を選択するためのマーカー(薬剤耐性遺伝子や栄養要求性相補遺伝子など)と予め連結されていてもよい。 The method for introducing a polynucleotide into the genome of a host is not particularly limited, and examples thereof include a double crossing method using a DNA fragment containing the polynucleotide. The DNA fragment may be introduced downstream of the promoter sequence of a gene having a high expression level in the above-mentioned host cell, or a fragment in which the DNA fragment and the above-mentioned control region are operably linked may be prepared in advance. The linking fragment may be introduced into the host genome. Furthermore, the DNA fragment may be preliminarily linked to a marker (such as a drug resistance gene or an auxotrophic complementary gene) for selecting a cell into which the polynucleotide of the present invention has been appropriately introduced.

目的のベクター又はDNA断片が導入された形質転換細胞は、選択マーカーを利用して選択することができる。例えば、選択マーカーが抗生物質耐性遺伝子である場合、該抗生物質添加培地で培養することで、目的のベクター又はDNA断片が導入された形質転換細胞を選択することができる。また例えば、選択マーカーがアミノ酸合成関連遺伝子である場合、該アミノ酸要求性の宿主微生物に遺伝子導入した後、該アミノ酸要求性の有無を指標に、目的のベクター又はDNA断片が導入された形質転換細胞を選択することができる。あるいは、PCR等によって形質転換細胞のDNA配列を調べることで目的のベクター又はDNA断片の導入を確認することもできる。 Transformed cells into which the vector or DNA fragment of interest has been introduced can be selected using a selectable marker. For example, when the selectable marker is an antibiotic resistance gene, transformed cells into which the desired vector or DNA fragment has been introduced can be selected by culturing in the antibiotic-added medium. Further, for example, when the selectable marker is an amino acid synthesis-related gene, the transformed cell into which the target vector or DNA fragment has been introduced, using the presence or absence of the amino acid requirement as an index after the gene is introduced into the host microorganism requiring the amino acid. Can be selected. Alternatively, the introduction of the target vector or DNA fragment can be confirmed by examining the DNA sequence of the transformed cell by PCR or the like.

斯くして得られた形質転換細胞は、これを適切な培地で培養すれば、当該細胞に導入されたポリヌクレオチドが発現して、本発明のポリペプチドが生成される。すなわち、当該形質転換細胞は、4−アミノ安息香酸水酸化活性を有するポリペプチド産生菌となり得る。そして、後述する実施例に示すとおり、本発明の形質転換細胞を培養した場合、親ポリペプチドを産生する形質転換細胞を用いた場合に比べて4−アミノ−3−ヒドロキシ安息香酸の生産性が向上する。
すなわち、配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換する変異は、4−アミノ安息香酸水酸化活性向上に有用であり、ひいては4−アミノ−3−ヒドロキシ安息香酸類の生産性の向上に有用である。
そして、本発明の形質転換細胞は、4−アミノ安息香酸水酸化活性が向上されたポリペプチドの産生菌であり、有用な4−アミノ−3−ヒドロキシ安息香酸類の生産株である。
When the transformed cells thus obtained are cultured in an appropriate medium, the polynucleotide introduced into the cells is expressed, and the polypeptide of the present invention is produced. That is, the transformed cell can be a polypeptide-producing bacterium having 4-aminobenzoic acid hydroxylation activity. Then, as shown in Examples described later, when the transformed cells of the present invention are cultured, the productivity of 4-amino-3-hydroxybenzoic acid is higher than that when the transformed cells producing the parent polypeptide are used. improves.
That is, in a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity, the amino acid sequence shown in SEQ ID NO: 2 A mutation that replaces an amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position with phenylalanine is useful for improving 4-aminobenzoic acid hydroxylation activity, and thus 4-amino-3-hydroxy. It is useful for improving the productivity of benzoic acids.
The transformed cell of the present invention is a bacterium that produces a polypeptide having improved 4-aminobenzoic acid hydroxylation activity, and is a useful strain that produces 4-amino-3-hydroxybenzoic acid.

<4−アミノ−3−ヒドロキシ安息香酸類の製造>
本発明の4−アミノ−3−ヒドロキシ安息香酸類の製造方法は、本発明の形質転換細胞を培養する工程を含み、培地中から4−アミノ−3−ヒドロキシ安息香酸類を回収することにより4−アミノ−3−ヒドロキシ安息香酸類を取得できる。
本発明において、4−アミノ−3−ヒドロキシ安息香酸類としては、具体的には下記の一般式(1):
<Manufacturing of 4-amino-3-hydroxybenzoic acids>
The method for producing 4-amino-3-hydroxybenzoic acids of the present invention includes the step of culturing the transformed cells of the present invention, and 4-amino by recovering 4-amino-3-hydroxybenzoic acids from the medium. -3-Hydroxybenzoic acids can be obtained.
In the present invention, the 4-amino-3-hydroxybenzoic acids are specifically referred to as the following general formula (1):

Figure 2021101626
Figure 2021101626

〔式中、Rは水素原子、ヒドロキシ基(−OH)、メトキシ基(−OCH)、アミノ基(−NH)、フッ素原子(−F)、塩素原子(−Cl)、臭素原子(−Br)、ヨウ素原子(−I)、カルボキシ基(−COOH)、メチル基(−CH)、エチル基(−CHCH)を示し、Rは水素原子又はヒドロキシ基(−OH)、メトキシ基(−OCH)、アミノ基(−NH)、フッ素原子(−F)、塩素原子(−Cl)、臭素原子(−Br)、ヨウ素原子(−I)、カルボキシ基(−COOH)、メチル基(−CH)又はエチル基(−CHCH)を示し、X及びXは水素原子又はヒドロキシ基であって少なくとも一方はヒドロキシ基を示す。〕
で示される4−アミノ−3−ヒドロキシ安息香酸誘導体が挙げられる。
[In the formula, R 1 is a hydrogen atom, a hydroxy group (-OH), a methoxy group (-OCH 3 ), an amino group (-NH 2 ), a fluorine atom (-F), a chlorine atom (-Cl), and a bromine atom (-Cl). -Br), iodine atom (-I), carboxy group (-COOH), methyl group (-CH 3 ), ethyl group (-CH 2 CH 3 ), R 2 is hydrogen atom or hydroxy group (-OH) , Methyl group (-OCH 3 ), amino group (-NH 2 ), fluorine atom (-F), chlorine atom (-Cl), bromine atom (-Br), iodine atom (-I), carboxy group (-COOH) ), Methyl group (-CH 3 ) or ethyl group (-CH 2 CH 3 ), X 1 and X 2 are hydrogen atoms or hydroxy groups, and at least one of them is a hydroxy group. ]
Examples thereof include 4-amino-3-hydroxybenzoic acid derivatives represented by.

で示される官能基としては、水素原子、ヒドロキシ基(−OH)、メトキシ基(−OCH)、フッ素原子(−F)又はメチル基(−CH)が好ましい。
で示される官能基としては、水素原子、ヒドロキシ基(−OH)、メトキシ基(−OCH)、フッ素原子(−F)又はメチル基(−CH)が好ましい。
及びRは、共に水素原子であるのがより好ましい。
また、X及びXは、共にヒドロキシ基であってもよいが、X又はXの何れか一方がヒドロキシ基であるのが好ましい。
As the functional group represented by R 1 , a hydrogen atom, a hydroxy group (-OH), a methoxy group (-OCH 3 ), a fluorine atom (-F) or a methyl group (-CH 3 ) is preferable.
The functional group represented by R 2, a hydrogen atom, hydroxy (-OH), an methoxy group (-OCH 3), a fluorine atom (-F) or a methyl group (-CH 3) is preferable.
It is more preferable that both R 1 and R 2 are hydrogen atoms.
Further , both X 1 and X 2 may be hydroxy groups, but it is preferable that either X 1 or X 2 is a hydroxy group.

なお、当該培地には、必要に応じて、4−アミノ−3−ヒドロキシ安息香酸類の生合成の基質となる4−アミノ安息香酸類を存在させることができる。
ここで、4−アミノ安息香酸類としては、下記一般式(2):
If necessary, 4-aminobenzoic acids, which are substrates for biosynthesis of 4-amino-3-hydroxybenzoic acids, can be present in the medium.
Here, as the 4-aminobenzoic acid, the following general formula (2):

Figure 2021101626
Figure 2021101626

〔式中、R及びRは前記と同じものを示す。〕
で示される4−アミノ安息香酸誘導体が挙げられる。
[In the formula, R 1 and R 2 indicate the same as above. ]
Examples thereof include 4-aminobenzoic acid derivatives represented by.

形質転換細胞を培養する培地は、炭素源、窒素源、無機塩類等を含有し、本発明の形質転換細胞の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。炭素源としては、例えば、グルコース等の糖類、グリセリン等のポリオール類、エタノール等のアルコール類、またはピルビン酸、コハク酸もしくはクエン酸等の有機酸類を使用することができる。また、窒素源としては、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物、メチルアミン等のアルキルアミン類、またはアンモニアもしくはその塩等を使用することができる。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛等の塩類、特定のアミノ酸、特定のビタミン、消泡剤等も必要に応じて使用してもよい。 The medium for culturing the transformed cells is either a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic salts, etc. and can efficiently culture the transformed cells of the present invention. May be used. As the carbon source, for example, saccharides such as glucose, polyols such as glycerin, alcohols such as ethanol, and organic acids such as pyruvic acid, succinic acid or citric acid can be used. Further, as the nitrogen source, for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkali extract, alkylamines such as methylamine, ammonia or a salt thereof and the like can be used. In addition, salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, specific vitamins, antifoaming agents, and the like may be used as needed.

培養は、通常、10℃〜40℃で、6時間〜72時間、好ましくは9時間〜60時間、より好ましくは12時間〜48時間、必要に応じ撹拌または振とうしながら行うことができる。また、培養中は必要に応じてアンピシリンやカナマイシン等の抗生物質を培地に添加してもよい。 Culturing can usually be carried out at 10 ° C. to 40 ° C. for 6 hours to 72 hours, preferably 9 hours to 60 hours, more preferably 12 hours to 48 hours, with stirring or shaking as necessary. In addition, antibiotics such as ampicillin and kanamycin may be added to the medium during culturing as needed.

培養物からの4−アミノ−3−ヒドロキシ安息香酸類の回収及び精製方法は特に制限されない。すなわち、周知のイオン交換樹脂法、沈澱法、晶析法、再結晶法、濃縮法その他の方法を組み合わせることにより実施できる。例えば、菌体を遠心分離等で除去した後、カチオン及びアニオン交換樹脂でイオン性の物質を除き、濃縮すれば4−アミノ−3−ヒドロキシ安息香酸類を取得することができる。培養物中に蓄積された4−アミノ−3−ヒドロキシ安息香酸類は、そのまま単離することなく用いてもよい。 The method for recovering and purifying 4-amino-3-hydroxybenzoic acids from the culture is not particularly limited. That is, it can be carried out by combining a well-known ion exchange resin method, precipitation method, crystallization method, recrystallization method, concentration method and other methods. For example, 4-amino-3-hydroxybenzoic acids can be obtained by removing the bacterial cells by centrifugation or the like, removing the ionic substance with a cation and anion exchange resin, and concentrating the cells. The 4-amino-3-hydroxybenzoic acids accumulated in the culture may be used as they are without isolation.

本発明はまた、例示的実施形態として以下の物質、製造方法、用途、方法等を包含する。但し、本発明はこれらの実施形態に限定されない。
<1>配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンである、4−アミノ安息香酸水酸化活性を有するポリペプチド。
<2>配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンに置換された、4−アミノ安息香酸水酸化活性を有する変異ポリペプチド。
<3>アミノ酸残基の置換がチロシンからフェニルアラニンへの置換である、<2>の変異ポリペプチド。
<4>配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ安息香酸水酸化活性を有する変異ポリペプチドの製造方法。
<5>アミノ酸残基の置換がチロシンからフェニルアラニンへの置換である、<4>の方法。
<6>配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ安息香酸水酸化活性の向上方法。
<7>アミノ酸残基の置換がチロシンからフェニルアラニンへの置換である、<6>の方法。
<8>配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドを用いて4−アミノ−3−ヒドロキシ安息香酸類を製造する場合において、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ−3−ヒドロキシ安息香酸類の生産性向上方法。
<9>アミノ酸残基の置換がチロシンからフェニルアラニンへの置換である、<8>の方法。
<10><1>〜<3>のいずれかに記載のポリペプチドをコードするポリヌクレオチド。
<11><10>のポリヌクレオチドを含むベクター又はDNA断片。
<12><11>のベクター又はDNA断片を含有する形質転換細胞。
<13>大腸菌又はコリネバクテリム属菌である、<12>記載の形質転換細胞。
<14>4−アミノ安息香酸類を供給可能な微生物である、<12>又は<13>の形質転換細胞。
<15>4−アミノ安息香酸類の供給能が向上した、<12>又は<13>の形質転換細胞。
<16><12>〜<15>のいずれかの形質転換細胞を培養する工程を含む、4−アミノ−3−ヒドロキシ安息香酸類の製造方法。
<17>炭素源として糖類を含む培地で培養される、<16>の方法。
<18>4−アミノ−3−ヒドロキシ安息香酸類を培地から回収する工程を含む、<16>又は<17>の方法。
<19>培養が4−アミノ安息香酸類の存在下で行われる、<16>〜<18>のいずれかの方法。
<20>4−アミノ−3−ヒドロキシ安息香酸類が、下記の一般式(1):
The present invention also includes the following substances, production methods, uses, methods and the like as exemplary embodiments. However, the present invention is not limited to these embodiments.
<1> In the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence, it corresponds to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 2. A polypeptide having 4-aminobenzoic acid hydroxide activity, wherein the amino acid residue at the position is phenylalanine.
<2> In the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence, it corresponds to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 2. A mutant polypeptide having 4-aminobenzoic acid hydroxide activity in which the amino acid residue at the position is replaced with phenylalanine.
<3> The mutant polypeptide of <2>, wherein the substitution of the amino acid residue is a substitution from tyrosine to phenylalanine.
<4> In a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity, the amino acid sequence shown in SEQ ID NO: 2 A method for producing a mutant polypeptide having 4-aminobenzoic acid hydroxylation activity, which comprises substituting phenylalanine for an amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position.
<5> The method of <4>, wherein the substitution of the amino acid residue is the substitution of tyrosine to phenylalanine.
<6> The amino acid sequence shown in SEQ ID NO: 2 or a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity. A method for improving 4-aminobenzoic acid hydroxylation activity, which comprises substituting phenylalanine for an amino acid residue at the position corresponding to the 201-position or 222-position, or the 201-position or 222-position.
<7> The method of <6>, wherein the substitution of the amino acid residue is a substitution from tyrosine to phenylalanine.
<8> 4-Amino-3-hydroxy using a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity. In the production of benzoic acids, 4-amino- comprising substituting an amino acid residue at the position corresponding to the 201- or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 2 with phenylalanine. A method for improving the productivity of 3-hydroxybenzoic acids.
<9> The method of <8>, wherein the substitution of the amino acid residue is a substitution from tyrosine to phenylalanine.
<10> A polynucleotide encoding the polypeptide according to any one of <1> to <3>.
<11> A vector or DNA fragment containing the polynucleotide of <10>.
<12> Transformed cells containing the vector or DNA fragment of <11>.
<13> The transformed cell according to <12>, which is Escherichia coli or a bacterium belonging to the genus Corinebacterium.
<14> Transformed cells of <12> or <13>, which are microorganisms capable of supplying 4-aminobenzoic acids.
<15> Transformed cells of <12> or <13> having an improved supply capacity of 4-aminobenzoic acid.
<16> A method for producing 4-amino-3-hydroxybenzoic acids, which comprises a step of culturing the transformed cells according to any one of <12> to <15>.
<17> The method of <16>, which is cultured in a medium containing saccharides as a carbon source.
<18> The method of <16> or <17>, which comprises the step of recovering 4-amino-3-hydroxybenzoic acids from the medium.
<19> The method of any of <16> to <18>, wherein the culture is carried out in the presence of 4-aminobenzoic acids.
<20> 4-Amino-3-hydroxybenzoic acids have the following general formula (1):

Figure 2021101626
Figure 2021101626

〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示し、X及びXは水素原子又はヒドロキシ基であって少なくとも一方はヒドロキシ基を示す。〕
で示される4−アミノ−3−ヒドロキシ安息香酸誘導体である<16>〜<19>のいずれかの方法。
<21>4−アミノ安息香酸類が、下記の一般式(2):
[In the formula, R 1 represents a hydrogen atom, a hydroxy group, a methoxy group, an amino group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a carboxy group, a methyl group, and an ethyl group, and R 2 is a hydrogen atom or a hydroxy group. , Methoxy group, amino group, fluorine atom, chlorine atom, bromine atom, iodine atom, carboxy group, methyl group, or ethyl group, X 1 and X 2 are hydrogen atom or hydroxy group, and at least one of them is a hydroxy group. Is shown. ]
The method according to any one of <16> to <19>, which is a 4-amino-3-hydroxybenzoic acid derivative represented by.
<21> 4-Aminobenzoic acids have the following general formula (2):

Figure 2021101626
Figure 2021101626

〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示す。〕
で示される4−アミノ安息香酸誘導体である<19>又は<20>の方法。
<22>配列番号4で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号4で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンである、4−アミノ安息香酸水酸化活性を有するポリペプチド。
<23>配列番号4で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号4で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンに置換された、4−アミノ安息香酸水酸化活性を有する変異ポリペプチド。
<24>配列番号6で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号6で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンである、4−アミノ安息香酸水酸化活性を有するポリペプチド。
<25>配列番号6で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号6で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンに置換された、4−アミノ安息香酸水酸化活性を有する変異ポリペプチド。
<26>配列番号8で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号8で示されるアミノ酸配列の203位若しくは224位、又は203位若しくは224位に相当する位置におけるアミノ酸残基がフェニルアラニンである、4−アミノ安息香酸水酸化活性を有するポリペプチド。
<27>配列番号8で示されるアミノ酸配列又はこれと少なくとも90%の同一性を有するアミノ酸配列において、配列番号8で示されるアミノ酸配列の203位若しくは224位、又は203位若しくは224位に相当する位置におけるアミノ酸残基がフェニルアラニンに置換された、4−アミノ安息香酸水酸化活性を有する変異ポリペプチド。
<28>変異ポリペプチドがアミノ酸残基の置換がチロシンからフェニルアラニンへの置換である、<22>〜<27>の何れかに記載の変異ポリペプチド。
<29><22>〜<28>のいずれかに記載のポリペプチドをコードするポリヌクレオチド。
<30><29>のポリヌクレオチドを含むベクター又はDNA断片。
<31><30>のベクター又はDNA断片を含有する形質転換細胞。
<32>大腸菌又はコリネバクテリム属菌である、<30>記載の形質転換細胞。
<33>4−アミノ安息香酸類を供給可能な微生物である、<31>又は<32>の形質転換細胞。
<34>4−アミノ安息香酸類の供給能が向上した、<31>又は<32>の形質転換細胞。
<35><31>〜<34>のいずれかの形質転換細胞を培養する工程を含む、4−アミノ−3−ヒドロキシ安息香酸類の製造方法。
[In the formula, R 1 represents a hydrogen atom, a hydroxy group, a methoxy group, an amino group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a carboxy group, a methyl group and an ethyl group, and R 2 is a hydrogen atom or a hydroxy group. , Methoxy group, amino group, fluorine atom, chlorine atom, bromine atom, iodine atom, carboxy group, methyl group, or ethyl group. ]
The method of <19> or <20>, which is a 4-aminobenzoic acid derivative represented by.
<22> In the amino acid sequence shown in SEQ ID NO: 4 or an amino acid sequence having at least 90% identity with the amino acid sequence, it corresponds to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 4. A polypeptide having 4-aminobenzoic acid hydroxide activity, wherein the amino acid residue at the position is phenylalanine.
<23> In the amino acid sequence shown in SEQ ID NO: 4 or an amino acid sequence having at least 90% identity with the amino acid sequence, it corresponds to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 4. A mutant polypeptide having 4-aminobenzoic acid hydroxide activity in which the amino acid residue at the position is replaced with phenylalanine.
<24> In the amino acid sequence shown in SEQ ID NO: 6 or an amino acid sequence having at least 90% identity with the amino acid sequence, it corresponds to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 6. A polypeptide having 4-aminobenzoic acid hydroxide activity, wherein the amino acid residue at the position is phenylalanine.
<25> In the amino acid sequence shown in SEQ ID NO: 6 or an amino acid sequence having at least 90% identity with the amino acid sequence, it corresponds to the 201-position or 222-position, or the 201-position or 222-position of the amino acid sequence shown in SEQ ID NO: 6. A mutant polypeptide having 4-aminobenzoic acid hydroxide activity in which the amino acid residue at the position is replaced with phenylalanine.
<26> In the amino acid sequence shown in SEQ ID NO: 8 or an amino acid sequence having at least 90% identity with the amino acid sequence, it corresponds to the 203 or 224 position, or the 203 or 224 position of the amino acid sequence shown in SEQ ID NO: 8. A polypeptide having 4-aminobenzoic acid hydroxide activity, wherein the amino acid residue at the position is phenylalanine.
<27> In the amino acid sequence shown in SEQ ID NO: 8 or an amino acid sequence having at least 90% identity with the amino acid sequence, it corresponds to the 203 or 224 position, or the 203 or 224 position of the amino acid sequence shown in SEQ ID NO: 8. A mutant polypeptide having 4-aminobenzoic acid hydroxide activity in which the amino acid residue at the position is replaced with phenylalanine.
<28> The mutant polypeptide according to any one of <22> to <27>, wherein the substitution of the amino acid residue of the mutant polypeptide is a substitution from tyrosine to phenylalanine.
<29> A polynucleotide encoding the polypeptide according to any one of <22> to <28>.
<30> A vector or DNA fragment containing the polynucleotide of <29>.
<31> Transformed cells containing the vector or DNA fragment of <30>.
<32> The transformed cell according to <30>, which is Escherichia coli or a bacterium belonging to the genus Corinebacterium.
<33> Transformed cells of <31> or <32>, which are microorganisms capable of supplying 4-aminobenzoic acids.
<34> Transformed cells of <31> or <32> having an improved supply capacity of 4-aminobenzoic acid.
<35> A method for producing 4-amino-3-hydroxybenzoic acids, which comprises a step of culturing the transformed cells according to any one of <31> to <34>.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

実施例1 4−アミノ−3−ヒドロキシ安息香酸の生産
以下の実施例において、PCRはPrimeSTAR Max Premix(タカラバイオ)を使用して行った。
(1)野生型酵素をコードする遺伝子を含むプラスミドの作製
(a)プラスミドpECsf_gapS_pabABCの作製
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)ATCC13032株から常法によって抽出されたゲノムを鋳型に、プライマーGN14_127(配列番号9、TATTAATTAAATGCGCGTTTTAATTATTGATAATTATGATTC)とGN14_133(配列番号10、TTGCGGCCGCTTGTTTAAACCTCCTTACAGAAAAATGGTTGGGCG)を用いたPCRにて4−アミノ−4−デオキシコリスミ酸シンターゼ及び4−アミノ−4−デオキシコリスミ酸リアーゼをコードする遺伝子が含まれたDNA断片を増幅し、これをプラスミドpECsf_gapS(特願2015−25491参照)のPacI部位とNotI部位の間に挿入することで、プラスミドpECsf_gapS_pabABCを得た。
Example 1 Production of 4-amino-3-hydroxybenzoic acid In the following examples, PCR was performed using PrimeSTAR Max Premix (Takara Bio).
(1) Preparation of plasmid containing a gene encoding a wild-type enzyme (a) Preparation of plasmid pECsf_gapS_babABC Using the genome extracted by a conventional method from the Polymerase chain reaction ATCC13032 strain as a template, primer GN14_127 (SEQ ID NO:). 9. PCR using TATTAATTAAATGCGCGTTTTAATTATTGATAATTATGATTC) and GN14_133 (SEQ ID NO: 10, TTGCGGCCGCTTGTTTAAACCTCCTTACAGAAAAATGGTTGGGCG) contained genes encoding 4-amino-4-deoxycholismate synthase and 4-amino-4-deoxychorismate ligase. The DNA fragment was amplified and inserted between the PacI site and the NotI site of the plasmid pECsf_gapS (see Japanese Patent Application No. 2015-25491) to obtain the plasmid pECsf_gapS_pabABC.

(b)プラスミドpECsf_gapS_pabABC_HFM122の作製
上記で得られたプラスミドpECsf_gapS_pabABCを鋳型に、プライマーpabABCcory vec R(配列番号11、AAATTTAAACCTCCTTTACAGAAAAATGGTTGG)とpabABCcory vec F(配列番号12、GGAGGTTTAAACAAGCGGCCGCGATATC)を用いたPCRにてベクター用DNA断片を合成した。続いて4−アミノ安息香酸水酸化活性を有するポリペプチドHFM122をコードする遺伝子(配列番号1)を含むプラスミドを人工遺伝子合成により作製し、これを鋳型としてプライマーpECsfD HFM122 F(配列番号13、AGGAGGTTTAAATTTATGCGCACTCAGGTGGCTAT)とpECsfD HFM122 R(配列番号14、CTTGTTTAAACCTCCTTATACGAGTGGCAGTCCTA)を用いたPCRにてインサート用DNA断片を合成した。これらのPCR産物に対してDpnI(タカラバイオ)による処理を行った後、NucleoSpin Gel and PCR Clean−up(タカラバイオ)を用いて各DNA断片を精製し、In−Fusion HD Cloning Kit(タカラバイオ)により連結することでプラスミドpECsf_gapS_pabABC_HFM122を構築した。得られたプラスミド溶液を用いてECOS Competent E. coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地(Bacto Trypton 1%、Yeast Extract 0.5%、NaCl 1%,カナマイシン硫酸塩50μg/mL、寒天 1.5%)に塗布した後37℃で一晩静置し、得られたコロニーに対しSapphire Amp(タカラバイオ)及びプライマーpabABC+pobA for CPCR F (配列番号15,GCTATCAAAACATTCGGCACATTGGTTTTCC)、pabABC+pobA for CPCR R(配列番号16,GGAAGATGCGTGATCTGATCCTTCAACTC)を用いたPCR反応を行い、目的DNA断片の導入が確認された形質転換株を選抜した。得られた形質転換株をLBKm液体培地(Bacto Trypton 1%、Yeast Extract 0.5%、NaCl 1%,カナマイシン硫酸塩50μg/mL)2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
(B) Preparation of plasmid pECsf_gapS_pabABC_HFM122 Using the plasmid pECsf_gapS_pabABC obtained above as a template, the primers pabABCcolor vec R (SEQ ID NO: 11, AAATTAAACCTCCTTTACAGAAAAATGGTTGG) and pabAGC for AAATTTAAACCTCCTTTACAGAAAAATGGTTGG Was synthesized. Subsequently, a plasmid containing a gene (SEQ ID NO: 1) encoding the polypeptide HFM122 having 4-aminobenzoic acid hydroxylation activity was prepared by artificial gene synthesis, and the primer pECsfD HFM122 F (SEQ ID NO: 13, AGGAGGTTTAAATTTATGCGCACTCAGGTGGCTAT) was prepared using this as a template. And pECsfD HFM122 R (SEQ ID NO: 14, CTTGTTTAAACCTCCTTATACGAGTGGCAGTCCTA) was used to synthesize a DNA fragment for insertion. After treating these PCR products with DpnI (Takara Bio), each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and In-Fusion HD Cloning Kit (Takara Bio). The plasmid pECsf_gapS_pabABC_HFM122 was constructed by ligation with. Using the obtained plasmid solution, ECOS Compent E. E. coli DH5α strain (Nippon Gene) was transformed and the cell fluid was applied to LBKm agar medium (Bacto Trypton 1%, Yeast Extract 0.5%, NaCl 1%, kanamycin sulfate 50 μg / mL, agar 1.5%). After that, the colonies were allowed to stand overnight at 37 ° C., and the obtained colonies were subjected to Sapphire Amp (Takarabio) and primers pabABC + pobA for CPCR F (SEQ ID NO: 15, GCTATCAAAACATTCGGCACATTGGTTTTCC) and pabABC + pobA for CPCR R (SEQ ID NO: 16, GTACTG). A PCR reaction was carried out, and a transformant in which the introduction of the target DNA fragment was confirmed was selected. The obtained transformant was inoculated into 2 mL of LBKm liquid medium (Bacto Tryptone 1%, Yeast Extract 0.5%, NaCl 1%, kanamycin sulfate 50 μg / mL) and cultured at 37 ° C. overnight. A plasmid was purified from this culture medium using NucleoSpin plasmid EasyPure (Takara Bio).

(c)プラスミドpECsf_gapS_pabABC_tuD_HFM122の作製
上記で得られたプラスミドpECsf_gapS_pabABC_HFM122を鋳型に、プライマーpabC last R(配列番号17、TTACAGAAAAATGGTTGGGCGCAA)とHFM122 F(配列番号18、ATGCGCACTCAGGTGGCTATCG)を用いたPCRにてベクター用DNA断片を合成した。続いて、コリネバクテリウム・グルタミカムATCC13032株が有するtuf遺伝子(cg0587)のプロモーター(以下、tuプロモーターと称する)を含むDNA断片(配列番号19、TACGTACCTGCAGGTAGCGTGTCAGTAGGCGCGTAGGGTAAGTGGGGTAGCGGCTTGTTAGATATCTTGAAATCGGCTTTCAACAGCATTGATTTCGATGTATTTAGCTGGCCGTTACCCTGCGAATGTCCACAGGGTAGCTGGTAGTTTGAAAATCAACGCCGTTGCCCTTAGGATTCAGTAACTGGCACATTTTGTAATGCGCTAGATCTGTGTGCTCAGTCTTCCAGGCTGCTTATCACAGTGAAAGCAAAACCAATTCGTGGCTGCGAAAGTCGTAGCCACCACGAAGTCCAAAGGAGGATCTAAATTATGAATAATATAAAAGGAGGAATTAATTAA)を人工遺伝子合成により作製し、これを鋳型としてプライマーpabC−Ptu F(配列番号20、ACCATTTTTCTGTAATACGTACCTGCAGGTAGCGTG)とPtu−HFM122 R(配列番号21、CACCTGAGTGCGCATTTAATTAATTCCTCCTTTTA)を用いたPCRにてインサート用DNA断片を合成した。これらのPCR産物に対してDpnI(タカラバイオ)による処理を行った後、NucleoSpin Gel and PCR Clean−up(タカラバイオ)を用いて各DNA断片を精製し、In−Fusion HD Cloning Kit(タカラバイオ)により連結することでプラスミドpECsf_gapS_pabABC_tuD_HFM122を構築した。得られたプラスミド溶液を用いてECOS Competent E. coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地に塗布した後37℃で一晩静置し、得られたコロニーに対しSapphire Amp(タカラバイオ)及びプライマーPtu seq 1(配列番号22,GCTTGTTAGATATCTTGAAATCGGCTTTC)、pabABC+pobA for CPCR R(配列番号16,GGAAGATGCGTGATCTGATCCTTCAACTC)を用いたPCR反応を行い、目的DNA断片の導入が確認された形質転換株を選抜した。得られた形質転換株をLBKm液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
構築したプラスミドにおいては、gapプロモーターの制御下に4−アミノ−4−デオキシコリスミ酸シンターゼ及び4−アミノ−4−デオキシコリスミ酸リアーゼをコードする遺伝子が連結され、さらにtuプロモーターの制御下に野生型HFM122をコードする遺伝子が連結されている。
(C) Preparation of plasmid pECsf_gapS_pabABC_tuD_HFM122 Using the plasmid pECsf_gapS_pabABC_HFM122 obtained above as a template, primer pabC last R (SEQ ID NO: 17, TTACAGAAAAATGGTTGGGCGCAA) and HFM122 Synthesized. Then, Corynebacterium tuf gene (Cg0587) of potassium glutamicum ATCC13032 strain has a promoter produced by artificial gene synthesis DNA fragment (SEQ ID NO: 19, TieishijitieishishitijishieijijitieijishijitijitishieijitieijijishijishijitieijijijitieieijitijijijijitieijishijijishititijititieijieitieitishititijieieieitishijijishitititishieieishieijishieititijieitititishijieitijitieitititieijishitijijishishijititieishishishitijishijieieitijitishishieishieijijijitieijishitijijitieijitititijieieieieitishieieishijishishijititijishishishititieijijieititishieijitieieishitijijishieishieititititijitieieitijishijishitieijieitishitijitijitijishitishieijitishititishishieijijishitijishititieitishieishieijitijieieieijishieieieieishishieieititishijitijijishitijishijieieieijitishijitieijishishieishishieishijieieijitishishieieieijijieijijieitishitieieieititieitijieieiTAATATAAAAGGAGGAATTAATTAA) containing (hereinafter, referred to as tu promoter), this as a template A DNA fragment for insertion was synthesized by PCR using the primer pabC-Ptu F (SEQ ID NO: 20, ACCATTTTTCTGTAATACGTACCTGCAGGTAGCGTG) and Ptu-HFM122 R (SEQ ID NO: 21, CACCTGAGTGCGCATTTAATTAATTCCTCCTTTTA). After treating these PCR products with DpnI (Takara Bio), each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and In-Fusion HD Cloning Kit (Takara Bio). The plasmid pECsf_gapS_pabABC_tuD_HFM122 was constructed by ligation with. Using the obtained plasmid solution, ECOS Compent E. The coli DH5α strain (Nippon Gene) was transformed, the cell solution was applied to the LBKm agar medium, and the cells were allowed to stand overnight at 37 ° C., and the obtained colonies were subjected to Sapphire Amp (Takarabio) and primer Ptu seq 1 (SEQ ID NO:). 22, GCTTGTTAGATATCTTGAAATCGGCTTTC), pabABC + pubA for CPCR R (SEQ ID NO: 16, GGAAGATGCGTGATCTGATCCTTCAACTC) was used for PCR reaction, and transformants in which the introduction of the target DNA fragment was confirmed were selected. The obtained transformant was inoculated into 2 mL of LBKm liquid medium and cultured at 37 ° C. overnight. A plasmid was purified from this culture medium using NucleoSpin plasmid EasyPure (Takara Bio).
In the constructed plasmid, the genes encoding 4-amino-4-deoxychorismate synthase and 4-amino-4-deoxychorismate ligase are ligated under the control of the gap promoter, and further under the control of the tu promoter. The gene encoding wild-type HFM122 is linked.

(d)その他のプラスミドの作製
上記で得られたプラスミドpECsf_gapS_pabABC_tuD_HFM122を鋳型に、プライマーpGapABA_tu vec F(配列番号23、GGAGGTTTAAACAAGCGG)とpGapABA_tu vec R(配列番号24、AATTTAGATCCTCCTTTGGACTTCGTG)を用いたPCRにてベクター用DNA断片を合成した。続いて、4−アミノ安息香酸水酸化活性を有する各ポリペプチドをコードする遺伝子(配列番号3,5,7)を含むプラスミドを人工遺伝子合成により作製し、これを鋳型として表1の「プライマー」欄に示すプライマーを用いたPCRにてインサート用DNA断片を合成した。これらのPCR産物に対してDpnI(タカラバイオ)による処理を行った後、NucleoSpin Gel and PCR Clean−up(タカラバイオ)を用いて各DNA断片を精製し、In−Fusion HD Cloning Kit(タカラバイオ)により連結することで表1の「プラスミド」欄に示すプラスミドを構築した。得られたプラスミド溶液を用いてECOS Competent E. coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地に塗布した後37℃で一晩静置し、得られたコロニーに対しSapphire Amp(タカラバイオ)及びプライマーPtu seq 1(配列番号22,GCTTGTTAGATATCTTGAAATCGGCTTTC)、pabABC+pobA for CPCR R(配列番号16,GGAAGATGCGTGATCTGATCCTTCAACTC)を用いたPCR反応を行い、目的DNA断片の導入が確認された形質転換株を選抜した。得られた形質転換株をLBKm液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
構築したプラスミドにおいては、gapプロモーターの制御下に4−アミノ−4−デオキシコリスミ酸シンターゼ及び4−アミノ−4−デオキシコリスミ酸リアーゼをコードする遺伝子が連結され、さらにtuプロモーターの制御下に野生型水酸化酵素をコードする遺伝子が連結されている。
(D) Preparation of other plasmids Using the plasmid pECsf_gapS_pabABC_tuD_HFM122 obtained above as a template, primers pGapABA_tu vec F (SEQ ID NO: 23, GGAGGTTTAAACAAGCGG) and pGapABA_tu vec F (SEQ ID NO: 23, GGAGGTTTAAACAAGCGG) and pGapABA_tu vec Fragments were synthesized. Subsequently, a plasmid containing a gene (SEQ ID NO: 3, 5, 7) encoding each polypeptide having 4-aminobenzoic acid hydroxylation activity was prepared by artificial gene synthesis, and this was used as a template for the “primer” in Table 1. A DNA fragment for insertion was synthesized by PCR using the primers shown in the column. After treating these PCR products with DpnI (Takara Bio), each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and In-Fusion HD Cloning Kit (Takara Bio). The plasmids shown in the "plasmid" column of Table 1 were constructed by ligation with. Using the obtained plasmid solution, ECOS Compent E. The coli DH5α strain (Nippon Gene) was transformed, the cell solution was applied to the LBKm agar medium, and the cells were allowed to stand overnight at 37 ° C., and the obtained colonies were subjected to Sapphire Amp (Takarabio) and primer Ptu seq 1 (SEQ ID NO:). 22, GCTTGTTAGATATCTTGAAATCGGCTTTC), pabABC + pubA for CPCR R (SEQ ID NO: 16, GGAAGATGCGTGATCTGATCCTTCAACTC) was used for PCR reaction, and transformants in which the introduction of the target DNA fragment was confirmed were selected. The obtained transformant was inoculated into 2 mL of LBKm liquid medium and cultured at 37 ° C. overnight. A plasmid was purified from this culture medium using NucleoSpin plasmid EasyPure (Takara Bio).
In the constructed plasmid, the genes encoding 4-amino-4-deoxychorismate synthase and 4-amino-4-deoxychorismate lyase are ligated under the control of the gap promoter, and further under the control of the tu promoter. The gene encoding the wild lyase is linked.

Figure 2021101626
Figure 2021101626

(2)変異型酵素をコードする遺伝子を含むプラスミドの作製
変異型酵素をコードする遺伝子を含むプラスミドの作製について、HFM77の201位のチロシンがフェニルアラニンに置換された変異型酵素をコードする遺伝子を含むプラスミドの作製を例として以下に示す。
プラスミドpECsf_gapS_pabABC_tu_HFM77を鋳型として、相補的プライマーHFM77 Y201F F(配列番号31、CTCATCTTCGCACATCACGACCGCGGA)、HFM77 Y201F R(配列番号32、ATGTGCGAAGATGAGCTCTTCGGATGA)を用いたPCRにてプラスミドpECsf_gapS_pabABC_tu_HFM77_Y201Fを構築した。PCR産物に対してDpnI(タカラバイオ)による処理を行い、処理後の液を用いてECOS Competent E. coli DH5α株(ニッポンジーン)を形質転換し、細胞液をLBKm寒天培地に塗布した後37℃で一晩静置し、得られたコロニーを形質転換株として選抜した。形質転換株をLBKm液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(タカラバイオ)を用いてプラスミドの精製を行った。
同様に、プラスミドpECsf_gapS_pabABC_tu_HFM77に代えて表2の「鋳型」に示すプラスミドを用い、プライマーHFM77 Y201F F及びHFM77 Y201F Rに代えて表2の「プライマー」に示すプライマーを用いたPCRにて各酵素変異体をコードする遺伝子を含むプラスミドを得た。
(2) Preparation of a plasmid containing a gene encoding a mutant enzyme Regarding the preparation of a plasmid containing a gene encoding a mutant enzyme, a gene encoding a mutant enzyme in which tyrosine at position 201 of HFM77 is replaced with phenylalanine is included. The preparation of the plasmid is shown below as an example.
The plasmid pECsf_gapS_pabABC_tu_HFM77 was used as a template, and the complementary primers HFM77 Y201F F (SEQ ID NO: 31, CTCATCTTCGCACATCACGACCGCGGA) and HFM77 Y201F R (SEQ ID NO: 32, ATGTGCGAAGATGAGCTCTTCGGATGA) were used for PCR. The PCR product was treated with DpnI (Takara Bio), and the treated liquid was used for ECOS Compentent E.I. The coli DH5α strain (Nippon Gene) was transformed, the cell fluid was applied to an LBKm agar medium, and the cells were allowed to stand overnight at 37 ° C., and the obtained colonies were selected as transformants. The transformant was inoculated into 2 mL of LBKm liquid medium and cultured at 37 ° C. overnight. A plasmid was purified from this culture medium using NucleoSpin plasmid EasyPure (Takara Bio).
Similarly, each enzyme mutant was subjected to PCR using the plasmid shown in the "template" of Table 2 in place of the plasmid pECsf_gapS_pabABC_tu_HFM77 and the primers shown in the "primer" of Table 2 in place of the primers HFM77 Y201F F and HFM77 Y201F R. A plasmid containing the gene encoding the above was obtained.

Figure 2021101626
Figure 2021101626

(3)プラスミドの宿主細胞への導入
上記で得られた各プラスミドを用いて、コリネバクテリウム・グルタミカムDRHG145株(特願2014−523757参照)をエレクトロポレーション法(Bio−rad)により形質転換した。得られた形質転換細胞液をLBKm寒天培地に塗布した後30℃で2日間静置し、得られたコロニーを形質転換株とした。
(3) Introduction of plasmid into host cells Using each of the plasmids obtained above, Corynebacterium glutamicum DRHG145 strain (see Japanese Patent Application No. 2014-523757) was transformed by the electroporation method (Bio-rad). .. The obtained transformed cell fluid was applied to LBKm agar medium and then allowed to stand at 30 ° C. for 2 days, and the obtained colonies were used as transformants.

(4)形質転換株の培養
上記で得られた形質転換株をそれぞれ表3に示すCGYE培地(カナマイシン硫酸塩50μg/mLを含む)1mLに接種し、30℃で一晩培養した。得られた培養液100μLを表4に示すCGXII培地(カナマイシン硫酸塩50μg/mLを含む)10mLに接種し、30℃で約48時間培養した後、遠心分離により菌体を除去したものを培養上清とした。得られた培養上清中の4−アミノ−3−ヒドロキシ安息香酸濃度を参考例1の方法に従って定量し、下記式に従い4−アミノ−3−ヒドロキシ安息香酸の生産能向上率を算出した。ここで、「WT」は「野生型酵素をコードする遺伝子を含むプラスミドが導入された形質転換株」を示し、「MT」は「当該野生型酵素をコードする遺伝子を含むプラスミドから作製された変異型酵素をコードする遺伝子を含むプラスミドが導入された形質転換株」を示す。
(4) Culturing of transformants The transformants obtained above were inoculated into 1 mL of the CGYE medium (containing 50 μg / mL of kanamycin sulfate) shown in Table 3 and cultured at 30 ° C. overnight. 100 μL of the obtained culture solution was inoculated into 10 mL of the CGXII medium (including 50 μg / mL of kanamycin sulfate) shown in Table 4, cultured at 30 ° C. for about 48 hours, and then the cells from which the cells had been removed by centrifugation were added to the culture. It was clean. The concentration of 4-amino-3-hydroxybenzoic acid in the obtained culture supernatant was quantified according to the method of Reference Example 1, and the improvement rate of 4-amino-3-hydroxybenzoic acid production was calculated according to the following formula. Here, "WT" indicates "a transformant into which a plasmid containing a gene encoding a wild-type enzyme has been introduced", and "MT" is "a mutation prepared from a plasmid containing a gene encoding the wild-type enzyme". A transformant into which a plasmid containing a gene encoding a type enzyme has been introduced is shown.

(数1)
生産能向上率=MTの4−アミノ−3−ヒドロキシ安息香酸生産能/WTの4−アミノ−3−ヒドロキシ安息香酸生産能
(Number 1)
Productivity improvement rate = MT 4-amino-3-hydroxybenzoic acid production capacity / WT 4-amino-3-hydroxybenzoic acid production capacity

Figure 2021101626
Figure 2021101626

Figure 2021101626
Figure 2021101626

(5)結果
表5に示す通り、各変異型酵素を導入した菌株は野生型酵素を導入した菌株よりも4−アミノ−3−ヒドロキシ安息香酸の生産能が向上した。
(5) Results As shown in Table 5, the strains into which each mutant enzyme was introduced had improved productivity of 4-amino-3-hydroxybenzoic acid as compared with the strains into which wild-type enzymes were introduced.

Figure 2021101626
Figure 2021101626

参考例1 4−アミノ−3−ヒドロキシ安息香酸の定量
4−アミノ−3−ヒドロキシ安息香酸の定量はHPLCにより行った。HPLC分析に供する反応液を0.1%リン酸にて適宜希釈した後、アクロプレップ96フィルタープレート(0.2μmGHP膜、日本ポール)を用いて不溶物の除去を行なった。
HPLCの装置は、Chromaster(日立ハイテクサイエンス)を用いた。分析カラムには、L−カラム ODS(4.6mm I.D.×150mm、化学物質評価研究機構)を用い、溶離液Aを0.1M リン酸二水素カリウムの0.1%リン酸溶液、溶離液Bを70%メタノールとし、流速1.0mL/分、カラム温度40℃の条件にてグラジエント溶出を行なった。4−アミノ−3−ヒドロキシ安息香酸の検出にはUV検出器(検出波長280nm)を用いた。標準試料〔4−アミノ−3−ヒドロキシ安息香酸(販売元コードA1194、東京化成工業)〕を用いて濃度検量線を作成し、濃度検量線に基づいて4−アミノ−3−ヒドロキシ安息香酸の定量を行なった。
Reference Example 1 Quantification of 4-amino-3-hydroxybenzoic acid The quantification of 4-amino-3-hydroxybenzoic acid was performed by HPLC. The reaction solution to be subjected to HPLC analysis was appropriately diluted with 0.1% phosphoric acid, and then insoluble matter was removed using an Acroprep 96 filter plate (0.2 μm GHP membrane, Nippon Pole).
A Chromaster (Hitachi High-Tech Science) was used as the HPLC device. For the analysis column, an L-column ODS (4.6 mm ID × 150 mm, Chemicals Evaluation and Research Institute) was used, and the eluent A was 0.1 M potassium dihydrogen phosphate solution in 0.1% phosphoric acid. The eluent B was 70% methanol, and gradient elution was performed under the conditions of a flow rate of 1.0 mL / min and a column temperature of 40 ° C. A UV detector (detection wavelength 280 nm) was used to detect 4-amino-3-hydroxybenzoic acid. A concentration calibration curve was prepared using a standard sample [4-amino-3-hydroxybenzoic acid (distributor code A1194, Tokyo Chemical Industry)], and 4-amino-3-hydroxybenzoic acid was quantified based on the concentration calibration curve. Was performed.

Claims (13)

配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列において、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基がフェニルアラニンである、4−アミノ安息香酸水酸化活性を有するポリペプチド。 In the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence, the amino acid at the position 201 or 222, or the position corresponding to the position 201 or 222 of the amino acid sequence shown in SEQ ID NO: 2. A polypeptide having 4-aminobenzoic acid hydroxylation activity, the residue of which is phenylalanine. 配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ安息香酸水酸化活性を有する変異ポリペプチドの製造方法。 In a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity, position 201 of the amino acid sequence shown in SEQ ID NO: 2 Alternatively, a method for producing a mutant polypeptide having 4-aminobenzoic acid hydroxylation activity, which comprises substituting an amino acid residue at the position corresponding to the position 222, 201 or 222 with phenylalanine. 配列番号2で示されるアミノ酸配列又はこれと少なくとも51%の同一性を有するアミノ酸配列からなり、かつ4−アミノ安息香酸水酸化活性を有するポリペプチドにおいて、配列番号2で示されるアミノ酸配列の201位若しくは222位、又は201位若しくは222位に相当する位置におけるアミノ酸残基をフェニルアラニンに置換することを含む、4−アミノ安息香酸水酸化活性の向上方法。 In a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having at least 51% identity with the amino acid sequence and having 4-aminobenzoic acid hydroxylation activity, position 201 of the amino acid sequence shown in SEQ ID NO: 2 Alternatively, a method for improving 4-aminobenzoic acid hydroxylation activity, which comprises substituting phenylalanine for an amino acid residue at the position corresponding to the position 222, 201 or 222. アミノ酸残基の置換がチロシンからフェニルアラニンへの置換である、請求項2又は3記載の方法。 The method according to claim 2 or 3, wherein the substitution of the amino acid residue is a substitution from tyrosine to phenylalanine. 請求項1記載のポリペプチドをコードするポリヌクレオチド。 A polynucleotide encoding the polypeptide according to claim 1. 請求項5記載のポリヌクレオチドを含むベクター又はDNA断片。 A vector or DNA fragment containing the polynucleotide according to claim 5. 請求項6記載のベクター又はDNA断片を含有する形質転換細胞。 A transformed cell containing the vector or DNA fragment according to claim 6. 大腸菌又はコリネバクテリム属菌である、請求項7記載の形質転換細胞。 The transformed cell according to claim 7, which is Escherichia coli or a bacterium belonging to the genus Corinebacterium. 4−アミノ安息香酸類を供給可能な微生物である、請求項7又は8記載の形質転換細胞。 The transformed cell according to claim 7 or 8, which is a microorganism capable of supplying 4-aminobenzoic acid. 請求項7〜9のいずれか1項記載の形質転換細胞を培養する工程を含む、4−アミノ−3−ヒドロキシ安息香酸類の製造方法。 A method for producing 4-amino-3-hydroxybenzoic acid, which comprises the step of culturing the transformed cell according to any one of claims 7 to 9. 4−アミノ−3−ヒドロキシ安息香酸類を培地から回収する工程を含む、請求項10記載の方法。 10. The method of claim 10, comprising the step of recovering 4-amino-3-hydroxybenzoic acids from the medium. 培養が4−アミノ安息香酸類の存在下で行われる、請求項10又は11記載の方法。 The method according to claim 10 or 11, wherein the culture is carried out in the presence of 4-aminobenzoic acids. 4−アミノ−3−ヒドロキシ安息香酸類が、下記の一般式(1):
Figure 2021101626
〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示し、X及びXは水素原子又はヒドロキシ基であって少なくとも一方はヒドロキシ基を示す。〕
で示される4−アミノ−3−ヒドロキシ安息香酸誘導体であり、
4−アミノ安息香酸類が、下記の一般式(2):
Figure 2021101626
〔式中、Rは水素原子、ヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、エチル基を示し、Rは水素原子又はヒドロキシ基、メトキシ基、アミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、メチル基、又はエチル基を示す。〕
で示される4−アミノ安息香酸誘導体である請求項10〜12のいずれか1項記載の方法。
4-Amino-3-hydroxybenzoic acids have the following general formula (1):
Figure 2021101626
[In the formula, R 1 represents a hydrogen atom, a hydroxy group, a methoxy group, an amino group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a carboxy group, a methyl group, and an ethyl group, and R 2 is a hydrogen atom or a hydroxy group. , Methoxy group, amino group, fluorine atom, chlorine atom, bromine atom, iodine atom, carboxy group, methyl group, or ethyl group, X 1 and X 2 are hydrogen atom or hydroxy group, and at least one of them is a hydroxy group. Is shown. ]
It is a 4-amino-3-hydroxybenzoic acid derivative represented by
4-Aminobenzoic acids have the following general formula (2):
Figure 2021101626
[In the formula, R 1 represents a hydrogen atom, a hydroxy group, a methoxy group, an amino group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a carboxy group, a methyl group and an ethyl group, and R 2 is a hydrogen atom or a hydroxy group. , Methoxy group, amino group, fluorine atom, chlorine atom, bromine atom, iodine atom, carboxy group, methyl group, or ethyl group. ]
The method according to any one of claims 10 to 12, which is a 4-aminobenzoic acid derivative represented by.
JP2019233484A 2019-11-08 2019-12-24 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof Active JP7502858B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019233484A JP7502858B2 (en) 2019-12-24 2019-12-24 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
PCT/JP2020/041581 WO2021090925A1 (en) 2019-11-08 2020-11-06 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
US17/775,331 US20220411831A1 (en) 2019-11-08 2020-11-06 Polypeptide Having 4-Aminobenzoic Acid Hydroxylation Activity and Use Thereof
CN202080077503.2A CN114651066A (en) 2019-11-08 2020-11-06 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233484A JP7502858B2 (en) 2019-12-24 2019-12-24 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof

Publications (2)

Publication Number Publication Date
JP2021101626A true JP2021101626A (en) 2021-07-15
JP7502858B2 JP7502858B2 (en) 2024-06-19

Family

ID=76754368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233484A Active JP7502858B2 (en) 2019-11-08 2019-12-24 Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof

Country Status (1)

Country Link
JP (1) JP7502858B2 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Accession No. A0A2S0NEB7, Definition: 4-hydroxybenzoate 3-monooxygenase", DATABASE: UNIPROT/GENESEQ [ONLINE], JPN6020050268, 18 July 2018 (2018-07-18), ISSN: 0005143849 *
"Accession No. A0A4D7QEF0, Definition: 4-hydroxybenzoate 3-monooxygenase", DATABASE: UNIPROT/GENESEQ [ONLINE], JPN6020050266, 31 July 2019 (2019-07-31), ISSN: 0005143848 *
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 262, no. 13, JPN6020050271, 1987, pages 6060 - 6068, ISSN: 0005143850 *

Also Published As

Publication number Publication date
JP7502858B2 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
JP7197313B2 (en) Method for producing 3-hydroxy-4-aminobenzoic acids
CN111019878B (en) Recombinant escherichia coli with improved L-threonine yield as well as construction method and application thereof
EP3144385B1 (en) Microorganism with improved l-threonine productivity, and method for producing l-threonine by using same
Kabus et al. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production
JP2020505914A (en) Novel polypeptide and method for producing IMP using the same
WO2021050371A1 (en) Biotin synthases for efficient production of biotin
JP7488649B2 (en) Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
JP7502852B2 (en) Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
WO2021090925A1 (en) Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
JP7502858B2 (en) Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
JP7223480B2 (en) Polypeptide having 4-aminobenzoic acid hydroxylating activity and its use
WO2021241219A1 (en) Gallic acid synthesizing enzyme
JP4824035B2 (en) New gene
KR102589135B1 (en) Microorganism having inhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof
JP2024014569A (en) Polypeptide having 4-aminobenzoic acid hydroxylation activity and use thereof
JP7475866B2 (en) Transformed cells capable of producing 2,5-pyridinedicarboxylic acids
JP7389547B2 (en) Monoacylglycerol lipase variant and method for producing the same
JP7492817B2 (en) Monoacylglycerol lipase variant and method for producing same
KR20080074286A (en) Novel promoter and uses thereof
WO2023112933A1 (en) Novel promoter
JP7389548B2 (en) Monoacylglycerol lipase variant and method for producing the same
KR20170004375A (en) Method for producing gamma aminobutyric acid by using modular scaffolds
JP2024505616A (en) Novel promoter variants for constant expression and their uses
KR20230058876A (en) Variant of 7 beta-hydroxysteroid dehydrogenase from Ruminococcus gnavus for the conversion rate increasement of 7-Keto-LCA to UDCA and a method for producing UDCA using the same
EP4032977A1 (en) Microorganism having increased activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240607