JP2014179304A - Method and device for forming electrode laminate for secondary battery - Google Patents

Method and device for forming electrode laminate for secondary battery Download PDF

Info

Publication number
JP2014179304A
JP2014179304A JP2013054352A JP2013054352A JP2014179304A JP 2014179304 A JP2014179304 A JP 2014179304A JP 2013054352 A JP2013054352 A JP 2013054352A JP 2013054352 A JP2013054352 A JP 2013054352A JP 2014179304 A JP2014179304 A JP 2014179304A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
electrode plate
plate
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013054352A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Tejima
恒利 手島
Akira Kaihara
昭 海原
Yoshizumi Kumatori
義純 熊取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KKS Ltd
Tokyo Kikai Seisakusho Co Ltd
Original Assignee
KKS Ltd
Tokyo Kikai Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KKS Ltd, Tokyo Kikai Seisakusho Co Ltd filed Critical KKS Ltd
Priority to JP2013054352A priority Critical patent/JP2014179304A/en
Publication of JP2014179304A publication Critical patent/JP2014179304A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for forming an electrode laminate for a secondary battery in which, when a positive electrode plate sheet and a negative electrode plate are laminated, lamination can be efficiently performed in accordance with a specified dimension in a short time.SOLUTION: In a method for forming an electrode laminate for a secondary battery, a plurality of positive electrode plate sheets 100 formed by a device for forming a positive electrode plate sheet are continuously supplied at a predetermined interval, a plurality of negative electrode plates 150 whose external dimension becomes substantially equal to that of the positive electrode plate sheet 100 are supplied to perform accumulation operation in which such electrode plates are alternately accumulated one by one, and deviation prevention operation is performed in which deviation between the positive electrode plate sheet and a negative electrode plate from each other is made within a desired range in response to the accumulation operation.

Description

本発明は、例えばノート型パーソナルコンピューター、ハイブリッド自動車、電気自動車等のバッテリーに使用する二次電池の構成要素をなす二次電池用電極積層体作成方法及び作成装置に関する。   The present invention relates to a method and an apparatus for producing an electrode laminate for a secondary battery, which is a constituent element of a secondary battery used for a battery of, for example, a notebook personal computer, a hybrid vehicle, and an electric vehicle.

従来から、例えばノート型パーソナルコンピューター、ハイブリッド自動車、電気自動車等のバッテリーに使用する二次電池の構成要素をなす二次電池用電極積層体作成方法及び作成装置は公知である(例えば特許文献1及び特許文献2参照)。   2. Description of the Related Art Conventionally, for example, a method and an apparatus for producing an electrode laminate for a secondary battery, which is a constituent element of a secondary battery used for a battery of a notebook personal computer, a hybrid vehicle, an electric vehicle, etc. (for example, Patent Document 1 Patent Document 2).

特許文献1に開示された電極シートは、搬送コンベアーによって搬送され下セパレーター巻き出し部から巻き出された下セパレーターの上面に正極板と負極板を移動ハンドの吸着部を介して交互に載せ、その後上セパレーター巻き出し部から巻き出された上セパレーターを、ニップロールを介して重ね合わせ、2枚のセパレーターによってそれぞれ内部に正極板と負極板を挟み込んで収容した電極板をスイング機構によって交互に重ね合わせて積層部を形成するようになっている。   The electrode sheet disclosed in Patent Document 1 is placed on the upper surface of the lower separator, which is conveyed by a conveyor and unwound from the lower separator unwinding portion, alternately on the positive electrode plate and the negative electrode plate via the suction portion of the moving hand. The upper separator unwound from the upper separator unwinding section is overlapped via a nip roll, and the electrode plates sandwiched between the positive electrode plate and the negative electrode plate by the two separators are alternately overlapped by a swing mechanism. A laminated portion is formed.

特開2012−74402号公報JP 2012-74402 A 特開2012−226910号公報JP 2012-226910 A

特許文献1に開示された二次電池用電極積層体作成装置を用いて電極シートを作成しようとすると、各セパレーター上に正極板と負極板をそれぞれ正確に位置決めしながら載せるために、正極板と負極板をセパレーターに載せる際にセパレーターの搬送装置を毎回停止させる必要がある。このようなセパレーターの間欠的な送り動作を行うと電極シートの生産効率が著しく低下するとともに、コンベアー上におけるセパレーターの急停止や急な移動開始動作によるセパレーター自体のコンベアー上のずれやセパレーターとこれに重ねられた正極板や負極板同士の相対的な位置ずれが生じさせないようにする特別な構造を必要とする。   When an electrode sheet is to be produced using the secondary battery electrode laminate production apparatus disclosed in Patent Document 1, in order to place the positive electrode plate and the negative electrode plate on each separator while accurately positioning the positive electrode plate, When placing the negative electrode plate on the separator, it is necessary to stop the separator transport device each time. If such an intermittent feeding operation of the separator is performed, the production efficiency of the electrode sheet is remarkably lowered, and the separator itself on the conveyor is suddenly stopped or the movement of the separator itself is suddenly moved. A special structure is required to prevent the relative displacement between the stacked positive electrode plates and negative electrode plates.

その理由は、このような位置ずれが生じると、欠陥品としてラインから排されて歩留まりが低下してしまうか、又は、製品となると不良品となって電極同士が接することで短絡して事故の原因となり得るおそれがあるからである。   The reason for this is that if such a misalignment occurs, it will be rejected from the line as a defective product and the yield will decrease, or if it is a product, it will be a defective product and the electrodes will contact each other, causing a short circuit and an accident. This may be a cause.

一方、特許文献2に開示された二次電池用電極積層体作成装置は、同文献の段落(0043)乃至(0048)の記載及びこれに関連する図面から明らかなように、1枚のセパレーターを縦方向に流してからジグザグ折り手段によりジグザグ折り状態とした後、このジグザグ折りされたセパレーターの左右の一方から正極板、他方から負極板を入れてこれを積み重ねることで二次電池用電極積層体を作成するようになっている。   On the other hand, in the secondary battery electrode laminate manufacturing apparatus disclosed in Patent Document 2, as is clear from the description in paragraphs (0043) to (0048) of the same document and the drawings related thereto, one separator is provided. After flowing in the vertical direction, the zigzag folding means is used to make the zigzag folded state, and then a positive electrode plate is inserted from one of the left and right sides of the zigzag folded separator, and the negative electrode plate is stacked from the other, thereby stacking them. Is supposed to create.

しかしながら、特許文献2に記載の二次電池用電極積層体は、上述した特許文献1と同様に、互いに所定の間隔を隔てて供給される正極板の両面を、連続して送り出されるセパレーターで挟み、この状態のセパレーター同士の重ね合わせ部を切断してできた電極シートを負極板と交互に1枚ずつ積層するような工程を経ていないため、二次電池用電極積層体を短時間で精度よく効率的に作成することができない。これに加えて、特許文献2に記載の二次電池用電極積層体の作成方法によると、セパレーターの折り返し部に折れ線がしっかりと形成できないために浮き上がり無駄な厚みが生じてしまうとともに、セパレーターの折り返し位置を厳密に管理するために複雑な装置構造を必要とする。また、特許文献2に開示された構成によると、前記工程の後さらに位置合わせ、溶着、切断の工程が必要となる。   However, in the electrode laminate for a secondary battery described in Patent Document 2, as in Patent Document 1 described above, both surfaces of a positive electrode plate supplied at a predetermined interval are sandwiched between separators that are continuously fed out. In addition, since the electrode sheet formed by cutting the overlapping portions of the separators in this state is not laminated with the negative electrode plate one by one, the electrode stack for the secondary battery can be accurately formed in a short time. It cannot be created efficiently. In addition to this, according to the method for producing an electrode laminate for a secondary battery described in Patent Document 2, a fold line cannot be firmly formed in the folded portion of the separator, resulting in an undesired thickness. A complicated device structure is required to strictly control the position. Moreover, according to the structure disclosed by patent document 2, the process of alignment, welding, and a cutting | disconnection is further required after the said process.

そのため、1枚の正極板ごとにセパレーターで覆われた正極板シートと1枚の負極板をそれぞれ交互に積層させるとともに、その積層された多数枚の正極板シートと負極板の各縁部が一致して互いにずれが生じていない二次電池用電極積層体を短時間で効率良く連続して作成する二次電池用電極積層体作成方法及び作成装置が要望されている。   For this reason, the positive electrode sheet and the negative electrode plate covered with the separator are alternately laminated for each positive electrode plate, and the edges of the laminated positive electrode sheets and negative electrode plates are equal to each other. Thus, there is a demand for a method and an apparatus for producing a secondary battery electrode laminate in which secondary battery electrode laminates that are not displaced from each other are produced continuously in a short time efficiently.

本発明の目的は、正極板シートとこれと反対の極性を有する負極板を積層する際に規定の寸法通りにかつ短時間で効率よく積層させることの可能な二次電池用電極積層体作成方法及び作成装置を提供することにある。   An object of the present invention is to provide a method for producing an electrode laminate for a secondary battery that can be efficiently laminated in a short time according to a specified dimension when laminating a positive electrode plate sheet and a negative electrode plate having the opposite polarity. And providing a creation apparatus.

上述した課題を解決するために、本発明の請求項1に記載の二次電池用電極積層体作成方法は、
それぞれロール状に巻かれ、当該ロール状に巻かれた状態から互いに重なり合うように送り出される連続状の第1のセパレーターと第2のセパレーターを用意し、
前記第1のセパレーターと前記第2のセパレーターを連続して送り出しながらそれらの間に、これらのセパレーターよりもセパレーター走行方向と直交する幅方向の長さが前記セパレーターよりも短い正極板をセパレーター送り出し方向に所定間隔隔てるように挟み込み、
前記2枚のセパレーターに挟み込まれた各正極板の前記セパレーター幅方向に対応する幅方向両側部であって前記セパレーター同士の重ね合わせ部を前記セパレーターの走行方向において所定間隔隔てて部分的に溶着するとともに、前記セパレーターの走行方向における前記正極板間のセパレーター同士の重ね合わせ部を当該セパレーターの前記幅方向において所定間隔隔てて部分的に溶着し、
所定長さのカッターを円周方向所定位置に長手方向に亘って備えたカッター胴と、前記カッターを受けるために円周方向所定位置に長手方向に亘って所定の長さだけ当該カッターに対応してカッター受けを備えたカッター受け胴からなるセパレーターの切断装置を用意し、
前記切断装置のカッター胴とカッター受け胴の円周面が前記セパレーターの走行方向と同じ方向となるように前記切断装置のカッター胴とカッター受け胴を回転させ、
前記連続して送り出される連続状の2枚のセパレーターを前記カッター胴のセパレーター押さえと前記カッター受け胴のカッター受けの間に挟み込んだ状態で、前記セパレーターの走行方向において互いに所定間隔隔てて並んで配置された正極板間に位置するセパレーターの重ね合わせ部をカッターによって切断することで、正極板の表裏が2枚のセパレーターで挟まれるとともに周囲がセパレーターの重ね合わせ部で囲まれた正極板シートを作成し、
前記作成された正極板シートを複数枚所定の間隔を隔てて連続して供給するとともに、前記正極板シートの外形寸法とほぼ同じ外径寸法となった複数の負極板を供給してこれらを1枚ずつ交互に集積する集積動作を行うととともに、前記正極板シートと前記負極板の相互のずれを所望の範囲内とするずれ防止動作を前記集積動作に合わせて行うことを特徴としている。
In order to solve the above-described problem, a method for producing an electrode laminate for a secondary battery according to claim 1 of the present invention includes:
Prepare a first separator and a second separator that are each wound in a roll shape and sent out so as to overlap each other from the state wound in the roll shape,
While the first separator and the second separator are continuously sent out, a positive electrode plate having a length in the width direction perpendicular to the separator running direction is shorter than that of the separator between these separators. Sandwiched at a predetermined interval
The positive electrode plates sandwiched between the two separators are partially welded at both sides in the width direction corresponding to the width direction of the separator and overlapping portions of the separators at a predetermined interval in the running direction of the separator. And partially welding the overlapping portion of the separators between the positive plates in the running direction of the separator at a predetermined interval in the width direction of the separator,
A cutter body provided with a predetermined length of cutter in the circumferential direction at a predetermined position in the longitudinal direction, and the cutter corresponding to the predetermined length in the longitudinal direction at a predetermined position in the circumferential direction to receive the cutter. Prepare a separator cutting device consisting of a cutter cylinder with a cutter holder,
Rotating the cutter cylinder and cutter receiving cylinder of the cutting apparatus so that the circumferential surfaces of the cutter cylinder and cutter receiving cylinder of the cutting apparatus are in the same direction as the traveling direction of the separator,
The two separators that are continuously sent out are arranged side by side at a predetermined interval in the running direction of the separator in a state where the separator is sandwiched between the separator presser of the cutter cylinder and the cutter receiver of the cutter receiver cylinder. By cutting the overlapping part of the separator located between the positive electrode plates with a cutter, a positive electrode sheet is created in which the front and back of the positive electrode plate are sandwiched between two separators and the periphery is surrounded by the overlapping part of the separator And
A plurality of the prepared positive electrode plate sheets are continuously supplied at a predetermined interval, and a plurality of negative electrode plates having the same outer diameter as the outer dimensions of the positive electrode plate sheet are supplied. A stacking operation for alternately stacking sheets one by one is performed, and a shift prevention operation for setting a shift between the positive electrode plate sheet and the negative electrode plate within a desired range is performed in accordance with the stacking operation.

また、本発明の請求項4に記載の二次電池用電極積層体作成装置は、
正極板と負極板を絶縁性シートからなるセパレーターを介して互いに絶縁しながら積層した構造を有する二次電池に用いる正極板シートの作成装置であって、
それぞれロール状に巻かれた連続状の第1のセパレーターと第2のセパレーターを当該ロール状に巻かれた状態から互いに重なり合うように送り出すセパレーター供給装置と、
前記第1のセパレーターと前記第2のセパレーターよりもセパレーター走行方向と直交する幅方向の長さが前記セパレーターよりも短い正極板を供給する正極板供給装置と、
前記正極板供給装置によって供給された正極板を所定位置に搬送する正極板搬送装置と、
前記正極板搬送装置によって搬送された正極板を前記送り出された2枚のセパレーターの間にセパレーター送り出し方向に所定間隔隔てるように順次挟み込む挟込装置と、
前記2枚のセパレーターに挟み込まれた各正極板の前記セパレーター幅方向に対応する幅方向両側部であって前記セパレーター同士の重ね合わせ部を前記セパレーターの走行方向において所定間隔隔てて部分的に溶着するとともに、前記セパレーターの走行方向における前記正極板間のセパレーター同士の重ね合わせ部を当該セパレーターの前記幅方向において所定間隔隔てて部分的に溶着する溶着装置と、
所定長さのカッターを円周方向所定位置に長手方向に亘って備えたカッター胴と、前記カッターを受けるために円周方向所定位置に長手方向に亘って所定の長さだけ当該カッターに対応してカッター受けを備えたカッター受け胴からなるセパレーターの切断装置であって、前記2枚のセパレーター間にそれらの走行方向において互いに所定間隔隔てて並んで配置された正極板間に位置するセパレーターの重ね合わせ部をそれぞれ二分するように前記重ね合わされたセパレーターを切断する切断装置を備えるとともに、
前記切断装置で切断され、所定の間隔を隔てて連続して送られる複数の正極板シートと、前記正極板シートの外形寸法とほぼ同じ外径寸法となった複数の負極板を1枚ずつ交互に集積する積層部と、前記正極板シートと前記負極板の相互のずれを所望の範囲内とするずれ防止部とを有する積層装置を備えたことを特徴としている。
Moreover, the electrode laminated body preparation apparatus for secondary batteries of Claim 4 of this invention is the following.
A device for producing a positive electrode plate sheet used for a secondary battery having a structure in which a positive electrode plate and a negative electrode plate are laminated while being insulated from each other via a separator made of an insulating sheet,
A separator supply device for feeding the continuous first separator and the second separator wound in a roll shape so as to overlap each other from the state wound in the roll shape;
A positive electrode plate supply device that supplies a positive electrode plate whose length in the width direction perpendicular to the separator travel direction is shorter than that of the first separator and the second separator;
A positive plate transport device for transporting the positive plate supplied by the positive plate supply device to a predetermined position;
A sandwiching device for sequentially sandwiching the positive electrode plate conveyed by the positive electrode plate conveyance device so as to be separated by a predetermined interval in the separator delivery direction between the two fed-out separators;
The positive electrode plates sandwiched between the two separators are partially welded at both sides in the width direction corresponding to the width direction of the separator and overlapping portions of the separators at a predetermined interval in the running direction of the separator. And a welding device that partially welds the overlapping portion of the separators between the positive plates in the running direction of the separator at a predetermined interval in the width direction of the separator;
A cutter body provided with a predetermined length of cutter in the circumferential direction at a predetermined position in the longitudinal direction, and the cutter corresponding to the predetermined length in the longitudinal direction at a predetermined position in the circumferential direction to receive the cutter. A separator cutting apparatus comprising a cutter receiving cylinder provided with a cutter receiver, wherein the separators are positioned between the two separators and arranged between the positive plates arranged at predetermined intervals in the running direction. A cutting device for cutting the stacked separators so as to bisect the mating portions,
A plurality of positive plate sheets that are cut by the cutting device and fed continuously at a predetermined interval, and a plurality of negative plate plates that have substantially the same outer diameter as the outer dimensions of the positive plate sheet are alternately placed one by one. And a stacking device having a shift prevention unit that sets a shift between the positive electrode plate sheet and the negative electrode plate within a desired range.

本発明の請求項1に係る二次電池用電極積層体作成方法及び請求項4に係る二次電池用電極積層体作成装置によると、ロール状に巻かれた2枚の帯状のセパレーターを互いに重ね合わせるように連続的に送り出し、この連続的に送り出された2枚のセパレーターを重ね合わせる際にそれらの間に正極板を互いに所定間隔隔てた状態で順次連続的に挟み込んでいくようになっている。そのため、特許文献1に開示された発明のように正極板を正確に位置決めしてセパレーターに載せる際、毎回セパレーターの搬送装置を間欠的に停止させる必要がない。すなわち、セパレーターの間欠的な送り動作を行う必要がないので、正極板シートの生産効率が従来技術に比べて遥かに向上するとともに、正極板搬送ベルトの急停止や急な移動開始動作によって正極板自体の搬送ベルト上のずれやセパレーターとこれに重ねられた正極板のずれが生じるのを回避する。   According to the secondary battery electrode laminate production method according to claim 1 of the present invention and the secondary battery electrode laminate production apparatus according to claim 4, the two strip-shaped separators wound in a roll shape are stacked on each other. When the two separators that are continuously sent out are overlapped, the positive electrode plates are sequentially sandwiched between them with a predetermined distance between them. . Therefore, when the positive electrode plate is accurately positioned and placed on the separator as in the invention disclosed in Patent Document 1, it is not necessary to intermittently stop the separator transport device every time. In other words, since it is not necessary to perform the intermittent feeding operation of the separator, the production efficiency of the positive electrode plate sheet is greatly improved as compared with the prior art, and the positive electrode plate is rapidly stopped and the movement of the positive electrode plate is started suddenly. It avoids the occurrence of deviation on its own conveyor belt and deviation between the separator and the positive electrode plate superimposed thereon.

また、上述した集積装置を有することで、正極板ごとにセパレーターで覆われた正極板シートと負極板をそれぞれ交互に積層させるとともに、その積層された多数枚の正極板シートと負極板の各縁部が一致して互いにずれが生じていない二次電池用電極積層体を規定の寸法通りにかつ短時間で効率よく作成することができる。そのため、特許文献2に記載された発明のようにセパレーターの折り返し部に無駄な厚みが生じることがなくかつセパレーターの折り返し位置を厳密に管理するための複雑な装置構造も必要としない。   In addition, by having the above-described stacking device, the positive electrode sheet and the negative electrode plate covered with the separator are alternately stacked for each positive electrode plate, and each edge of the stacked positive electrode sheet and negative electrode plate It is possible to efficiently produce a secondary battery electrode laminated body having the same part and not shifted from each other according to the specified dimensions in a short time. Therefore, unlike the invention described in Patent Document 2, no unnecessary thickness is generated in the folded portion of the separator, and a complicated device structure for strictly managing the folded position of the separator is not required.

また、本発明の請求項3に記載の二次電池用電極積層体作成方法は、請求項1又は請求項2に記載の二次電池用電極積層体作成方法において、
前記正極板シート及び前記負極板は矩形状をなすとともに、前記電極積層体の底面を支える支持基板と、前記支持基板の第1の縁部から当該支持基板の上面に対して垂直方向に立ち上がった第1の側板と、前記支持基板の第2の縁部から当該支持基板の上面に対して垂直方向に立ち上がるとともに、前記第1の側板とのなす角が直角となった第2の側板を有する集積部を用いて前記積層動作を実施するとともに、
前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第1の側縁が前記第1の側板に縁延在方向全てに亘って突き当たるとともに、前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第2の側縁が前記第2の側板に縁延在方向全てに亘って突き当たるように前記積層部に前記ずれ防止部が振動を与えることで前記ずれ防止動作を実施することを特徴としている。
Further, the secondary battery electrode laminate preparation method according to claim 3 of the present invention is the secondary battery electrode laminate preparation method according to claim 1 or 2,
The positive electrode plate sheet and the negative electrode plate have a rectangular shape, and a support substrate that supports the bottom surface of the electrode stack, and a first edge of the support substrate that rises in a direction perpendicular to the upper surface of the support substrate. The first side plate has a second side plate that rises in a direction perpendicular to the upper surface of the support substrate from the second edge portion of the support substrate, and that the angle between the first side plate and the first side plate is a right angle. While performing the stacking operation using the integration unit,
The first side edge in the stacking direction of each positive electrode sheet and the stack of each negative electrode plate sequentially stacked on the support substrate of the integrated unit abuts the first side plate over the entire edge extending direction, A second side edge in the stacking direction of each positive electrode plate sheet and each negative electrode plate stack sequentially stacked on the support substrate of the stacking unit abuts on the second side plate in the entire edge extending direction. The shift prevention operation is performed by the shift prevention unit applying vibration to the stacked portion.

また、本発明の請求項5に記載の二次電池用電極積層体作成装置は、請求項4に記載の二次電池用電極積層体作成装置において、
前記正極板シート及び負極板は矩形状をなすとともに、前記積層装置の集積部は、前記電極積層体の底面を支える支持基板と、前記支持基板の第1の縁部から当該支持基板の上面に対して垂直方向に立ち上がった第1の側板と、前記支持基板の第2の縁部から当該支持基板の上面に対して垂直方向に立ち上がるとともに、前記第1の側板とのなす角が直角となった第2の側板を有し、
前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第1の側縁が前記第1の側板に縁延在方向全てに亘って突き当たるとともに、前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第2の側縁が前記第2の側板に縁延在方向全てに亘って突き当たるように前記積層装置のずれ防止部が前記集積部に振動を与えることを特徴としている。
Moreover, the electrode laminated body preparation apparatus for secondary batteries of Claim 5 of this invention is the electrode laminated body preparation apparatus for secondary batteries of Claim 4,
The positive electrode sheet and the negative electrode plate have a rectangular shape, and the stacking unit of the stacking device includes a support substrate that supports a bottom surface of the electrode stack, and a first edge of the support substrate on the upper surface of the support substrate. The angle between the first side plate rising in the vertical direction and the second side edge of the support substrate in the vertical direction with respect to the upper surface of the support substrate is perpendicular to the first side plate. A second side plate
The first side edge in the stacking direction of each positive electrode sheet and the stack of each negative electrode plate sequentially stacked on the support substrate of the integrated unit abuts the first side plate over the entire edge extending direction, A second side edge in the stacking direction of each positive electrode plate sheet and each negative electrode plate stack sequentially stacked on the support substrate of the stacking unit abuts on the second side plate in the entire edge extending direction. The misalignment prevention unit of the laminating apparatus applies vibration to the stacking unit.

本発明の請求項3に係る二次電池用電極積層体作成方法及び請求項5に係る二次電池用電極積層体作成装置によると、これらで特定した具体的な内容により上述した請求項1及び3に係る本願発明の作用を確実に発揮することができるようになる。   According to the secondary battery electrode laminate manufacturing method according to claim 3 of the present invention and the secondary battery electrode laminate preparation apparatus according to claim 5 of the present invention, the above-described claim 1 and the specific contents specified above. Thus, the operation of the present invention according to No. 3 can be reliably exhibited.

本発明によると、正極板シートとこれと反対の極性を有する負極板を積層する際に規定の寸法通りにかつ短時間で効率よく積層させることの可能な二次電池用電極積層体作成方法及び作成装置を提供することができる。   According to the present invention, when a positive electrode plate sheet and a negative electrode plate having the opposite polarity are laminated, a method for producing an electrode laminate for a secondary battery capable of efficiently laminating according to specified dimensions and in a short time, and A creation device can be provided.

本発明の一実施形態に係る二次電池用電極積層体作成装置を、正極板シート作成装置を含めて示す概略側面図である。It is a schematic side view which shows the electrode laminated body preparation apparatus for secondary batteries which concerns on one Embodiment of this invention including a positive electrode plate sheet preparation apparatus. 本発明の一実施形態に係る二次電池用電極積層体作成装置の集積装置を用いて二次電池用電極積層体を作成する途中の過程を概略的に示す側面図である。It is a side view which shows roughly the process in the middle of producing the electrode laminated body for secondary batteries using the integration | stacking apparatus of the electrode laminated body preparation apparatus for secondary batteries which concerns on one Embodiment of this invention. 図2に示した集積装置をIII-III方向から示す正面図である。It is a front view which shows the integrated device shown in FIG. 2 from the III-III direction. 図1に示した正極板シート作成装置により作成する正極板シートの作成直前の状態を示す平面図である。It is a top view which shows the state just before preparation of the positive electrode sheet produced with the positive electrode sheet production apparatus shown in FIG. 本実施形態の切断装置によって切断されて作成された正極板シートを示す平面図である。It is a top view which shows the positive electrode plate sheet | seat produced by cut | disconnecting with the cutting device of this embodiment. 図5に示した正極板シートと負極板を図2に示した二次電池用電極積層体作成装置の集積装置を用いて積層させた後の状態を概略的に示す側面図である。FIG. 6 is a side view schematically showing a state after the positive electrode plate sheet and the negative electrode plate shown in FIG. 5 are stacked using the integration device of the secondary battery electrode laminate manufacturing apparatus shown in FIG. 2. 図6に示した集積装置によって集積された状態の二次電池用電極積層体を負極板と正極板シートの双方について部分的に分けて示した平面図である。It is the top view which divided and showed the electrode laminated body for secondary batteries of the state integrated | stacked by the integration | stacking apparatus shown in FIG. 6 about both a negative electrode plate and a positive electrode plate sheet | seat.

以下、本発明の一実施形態に係る二次電池用電極積層体作成方法及び作成装置について図面に基づいて説明する。図1は、本発明の一実施形態に係る二次電池用電極積層体作成方法に使用する二次電池用二次電池用電極積層体作成装置の全体構成を示す側面図である。   Hereinafter, a method and apparatus for producing an electrode laminate for a secondary battery according to an embodiment of the present invention will be described based on the drawings. FIG. 1 is a side view showing an overall configuration of a secondary battery electrode laminate forming apparatus for use in a secondary battery electrode laminate producing method according to an embodiment of the present invention.

本願発明に係る二次電池用電極積層体作成方法に使用する二次電池用電極積層体作成装置1は、正極板供給装置10と、正極板搬送装置20と、セパレーター供給装置30と、挟込装置40と、溶着装置50と、切断装置60と、検査装置70と、不良品排出装置80と、集積装置200とを有している。なお、本実施形態において、正極板シート作成装置は、正極板供給装置10から切断装置60を含んで構成される。   A secondary battery electrode laminate production apparatus 1 used in the secondary battery electrode laminate production method according to the present invention includes a positive electrode plate supply device 10, a positive electrode plate transport device 20, a separator supply device 30, and a sandwiching device. The apparatus 40 includes a welding apparatus 50, a cutting apparatus 60, an inspection apparatus 70, a defective product discharge apparatus 80, and an accumulation apparatus 200. In the present embodiment, the positive plate sheet forming apparatus includes the positive plate supplying apparatus 10 and the cutting apparatus 60.

正極板供給装置10は、正極板を順次一定の時間間隔で1枚ずつ正極板搬送装置20に供給するためのものであり、また正極板搬送装置20は、正極板供給装置10から供給された正極板を正極板同士が所定間隔を隔てるようにして搬送し、1枚ずつ挟込装置40に供給するためのものである。   The positive electrode plate supply device 10 is for supplying positive plates one by one to the positive electrode plate conveyance device 20 one by one at regular time intervals, and the positive electrode plate conveyance device 20 is supplied from the positive electrode plate supply device 10. The positive plates are conveyed so that the positive plates are separated from each other by a predetermined distance, and supplied to the sandwiching device 40 one by one.

セパレーター供給装置30は、ロール状に巻かれた連続状の2枚のセパレーター121,122(120)を供給するためのもので、上段側セパレーター供給装置30Uと下段側セパレーター供給装置30Lとを有している。上段側及び下段側にはそれぞれテンションコントロール装置(不図示)を有しており、挟込装置40にて正極板110(図5参照)を挟み込みながら上段側のセパレーター121と下段側のセパレーター122を重ね合わせる際に、一定の張力を常に保つようにして、セパレーター120が皺や弛み、伸び等が生じない状態で正極板シート100(図5参照)を作成する。   The separator supply device 30 is for supplying two continuous separators 121 and 122 (120) wound in a roll shape, and has an upper separator supply device 30U and a lower separator supply device 30L. ing. A tension control device (not shown) is provided on each of the upper side and the lower side, and the upper-side separator 121 and the lower-side separator 122 are inserted while holding the positive electrode plate 110 (see FIG. 5) with the clamping device 40. When superposing, the positive electrode plate sheet 100 (see FIG. 5) is prepared in a state in which the separator 120 does not cause wrinkles, slack, elongation, or the like so as to always maintain a constant tension.

挟込装置40は、上段側セパレーター供給装置30Uと下段側セパレーター供給装置30Lからそれぞれ供給された連続状のセパレーター121,122の間に正極板搬送装置20から搬送された正極板110を所定間隔隔てながら順次挟み込むためのものである。挟込装置40は、斜め上方から供給される上段側のセパレーター121と斜め下方から供給される下段側のセパレーター122との間に正極板110を予め決められた配置条件で挟み込むようになっている。   The sandwiching device 40 separates the positive electrode plate 110 conveyed from the positive electrode plate conveyance device 20 between the continuous separators 121 and 122 respectively supplied from the upper-stage separator supply device 30U and the lower-stage separator supply device 30L with a predetermined interval. However, it is for sandwiching sequentially. The sandwiching device 40 sandwiches the positive electrode plate 110 between an upper separator 121 supplied from obliquely above and a lower separator 122 supplied obliquely from below under predetermined arrangement conditions. .

溶着装置50は、正極板110が挟み込まれた状態の上下2枚のセパレーター120を、正極板110がセパレーター120からはみ出さないように溶着するためのもので、正極板110の周囲であって、セパレーター同士の重ね合わせ部を所定間隔隔てて部分的に溶着するようになっている。   The welding device 50 is for welding the upper and lower two separators 120 with the positive electrode plate 110 sandwiched therebetween so that the positive electrode plate 110 does not protrude from the separator 120, and is around the positive electrode plate 110. The overlapping portion between the separators is partially welded at a predetermined interval.

切断装置60は、連続的に連なった正極板シート100を幅方向に切断する装置である。切断装置60は、ここでは図示しないが、セパレーター120を切断するカッターと、カッターを保持するカッター胴と、カッターを受けるカッター受け胴と、を含んで構成される。カッターは、隣接する正極板間に位置する2枚のセパレーター120の重ね合わせ部120a(図4参照)をそのセパレーター120の走行方向と直交する幅方向に切断するようになっている。   The cutting device 60 is a device that cuts the continuous positive electrode sheet 100 in the width direction. Although not shown here, the cutting device 60 includes a cutter that cuts the separator 120, a cutter cylinder that holds the cutter, and a cutter receiving cylinder that receives the cutter. The cutter is configured to cut an overlapping portion 120a (see FIG. 4) of two separators 120 located between adjacent positive electrode plates in a width direction orthogonal to the traveling direction of the separators 120.

検査装置70は、切断装置60によって切断された正極板シート100の良否判定を行うためのものであり、検査によって不良品と判断した場合にその不良品とされた正極板シートを不良品排出装置80により取り除くものである。   The inspection device 70 is used to determine the quality of the positive electrode sheet 100 cut by the cutting device 60. When the inspection device 70 determines that the positive electrode sheet is defective by inspection, the defective device discharge device 80 to remove.

集積装置200は、検査装置70によって良品として合格した正極板シート100を負極板150と交互に積層して、互いにずれないように積層させて電極積層体300を作成するためのものである。   The stacking apparatus 200 is for making the electrode stack 300 by alternately stacking the positive electrode sheet 100 that has passed as a non-defective product by the inspection apparatus 70 and the negative electrode 150 so as not to deviate from each other.

続いて、本実施形態に係る二次電池用電極積層体作成装置1の重要な部分をなす集積装置200の具体的構成について図面に基づいてより詳細に説明する。図2は、本発明の一実施形態に係る二次電池用電極積層体作成装置の集積装置を用いて二次電池用電極積層体を作成する途中の過程を概略的に示す側面図である。また、図3は、図2に示した集積装置をIII-III方向から示す正面図である。   Next, a specific configuration of the integrated device 200 that forms an important part of the electrode stack manufacturing apparatus 1 for a secondary battery according to the present embodiment will be described in more detail based on the drawings. FIG. 2 is a side view schematically showing a process in the middle of producing an electrode laminate for a secondary battery using the integration device of the electrode laminate production apparatus for a secondary battery according to an embodiment of the present invention. FIG. 3 is a front view showing the stacking apparatus shown in FIG. 2 from the III-III direction.

集積装置200は、集積部210とずれ防止部220を有している。集積部210は、切断装置60で切断された後に、所定の間隔を隔てて連続して送られる複数の正極板シート100と、正極板シートの外形寸法とほぼ同じ外径寸法となった複数の電極板、すなわち本実施形態では負極板150を1枚ずつ交互に集積するためのものである。また、ずれ防止部220は、集積部210によって互い違いに複数枚集積されていく正極板シート100と負極板150の相互のずれを所望の範囲内とするためのものである。   The stacking apparatus 200 includes a stacking unit 210 and a shift prevention unit 220. The stacking unit 210 is cut by the cutting device 60 and then continuously fed at predetermined intervals, and a plurality of positive plate sheets 100 and a plurality of outer diameter dimensions that are substantially the same as the outer dimensions of the positive plate sheets. In this embodiment, the electrode plates, that is, the negative electrode plates 150 are alternately stacked one by one. Further, the misalignment prevention unit 220 is for making the misalignment between the positive electrode plate sheet 100 and the negative electrode plate 150 that are alternately stacked by the stacking unit 210 within a desired range.

集積装置200の集積部210は、内部に集積部210の各構成要素の他にずれ防止部220も収容する筐体201と、筐体内に収容され電極積層体300の最下層を支える支持基板215と、支持基板215の第1の縁部215a(図3参照)からこの支持基板215の上面に対して垂直方向に立ち上がった第1の側板211と、支持基板215の第2の縁部215b(図3参照)からこの支持基板215の上面に対して垂直方向に立ち上がるとともに、第1の側板211とのなす角が直角となった第2の側板212を有している。支持基板215と、第1及び第2の側板211,212とは一体となっており、筐体201の上下方向に延在して設けられたガイド(図示せず)に沿って、スライダー(図示せず)を介して所定のストロークで上下動するようになっている。なお、支持基板215は、それ自体なめらかな滑りやすい材質でできており、その上面に集積される負極板150と正極板シート100が交互に集積する過程において、ずれ防止部220によって支持基板215に与えられる振動によって支持基板上を滑って第1の側板211及び第2の側板212に対応する各負極板150の縁部や各正極板シート100の縁部がそれらの縁部延在方向全体に亘って突き当たり易いようになっている。また、支持基板215の下面も摩擦抵抗が小さくなっており、後述するずれ防止部220の偏心カム221の周面が摩擦抵抗をそれほど受けず偏心カム221が滑らかに回転できるようになっている。   The stacking unit 210 of the stacking apparatus 200 includes a housing 201 that houses not only the components of the stacking unit 210 but also a shift prevention unit 220 therein, and a support substrate 215 that is housed in the housing and supports the lowermost layer of the electrode stack 300. A first side plate 211 rising in a direction perpendicular to the upper surface of the support substrate 215 from the first edge 215a (see FIG. 3) of the support substrate 215, and a second edge 215b of the support substrate 215 ( 3) and a second side plate 212 that rises in a direction perpendicular to the upper surface of the support substrate 215 and has a right angle with the first side plate 211. The support substrate 215 and the first and second side plates 211 and 212 are integrated, and along a guide (not shown) provided extending in the vertical direction of the housing 201, a slider (see FIG. It moves up and down with a predetermined stroke via the (not shown). The support substrate 215 is made of a smooth and slippery material. The negative electrode plate 150 and the positive electrode plate sheet 100 stacked on the upper surface of the support substrate 215 are alternately stacked on the support substrate 215 by the shift prevention unit 220. The edge of each negative electrode plate 150 and the edge of each positive electrode plate sheet 100 corresponding to the first side plate 211 and the second side plate 212 are slid on the support substrate by the applied vibration, and the edges extend in the whole edge extending direction. It is easy to hit across. Further, the lower surface of the support substrate 215 also has a small frictional resistance, so that the eccentric cam 221 can rotate smoothly without the frictional resistance of the peripheral surface of the eccentric cam 221 of the displacement prevention unit 220 described later.

筐体201は、上側に開口部201aを有した箱型形状をなし、上述したようにその内部に支持基板215、及び第1及び第2の側板211,212を収容するとともに、筐体201の底板201bと支持基板215との間にずれ防止部220をなす各構成要素が収容されている。なお、筐体201の開口部201aは、負極板150及び正極板シート100が入り込む側(図2中右側)が大きく開口している。筐体201の底板201bは、図2の方向から見ると水平面に対して角度αだけ傾いており、図3の方向から見ると水平面に対して角度βだけ傾いている。また、支持基板215は筐体201の底板201bと常に平行となるように設けられているので、支持基板215についても筐体201の底板201bと同様の角度で水平面に対して三次元的に傾いている。すなわち、支持基板215についても、図2の方向から見ると水平面に対して角度αだけ傾いており、図3の方向から見ると水平面に対して角度βだけ傾いている。   The casing 201 has a box shape with an opening 201a on the upper side, and as described above, the support substrate 215 and the first and second side plates 211 and 212 are accommodated therein, and Each component constituting the shift preventing portion 220 is accommodated between the bottom plate 201b and the support substrate 215. The opening 201a of the housing 201 has a large opening on the side (the right side in FIG. 2) into which the negative electrode plate 150 and the positive electrode sheet 100 enter. The bottom plate 201b of the housing 201 is inclined by an angle α with respect to the horizontal plane when viewed from the direction of FIG. 2, and is inclined by an angle β with respect to the horizontal plane when viewed from the direction of FIG. Further, since the support substrate 215 is provided so as to be always parallel to the bottom plate 201b of the housing 201, the support substrate 215 is also tilted three-dimensionally with respect to the horizontal plane at the same angle as the bottom plate 201b of the housing 201. ing. That is, the support substrate 215 is also inclined by an angle α with respect to the horizontal plane when viewed from the direction of FIG. 2, and is inclined by an angle β with respect to the horizontal plane when viewed from the direction of FIG.

集積部210の一方の側、すなわち図2に示すように支持基板215を挟んで第1の側板211と対向する側には、その下方に負極板搬送ベルト250が配設されている。負極板搬送ベルト250の先端側251は、ベルト進行方向の延長線が第1の側板211の上方に丁度当たるように位置しており、その基端側近傍には、負極板150を負極板搬送ベルト250にわずかな時間的間隔をあけて所定枚数連続的に供給する(ベルト上に載せる)負極板供給装置260が備わっている。正極板シート搬送ベルト270は、負極板搬送ベルト250の基端側上方すぐ近くに配設されている。正極板シート搬送ベルト270は、不良品排出装置80によって排出されることのない合格品としての正極板シート100を搬送する経路の下流側末端に位置している。また、正極板シート搬送ベルト270の少し上方には光電スイッチ275が設けられ、負極板搬送ベルト250上に乗せられて搬送されている1枚の負極板150に正極板シート搬送ベルト270から1枚の正極板シート100が確実に重ね合わされるように供給しているか否かを常に検知している。   On one side of the stacking unit 210, that is, on the side facing the first side plate 211 with the support substrate 215 interposed therebetween as shown in FIG. 2, a negative plate transport belt 250 is disposed therebelow. The leading end side 251 of the negative electrode plate conveying belt 250 is positioned such that the extension line in the belt traveling direction just hits the upper side of the first side plate 211, and the negative electrode plate 150 is conveyed near the base end side of the negative electrode plate conveying belt 250. A negative electrode plate supply device 260 is provided that continuously supplies a predetermined number of sheets to the belt 250 with a slight time interval (mounts on the belt). The positive electrode sheet conveying belt 270 is disposed in the vicinity of the upper side of the base end side of the negative electrode conveying belt 250. The positive electrode sheet conveying belt 270 is located at the downstream end of the path for conveying the positive electrode sheet 100 as an acceptable product that is not discharged by the defective product discharging device 80. Further, a photoelectric switch 275 is provided slightly above the positive electrode sheet conveyance belt 270, and one sheet from the positive electrode sheet conveyance belt 270 is placed on one negative electrode plate 150 that is carried on the negative electrode conveyance belt 250. It is always detected whether or not the positive electrode sheet 100 is supplied so as to be surely stacked.

また、集積装置200のずれ防止部220は、上述したように集積部210の筐体201の底板201bと支持基板215との間に設けられ、偏心カム221と、偏心カム221を回転させるカムシャフト222と、カムシャフト222に直結した駆動モータ(ここでは図示せず)を有している。偏心カム221の周面221a(図3参照)の一部は支持基板215に常に当接しており、偏心カム221が回転している間、集積装置200のずれ防止部220が集積部220の支持基板215及びこれと一体になった第1及び第2の側板211,212に上述したガイドとスライダーからなる往復動作機構(図示せず)を介して振動を与えるようになっている。   Further, as described above, the shift prevention unit 220 of the stacking apparatus 200 is provided between the bottom plate 201b of the housing 201 of the stacking unit 210 and the support substrate 215, and the eccentric cam 221 and the cam shaft that rotates the eccentric cam 221. 222 and a drive motor (not shown here) directly connected to the camshaft 222. A part of the peripheral surface 221a of the eccentric cam 221 (see FIG. 3) is always in contact with the support substrate 215, and the deviation prevention unit 220 of the stacking device 200 supports the stacking unit 220 while the eccentric cam 221 rotates. Vibration is applied to the substrate 215 and the first and second side plates 211 and 212 integrated therewith via a reciprocating mechanism (not shown) composed of the guide and the slider described above.

そして、以上のように三次元的に傾いた集積部210の構成と集積装置200の集積部210とずれ防止部220により発生する集積部210の微小往復振動が協働することで、各負極板150と各正極板シート100が集積部210の支持基板215上に順次積層される過程において、各負極板150と各正極板シート100の電極積層体300(図6の完全に積層された電極積層体300参照)の積層方向の第1の側縁がそれぞれ第1の側板211に縁延在方向全体に亘って突き当たるとともに、各正極板シート100と各負極板150の積層方向の第2の側縁がそれぞれ第2の側板212に縁延在方向全体に亘って突き当たるようになっている。   As described above, the structure of the stacking unit 210 tilted three-dimensionally and the micro-reciprocal vibration of the stacking unit 210 generated by the stacking unit 210 and the shift prevention unit 220 of the stacking device 200 cooperate with each other, so 150 and each positive electrode plate sheet 100 are sequentially stacked on the support substrate 215 of the stacking unit 210, and each negative electrode plate 150 and the electrode stack 300 of each positive electrode plate sheet 100 (the fully stacked electrode stack of FIG. 6). First side edges in the stacking direction of the body 300) abut against the first side plate 211 over the entire edge extending direction, and the second side in the stacking direction of each positive electrode plate sheet 100 and each negative electrode plate 150. The edges respectively abut against the second side plate 212 over the entire edge extending direction.

続いて、本実施形態に係る二次電池用電極積層体の作成方法を正極板シート100の作成方法から順番に説明する。最初に、図1に示すようにセパレーター供給装置30を介して第1のセパレーター121と第2のセパレーター122を連続して送り出す。また、これと同時に正極板供給装置10を介して正極板110を正極板搬送装置20に供給するとともに、正極板搬送装置20を介して正極板110を第1のセパレーター121と第2のセパレーター122の間まで搬送する。なお、第1のセパレーター121及び第2のセパレーター122よりもセパレーター走行方向と直交する幅方向の長さ(以下、単に「幅方向の長さ」とする)に対して正極板110の幅方向の長さは若干短くなっている。   Then, the preparation method of the electrode laminated body for secondary batteries which concerns on this embodiment is demonstrated in order from the preparation method of the positive electrode sheet 100. FIG. First, as shown in FIG. 1, the first separator 121 and the second separator 122 are continuously sent out via the separator supply device 30. At the same time, the positive plate 110 is supplied to the positive plate transport device 20 via the positive plate supply device 10, and the positive plate 110 is supplied to the first separator 121 and the second separator 122 via the positive plate transport device 20. Transport to between. In addition, the width direction of the positive electrode plate 110 with respect to the length in the width direction perpendicular to the separator traveling direction (hereinafter simply referred to as “the length in the width direction”) than the first separator 121 and the second separator 122. The length is slightly shorter.

そして、挟込装置40を介して正極板110を第1のセパレーター121と第2のセパレーター122の間に挟み込む。この正極板110を第1のセパレーター121と第2のセパレーター122の間に挟み込む際に、正極板110をセパレーター送り出し方向に所定間隔隔てるように挟み込む。   Then, the positive electrode plate 110 is sandwiched between the first separator 121 and the second separator 122 via the sandwiching device 40. When sandwiching the positive electrode plate 110 between the first separator 121 and the second separator 122, the positive electrode plate 110 is sandwiched at a predetermined interval in the separator delivery direction.

続いて、図4に示すように、2枚のセパレーター120に挟み込まれた各正極板110のセパレーター幅方向に対応する幅方向両側部であってセパレーター同士の重ね合わせ部を溶着装置50によってセパレーター120の走行方向において所定間隔隔てて部分的に溶着するとともに、セパレーター120の走行方向における正極板間のセパレーター同士の重ね合わせ部120aをセパレーター120の幅方向において所定間隔隔てて部分的に溶着する。   Subsequently, as shown in FIG. 4, the overlapping portions of the separators on both sides in the width direction corresponding to the separator width direction of each positive electrode plate 110 sandwiched between the two separators 120 are separated by the welding device 50. The separator 120 is partially welded at a predetermined interval in the width direction of the separator 120 and is partially welded at a predetermined interval in the width direction of the separator 120.

次いで、ここでは図示しないが、所定ピッチを有する鋸刃状のカッターと、カッターの円周方向の前後に配設したセパレーター押さえと、セパレーター押さえを支える付勢手段とを設けた構造を有するカッター胴と、所定の硬さを有する弾性体からなるカッター受けを設けた構造を有するカッター受け胴からなるセパレーターの切断装置60を用いてセパレーター120の重ね合わせ部120aを切断する。   Next, although not shown here, a cutter cylinder having a structure provided with a saw blade-shaped cutter having a predetermined pitch, a separator press disposed in the front and rear in the circumferential direction of the cutter, and an urging means for supporting the separator press. Then, the overlapping portion 120a of the separator 120 is cut using the separator cutting device 60 formed of a cutter receiving cylinder having a structure in which a cutter receiver made of an elastic body having a predetermined hardness is provided.

具体的には、連続して送り出される連続状の2枚のセパレーター120をカッター胴のセパレーター押さえとカッター受け胴のカッター受けの間に挟み込んだ状態で、セパレーターの走行方向において互いに所定間隔隔てて並んで配置された正極板間に位置するセパレーター120の重ね合わせ部120aをその予め決められた切断線120b(図4の二点鎖線参照)によって鋸刃状のカッターによって切断する。このようにして、正極板110の表裏が2枚のセパレーター121,122で挟まれるとともに周囲がセパレーター120の重ね合わせ部で囲まれた正極板シート100を作成する。   Specifically, two continuous separators 120 fed out continuously are sandwiched between the separator presser of the cutter cylinder and the cutter receiver of the cutter receiver cylinder, and are arranged at predetermined intervals in the running direction of the separator. The overlapping portion 120a of the separator 120 positioned between the positive electrode plates arranged in (1) is cut by a saw blade cutter along the predetermined cutting line 120b (see the two-dot chain line in FIG. 4). In this way, the positive electrode plate sheet 100 is created in which the front and back surfaces of the positive electrode plate 110 are sandwiched between the two separators 121 and 122 and the periphery is surrounded by the overlapping portion of the separator 120.

以下に、このようにして作成される正極板シート100の切断装置60による切断前後の状態について図面に基づいて両者を比較しながら説明する。図4は、図1に示した正極板シート作成装置により作成する正極板シートの作成直前の状態、すなわち切断装置によって正極板間のセパレーターの重ね合わせ部を切断する直前の状態を示す平面図である。また、図5は、本実施形態の切断装置によって切断されて作成された正極板シートの平面図、すなわち切断装置によって正極板間のセパレーターの重ね合わせ部を切断した直後の状態を示す平面図である。   Below, the state before and behind the cutting | disconnection apparatus 60 of the positive electrode plate sheet 100 produced in this way is demonstrated, comparing both based on drawing. FIG. 4 is a plan view showing a state immediately before the production of the positive electrode sheet produced by the positive electrode sheet production device shown in FIG. 1, that is, a state immediately before the separator overlapping portion between the positive electrodes is cut by the cutting device. is there. FIG. 5 is a plan view of the positive electrode sheet produced by cutting with the cutting device of the present embodiment, that is, a plan view immediately after cutting the overlapping portion of the separator between the positive electrode plates with the cutting device. is there.

本実施形態に係る正極板シートの作成装置によって作成される正極板シート100のセパレーター切断前の状態は、図4に示すように、隣接する正極板110が所定間隔だけ隔てた状態で2枚のセパレーター121,122の間に挟み込まれた後、この隣接する正極板110間のセパレーター同士の重ね合わせ部120aの延在方向にセパレーター120の幅方向を長手方向とする長方形の溶着部131,132がセパレーター120の重ね合わせ部120aに互いに間隔を隔てて平行に複数形成されている。また、セパレーター120の幅方向両側の重ね合わせ部120aにも同様の溶着部135,136が形成されている。そして、これら溶着部130(131,132)間のセパレーター120の重ね合わせ部120aを、上述したように図4の二点鎖線で示す切断線120bに沿って切断装置60の鋸刃状カッターで切断し、切断部を鋸刃状カッターの刃に対応する極めて小さいピッチのギザギザの切断部120eを正極板シート100の対向する2つの縁部120e有した図5に示す個々の正極板シート100を作成する。   As shown in FIG. 4, the state of the positive electrode sheet 100 created by the positive electrode sheet production apparatus according to the present embodiment before the separator is cut is two sheets with the adjacent positive electrodes 110 separated by a predetermined interval. After being sandwiched between the separators 121 and 122, rectangular welded portions 131 and 132 whose longitudinal direction is the width direction of the separator 120 are formed in the extending direction of the overlapping portion 120 a of the separators between the adjacent positive electrode plates 110. A plurality of the overlapping portions 120a of the separator 120 are formed in parallel with a space therebetween. Similar welded portions 135 and 136 are also formed on the overlapping portions 120 a on both sides in the width direction of the separator 120. Then, the overlapping portion 120a of the separator 120 between the welded portions 130 (131, 132) is cut by the saw blade cutter of the cutting device 60 along the cutting line 120b shown by the two-dot chain line in FIG. 4 as described above. Then, each of the positive electrode plate sheets 100 shown in FIG. 5 having two edge portions 120e facing each other of the positive electrode plate sheet 100 is formed with jagged cutting portions 120e having extremely small pitches corresponding to the blades of the saw blade cutter. To do.

次いで、本実施形態においては、上述した集積装置200を用いて以下の手順で二次電池用電極積層体300(図6参照)を作成する。図2は、本発明の一実施形態に係る二次電池用電極積層体作成装置1の集積装置200を用いて二次電池用電極積層体を作成する途中の過程を概略的に示す側面図である。なお、この工程を説明するにあたって本実施形態においては、上述したように正極板シート搬送ベルト270と負極板搬送ベルト250が集積装置200に対して同方向(図中右方向)に配置されている。   Next, in the present embodiment, the secondary battery electrode laminate 300 (see FIG. 6) is created by the following procedure using the above-described integrated device 200. FIG. 2 is a side view schematically showing a process in the middle of producing a secondary battery electrode laminate using the integration device 200 of the secondary battery electrode laminate production apparatus 1 according to an embodiment of the present invention. is there. In describing this process, in the present embodiment, as described above, the positive electrode sheet conveying belt 270 and the negative electrode conveying belt 250 are arranged in the same direction (right direction in the drawing) with respect to the stacking apparatus 200. .

本実施形態においては、図2に示すように、正極板シート100の外形寸法とほぼ同じ外径寸法となった複数の負極板150を負極板供給装置260から1枚ずつ供給する。そして、負極板供給装置260から供給される負極板150を負極板搬送ベルト250に載せる。また、上述した正極板シート作成のための各工程によって作成された正極板シート100を正極板シート搬送ベルト270によって複数枚所定の間隔を隔てて連続して搬送する。   In the present embodiment, as shown in FIG. 2, a plurality of negative plates 150 having an outer diameter that is substantially the same as the outer dimensions of the positive plate 100 are supplied from the negative plate supply device 260 one by one. Then, the negative electrode plate 150 supplied from the negative electrode plate supply device 260 is placed on the negative electrode plate conveyance belt 250. Further, a plurality of positive plate sheets 100 created by the above-described steps for producing a positive plate sheet are continuously conveyed by a positive plate sheet conveying belt 270 at a predetermined interval.

そして、正極板シート搬送ベルト270の搬送方向先端側から落下してくる正極板シート100を1枚ずつこれに対応する負極板150に重ねる。この際、重ね合わせ漏れがないかどうかを光電スイッチ275で常に検知する。なお、図2の正極板シート搬送ベルト近傍においては、負極板搬送ベルト250上の負極板150の搬送方向進行側約3分の1に正極板シート100の進行方向約3分の1の部分が重なり、その他の部分が互いに重なる直前の状態を示している。   Then, the positive plate sheets 100 falling from the leading end side in the conveyance direction of the positive plate sheet conveyance belt 270 are stacked one by one on the corresponding negative electrode plate 150. At this time, the photoelectric switch 275 always detects whether or not there is an overlay omission. In the vicinity of the positive electrode sheet conveyance belt in FIG. 2, about one third of the negative electrode plate 150 on the negative electrode conveyance belt 250 in the conveyance direction advance side is about one third. The state just before the overlap and other portions overlap each other is shown.

また、この重なり途中の負極板150と正極板シート100に隣接して図2中左側(負極板搬送ベルト250の下流側)には、搬送方向先端が負極板搬送ベルト250の端部から一部飛び出した状態の負極板150と正極板シート100が互いに完全に重なった状態で示されている。また、集積装置200の集積部210には、負極板搬送ベルト250の先端から図中わずかに斜め左下方向を向く矢印の方向に飛び出しかつ第1の側板211につき当たった2組の負極板150及び正極板シート100が図2中に示されているとともに、それ以外にこの状態から図中下向きの矢印で示す方向に落下して集積部210の支持基板215上に積層した3組の負極板150及び正極板シート100が示されている。   Further, on the left side in FIG. 2 (on the downstream side of the negative electrode plate conveying belt 250) adjacent to the negative electrode plate 150 and the positive electrode plate sheet 100 that are in the middle of overlapping, the front end in the conveying direction is partially from the end of the negative electrode plate conveying belt 250 The protruding negative electrode plate 150 and positive electrode plate sheet 100 are shown completely overlapped with each other. Further, the stacking unit 210 of the stacking apparatus 200 has two sets of negative plates 150 that protrude from the tip of the negative plate transport belt 250 in the direction of the arrow slightly diagonally to the lower left in the drawing and hit the first side plate 211 and The positive electrode plate sheet 100 is shown in FIG. 2, and in addition to this, three sets of negative electrode plates 150 dropped from this state in the direction indicated by the downward arrow in the figure and stacked on the support substrate 215 of the stacking unit 210. And the positive electrode plate sheet 100 is shown.

集積部210は、図2及び図3に示すように電極積層体300の最下層を支える支持基板215と、支持基板215の第1の縁部215aから支持基板215の上面に対して垂直方向に立ち上がった第1の側板211と、支持基板215の第2の縁部215bから支持基板215の上面に対して垂直方向に立ち上がるとともに、第1の側板211とのなす角が直角となった第2の側板212を有している。そして、上述したように支持基板215についても、図2の方向から見ると水平面に対して角度αだけ傾いており、図3の方向から見ると水平面に対して角度βだけ傾いている。このような配置上の構成に加えて、ずれ防止部220が集積部210に振動を与えるようにずれ防止動作を行うようになっていることで、これら両者の作用に起因して集積部210の支持基板215上に順次積層される各負極板150と各正極板シート100の電極積層体300の第1の側縁211の一辺が第1の側板211に縁延在方向全てに亘って突き当てるとともに、電極積層体300の第2の側縁212の一辺が第2の側板212に縁延在方向全てに亘って突き当たっている。   As shown in FIGS. 2 and 3, the integrated unit 210 includes a support substrate 215 that supports the lowermost layer of the electrode stack 300, and a first edge 215 a of the support substrate 215 in a direction perpendicular to the upper surface of the support substrate 215. The first side plate 211 that has stood up and the second edge portion 215b of the support substrate 215 that has risen in a direction perpendicular to the upper surface of the support substrate 215, and the angle between the first side plate 211 and the first side plate 211 has become a right angle. The side plate 212 is provided. As described above, the support substrate 215 is also inclined by an angle α with respect to the horizontal plane when viewed from the direction of FIG. 2 and is inclined by an angle β with respect to the horizontal plane when viewed from the direction of FIG. In addition to the arrangement configuration as described above, the shift prevention unit 220 performs the shift prevention operation so as to vibrate the stacking unit 210. One side of the first side edge 211 of each electrode plate 300 of each negative electrode plate 150 and each positive electrode plate sheet 100 sequentially laminated on the support substrate 215 abuts against the first side plate 211 in the entire edge extending direction. At the same time, one side of the second side edge 212 of the electrode stack 300 abuts against the second side plate 212 in the entire edge extending direction.

なお、本実施形態においては、正極板シート100と負極板150の相互のずれを所望の範囲内とするずれ防止動作を積層動作に合わせて行うが、この代わりに積層動作を行った後にずれ防止動作を行うようにしても良い。   In this embodiment, the displacement prevention operation is performed in accordance with the stacking operation so that the mutual displacement between the positive electrode plate sheet 100 and the negative electrode plate 150 is within a desired range. Instead, the shift prevention is performed after the stacking operation is performed. You may make it perform operation | movement.

このようにして負極板150と正極板シート100が互いに重なった状態のものを集積部210に順次集積するとともに、ずれ防止装置220で集積部210に振動を加え続ける。そして、負極板150と正極板シート100を互い違いに所定枚数だけ集積部210に集積させた後、この最上部に負極板150を1枚だけ積層させて電極積層体300を完成させる。すなわち、nを自然数とすると、n+1枚の負極板150とn枚の正極板シート100の電極積層体300が、その上面と下面が負極板150となった状態ででき上がる。   In this way, the negative electrode plate 150 and the positive electrode plate sheet 100 that are overlapped with each other are sequentially accumulated in the accumulating unit 210, and the deviation preventing device 220 continues to apply vibration to the accumulating unit 210. Then, after a predetermined number of negative electrode plates 150 and positive electrode plate sheets 100 are alternately stacked on the stacking unit 210, only one negative electrode plate 150 is stacked on the uppermost portion to complete the electrode stack 300. That is, when n is a natural number, the electrode laminate 300 of n + 1 negative electrode plates 150 and n positive electrode plate sheets 100 is completed with the upper and lower surfaces thereof being the negative electrode plates 150.

次いで、本実施形態においては詳細には示さないが、図2、図3及び図6に示した集積装置200を負極板搬送ベルト250の延在方向と直交する方向、すなわち図6中においてはその紙面と直交する方向に2個並列配置させておき、一方の集積装置200における集積作業が完了したらこれを負極板搬送ベルト250から図6の紙面で直交する方向に沿って離間するように移動(シフト)させ、ハンドリング用のロボット等で図6では図示しない電極積層体300の搬送ベルトに載せ替えるようにするのが良い。この際、このハンドリング前又はハンドリング中に電極積層体300の各正極板シート100と負極板150がずれないようにロボット等を用いて一部をテーピングして電極積層体全体をさらにしっかりと一体化させるのが良い。   Next, although not shown in detail in the present embodiment, the stacking apparatus 200 shown in FIGS. 2, 3 and 6 is arranged in a direction orthogonal to the extending direction of the negative electrode plate conveying belt 250, that is, in FIG. Two are arranged in parallel in a direction perpendicular to the paper surface, and when the accumulation operation in one of the accumulation devices 200 is completed, the two are moved away from the negative electrode plate conveyor belt 250 along the direction orthogonal to the paper surface of FIG. It is preferable to shift it onto a conveyor belt of an electrode laminate 300 (not shown in FIG. 6) with a handling robot or the like. At this time, a part of the electrode laminate 300 is taped using a robot or the like so that the positive electrode sheet 100 and the negative electrode plate 150 of the electrode laminate 300 do not shift before or during handling. It is good to let it.

以下に、本実施形態に係る二次電池用電極積層体作成方法及び作成装置の作用についてより詳しく説明する。本実施形態に係る二次電池用電極積層体作成方法及び作成装置によると、ロール状に巻かれた2枚の帯状のセパレーター121,122を互いに重ね合わせるように連続的に送り出し、この連続的に送り出された2枚のセパレーター121,122を重ね合わせる際にそれらの間に正極板を互いに所定間隔隔てた状態で順次連続的に挟み込んでいくようになっている。そのため、特許文献1に開示された発明のように正極板を正確に位置決めしてセパレーターに載せる際、毎回セパレーターの搬送装置を間欠的に停止させる必要がない。すなわち、セパレーターの間欠的な送り動作を行う必要がないので、正極板シートの生産効率が従来技術に比べて遥かに向上するとともに、正極板搬送ベルトの急停止や急な移動開始動作によって正極板自体の搬送ベルト上のずれやセパレーターとこれに重ねられた正極板のずれが生じるのを回避する。   Below, the effect | action of the electrode laminated body preparation method and preparation apparatus for secondary batteries which concern on this embodiment is demonstrated in detail. According to the method and apparatus for producing a secondary battery electrode laminate according to the present embodiment, the two strip-shaped separators 121 and 122 wound in a roll are continuously sent out so as to overlap each other. When the two separators 121 and 122 fed out are superposed, the positive electrode plates are sequentially sandwiched between them with a predetermined distance therebetween. Therefore, when the positive electrode plate is accurately positioned and placed on the separator as in the invention disclosed in Patent Document 1, it is not necessary to intermittently stop the separator transport device every time. In other words, since it is not necessary to perform the intermittent feeding operation of the separator, the production efficiency of the positive electrode plate sheet is greatly improved as compared with the prior art, and the positive electrode plate is rapidly stopped and the movement of the positive electrode plate is started suddenly. It avoids the occurrence of deviation on its own conveyor belt and deviation between the separator and the positive electrode plate superimposed thereon.

また、上述した集積装置200を有することで、正極板110ごとにセパレーター120で覆われた正極板シート100と負極板150をそれぞれ交互に積層させるとともに、その積層された多数枚の正極板シート100と負極板150の各縁部が一致して互いにずれが生じていない二次電池用電極積層体を規定の寸法通りにかつ短時間で効率よく作成することができる。そのため、特許文献2に記載された発明のようにセパレーターの折り返し部に折れ線がしっかりと形成できないために浮き上がり無駄な厚みが生じることがなくかつセパレーターの折り返し位置を厳密に管理するための複雑な装置構造も必要としない。また、既に溶着、切断の工程も終えているために、すぐに次の工程に移ることができる。   In addition, by having the above-described integration device 200, the positive electrode plates 110 and the negative electrode plates 150 covered with the separators 120 are alternately stacked for each positive electrode plate 110, and the stacked positive electrode plate sheets 100 are stacked. The electrode laminate for a secondary battery in which the edge portions of the negative electrode plate 150 and the negative electrode plate 150 coincide with each other and do not deviate from each other can be efficiently produced in a short time according to the specified dimensions. Therefore, as in the invention described in Patent Document 2, a broken line cannot be firmly formed in the folded portion of the separator, so that it does not float up and a wasteful thickness does not occur, and a complicated device for strictly managing the folded position of the separator No structure is required. In addition, since the welding and cutting processes have already been completed, it is possible to immediately move on to the next process.

特に、正極板シート100の切断縁部は、図5に示すように極めて小さいピッチの鋸刃状に切断された形態をなしているので、この切断縁部が集積装置200の第1の側板211に突き当たる際に集積装置200のずれ防止部220が集積部210の支持基板215及び第1の側板211を振動させることで、各正極板シート100とこの一方の面に重なった負極板150の積層方向の第1の側縁がそれぞれ第1の側板211に縁延在方向全てに亘ってしっかりと突き当たるようになっている。   In particular, since the cut edge of the positive electrode sheet 100 is cut into a very small pitch saw blade as shown in FIG. 5, the cut edge is the first side plate 211 of the stacking apparatus 200. The displacement prevention unit 220 of the stacking apparatus 200 vibrates the support substrate 215 and the first side plate 211 of the stacking unit 210 when it strikes against each other, thereby stacking each positive plate 100 and the negative plate 150 overlapping this one surface. The first side edge of each direction is firmly in contact with the first side plate 211 over the entire edge extending direction.

また、支持基板215についても、図2の方向から見ると水平面に対して角度αだけ傾いており、図3の方向から見ると水平面に対して角度βだけ傾いている。このように、支持基板215とこれと一体となった第1及び第2の側板211,212が三次元的に傾いていることで、集積部210の支持基板215上に順次積層される各正極板シート100と各負極板150の電極積層体300の積層方向の側縁の一辺を第1の側板211に縁延在方向全てに亘って突き当てるとともに、この側縁のうち他の一辺をこの側縁と直交する第2の側板212に縁延在方向全てに亘って突き当てることができる。これによって、集積装置200の集積部210の第1及び第2の側板211,212に対応する電極積層体300の側縁の積層面をそれぞれずれが設計上の許容範囲に収まるように電極積層体300を作成できるので、その後の工程を経た後に製造上の歩留まりを高めた設計寸法通りの品質に優れた二次電池を短時間で多数作成できるようになる。   Further, the support substrate 215 is also inclined by an angle α with respect to the horizontal plane when viewed from the direction of FIG. 2, and is inclined by an angle β with respect to the horizontal plane when viewed from the direction of FIG. As described above, since the support substrate 215 and the first and second side plates 211 and 212 integrated with the support substrate 215 are tilted three-dimensionally, the positive electrodes sequentially stacked on the support substrate 215 of the integrated unit 210. One side edge in the stacking direction of the electrode stack 300 of the plate sheet 100 and each negative electrode plate 150 is abutted against the first side plate 211 in the entire edge extending direction, and the other side of the side edges is It can abut against the second side plate 212 orthogonal to the side edge over the entire edge extending direction. As a result, the electrode laminates are arranged such that the deviations of the laminated surfaces of the side edges of the electrode laminate 300 corresponding to the first and second side plates 211 and 212 of the accumulation unit 210 of the accumulation device 200 are within the allowable range in design. Since 300 can be produced, it is possible to produce a large number of secondary batteries excellent in quality according to the design dimensions with increased manufacturing yield after subsequent steps.

また、本実施形態の場合、負極板搬送ベルト250と正極板シート搬送ベルト270は、ともに集積装置200の一方の側であって第1の側板211と対向する側に位置するので、これら搬送ベルトの設置のための省スペースが図られている。しかしながら、このような形態を取らず、集積装置200の一方の側方に負極板搬送ベルト250を配設するとともに、他方の側に正極板シート搬送ベルト270を配設しても本発明の作用を充分発揮することは可能である。   In the case of the present embodiment, the negative plate transport belt 250 and the positive plate sheet transport belt 270 are both located on one side of the stacking apparatus 200 and on the side facing the first side plate 211. Space-saving for the installation of is planned. However, even if the negative plate conveying belt 250 is disposed on one side of the stacking device 200 and the positive electrode sheet conveying belt 270 is disposed on the other side without taking such a form, the operation of the present invention is achieved. It is possible to fully exhibit.

また、本実施形態の場合、1枚の負極板150の上に1枚の正極板シート100を負極板搬送ベルト250上で重ね合わせた後、集積装置200にこれを供給しているので、正極板シート100に比べて厚さの薄い負極板150を集積装置200の集積部210に確実に載せることができる。しかしながら、このような形態を取らず、負極板供給装置260から供給された負極板150を、負極板搬送ベルト250を介して集積装置200の集積部210に供給するとともに、これと交互して正極板シート搬送ベルト270から正極板シート100を集積装置200の集積部210に供給するようにしても、本発明の作用を充分発揮することは可能である。   In the case of the present embodiment, since one positive electrode sheet 100 is superposed on one negative electrode plate 150 on the negative electrode transport belt 250 and then supplied to the stacking device 200, the positive electrode The negative electrode plate 150, which is thinner than the plate sheet 100, can be reliably placed on the stacking unit 210 of the stacking apparatus 200. However, without taking such a form, the negative electrode plate 150 supplied from the negative electrode plate supply device 260 is supplied to the stacking unit 210 of the stacking device 200 via the negative plate transport belt 250, and the positive electrode alternately with this. Even if the positive electrode plate sheet 100 is supplied from the plate sheet transport belt 270 to the stacking unit 210 of the stacking apparatus 200, the effects of the present invention can be sufficiently exerted.

なお、以上説明した実施形態で紹介した各構成要素の形状や寸法、数値、材質はあくまで例示的なもので、本発明の範囲を逸脱しない限り、様々な形状や寸法、数値、材質を適宜選択できることは言うまでもない。すなわち、本発明における二次電池用電極積層体作成装置は、上述した正極板シート作成装置の構成に限定して実現されるものではない。   The shapes, dimensions, numerical values, and materials of the components introduced in the above-described embodiments are merely examples, and various shapes, dimensions, numerical values, and materials are appropriately selected without departing from the scope of the present invention. Needless to say, you can. That is, the secondary battery electrode laminate production apparatus according to the present invention is not realized by being limited to the configuration of the positive electrode sheet production apparatus described above.

また、本実施形態においては、負極板搬送ベルト上において1枚の負極板上に1枚の正極板シートを重ね、この重ねられた負極板と正極板シートの対を集積部に順次投入して複数枚の負極板と正極板シートを交互に積層するようにしていた。しかしながら、負極板と正極板シートを1枚ずつ集積部に直接投入してこれらを交互に複数枚積層させることで二次電池用電極積層体を作成するようにしても、本発明の作用を十分発揮し得ることが可能である。   In the present embodiment, one positive electrode sheet is stacked on one negative electrode plate on the negative electrode transport belt, and the stacked negative electrode and positive electrode sheet pairs are sequentially introduced into the stacking unit. A plurality of negative electrode plates and positive electrode plate sheets were alternately laminated. However, even if the negative electrode plate and the positive electrode plate sheet are directly put into the stacking unit one by one and a plurality of these are alternately stacked, a secondary battery electrode laminate can be produced, and the effect of the present invention is sufficiently obtained. It can be demonstrated.

また、本実施形態では2枚のセパレーター間に正極板を挟み込む構造の二次電池用電極積層体作成方法及び作成装置について説明したが、この代わりに2枚のセパレーター間に負極板を挟み込む構造の二次電池用電極積層体作成方法及び作成装置に本発明を適用しても同等の作用を奏し得ることは言うまでもない。   In the present embodiment, the method and apparatus for producing a secondary battery electrode laminate having a structure in which a positive electrode plate is sandwiched between two separators have been described. Instead, a structure in which a negative electrode plate is sandwiched between two separators. Needless to say, even if the present invention is applied to the method and apparatus for producing an electrode laminate for a secondary battery, the same effect can be obtained.

なお、ずれ防止部の構造としては、上述の実施形態のようなカム機構に限らず、モーターの回転に伴ってモーター自体を振動させることで、その振動を利用する振動発生手段を利用しても良い。さらには、ブザーやベル等の振動発生手段も適用可能である。   Note that the structure of the slip prevention unit is not limited to the cam mechanism as in the above-described embodiment, and vibration generating means that uses the vibration by vibrating the motor itself as the motor rotates can be used. good. Furthermore, vibration generating means such as a buzzer or a bell can be applied.

1 二次電池用電極積層体作成装置
10 正極板供給装置
20 正極板搬送装置
30 セパレーター供給装置
30U 上段側セパレーター供給装置
30L 下段側セパレーター供給装置
40 挟込装置
50 溶着装置
60 切断装置
70 検査装置
80 不良品排出装置
100 正極板シート
110 正極板
121,122(120) セパレーター
120a 重ね合わせ部
120b 切断線
120e 切断部
130(131,132) 溶着部
135,136 溶着部
150 負極板
200 集積装置
201 筐体
201a 開口部
201b 底板
210 集積部
220 ずれ防止部
211 第1の側板
212 第2の側板
215 支持基板
215a 第1の縁部
215b 第2の縁部
221 偏心カム
221a 周面
222 カムシャフト
250 負極板搬送ベルト
251 先端側
260 負極板供給装置
270 正極板シート搬送ベルト
275 光電スイッチ
300 電極積層体
DESCRIPTION OF SYMBOLS 1 Secondary battery electrode laminated body preparation apparatus 10 Positive electrode plate supply apparatus 20 Positive electrode plate conveying apparatus 30 Separator supply apparatus 30U Upper stage separator supply apparatus 30L Lower stage separator supply apparatus 40 Clamping apparatus 50 Welding apparatus 60 Cutting apparatus 70 Inspection apparatus 80 Defective product discharge device 100 Positive electrode sheet 110 Positive electrode plate 121, 122 (120) Separator 120a Overlapping portion 120b Cutting line 120e Cutting portion 130 (131, 132) Welding portion 135, 136 Welding portion 150 Negative electrode 200 Stacking device 201 Housing 201a opening 201b bottom plate 210 stacking unit 220 displacement prevention unit 211 first side plate 212 second side plate 215 support substrate 215a first edge 215b second edge 221 eccentric cam 221a peripheral surface 222 camshaft 250 negative plate conveyance bell 251 distal side 260 negative plate supply device 270 positive plate sheet conveying belt 275 photoelectric switch 300 electrode stack

Claims (5)

それぞれロール状に巻かれ、当該ロール状に巻かれた状態から互いに重なり合うように送り出される連続状の第1のセパレーターと第2のセパレーターを用意し、
前記第1のセパレーターと前記第2のセパレーターを連続して送り出しながらそれらの間に、これらのセパレーターよりもセパレーター走行方向と直交する幅方向の長さが前記セパレーターよりも短い正極板をセパレーター送り出し方向に所定間隔隔てるように挟み込み、
前記2枚のセパレーターに挟み込まれた各正極板の前記セパレーター幅方向に対応する幅方向両側部であって前記セパレーター同士の重ね合わせ部を前記セパレーターの走行方向において所定間隔隔てて部分的に溶着するとともに、前記セパレーターの走行方向における前記正極板間のセパレーター同士の重ね合わせ部を当該セパレーターの前記幅方向において所定間隔隔てて部分的に溶着し、
所定長さのカッターを円周方向所定位置に長手方向に亘って備えたカッター胴と、前記カッターを受けるために円周方向所定位置に長手方向に亘って所定の長さだけ当該カッターに対応してカッター受けを備えたカッター受け胴からなるセパレーターの切断装置を用意し、
前記切断装置のカッター胴とカッター受け胴の円周面が前記セパレーターの走行方向と同じ方向となるように前記切断装置のカッター胴とカッター受け胴を回転させ、
前記連続して送り出される連続状の2枚のセパレーターを前記カッター胴のセパレーター押さえと前記カッター受け胴のカッター受けの間に挟み込んだ状態で、前記セパレーターの走行方向において互いに所定間隔隔てて並んで配置された正極板間に位置するセパレーターの重ね合わせ部をカッターによって切断することで、正極板の表裏が2枚のセパレーターで挟まれるとともに周囲がセパレーターの重ね合わせ部で囲まれた正極板シートを作成し、
前記作成された正極板シートを複数枚所定の間隔を隔てて連続して供給するとともに、前記正極板シートの外形寸法とほぼ同じ外径寸法となった複数の負極板を供給してこれらを1枚ずつ交互に集積する集積動作を行うとともに、前記正極板シートと前記負極板の相互のずれを所望の範囲内とするずれ防止動作を前記集積動作に合わせて行うことを特徴とする二次電池用電極積層体作成方法。
Prepare a first separator and a second separator that are each wound in a roll shape and sent out so as to overlap each other from the state wound in the roll shape,
While the first separator and the second separator are continuously sent out, a positive electrode plate having a length in the width direction perpendicular to the separator running direction is shorter than that of the separator between these separators. Sandwiched at a predetermined interval
The positive electrode plates sandwiched between the two separators are partially welded at both sides in the width direction corresponding to the width direction of the separator and overlapping portions of the separators at a predetermined interval in the running direction of the separator. And partially welding the overlapping portion of the separators between the positive plates in the running direction of the separator at a predetermined interval in the width direction of the separator,
A cutter body provided with a predetermined length of cutter in the circumferential direction at a predetermined position in the longitudinal direction, and the cutter corresponding to the predetermined length in the longitudinal direction at a predetermined position in the circumferential direction to receive the cutter. Prepare a separator cutting device consisting of a cutter cylinder with a cutter holder,
Rotating the cutter cylinder and cutter receiving cylinder of the cutting apparatus so that the circumferential surfaces of the cutter cylinder and cutter receiving cylinder of the cutting apparatus are in the same direction as the traveling direction of the separator,
The two separators that are continuously sent out are arranged side by side at a predetermined interval in the running direction of the separator in a state where the separator is sandwiched between the separator presser of the cutter cylinder and the cutter receiver of the cutter receiver cylinder. By cutting the overlapping part of the separator located between the positive electrode plates with a cutter, a positive electrode sheet is created in which the front and back of the positive electrode plate are sandwiched between two separators and the periphery is surrounded by the overlapping part of the separator And
A plurality of the prepared positive electrode plate sheets are continuously supplied at a predetermined interval, and a plurality of negative electrode plates having the same outer diameter as the outer dimensions of the positive electrode plate sheet are supplied. A secondary battery that performs a stacking operation for alternately stacking sheets one by one, and performs a shift prevention operation in accordance with the stacking operation so that a shift between the positive electrode plate sheet and the negative electrode plate is within a desired range. Electrode laminate manufacturing method.
前記請求項1における二次電池用電極積層体作成方法において、前記集積動作と前記ずれ防止動作を合わせて行う代わりに、前記集積動作を行った後に前記ずれ防止動作を行うことを特徴とする二次電池用電極積層体作成方法。   2. The method for producing an electrode laminate for a secondary battery according to claim 1, wherein instead of performing the integration operation and the shift prevention operation together, the shift prevention operation is performed after the integration operation is performed. Method for producing electrode laminate for secondary battery. 前記正極板シート及び前記負極板は矩形状をなすとともに、前記電極積層体の底面を支える支持基板と、前記支持基板の第1の縁部から当該支持基板の上面に対して垂直方向に立ち上がった第1の側板と、前記支持基板の第2の縁部から当該支持基板の上面に対して垂直方向に立ち上がるとともに、前記第1の側板とのなす角が直角となった第2の側板を有する集積部を用いて前記集積動作を実施するとともに、
前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第1の側縁が前記第1の側板に縁延在方向全てに亘って突き当たるとともに、前記集積部の支持基板上に順次積層される各正極板シートと各負板の積層体の積層方向の第2の側縁が前記第2の側板に縁延在方向全てに亘って突き当たるように前記積層部に前記ずれ防止部が振動を与えることで前記ずれ防止動作を実施することを特徴とする請求項1又は請求項2に記載の二次電池用電極積層体作成方法。
The positive electrode plate sheet and the negative electrode plate have a rectangular shape, and a support substrate that supports the bottom surface of the electrode stack, and a first edge of the support substrate that rises in a direction perpendicular to the upper surface of the support substrate. The first side plate has a second side plate that rises in a direction perpendicular to the upper surface of the support substrate from the second edge portion of the support substrate, and that the angle between the first side plate and the first side plate is a right angle. While performing the integration operation using the integration unit,
The first side edge in the stacking direction of each positive electrode sheet and the stack of each negative electrode plate sequentially stacked on the support substrate of the integrated unit abuts the first side plate over the entire edge extending direction, A second side edge in the stacking direction of each positive electrode plate sheet and each negative plate stack sequentially stacked on the support substrate of the stacking unit abuts the second side plate over the entire edge extending direction. 3. The method for producing an electrode laminate for a secondary battery according to claim 1, wherein the deviation prevention operation is performed by applying vibration to the laminated portion.
正極板と負極板を絶縁性シートからなるセパレーターを介して互いに絶縁しながら積層した構造を有する二次電池に用いる正極板シートの作成装置であって、
それぞれロール状に巻かれた連続状の第1のセパレーターと第2のセパレーターを当該ロール状に巻かれた状態から互いに重なり合うように送り出すセパレーター供給装置と、
前記第1のセパレーターと前記第2のセパレーターよりもセパレーター走行方向と直交する幅方向の長さが前記セパレーターよりも短い正極板を供給する正極板供給装置と、
前記正極板供給装置によって供給された正極板を所定位置に搬送する正極板搬送装置と、
前記正極板搬送装置によって搬送された正極板を前記送り出された2枚のセパレーターの間にセパレーター送り出し方向に所定間隔隔てるように順次挟み込む挟込装置と、
前記2枚のセパレーターに挟み込まれた各正極板の前記セパレーター幅方向に対応する幅方向両側部であって前記セパレーター同士の重ね合わせ部を前記セパレーターの走行方向において所定間隔隔てて部分的に溶着するとともに、前記セパレーターの走行方向における前記正極板間のセパレーター同士の重ね合わせ部を当該セパレーターの前記幅方向において所定間隔隔てて部分的に溶着する溶着装置と、
所定長さのカッターを円周方向所定位置に長手方向に亘って備えたカッター胴と、前記カッターを受けるために円周方向所定位置に長手方向に亘って所定の長さだけ当該カッターに対応してカッター受けを備えたカッター受け胴からなるセパレーターの切断装置であって、前記2枚のセパレーター間にそれらの走行方向において互いに所定間隔隔てて並んで配置された正極板間に位置するセパレーターの重ね合わせ部をそれぞれ二分するように前記重ね合わされたセパレーターを切断する切断装置を備えるとともに、
前記切断装置で切断され、所定の間隔を隔てて連続して送られる複数の正極板シートと、前記正極板シートの外形寸法とほぼ同じ外径寸法となった複数の負極板を1枚ずつ交互に集積する積層部と、前記正極板シートと前記負極板の相互のずれを所望の範囲内とするずれ防止部とを有する積層装置を備えたことを特徴とする二次電池用電極積層体作成装置。
A device for producing a positive electrode plate sheet used for a secondary battery having a structure in which a positive electrode plate and a negative electrode plate are laminated while being insulated from each other via a separator made of an insulating sheet,
A separator supply device for feeding the continuous first separator and the second separator wound in a roll shape so as to overlap each other from the state wound in the roll shape;
A positive electrode plate supply device that supplies a positive electrode plate whose length in the width direction perpendicular to the separator travel direction is shorter than that of the first separator and the second separator;
A positive plate transport device for transporting the positive plate supplied by the positive plate supply device to a predetermined position;
A sandwiching device for sequentially sandwiching the positive electrode plate conveyed by the positive electrode plate conveyance device so as to be separated by a predetermined interval in the separator delivery direction between the two fed-out separators;
The positive electrode plates sandwiched between the two separators are partially welded at both sides in the width direction corresponding to the width direction of the separator and overlapping portions of the separators at a predetermined interval in the running direction of the separator. And a welding device that partially welds the overlapping portion of the separators between the positive plates in the running direction of the separator at a predetermined interval in the width direction of the separator;
A cutter body provided with a predetermined length of cutter in the circumferential direction at a predetermined position in the longitudinal direction, and the cutter corresponding to the predetermined length in the longitudinal direction at a predetermined position in the circumferential direction to receive the cutter. A separator cutting apparatus comprising a cutter receiving cylinder provided with a cutter receiver, wherein the separators are positioned between the two separators and arranged between the positive plates arranged at predetermined intervals in the running direction. A cutting device for cutting the stacked separators so as to bisect the mating portions,
A plurality of positive plate sheets that are cut by the cutting device and fed continuously at a predetermined interval, and a plurality of negative plate plates that have substantially the same outer diameter as the outer dimensions of the positive plate sheet are alternately placed one by one. And a stacking device having a stacking unit that accumulates on the substrate and a misalignment prevention unit that keeps the misalignment between the positive electrode plate sheet and the negative electrode plate within a desired range. apparatus.
前記正極板シート及び前記負極板は矩形状をなすとともに、前記積層装置の集積部は、前記電極積層体の底面を支える支持基板と、前記支持基板の第1の縁部から当該支持基板の上面に対して垂直方向に立ち上がった第1の側板と、前記支持基板の第2の縁部から当該支持基板の上面に対して垂直方向に立ち上がるとともに、前記第1の側板とのなす角が直角となった第2の側板を有し、
前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第1の側縁が前記第1の側板に縁延在方向全てに亘って突き当たるとともに、前記集積部の支持基板上に順次積層される各正極板シートと各負極板の積層体の積層方向の第2の側縁が前記第2の側板に縁延在方向全てに亘って突き当たるように前記積層装置のずれ防止部が前記集積部に振動を与えることを特徴とする請求項4に記載の二次電池用電極積層体作成装置。

The positive electrode sheet and the negative electrode plate are rectangular, and the stacking unit of the stacking device includes a support substrate that supports a bottom surface of the electrode stack, and a top surface of the support substrate from a first edge of the support substrate. The first side plate rising in the vertical direction with respect to the upper surface of the support substrate from the second edge portion of the support substrate, and the angle between the first side plate and the first side plate is a right angle Having a second side plate,
The first side edge in the stacking direction of each positive electrode sheet and the stack of each negative electrode plate sequentially stacked on the support substrate of the integrated unit abuts the first side plate over the entire edge extending direction, A second side edge in the stacking direction of each positive electrode plate sheet and each negative electrode plate stack sequentially stacked on the support substrate of the stacking unit abuts on the second side plate in the entire edge extending direction. The apparatus for creating an electrode laminate for a secondary battery according to claim 4, wherein the misalignment prevention unit of the stacking device applies vibration to the stacking unit.

JP2013054352A 2013-03-15 2013-03-15 Method and device for forming electrode laminate for secondary battery Pending JP2014179304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054352A JP2014179304A (en) 2013-03-15 2013-03-15 Method and device for forming electrode laminate for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054352A JP2014179304A (en) 2013-03-15 2013-03-15 Method and device for forming electrode laminate for secondary battery

Publications (1)

Publication Number Publication Date
JP2014179304A true JP2014179304A (en) 2014-09-25

Family

ID=51699035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054352A Pending JP2014179304A (en) 2013-03-15 2013-03-15 Method and device for forming electrode laminate for secondary battery

Country Status (1)

Country Link
JP (1) JP2014179304A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197567A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Electrode laminating apparatus and electrode laminating method
JP2016197565A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Electrode lamination device
JP2016197568A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Electrode laminating apparatus
JP2017033752A (en) * 2015-07-31 2017-02-09 株式会社豊田自動織機 Electrode lamination device
JP2017041344A (en) * 2015-08-19 2017-02-23 株式会社豊田自動織機 Electrode stacking method
JP2017062989A (en) * 2015-09-25 2017-03-30 株式会社豊田自動織機 Electrode lamination device nad electrode lamination method
WO2017073677A1 (en) * 2015-10-28 2017-05-04 株式会社豊田自動織機 Laminating device and electrode laminating method
JP2017130270A (en) * 2016-01-18 2017-07-27 株式会社豊田自動織機 Electrode lamination device
KR20170111234A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 System for manufacturing an electrode assembly
KR101848542B1 (en) * 2015-01-30 2018-04-12 주식회사 엘지화학 Device for manufacturing an electrode assembly
JP2018081776A (en) * 2016-11-14 2018-05-24 トヨタ自動車株式会社 Laminate battery manufacturing device
CN108417903A (en) * 2018-02-01 2018-08-17 深圳前海优容科技有限公司 A kind of laminating machine and battery pole piece laminating method
CN110071334A (en) * 2018-01-23 2019-07-30 日机装株式会社 Stacked laminator and laminating method
CN112670547A (en) * 2019-10-16 2021-04-16 必达股份公司 Multi-type secondary battery laminating apparatus and control method thereof
CN113632279A (en) * 2019-03-29 2021-11-09 松下电器产业株式会社 Laminated electrode assembly and bonding device for laminated electrode assembly

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848542B1 (en) * 2015-01-30 2018-04-12 주식회사 엘지화학 Device for manufacturing an electrode assembly
JP2016197565A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Electrode lamination device
JP2016197568A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Electrode laminating apparatus
JP2016197567A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Electrode laminating apparatus and electrode laminating method
JP2017033752A (en) * 2015-07-31 2017-02-09 株式会社豊田自動織機 Electrode lamination device
JP2017041344A (en) * 2015-08-19 2017-02-23 株式会社豊田自動織機 Electrode stacking method
JP2017062989A (en) * 2015-09-25 2017-03-30 株式会社豊田自動織機 Electrode lamination device nad electrode lamination method
JPWO2017073677A1 (en) * 2015-10-28 2018-08-16 株式会社豊田自動織機 Laminating apparatus and electrode laminating method
WO2017073677A1 (en) * 2015-10-28 2017-05-04 株式会社豊田自動織機 Laminating device and electrode laminating method
JP2017130270A (en) * 2016-01-18 2017-07-27 株式会社豊田自動織機 Electrode lamination device
KR20170111234A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 System for manufacturing an electrode assembly
KR102087751B1 (en) * 2016-03-25 2020-03-12 주식회사 엘지화학 System for manufacturing an electrode assembly
JP2018081776A (en) * 2016-11-14 2018-05-24 トヨタ自動車株式会社 Laminate battery manufacturing device
CN110071334A (en) * 2018-01-23 2019-07-30 日机装株式会社 Stacked laminator and laminating method
CN110071334B (en) * 2018-01-23 2024-04-26 日机装株式会社 Lamination device and lamination method
CN108417903A (en) * 2018-02-01 2018-08-17 深圳前海优容科技有限公司 A kind of laminating machine and battery pole piece laminating method
CN113632279A (en) * 2019-03-29 2021-11-09 松下电器产业株式会社 Laminated electrode assembly and bonding device for laminated electrode assembly
CN112670547A (en) * 2019-10-16 2021-04-16 必达股份公司 Multi-type secondary battery laminating apparatus and control method thereof

Similar Documents

Publication Publication Date Title
JP2014179304A (en) Method and device for forming electrode laminate for secondary battery
JP5522851B2 (en) Polar plate packaging equipment
JP4823393B1 (en) Method for laminating positive and negative electrode plates and apparatus therefor
JP5775229B2 (en) Device for sandwiching electrode plates with separator
JP6196675B2 (en) Apparatus and method for manufacturing electrode laminate
JP6372453B2 (en) Manufacturing method of laminated electrode body
KR101883126B1 (en) Ultrasonic bonding device and ultrasonic bonding method
JP2012199210A (en) Production apparatus and production method of electrode laminate
JP2012160352A (en) Apparatus and method for manufacturing electrode laminate
JP2015532513A5 (en)
KR101749468B1 (en) Apparatus for bonding separators in electrical devices
JP2011181395A (en) Laminated lithium ion secondary battery, and method and device of manufacturing the same
US20230330885A1 (en) Electrode Assembly Manufacturing Apparatus Including Ultrasonic Cutter and Method Using the Same
JP6717159B2 (en) Electrode manufacturing equipment
JP2012199211A (en) Production apparatus and production method of electrode laminate
JP2014186799A (en) Electrode sheet creation device and creation method
JP2017224568A (en) Electrode manufacturing facility
JP2014170653A (en) Method and apparatus for preparing electrode sheet
JP6582426B2 (en) Method for manufacturing electrode separator assembly
JP6575118B2 (en) Electrode laminator
JP2017105083A (en) Electrode body manufacturing device and electrode body manufacturing method
JP5393139B2 (en) Secondary battery manufacturing method and secondary battery manufacturing apparatus
JP6097331B2 (en) Single wafer stacked lithium ion battery manufacturing apparatus and single wafer stacked lithium ion battery manufacturing method
JP7070285B2 (en) Electrode manufacturing equipment
JP6528457B2 (en) APPARATUS FOR MANUFACTURING SEPARATOR ELECTRODE, AND METHOD FOR MANUFACTURING SEPARATOR ELECTRODE