JP2021099946A - Manufacturing method of membrane electrode assembly - Google Patents

Manufacturing method of membrane electrode assembly Download PDF

Info

Publication number
JP2021099946A
JP2021099946A JP2019231487A JP2019231487A JP2021099946A JP 2021099946 A JP2021099946 A JP 2021099946A JP 2019231487 A JP2019231487 A JP 2019231487A JP 2019231487 A JP2019231487 A JP 2019231487A JP 2021099946 A JP2021099946 A JP 2021099946A
Authority
JP
Japan
Prior art keywords
base material
negative electrode
membrane
solid electrolyte
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019231487A
Other languages
Japanese (ja)
Inventor
雄一郎 今村
Yuichiro Imamura
雄一郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019231487A priority Critical patent/JP2021099946A/en
Publication of JP2021099946A publication Critical patent/JP2021099946A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Nonmetal Cutting Devices (AREA)

Abstract

To provide a manufacturing method of a membrane electrode assembly capable of performing a slitting process under a common slit condition for both a formed portion and a non-formed portion of a negative electrode.SOLUTION: A manufacturing method of membrane electrode assembly according to the present invention includes a step (A) of forming a plurality of negative electrodes (102) on a strip-shaped base material (101) at intervals along the longitudinal direction of the base material (101), a step (B) of sequentially laminating a solid electrolyte membrane (103) and a plurality of positive electrodes (104) on individual negative electrodes (102), and a step (C) of slitting a laminate (LM1) including a base material (101), a negative electrode (102), a solid electrolyte membrane (103), and a plurality of positive electrodes (104), and a negative electrode non-forming portion (101N) of the base material into a plurality of rows, and further includes a step (X) of forming an insulating material (105) on at least cutting lines (L1 to L3) of the step (C) on the surface of the negative electrode non-forming portion (101N) of the base material before carrying out the step (C).SELECTED DRAWING: Figure 2

Description

本発明は、膜電極接合体の製造方法に関する。 The present invention relates to a method for producing a membrane electrode assembly.

固体高分子型燃料電池等の固体電池は、負極、固体電解質膜、および正極の積層体である膜電極接合体(Membrane Electrode Assembly, MEA)を備える。
間欠塗工方式による膜電極接合体の製造装置と製造方法の一例については、図1を参照されたい。
A solid-state battery such as a polymer electrolyte fuel cell includes a negative electrode, a solid electrolyte membrane, and a membrane electrode assembly (MEA) which is a laminate of positive electrodes.
See FIG. 1 for an example of a manufacturing apparatus and manufacturing method for a membrane electrode assembly by an intermittent coating method.

はじめに、帯状の金属箔等の基材上に、基材の長手方向(搬送方向)に沿って、間隔を空けて複数の負極を形成する(工程(A))。基材において、基材の搬送方向の前後に隣り合う負極の間の部分(負極が形成されない部分)を、「負極非形成部」と言う。
次いで、個々の負極上に、固体電解質膜と複数条の正極とを順次積層する(工程(B))。負極、固体電解質膜、および正極の積層体である膜電極接合体は、金属箔等の基材の両面に形成してもよい。
First, a plurality of negative electrodes are formed on a base material such as a strip-shaped metal foil at intervals along the longitudinal direction (transportation direction) of the base material (step (A)). In the base material, the portion between the negative electrodes adjacent to each other in the front-rear direction in the transport direction of the base material (the portion where the negative electrode is not formed) is referred to as a “negative electrode non-forming portion”.
Next, a solid electrolyte membrane and a plurality of positive electrodes are sequentially laminated on the individual negative electrodes (step (B)). The membrane electrode assembly, which is a laminate of the negative electrode, the solid electrolyte membrane, and the positive electrode, may be formed on both sides of a base material such as a metal foil.

次いで、各正極の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材を形成する(工程(X))。次いで、基材、負極、固体電解質膜、および複数条の正極を含む積層体と、基材の負極非形成部とを、複数条にスリットする(工程(C)、スリット工程)。
次いで、膜電極接合体をプレスする(工程(D))。
最後に、枚葉切断して、基材の少なくとも一方の面上に膜電極接合体が形成された基材付き膜電極接合体が製造される(工程(E))。
Next, a plan-view line-shaped insulating material is formed next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode (step (X)). Next, the laminate including the base material, the negative electrode, the solid electrolyte membrane, and the positive electrode having a plurality of rows, and the negative electrode non-forming portion of the base material are slit into a plurality of rows (step (C), slit step).
Next, the membrane electrode assembly is pressed (step (D)).
Finally, a single-wafer cutting is performed to produce a membrane electrode assembly with a substrate in which a membrane electrode assembly is formed on at least one surface of the substrate (step (E)).

例えば、特許文献1には、金属箔に活物質を塗布してなり、二次電池の電極の材料として使用される母材を、母材の幅方向に沿った複数の切断部を備えたスリッタを用いて、複数の帯状のシート材に切断する切断方法が開示されている(請求項3)。一態様において、上記母材は、長手方向に沿って、上記活物質が間欠的に塗布されたものである(請求項4)。 For example, in Patent Document 1, an active material is applied to a metal foil, and a base material used as a material for an electrode of a secondary battery is a slitter provided with a plurality of cut portions along the width direction of the base material. Discloses a cutting method for cutting into a plurality of strip-shaped sheet materials using the above (claim 3). In one aspect, the base material is one in which the active material is intermittently applied along the longitudinal direction (claim 4).

特開2019−018289号公報Japanese Unexamined Patent Publication No. 2019-018289

スリット工程では、スリット対象物の上下にそれぞれ回転刃である上刃と下刃を配置してスリットする。例えば、横方向については上刃と下刃の間に間隔を空け、縦方向については上刃の下端部の高さ位置と下刃の上端部の高さ位置が重なるように、上刃と下刃をセットするギャングスリット方式で切断を行うことができる。上刃と下刃の横方向の間隔を「クリアランス」と言い、上刃と下刃の縦方向の重なりを「ラップ」と言う。 In the slitting process, the upper blade and the lower blade, which are rotary blades, are arranged above and below the slit object to slit. For example, in the horizontal direction, leave a space between the upper blade and the lower blade, and in the vertical direction, the upper blade and the lower blade overlap so that the height position of the lower end of the upper blade and the height position of the upper end of the lower blade overlap. Cutting can be performed by the gang slit method that sets the blade. The lateral distance between the upper and lower blades is called "clearance", and the vertical overlap between the upper and lower blades is called "wrap".

上刃と下刃のクリアランスとラップは、スリット対象物の厚みに応じて調整される。上刃と下刃のクリアランスとラップが適性範囲内であれば、上刃によって形成されるクラックと下刃によって形成されるクラックとがうまく繋がり、良好に切断できる。 The clearance and wrap between the upper and lower blades are adjusted according to the thickness of the slit object. If the clearance between the upper blade and the lower blade and the lap are within an appropriate range, the crack formed by the upper blade and the crack formed by the lower blade are well connected, and good cutting can be performed.

一般的に、スリット対象物の厚みが大きくなる程、上刃と下刃のクリアランスおよびラップは大きく設定する必要がある。基材の負極非形成部の厚みは例えば15μm程度であるのに対し、基材の両面に膜電極接合体を積層した積層体の厚みは例えば600μm程度である。負極形成部と負極非形成部では、スリット対象物の厚みの差が大きく、これら部分を同じスリット条件で切断することはできない。
生産性向上の観点から、負極の形成部と非形成部の両部に対して、共通のスリット条件でスリット工程を実施できることが好ましい。
Generally, the larger the thickness of the slit object, the larger the clearance and wrap between the upper and lower blades need to be set. The thickness of the negative electrode non-forming portion of the base material is, for example, about 15 μm, whereas the thickness of the laminated body in which the membrane electrode assembly is laminated on both sides of the base material is, for example, about 600 μm. There is a large difference in the thickness of the slit object between the negative electrode formed portion and the negative electrode non-formed portion, and these portions cannot be cut under the same slit conditions.
From the viewpoint of improving productivity, it is preferable that the slit process can be performed on both the formed portion and the non-formed portion of the negative electrode under common slit conditions.

本発明は上記事情に鑑みてなされたものであり、負極の形成部と非形成部の両部に対して、共通のスリット条件でスリット工程を実施することが可能な膜電極接合体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method for producing a membrane electrode assembly capable of performing a slitting process on both a formed portion and a non-formed portion of a negative electrode under common slit conditions. The purpose is to provide.

本発明の膜電極接合体の製造方法は、
負極、固体電解質膜、および正極を含む膜電極接合体の製造方法であって、
帯状の基材上に、当該基材の長手方向に沿って、間隔を空けて複数の負極を形成する工程(A)と、
個々の前記負極上に、固体電解質膜と、複数条の正極とを順次積層する工程(B)と、
前記基材、前記負極、前記固体電解質膜、および前記複数条の正極を含む積層体と、前記基材の負極非形成部とを、複数条にスリットする工程(C)とを有し、
さらに、工程(C)を実施する前に、前記基材の前記負極非形成部の表面において、少なくとも工程(C)の切断線上に絶縁材を形成する工程(X)を有するものである。
The method for producing a membrane electrode assembly of the present invention is:
A method for manufacturing a membrane electrode assembly including a negative electrode, a solid electrolyte membrane, and a positive electrode.
A step (A) of forming a plurality of negative electrodes at intervals along the longitudinal direction of the base material on the strip-shaped base material, and
A step (B) of sequentially laminating a solid electrolyte membrane and a plurality of positive electrodes on each of the negative electrodes.
It has a step (C) of slitting a laminate containing the base material, the negative electrode, the solid electrolyte membrane, and the positive electrode of the plurality of rows into a plurality of rows of a non-negative electrode forming portion of the base material.
Further, before carrying out the step (C), there is a step (X) of forming an insulating material on the surface of the negative electrode non-forming portion of the base material at least on the cutting line of the step (C).

本発明によれば、負極の形成部と非形成部の両部に対して、共通のスリット条件でスリット工程を実施することが可能な膜電極接合体の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a membrane electrode assembly capable of performing a slitting step under common slit conditions for both a formed portion and a non-formed portion of the negative electrode.

間欠塗工方式による膜電極接合体の製造装置と製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus and manufacturing method of the membrane electrode assembly by the intermittent coating method. スリット工程前のワークの状態を示す模式平面図である。It is a schematic plan view which shows the state of the work before the slit process. 図2の基材の搬送方向に平行な部分模式断面図である。It is a partial schematic cross-sectional view parallel to the transport direction of the base material of FIG. 図2のIV−IV線模式断面図である。FIG. 2 is a schematic cross-sectional view taken along the line IV-IV of FIG. 図2のV−V線模式断面図である。FIG. 2 is a schematic cross-sectional view taken along the line VV of FIG. 図4の設計変更例を示す模式断面図である。It is a schematic cross-sectional view which shows the design modification example of FIG. 図4のその他の設計変更例を示す模式断面図である。It is a schematic cross-sectional view which shows the other design modification example of FIG.

本発明は、負極、固体電解質膜、および正極を含む膜電極接合体の製造方法に関する。図面を参照して、本発明に係る一実施形態の膜電極接合体の製造方法について、説明する。図1は、間欠塗工方式による膜電極接合体の製造装置と製造方法の一例を示す模式図である。図2は、スリット工程前のワークの状態を示す模式平面図である。図3は、図2の基材の搬送方向に平行な部分模式断面図である。図4は、図2のIV−IV線断面図である。図5は、図2のV−V線断面図である。視認しやすくするため、各図ごとに、各部材の縮尺は適宜異ならせてある。 The present invention relates to a method for producing a membrane electrode assembly including a negative electrode, a solid electrolyte membrane, and a positive electrode. A method for manufacturing a membrane electrode assembly according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an example of a manufacturing apparatus and a manufacturing method of a membrane electrode assembly by an intermittent coating method. FIG. 2 is a schematic plan view showing a state of the work before the slit process. FIG. 3 is a schematic cross-sectional view of a portion parallel to the transport direction of the base material of FIG. FIG. 4 is a sectional view taken along line IV-IV of FIG. FIG. 5 is a sectional view taken along line VV of FIG. In order to make it easier to see, the scale of each member is appropriately different for each drawing.

はじめに、図1に示すように、金属箔ロール等の基材ロールから繰り出された帯状の金属箔等の基材101上に、公知方法にて、間隔を空けて複数の負極102を形成する(工程(A))。具体的には、基材101の長手方向(搬送方向)に沿って、間欠的に負極材料を塗工し、一対のプレスロールからなるロールユニットPR1を用いてプレスして、間隔を空けて複数の負極102を形成する。基材101において、基材101の搬送方向の前後に隣り合う負極102の間の部分(負極102が形成されない部分)を、「負極非形成部101N」と言う。負極非形成部101Nは、外部端子と電気的に接続するための引き出しタブを取り出す部位として利用される部分である。 First, as shown in FIG. 1, a plurality of negative electrodes 102 are formed at intervals on a base material 101 such as a strip-shaped metal foil unwound from a base material roll such as a metal foil roll by a known method (. Step (A). Specifically, the negative electrode material is intermittently applied along the longitudinal direction (transportation direction) of the base material 101, pressed by using the roll unit PR1 composed of a pair of press rolls, and a plurality of sheets are spaced apart from each other. Negative electrode 102 is formed. In the base material 101, a portion between the negative electrodes 102 adjacent to the front and back in the transport direction of the base material 101 (a portion where the negative electrode 102 is not formed) is referred to as a “negative electrode non-forming portion 101N”. The negative electrode non-forming portion 101N is a portion used as a portion for taking out a drawer tab for electrically connecting to an external terminal.

次いで、図1に示すように、公知方法にて、個々の負極102上に、固体電解質膜103と、複数条の正極104とを順次積層する(工程(B))。具体的には、個々の負極102上に、固体電解質膜の材料を塗工し、一対のプレスロールからなるロールユニットPR2を用いてプレスして、固体電解質膜103を形成し、さらに、この固体電解質膜103上に、正極材料を塗工して正極104を形成する。この工程では、1つの負極102に対して、複数条の正極104を形成する。1つの負極102に対して形成される正極の条数は特に制限されず、図示例では、1つの負極102に対して2条の正極104が形成されている。
負極102、固体電解質膜103、および正極104の積層体である膜電極接合体100は、金属箔等の基材101の両面に形成してもよい。
Next, as shown in FIG. 1, the solid electrolyte membrane 103 and the plurality of positive electrodes 104 are sequentially laminated on the individual negative electrodes 102 by a known method (step (B)). Specifically, the material of the solid electrolyte membrane is coated on each negative electrode 102 and pressed by the roll unit PR2 composed of a pair of press rolls to form the solid electrolyte membrane 103, and further, this solid. A positive electrode material is applied onto the electrolyte membrane 103 to form a positive electrode 104. In this step, a plurality of positive electrodes 104 are formed for one negative electrode 102. The number of positive electrodes formed on one negative electrode 102 is not particularly limited, and in the illustrated example, two positive electrodes 104 are formed on one negative electrode 102.
The membrane electrode assembly 100, which is a laminate of the negative electrode 102, the solid electrolyte membrane 103, and the positive electrode 104, may be formed on both surfaces of the base material 101 such as a metal foil.

次いで、図1および図2に示すように、公知方法にて、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材105を形成する(工程(X))。図示例では、2条の正極104の間と外側に、後のスリット工程の3本の切断線L1〜L3に沿って、計3本の絶縁材105を形成している。 Next, as shown in FIGS. 1 and 2, a plan-viewing line-shaped insulating material 105 is formed next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104 by a known method ( Step (X)). In the illustrated example, a total of three insulating materials 105 are formed between and outside the two positive electrodes 104 along the three cutting lines L1 to L3 in the subsequent slitting process.

複数条の正極104の形成領域の幅は、負極102の形成領域の幅より小さく設計することが好ましい。
後のスリット工程の切断線上に負極102と正極104の両方がある場合、これら電極が互いに接触して短絡する恐れがある。そのため、図4に示すように、スリット工程の切断線L1〜L3上に正極104が存在しないように、複数条の正極104の形成領域の幅W4は、負極102の形成領域の幅W2より小さく設計することが好ましい。
It is preferable that the width of the forming region of the plurality of positive electrodes 104 is designed to be smaller than the width of the forming region of the negative electrode 102.
If both the negative electrode 102 and the positive electrode 104 are on the cutting line in the subsequent slitting step, these electrodes may come into contact with each other and cause a short circuit. Therefore, as shown in FIG. 4, the width W4 of the forming region of the positive electrode 104 of the plurality of rows is smaller than the width W2 of the forming region of the negative electrode 102 so that the positive electrode 104 does not exist on the cutting lines L1 to L3 in the slit process. It is preferable to design.

ここで、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに何も形成しない場合、後の膜電極接合体をプレスする工程において、平面視にて正極104の形成領域より外側に位置する負極の両端部はプレス圧が良好にかからず、圧延に追従できずに割れが生じる恐れがある。そのため、図4に示すように、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材105を形成することが好ましい。 Here, when nothing is formed next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104, the positive electrode 104 is formed in a plan view in the subsequent step of pressing the membrane electrode assembly. Press pressure is not applied well to both ends of the negative electrode located outside the region, and the rolling cannot be followed, so that cracks may occur. Therefore, as shown in FIG. 4, it is preferable to form the insulating material 105 having a plan view line shape next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104.

従来の製造方法では、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材105を形成する工程(X)において、負極非形成部101Nには特に何も形成していない。本実施形態では、この工程(X)において、基材101の負極非形成部101Nの表面において、少なくとも後のスリット工程の切断線(図示例ではL1〜L3)上にも絶縁材105を形成する。
すなわち、本実施形態の製造方法では、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材105を形成する工程(X)において、図2、図3、および図5に示すように、平面視ライン状の絶縁材105をそのまま引き延ばし、基材101の負極非形成部101N上にも平面視ライン状の絶縁材105を形成する。
図1では、負極非形成部101N上に形成される平面視ライン状の絶縁材105の図示は省略してある。
In the conventional manufacturing method, in the step (X) of forming the insulating material 105 having a plan view line shape next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104, the negative electrode non-forming portion 101N is formed. Does not form anything in particular. In the present embodiment, in this step (X), the insulating material 105 is formed on the surface of the negative electrode non-forming portion 101N of the base material 101 at least on the cutting lines (L1 to L3 in the illustrated example) of the later slit step. ..
That is, in the manufacturing method of the present embodiment, in the step (X) of forming the insulating material 105 in a plan view line shape next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104, FIG. , 3 and 5, the plan-view line-shaped insulating material 105 is stretched as it is, and the plan-view line-shaped insulating material 105 is also formed on the negative electrode non-forming portion 101N of the base material 101.
In FIG. 1, the plan view line-shaped insulating material 105 formed on the negative electrode non-forming portion 101N is not shown.

次いで、図1に示すように、公知方法にて、ワークを複数条にスリットする(工程(C)、スリット工程)。具体的には、スリッタSLを用いて、基材101、負極102、固体電解質膜103、複数条の正極104、および複数の平面視ライン状の絶縁材105を含む図4に示す第1の積層体LM1と、基材の負極非形成部101Nおよび複数の平面視ライン状の絶縁材105とを含む図5に示す第2の積層体LM2とを、複数条にスリットする。
この工程では、第1の積層体LM1および第2の積層体LM2のいずれについても、スリッタSLの一対の回転刃が平面視ライン状の絶縁材105を通るように、切断を行う(切断線L1〜L3を参照されたい。)。
Next, as shown in FIG. 1, the work is slit into a plurality of rows by a known method (step (C), slit step). Specifically, the first lamination shown in FIG. 4 including a base material 101, a negative electrode 102, a solid electrolyte membrane 103, a plurality of positive electrodes 104, and a plurality of plan-view line-shaped insulating materials 105 using a slitter SL. The body LM1 and the second laminated body LM2 shown in FIG. 5, which includes the negative electrode non-forming portion 101N of the base material and the plurality of plan-view line-shaped insulating materials 105, are slit into a plurality of rows.
In this step, both the first laminated body LM1 and the second laminated body LM2 are cut so that the pair of rotary blades of the slitter SL pass through the insulating material 105 in a plan view line (cutting line L1). See ~ L3.).

次いで、図1に示すように、公知方法にて、膜電極接合体100を一対のプレスロールからなるロールユニットPR3を用いてプレスする(工程(D))。
最後に、公知方法にて枚葉切断を実施して、基材101の少なくとも一方の面上に膜電極接合体100が形成された基材付き膜電極接合体が製造される(工程(E))。
Next, as shown in FIG. 1, the membrane electrode assembly 100 is pressed using the roll unit PR3 composed of a pair of press rolls by a known method (step (D)).
Finally, single-wafer cutting is carried out by a known method to produce a membrane electrode assembly with a substrate in which the membrane electrode assembly 100 is formed on at least one surface of the substrate 101 (step (E)). ).

本実施形態の製造方法では、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材105を形成する工程(X)において、図2〜図5に示すように、平面視ライン状の絶縁材105をそのまま引き延ばす。これによって、基材101の負極非形成部101Nの表面において、少なくともスリット工程の切断線(図示例ではL1〜L3)上に平面視ライン状の絶縁材105を形成する。 In the manufacturing method of the present embodiment, in the step (X) of forming the insulating material 105 in a plan view line shape next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104, FIGS. As shown in 5, the insulating material 105 having a plan view line shape is stretched as it is. As a result, on the surface of the negative electrode non-forming portion 101N of the base material 101, the insulating material 105 having a plan view line shape is formed at least on the cutting lines (L1 to L3 in the illustrated example) of the slit process.

本実施形態の製造方法では、図3に示すように、負極の形成部と非形成部におけるスリット対象物の厚みの差を従来より小さくすることができるので、これら領域を同じスリット条件で切断することができ、生産性を向上することができる。
本実施形態の製造方法では、図3に示すように、負極の形成部と非形成部におけるスリット対象物の厚みの変化を従来より緩やかにできるので、刃への衝撃を緩和し、ワークの変形および電極崩れを抑制することができる。
In the manufacturing method of the present embodiment, as shown in FIG. 3, the difference in thickness of the slit target between the formed portion and the non-formed portion of the negative electrode can be made smaller than before, so these regions are cut under the same slit conditions. Can improve productivity.
In the manufacturing method of the present embodiment, as shown in FIG. 3, the thickness of the slit object between the formed portion and the non-formed portion of the negative electrode can be changed more slowly than before, so that the impact on the blade is alleviated and the work is deformed. And the electrode collapse can be suppressed.

本実施形態の製造方法では、図3に示すように、前方の第1の積層体LM1の終端部と後方の第1の積層体LM1の始端部とが平面視ライン状の絶縁材105を介して接続される。この場合、絶縁材105が固定材のように働き、スリット工程において、第1の積層体LM1の屈曲、並びに、第1の積層体LM1に含まれる電極の崩れおよび/または剥がれを抑制することができる。
なお、負極非形成部101Nに形成された絶縁材105は、膜電極接合体100を電極サイズに加工する際に切り落とされるので、最終的に製造される電池の性能への影響はない。
In the manufacturing method of the present embodiment, as shown in FIG. 3, the end portion of the front first laminated body LM1 and the start end portion of the rear first laminated body LM1 are interposed via an insulating material 105 in a plan view line shape. Is connected. In this case, the insulating material 105 acts like a fixing material to suppress bending of the first laminated body LM1 and collapse and / or peeling of the electrodes contained in the first laminated body LM1 in the slit step. it can.
Since the insulating material 105 formed on the negative electrode non-forming portion 101N is cut off when the membrane electrode assembly 100 is processed to the electrode size, there is no effect on the performance of the finally manufactured battery.

(設計変更例)
図6および図7は、図4の設計変更例を示す模式断面図である。
図4に示した断面図において、絶縁材105は、少なくとも、各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りに形成されればよい。
(Example of design change)
6 and 7 are schematic cross-sectional views showing an example of design modification of FIG.
In the cross-sectional view shown in FIG. 4, the insulating material 105 may be formed at least next to both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104.

図6に示す設計変更例のように、絶縁材105は、基材101の表面から各正極104の長手方向(基材の搬送方向)に平行な両端部の隣りにまで跨がるように、形成してもよい。絶縁材105は、塗布または充填により形成することができる。
この設計変更例では、絶縁材105は、負極102、固体電解質膜103、正極104の両端面を被覆し、保護することができる。この設計変更例では、スリット工程において、負極102、固体電解質膜103、および絶縁材105の多層を切断せずに、基材101と絶縁材105のみを切断することができる(切断線L1〜L3を参照されたい。)。多層切断において硬度の高い材料の下に硬度の低い材料がある場合、硬度の低い材料にせん断力が良好に伝わらず、硬度の低い材料が良好に切断されない恐れがある。基材101と絶縁材105のみを切断する方法では、せん断力が下まで良好に伝わることでスムーズに切断を行うことができ、層間剥離および電極スリット異物の落下を抑制することができる。
As in the design modification example shown in FIG. 6, the insulating material 105 extends from the surface of the base material 101 to the side of both ends parallel to the longitudinal direction (transportation direction of the base material) of each positive electrode 104. It may be formed. The insulating material 105 can be formed by coating or filling.
In this design modification example, the insulating material 105 can cover and protect both end faces of the negative electrode 102, the solid electrolyte membrane 103, and the positive electrode 104. In this design modification example, in the slitting process, only the base material 101 and the insulating material 105 can be cut without cutting the multilayer layers of the negative electrode 102, the solid electrolyte membrane 103, and the insulating material 105 (cutting lines L1 to L3). Please refer to.). When there is a material with low hardness under the material with high hardness in multi-layer cutting, the shearing force is not transmitted well to the material with low hardness, and the material with low hardness may not be cut well. In the method of cutting only the base material 101 and the insulating material 105, the shearing force is satisfactorily transmitted to the bottom, so that the cutting can be performed smoothly, and delamination and falling of foreign matter in the electrode slit can be suppressed.

絶縁材105の形成工程のタイミングは、スリット工程の前であれば、特に制限されない。図7に示す設計変更例のように、はじめに、スリット工程の複数の切断線(図示例ではL1〜L3)上にそれぞれ平面視ライン状の絶縁材105を形成し、これら複数の平面視ライン状の絶縁材105を隔壁とし、複数の絶縁材105の間に、負極102、固体電解質膜103、および正極104を順次積層してもよい。 The timing of the forming step of the insulating material 105 is not particularly limited as long as it is before the slit step. As in the design change example shown in FIG. 7, first, the insulating material 105 having a plan view line shape is formed on each of the plurality of cutting lines (L1 to L3 in the illustrated example) of the slit process, and these plurality of plan view line shapes are formed. The insulating material 105 of the above may be used as a partition wall, and the negative electrode 102, the solid electrolyte film 103, and the positive electrode 104 may be sequentially laminated between the plurality of insulating materials 105.

図7に示す設計変更例では、電極材料および固体電解質材料の塗れ広がりを抑制し、材料塗工時の負極と正極の短絡を抑制することができる。負極102、固体電解質膜103、および正極104を同じサイズで形成できることで、負極面積が同じ場合の発電有効面積を拡大することができる。この態様ではまた、負極102、固体電解質膜103、および正極104の積層に段差がないため、膜電極接合体100をプレスする工程(D)において、負極102、固体電解質膜103、および正極104を全体的に均一に良好にプレスすることができる。 In the design modification example shown in FIG. 7, it is possible to suppress the spread of the electrode material and the solid electrolyte material, and to suppress the short circuit between the negative electrode and the positive electrode during material coating. By forming the negative electrode 102, the solid electrolyte membrane 103, and the positive electrode 104 with the same size, it is possible to expand the effective power generation area when the negative electrode area is the same. In this embodiment, since there is no step in the lamination of the negative electrode 102, the solid electrolyte film 103, and the positive electrode 104, the negative electrode 102, the solid electrolyte film 103, and the positive electrode 104 are pressed in the step (D) of pressing the membrane electrode assembly 100. It can be pressed uniformly and well as a whole.

図7に示す設計変更例においても、図6に示した設計変更例と同様、スリット工程においては、負極102、固体電解質膜103、および絶縁材105の多層を切断せずに、基材101と絶縁材105のみを切断することができる(切断線L1〜L3を参照されたい。)。この方法では、図6に示した設計変更例と同様、せん断力が下まで良好に伝わることでスムーズに切断を行うことができ、層間剥離および電極スリット異物の落下を抑制することができる。 In the design change example shown in FIG. 7, similarly to the design change example shown in FIG. 6, in the slitting step, the negative electrode 102, the solid electrolyte membrane 103, and the insulating material 105 are not cut in layers, and the base material 101 is formed. Only the insulating material 105 can be cut (see cutting lines L1 to L3). In this method, similar to the design modification example shown in FIG. 6, the shearing force is satisfactorily transmitted to the bottom, so that cutting can be performed smoothly, and delamination and falling of foreign matter in the electrode slit can be suppressed.

以上説明したように、本発明によれば、負極の形成部と非形成部の両部に対して、共通のスリット条件でスリット工程を実施することが可能な膜電極接合体の製造方法を提供することができる。
本発明の製造方法では、基材の負極非形成部の一部に絶縁材が形成されるので、基材の露出が従来より少なく、基材から異物が生じるのを抑制することができる。
本発明の製造方法では、各正極の長手方向(基材の搬送方向)に平行な両端部の隣りに平面視ライン状の絶縁材を形成する工程(X)において、平面視ライン状の絶縁材を基材の負極非形成部まで引き延ばす。この方法では、ワークの刃またはプレスロールへの噛み込みを抑制し、刃またはプレスロールの回転速度の低下およびこれによる品質不良を抑制することができる。この方法ではまた、膜電極接合体に対するプレスロールの入退の衝撃を緩やかにし、膜電極接合体の圧縮を抑制し、膜電極接合体の屈曲、シワ、およびプレス割れを抑制することができる。
As described above, according to the present invention, there is provided a method for manufacturing a membrane electrode assembly capable of performing a slit process under common slit conditions for both a formed portion and a non-formed portion of the negative electrode. can do.
In the production method of the present invention, since the insulating material is formed on a part of the negative electrode non-forming portion of the base material, the exposure of the base material is less than before, and it is possible to suppress the generation of foreign matter from the base material.
In the manufacturing method of the present invention, in the step (X) of forming a plan view line-shaped insulating material next to both ends parallel to the longitudinal direction of each positive electrode (base material transport direction), the plan view line-shaped insulating material is formed. Is stretched to the non-negative electrode forming portion of the base material. In this method, it is possible to suppress the biting of the work into the blade or the press roll, and to suppress the decrease in the rotation speed of the blade or the press roll and the resulting quality defect. In this method, the impact of the press roll entering and exiting the membrane electrode assembly can be moderated, compression of the membrane electrode assembly can be suppressed, and bending, wrinkles, and press cracking of the membrane electrode assembly can be suppressed.

本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。 The present invention is not limited to the above-described embodiment, and the design can be appropriately changed as long as the gist of the present invention is not deviated.

100 膜電極接合体
101 基材
101N 基材の負極非形成部
102 負極
103 固体電解質膜
104 正極
105 絶縁材
LM1 第1の積層体
LM2 第2の積層体
100 Membrane electrode assembly 101 Base material 101N Negative electrode non-forming part 102 Negative electrode 103 Solid electrolyte film 104 Positive electrode 105 Insulation material LM1 First laminate LM2 Second laminate

Claims (1)

負極、固体電解質膜、および正極を含む膜電極接合体の製造方法であって、
帯状の基材上に、当該基材の長手方向に沿って、間隔を空けて複数の負極を形成する工程(A)と、
個々の前記負極上に、固体電解質膜と、複数条の正極とを順次積層する工程(B)と、
前記基材、前記負極、前記固体電解質膜、および前記複数条の正極を含む積層体と、前記基材の負極非形成部とを、複数条にスリットする工程(C)とを有し、
さらに、工程(C)を実施する前に、前記基材の前記負極非形成部の表面において、少なくとも工程(C)の切断線上に絶縁材を形成する工程(X)を有する、膜電極接合体の製造方法。
A method for manufacturing a membrane electrode assembly including a negative electrode, a solid electrolyte membrane, and a positive electrode.
A step (A) of forming a plurality of negative electrodes at intervals along the longitudinal direction of the base material on the strip-shaped base material, and
A step (B) of sequentially laminating a solid electrolyte membrane and a plurality of positive electrodes on each of the negative electrodes.
It has a step (C) of slitting a laminate containing the base material, the negative electrode, the solid electrolyte membrane, and the positive electrode of the plurality of rows into a plurality of rows of a non-negative electrode forming portion of the base material.
Further, a membrane electrode assembly having a step (X) of forming an insulating material on the surface of the negative electrode non-forming portion of the base material at least on the cutting line of the step (C) before carrying out the step (C). Manufacturing method.
JP2019231487A 2019-12-23 2019-12-23 Manufacturing method of membrane electrode assembly Pending JP2021099946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231487A JP2021099946A (en) 2019-12-23 2019-12-23 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231487A JP2021099946A (en) 2019-12-23 2019-12-23 Manufacturing method of membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2021099946A true JP2021099946A (en) 2021-07-01

Family

ID=76541489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231487A Pending JP2021099946A (en) 2019-12-23 2019-12-23 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2021099946A (en)

Similar Documents

Publication Publication Date Title
JP5228133B1 (en) Roll press facility for electrode material and method for producing electrode sheet
JP5383571B2 (en) Electrode plate manufacturing equipment
KR101586121B1 (en) Lamination device including electrode guide
JP5760366B2 (en) Method for pressing battery electrode foil
JP2008066050A (en) Manufacturing method of electrode plate for lithium secondary battery
JP2014179304A (en) Method and device for forming electrode laminate for secondary battery
JP2018537814A (en) Electrode, method for manufacturing the electrode, and roller for manufacturing the electrode
JP6717159B2 (en) Electrode manufacturing equipment
US20230330885A1 (en) Electrode Assembly Manufacturing Apparatus Including Ultrasonic Cutter and Method Using the Same
JP2003297430A (en) Method of manufacturing secondary battery and device for manufacturing secondary battery electrode
EP4261962A1 (en) Method for manufacturing membrane electrode
KR102256482B1 (en) Method of manufacturing electrode stack
JP2021099946A (en) Manufacturing method of membrane electrode assembly
JP5862508B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP2018026334A (en) Electrode of power storage device, manufacturing apparatus of electrode and manufacturing method of electrode
JP6891754B2 (en) Manufacturing method of layered sheet
JP2007134248A (en) Separator for fuel cell, method of manufacturing same, and device for manufacturing same
JP2015130297A (en) Method of manufacturing electrode, electrode plate, and secondary battery
JP3691838B2 (en) Expanded mesh sheet manufacturing equipment
JP2018133344A5 (en) Method for producing laminated electrode body, laminated electrode body and battery
JP6610354B2 (en) Electrode assembly and method for manufacturing electrode assembly
JP2005199381A (en) Punching method and punching device
JP3909032B2 (en) Manufacturing method of electric double layer capacitor
JP2006196218A (en) Manufacturing apparatus and method of electrode of secondary battery
KR20180041529A (en) Electrode assembly and method of manumfacturing the same