JP2021099195A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2021099195A
JP2021099195A JP2019231421A JP2019231421A JP2021099195A JP 2021099195 A JP2021099195 A JP 2021099195A JP 2019231421 A JP2019231421 A JP 2019231421A JP 2019231421 A JP2019231421 A JP 2019231421A JP 2021099195 A JP2021099195 A JP 2021099195A
Authority
JP
Japan
Prior art keywords
case
heat exchanger
flow path
fluid
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019231421A
Other languages
Japanese (ja)
Other versions
JP6706713B1 (en
Inventor
荒木 伸二
Shinji Araki
伸二 荒木
吉宗 内田
Yoshimune Uchida
吉宗 内田
卓磨 志賀
Takuma Shiga
卓磨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Marelli Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marelli Corp filed Critical Marelli Corp
Priority to JP2019231421A priority Critical patent/JP6706713B1/en
Application granted granted Critical
Publication of JP6706713B1 publication Critical patent/JP6706713B1/en
Priority to CN202080065286.5A priority patent/CN114402175B/en
Priority to PCT/JP2020/045240 priority patent/WO2021131613A1/en
Publication of JP2021099195A publication Critical patent/JP2021099195A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To make a flow of engine cooling water uniform with a simple structure.SOLUTION: A heat exchanger 100 is equipped with a plurality of tubes 11 that are laminated and are formed with first channels 1 in which EGR gas circulates inside, a case 20 that stores the tubes 11 and forms a plurality of second channels 2 in which engine cooling water circulates between the adjacent tubes 11, an inlet channel 23 that makes the engine cooling water flow into the case 20 from a laminating direction of the tubes 11, and a guide member 30 that is provided in the case 20, and guides the engine cooling water flowing in from the inlet channel 23 to the respective second channels 2. The guide member 30 has a plurality of inclined walls 31, 33, and 35 disposed at intervals in a flowing direction of the EGR gas in the tubes 11, inclining towards the tubes 11, and differing from each other in length in the laminating direction of the tubes 11.SELECTED DRAWING: Figure 7

Description

本発明は、熱交換器に関するものである。 The present invention relates to a heat exchanger.

特許文献1には、複数のチューブの外部における冷却水の流れを均一化するために、チューブが収容されるシェル内に冷却水を導入するための冷却水入口が二箇所以上設けられる熱交換器が開示されている。 Patent Document 1 describes a heat exchanger in which two or more cooling water inlets for introducing cooling water are provided in a shell in which the tubes are housed in order to equalize the flow of cooling water outside the plurality of tubes. Is disclosed.

特開2008−231929号公報Japanese Unexamined Patent Publication No. 2008-231929

しかしながら、特許文献1の熱交換器では、冷却水入口を複数に分岐させている。そのため、冷却水入口の構造が複雑であり、製造コストが上昇するおそれがある。 However, in the heat exchanger of Patent Document 1, the cooling water inlet is branched into a plurality of branches. Therefore, the structure of the cooling water inlet is complicated, and the manufacturing cost may increase.

本発明は、上記の問題点に鑑みてなされたものであり、簡素な構成で流体の流れを均一化することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to make the flow of fluid uniform with a simple configuration.

本発明のある態様によれば、第1流体と第2流体との間で熱交換が行われる熱交換器は、積層して設けられ、第1流体が流通する第1流路が内部に形成される複数のチューブと、前記チューブを収容し、隣り合う前記チューブの間に第2流体が流通する複数の第2流路を形成するケースと、前記チューブの積層方向から前記ケース内に第2流体を流入させる入口流路と、前記ケース内に設けられ、前記入口流路から流入した第2流体を各々の前記第2流路に案内するガイド部材と、を備え、前記ガイド部材は、前記チューブにおける第1流体の流れ方向に沿って互いに間隔をあけて複数配置されて前記チューブに向かって傾斜し、前記チューブの積層方向における長さが互いに異なる傾斜壁を有する。 According to an aspect of the present invention, the heat exchangers in which heat exchange is performed between the first fluid and the second fluid are provided in a laminated manner, and a first flow path through which the first fluid flows is formed inside. A case in which a plurality of tubes to be formed, a case in which the tubes are housed, and a plurality of second flow paths through which a second fluid flows are formed between the adjacent tubes, and a case in which the tubes are stacked in a second case. The guide member includes an inlet flow path through which the fluid flows in and a guide member provided in the case and guiding the second fluid flowing in from the inlet flow path to each of the second flow paths. A plurality of inclined walls are arranged at intervals along the flow direction of the first fluid in the tube and inclined toward the tube, and have inclined walls having different lengths in the stacking direction of the tubes.

本発明の他の態様によれば、第1流体と第2流体との間で熱交換が行われる熱交換器は、積層して設けられ、第1流体が流通する第1流路が内部に形成される複数のチューブと、前記チューブを収容し、隣り合う前記チューブの間に第2流体が流通する複数の第2流路を形成するケースと、前記チューブの積層方向から前記ケース内に第2流体を流入させる入口流路と、前記ケース内に設けられ、前記入口流路から流入した第2流体を各々の前記第2流路に案内するガイド部材と、を備え、前記ケースは、第1ケースと、平面部と前記第1ケースに内嵌接合される接合部とを有する第2ケースと、を有し、前記ガイド部材は、前記平面部における前記接合部から離間した位置にて前記第2ケースに接合される。 According to another aspect of the present invention, the heat exchangers in which heat exchange is performed between the first fluid and the second fluid are provided in a laminated manner, and the first flow path through which the first fluid flows is internally provided. A plurality of tubes to be formed, a case for accommodating the tubes and forming a plurality of second flow paths for flowing a second fluid between the adjacent tubes, and a case in which the tubes are stacked in the case. The case includes an inlet flow path through which the two fluids flow in, and a guide member provided in the case and guiding the second fluid flowing in from the inlet flow path to each of the second flow paths. It has one case and a second case having a flat surface portion and a joint portion internally fitted and joined to the first case, and the guide member is located at a position separated from the joint portion in the flat surface portion. Joined to the second case.

上記態様では、ケース内にガイド部材を設けることで、入口流路から流入した第2流体を第2流路に案内できるので、入口流路を複雑な構造にする必要はない。したがって、簡素な構成で第2流体の流れを均一化することができる。 In the above aspect, by providing the guide member in the case, the second fluid flowing from the inlet flow path can be guided to the second flow path, so that the inlet flow path does not need to have a complicated structure. Therefore, the flow of the second fluid can be made uniform with a simple configuration.

図1は、本発明の実施形態に係る熱交換器の概略斜視図である。FIG. 1 is a schematic perspective view of a heat exchanger according to an embodiment of the present invention. 図2は、熱交換器の一部を断面で示した平面図である。FIG. 2 is a plan view showing a part of the heat exchanger in cross section. 図3は、熱交換器におけるチューブの分解斜視図である。FIG. 3 is an exploded perspective view of the tube in the heat exchanger. 図4は、熱交換器におけるガイド部材の斜視図である。FIG. 4 is a perspective view of a guide member in the heat exchanger. 図5は、ガイド部材の左側面図である。FIG. 5 is a left side view of the guide member. 図6は、入口流路側からチューブの積層方向に見たケースとガイド部材との取り付け状態を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a mounting state of the case and the guide member as viewed from the inlet flow path side in the stacking direction of the tubes. 図7は、図1におけるVII−VII断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 図8は、図1におけるVIII−VIII断面図である。FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 図9は、図2におけるIX−IX断面図である。FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 図10は、図2におけるX−X断面図である。FIG. 10 is a cross-sectional view taken along the line XX in FIG. 図11は、図2におけるXI−XI断面図である。FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. 図12は、ガイド部材の周辺における第2流体の流れについて説明する断面図である。FIG. 12 is a cross-sectional view illustrating the flow of the second fluid around the guide member. 図13は、ガイド部材の周辺における第2流体の流れについて説明する斜視図である。FIG. 13 is a perspective view illustrating the flow of the second fluid around the guide member.

以下、図面を参照して、本発明の実施形態に係る熱交換器100について説明する。 Hereinafter, the heat exchanger 100 according to the embodiment of the present invention will be described with reference to the drawings.

まず、図1から図3を参照して、熱交換器100の構成について説明する。図1は、熱交換器100の概略斜視図である。図2は、熱交換器100の一部を断面で示した平面図である。図3は、熱交換器100におけるチューブ11の分解斜視図である。 First, the configuration of the heat exchanger 100 will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic perspective view of the heat exchanger 100. FIG. 2 is a plan view showing a part of the heat exchanger 100 in cross section. FIG. 3 is an exploded perspective view of the tube 11 in the heat exchanger 100.

熱交換器100は、エンジン(図示省略)の燃焼室にて燃焼した排気ガスの一部をEGR(Exhaust Gas Recirculation)ガスとして燃焼室に還流するEGR装置に設けられる。熱交換器100は、EGRガス(第1流体)とエンジンを冷却するエンジン冷却水(第2流体)との間で熱交換を行い、EGRガスを冷却するEGRクーラである。 The heat exchanger 100 is provided in an EGR device that returns a part of the exhaust gas burned in the combustion chamber of an engine (not shown) as EGR (Exhaust Gas Recirculation) gas to the combustion chamber. The heat exchanger 100 is an EGR cooler that cools the EGR gas by exchanging heat between the EGR gas (first fluid) and the engine cooling water (second fluid) that cools the engine.

以下では、各図面において互いに直交するX,Y,及びZの3軸を設定して、熱交換器100の構成について説明する。なお、チューブ11の内周の第1流路1が延びるX軸方向を「流路方向」、チューブ11の幅方向であるY軸方向を「流路幅方向」、各チューブ11が積層されるZ軸方向を「積層方向」とも称する。 In the following, the configuration of the heat exchanger 100 will be described by setting three axes of X, Y, and Z that are orthogonal to each other in each drawing. The X-axis direction in which the first flow path 1 on the inner circumference of the tube 11 extends is the "flow path direction", the Y-axis direction which is the width direction of the tube 11 is the "flow path width direction", and the tubes 11 are laminated. The Z-axis direction is also referred to as "stacking direction".

熱交換器100は、積層コア10と、ケース20と、ガイド部材30(図2参照)と、を備える。 The heat exchanger 100 includes a laminated core 10, a case 20, and a guide member 30 (see FIG. 2).

積層コア10は、EGRガスとエンジン冷却水との間で熱交換を行う。積層コア10は、複数(ここでは9個)のチューブ11と、インナーフィン12と、を有する。 The laminated core 10 exchanges heat between the EGR gas and the engine cooling water. The laminated core 10 has a plurality of (9 in this case) tubes 11 and inner fins 12.

積層コア10は、複数のチューブ11が積層されて直方体形状になるように形成される。図2に示すように、各々のチューブ11の内部には、EGRガスが流通する第1流路1が形成され、隣り合うチューブ11の間には、エンジン冷却水が流通する第2流路2が形成される。 The laminated core 10 is formed so that a plurality of tubes 11 are laminated to form a rectangular parallelepiped shape. As shown in FIG. 2, a first flow path 1 through which EGR gas flows is formed inside each tube 11, and a second flow path 2 through which engine cooling water flows between adjacent tubes 11. Is formed.

図1に示すように、積層コア10におけるEGRガスの入口には、供給パイプ(図示省略)が取り付けられるフランジ部材13が設けられる。積層コア10におけるEGRガスの出口には、各々のチューブ11から排出されるEGRガスを排出パイプ(図示省略)に導くフランジ部材14が設けられる。 As shown in FIG. 1, a flange member 13 to which a supply pipe (not shown) is attached is provided at the inlet of the EGR gas in the laminated core 10. At the outlet of the EGR gas in the laminated core 10, a flange member 14 for guiding the EGR gas discharged from each tube 11 to a discharge pipe (not shown) is provided.

図2に示すように、チューブ11は、積層方向に積層して設けられる。図3に示すように、チューブ11は、対向して設けられるチューブインナー11aとチューブアウター11bとを有する。チューブインナー11aとチューブアウター11bとは、共に凹状断面を有する平板状に形成さる。チューブインナー11aとチューブアウター11bとは、凹部どうしを向かい合わせて、チューブアウター11bがチューブインナー11aの外側を覆うように組み立てられる。チューブインナー11aとチューブアウター11bとは、インナーフィン12を収装する空間を形成する。 As shown in FIG. 2, the tubes 11 are laminated in the stacking direction. As shown in FIG. 3, the tube 11 has a tube inner 11a and a tube outer 11b provided so as to face each other. Both the tube inner 11a and the tube outer 11b are formed in a flat plate shape having a concave cross section. The tube inner 11a and the tube outer 11b are assembled so that the recesses face each other and the tube outer 11b covers the outside of the tube inner 11a. The tube inner 11a and the tube outer 11b form a space for accommodating the inner fin 12.

チューブアウター11bには、積層された状態で隣接する他のチューブ11に当接し、当該他のチューブ11との間に所定の間隔をあける複数(ここでは2個)の突起11cと、エンジン冷却水が流通する流路を区画する一対の膨出部11dと、が形成される。 The tube outer 11b has a plurality of (here, two) protrusions 11c that are in contact with other adjacent tubes 11 in a laminated state and are spaced from each other at a predetermined distance from the other tubes 11, and engine cooling water. A pair of bulging portions 11d, which partition the flow path through which the water flows, are formed.

突起11cは、チューブ11の積層方向に突出して形成される。突起11cは、チューブ11における膨出部11dが設けられない位置に形成される。隣接する一対のチューブ11の間には、突起11cの高さの分だけ、エンジン冷却水が流通する流路が形成される。 The protrusion 11c is formed so as to protrude in the stacking direction of the tubes 11. The protrusion 11c is formed at a position on the tube 11 where the bulging portion 11d is not provided. Between the pair of adjacent tubes 11, a flow path through which engine cooling water flows is formed by the height of the protrusion 11c.

膨出部11dは、チューブ11におけるEGRガスの流れ方向の両端部に形成される。膨出部11dは、チューブ11の積層方向に突起11cと同じだけ突出する。膨出部11dは、積層された状態で隣接する他のチューブ11と当接し、ロウ付けによって一体にされる。これにより、隣接する一対のチューブ11の間のエンジン冷却水の流路が、EGRガスの流路に対して閉塞される。 The bulging portions 11d are formed at both ends of the tube 11 in the flow direction of the EGR gas. The bulging portion 11d protrudes in the stacking direction of the tube 11 by the same amount as the protrusion 11c. The bulging portion 11d is in contact with another adjacent tube 11 in a laminated state, and is integrated by brazing. As a result, the flow path of the engine cooling water between the pair of adjacent tubes 11 is blocked with respect to the flow path of the EGR gas.

インナーフィン12は、チューブ11内に収装される。具体的には、インナーフィン12は、チューブインナー11aとチューブアウター11bとの間に形成される空間に収装される。インナーフィン12は、隣り合う凹凸が互いにオフセットして並ぶオフセットフィンである。インナーフィン12は、チューブ11内におけるEGRガスの流れを撹拌する。また、インナーフィン12が設けられることによって、EGRガスが熱交換を行うための表面積が拡大する。よって、インナーフィン12が設けられることによって、熱交換効率を向上させることができる。 The inner fin 12 is housed in the tube 11. Specifically, the inner fin 12 is housed in a space formed between the tube inner 11a and the tube outer 11b. The inner fin 12 is an offset fin in which adjacent irregularities are offset from each other. The inner fin 12 agitates the flow of EGR gas in the tube 11. Further, by providing the inner fin 12, the surface area for the EGR gas to exchange heat is increased. Therefore, the heat exchange efficiency can be improved by providing the inner fin 12.

なお、インナーフィン12を設けずに、隣接する一対のチューブ11の間にアウターフィンを設けてもよい。この場合、チューブ11に突起11cを形成する必要はない。 The outer fins may be provided between the pair of adjacent tubes 11 without providing the inner fins 12. In this case, it is not necessary to form the protrusion 11c on the tube 11.

図1に示すように、ケース20は、積層コア10を収容する。ケース20の内側には、エンジン冷却水が流通する。ケース20は、第1ケース20aと、第2ケース20bと、入口流路23と、出口流路24と、を有する。 As shown in FIG. 1, the case 20 houses the laminated core 10. Engine cooling water flows inside the case 20. The case 20 has a first case 20a, a second case 20b, an inlet flow path 23, and an outlet flow path 24.

第1ケース20aは、略U字状の断面形状を有するように流路方向に沿って形成される。第1ケース20aは、平面状に形成される平面部20cを有する。 The first case 20a is formed along the flow path direction so as to have a substantially U-shaped cross-sectional shape. The first case 20a has a flat surface portion 20c formed in a flat shape.

同様に、第2ケース20bは、略U字状の断面形状を有するように流路方向に沿って形成される。第2ケース20bは、平面状に形成される平面部20dを有する。 Similarly, the second case 20b is formed along the flow path direction so as to have a substantially U-shaped cross-sectional shape. The second case 20b has a flat surface portion 20d formed in a flat shape.

第2ケース20bは、平面部20dが第1ケース20aの平面部20cと面一となるように第1ケース20aの内周に嵌合する。その状態で、第1ケース20aと第2ケース20bとは、接合部20eにて互いに接合される。即ち、第2ケース20bは、第1ケース20aに内嵌接合される(図8参照)。これにより、ケース20は、積層コア10を覆うような筒状に形成される。 The second case 20b is fitted to the inner circumference of the first case 20a so that the flat surface portion 20d is flush with the flat surface portion 20c of the first case 20a. In that state, the first case 20a and the second case 20b are joined to each other at the joint portion 20e. That is, the second case 20b is internally fitted and joined to the first case 20a (see FIG. 8). As a result, the case 20 is formed in a tubular shape so as to cover the laminated core 10.

ケース20は、入口流路23から流入して第2流路2に案内されるエンジン冷却水をチューブ11の積層方向に流すための膨出部21と、第2流路2から出口流路24を通じて流出するエンジン冷却水をチューブ11の積層方向に流すための膨出部22と、を有する。 The case 20 has a bulging portion 21 for flowing engine cooling water flowing from the inlet flow path 23 and being guided to the second flow path 2 in the stacking direction of the tubes 11, and an outlet flow path 24 from the second flow path 2. It has a bulging portion 22 for flowing the engine cooling water flowing out through the tube 11 in the stacking direction.

膨出部21と膨出部22とは、各々ケース20の外側に向かって膨出する。これにより、ケース20内にエンジン冷却水の流路が形成される。 The bulging portion 21 and the bulging portion 22 each bulge toward the outside of the case 20. As a result, a flow path for engine cooling water is formed in the case 20.

ケース20内には、ガイド部材30が設けられる。ガイド部材30は、膨出部21内に配置される。ガイド部材30については、図4から図8を参照しながら、後で詳細に説明する。 A guide member 30 is provided in the case 20. The guide member 30 is arranged in the bulging portion 21. The guide member 30 will be described in detail later with reference to FIGS. 4 to 8.

入口流路23は、第2ケース20bの側面に突出するように設けられる。入口流路23は、膨出部21の積層方向端部に開口する。入口流路23は、チューブ11の積層方向からケース20内にエンジン冷却水を流入させる。入口流路23から供給されたエンジン冷却水は、積層コア10の一端近傍に導かれた後に、ケース20内に供給される。 The inlet flow path 23 is provided so as to project from the side surface of the second case 20b. The inlet flow path 23 opens at the end of the bulging portion 21 in the stacking direction. The inlet flow path 23 allows engine cooling water to flow into the case 20 from the stacking direction of the tubes 11. The engine cooling water supplied from the inlet flow path 23 is guided to the vicinity of one end of the laminated core 10 and then supplied into the case 20.

出口流路24は、第2ケース20bの入口流路23が設けられるのと同じ側面に設けられる。出口流路23は、膨出部22の積層方向端部に開口する。出口流路24は、ケース20からチューブ11の積層方向にエンジン冷却水を流出させる。EGRガスを冷却したエンジン冷却水は、積層コア10の他端近傍まで導かれた後に、ケース20から外部に排出される。 The outlet flow path 24 is provided on the same side surface where the inlet flow path 23 of the second case 20b is provided. The outlet flow path 23 opens at the end of the bulging portion 22 in the stacking direction. The outlet flow path 24 allows engine cooling water to flow out from the case 20 in the stacking direction of the tubes 11. The engine cooling water in which the EGR gas is cooled is guided to the vicinity of the other end of the laminated core 10 and then discharged from the case 20 to the outside.

このように、エンジン冷却水は、入口流路23からケース20内に流入し、第2流路2を略U字状に流通してEGRガスと熱交換を行った後、出口流路24から流出する。これに限らず、入口流路23と出口流路24とを、ケース20における対向する面に設けてもよい。 In this way, the engine cooling water flows into the case 20 from the inlet flow path 23, flows through the second flow path 2 in a substantially U shape to exchange heat with the EGR gas, and then from the outlet flow path 24. leak. Not limited to this, the inlet flow path 23 and the outlet flow path 24 may be provided on opposite surfaces of the case 20.

次に、図4から図8を参照して、ガイド部材30について説明する。図4は、ガイド部材30の斜視図である。図5は、ガイド部材30の左側面図である。図6は、入口流路23側からチューブ11の積層方向に見たケース20とガイド部材30との取り付け状態を説明する断面図である。図7は、図1におけるVII−VII断面図である。図8は、図1におけるVIII−VIII断面図である。 Next, the guide member 30 will be described with reference to FIGS. 4 to 8. FIG. 4 is a perspective view of the guide member 30. FIG. 5 is a left side view of the guide member 30. FIG. 6 is a cross-sectional view illustrating a mounting state of the case 20 and the guide member 30 as viewed from the inlet flow path 23 side in the stacking direction of the tubes 11. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.

図4及び図5に示すように、ガイド部材30は、複数の傾斜壁30aと、連結部36と、側壁部37と、取付部38と、を有する。 As shown in FIGS. 4 and 5, the guide member 30 has a plurality of inclined walls 30a, a connecting portion 36, a side wall portion 37, and a mounting portion 38.

図6に示すように、ガイド部材30は、板状に形成されてケース20の内面に取り付けられる。図7に示すように、ガイド部材30は、入口流路23から流入したエンジン冷却水を各々の第2流路2に案内する。ケース20内にガイド部材30を設けることで、入口流路23から流入したエンジン冷却水を第2流路2に案内できるので、入口流路23を複雑な構造にする必要はない。したがって、簡素な構成で流体の流れを均一化することができる。 As shown in FIG. 6, the guide member 30 is formed in a plate shape and attached to the inner surface of the case 20. As shown in FIG. 7, the guide member 30 guides the engine cooling water flowing in from the inlet flow path 23 to the respective second flow paths 2. By providing the guide member 30 in the case 20, the engine cooling water flowing from the inlet flow path 23 can be guided to the second flow path 2, so that the inlet flow path 23 does not need to have a complicated structure. Therefore, the fluid flow can be made uniform with a simple configuration.

傾斜壁30aは、チューブ11におけるEGRガスの流れ方向(流路方向)に沿って互いに間隔をあけて複数配置されてチューブ11に向かって傾斜する。ここでは、図4及び図5に示すように、傾斜壁30aは、傾斜壁31と、傾斜壁33と、傾斜壁35と、を有する。図6に示すように、傾斜壁30aは、ケース20の膨出部21内に設けられる。 A plurality of inclined walls 30a are arranged at intervals along the flow direction (flow path direction) of the EGR gas in the tube 11 and are inclined toward the tube 11. Here, as shown in FIGS. 4 and 5, the inclined wall 30a has an inclined wall 31, an inclined wall 33, and an inclined wall 35. As shown in FIG. 6, the inclined wall 30a is provided in the bulging portion 21 of the case 20.

傾斜壁31,33,35は、板材によって爪状に形成される。傾斜壁31,33,35は、先端部31a,33a,35aに向かって円弧を描くように曲げられて傾斜する。即ち、傾斜壁31,33,35は、先端部31a,33a,35aに向かって、チューブ11に近接するように、かつケース20の内面から離間するように傾斜して形成される。先端部エンジン冷却水が傾斜壁31,33,35に沿って流れることで、エンジン冷却水の進行方向がチューブ11の積層方向からチューブ11の流路幅方向に変換される。 The inclined walls 31, 33, and 35 are formed in a claw shape by a plate material. The inclined walls 31, 33, 35 are bent and inclined so as to draw an arc toward the tip portions 31a, 33a, 35a. That is, the inclined walls 31, 33, 35 are formed so as to be inclined toward the tip portions 31a, 33a, 35a so as to be close to the tube 11 and away from the inner surface of the case 20. When the tip engine cooling water flows along the inclined walls 31, 33, 35, the traveling direction of the engine cooling water is changed from the stacking direction of the tubes 11 to the flow path width direction of the tubes 11.

傾斜壁31,33,35は、チューブ11の積層方向における長さが互いに異なる。具体的には、傾斜壁31,33,35は、チューブ11におけるEGRガスの流れ方向の下流側に向かって順に長くなるように配置される。即ち、EGRガスの流れ方向の最下流の傾斜壁35は、上流側に隣接する傾斜壁33よりも長く、傾斜壁33は、上流側に隣接する傾斜壁31よりも長い。これにより、傾斜壁31,33,35がEGRガスの流れ方向の下流側に向かって段階的に長くなるので、エンジン冷却水の流れを乱さずに第2流路2に導くことができる。 The inclined walls 31, 33, and 35 have different lengths in the stacking direction of the tubes 11. Specifically, the inclined walls 31, 33, and 35 are arranged so as to become longer in order toward the downstream side in the flow direction of the EGR gas in the tube 11. That is, the most downstream inclined wall 35 in the flow direction of the EGR gas is longer than the inclined wall 33 adjacent to the upstream side, and the inclined wall 33 is longer than the inclined wall 31 adjacent to the upstream side. As a result, the inclined walls 31, 33, and 35 are gradually lengthened toward the downstream side in the flow direction of the EGR gas, so that the flow of the engine cooling water can be guided to the second flow path 2 without being disturbed.

各々の隣り合う傾斜壁31,33,35の間には、隙間32,34が形成される。具体的には、傾斜壁31と傾斜壁33との間には、隙間32が形成され、傾斜壁33と傾斜壁35との間には、隙間34が形成される。これにより、例えばガイド部材30をプレス加工によって形成する場合に加工が容易である。なお、隙間32,34を形成しなくてもよい。 Gap 32,34 is formed between the adjacent inclined walls 31, 33, 35. Specifically, a gap 32 is formed between the inclined wall 31 and the inclined wall 33, and a gap 34 is formed between the inclined wall 33 and the inclined wall 35. Thereby, for example, when the guide member 30 is formed by press working, the processing is easy. It is not necessary to form the gaps 32 and 34.

このように、チューブ11の積層方向における長さが互いに異なる傾斜壁31,33,35が設けられるので、傾斜壁31,33,35の長さに応じた位置の第2流路2に各々エンジン冷却水を案内することができる。 In this way, since the inclined walls 31, 33, 35 having different lengths in the stacking direction of the tubes 11 are provided, the engine is provided in the second flow path 2 at the position corresponding to the length of the inclined walls 31, 33, 35, respectively. It can guide the cooling water.

図4から図6に示すように、チューブ11におけるEGRガスの流れ方向の最下流に配置される傾斜壁35には、側壁部37が設けられる。 As shown in FIGS. 4 to 6, a side wall portion 37 is provided on the inclined wall 35 arranged at the most downstream in the flow direction of the EGR gas in the tube 11.

図4に示すように、側壁部37は、積層方向の長さが最も長い傾斜壁35の側面全体からEGRガスの流路方向に向けて形成される。図6に示すように、側壁部37は、傾斜壁35から離間するほどチューブ11に近接すように傾斜する。これにより、第2流路2に入らずにEGRガスの流れ方向の下流に向かってエンジン冷却水が流れるバイパス流れが発生することが抑制される。 As shown in FIG. 4, the side wall portion 37 is formed from the entire side surface of the inclined wall 35 having the longest length in the stacking direction toward the flow path direction of the EGR gas. As shown in FIG. 6, the side wall portion 37 is inclined so as to be closer to the tube 11 so as to be separated from the inclined wall 35. As a result, it is possible to prevent the occurrence of a bypass flow in which the engine cooling water flows downstream in the flow direction of the EGR gas without entering the second flow path 2.

図4に示すように、傾斜壁30aは、入口流路23側で互いに連結される連結部36を有する。また、連結部36におけるエンジン冷却水の流れ方向の上流側の端部には、ケース20の内面に近接する方向に曲げられる切り起こし部36aが形成される。 As shown in FIG. 4, the inclined wall 30a has a connecting portion 36 connected to each other on the inlet flow path 23 side. Further, at the upstream end of the connecting portion 36 in the flow direction of the engine cooling water, a cut-up portion 36a that is bent in a direction close to the inner surface of the case 20 is formed.

図7に示すように、切り起こし部36aは、エンジン冷却水がガイド部材30とケース20の内面との間を通過してEGRガスの流れ方向の下流に向かって流れるのを防止する。切り起こし部36aは、ケース20の内面に当接してもよい。 As shown in FIG. 7, the cut-up portion 36a prevents the engine cooling water from passing between the guide member 30 and the inner surface of the case 20 and flowing downstream in the flow direction of the EGR gas. The cut-up portion 36a may come into contact with the inner surface of the case 20.

図6に示すように、取付部38は、側壁部37からEGRガスの流れ方向の下流に延設される。取付部38は、ケース20の内面にロウ付けによって取り付けられる。図8に示すように、取付部38は、ケース20における膨出部21の外の平面部20dに取り付けられる。 As shown in FIG. 6, the mounting portion 38 extends downstream from the side wall portion 37 in the flow direction of the EGR gas. The mounting portion 38 is brazed to the inner surface of the case 20. As shown in FIG. 8, the mounting portion 38 is mounted on the flat portion 20d outside the bulging portion 21 in the case 20.

このように、傾斜壁30aは膨出部21内に設けられるのに対して、取付部38は膨出部21の外に設けられる。そのため、膨出部21を避けた平らな面にガイド部材30を取り付けることができる。また、取付部38と傾斜壁30aとの間を側壁部37によって連結することができる。 As described above, the inclined wall 30a is provided inside the bulging portion 21, while the mounting portion 38 is provided outside the bulging portion 21. Therefore, the guide member 30 can be attached to a flat surface avoiding the bulging portion 21. Further, the mounting portion 38 and the inclined wall 30a can be connected by the side wall portion 37.

ガイド部材30は、平面部20dにおける接合部20eから離間した位置にて取付部38が第2ケース20bに接合される。そのため、ロウ付けによってケース20を形成する場合に、ガイド部材30をケース20に接合するためのロウ材が接合部20eに流入することが防止される。したがって、ケース20に対するガイド部材30のロウ付けを確実に行うことができる。 In the guide member 30, the mounting portion 38 is joined to the second case 20b at a position separated from the joining portion 20e on the flat surface portion 20d. Therefore, when the case 20 is formed by brazing, the brazing material for joining the guide member 30 to the case 20 is prevented from flowing into the joining portion 20e. Therefore, the guide member 30 can be brazed to the case 20 without fail.

傾斜壁30aは、接合部20eよりも第1ケース20a側に延びて形成される。即ち、傾斜壁30aは、第1ケース20a内から接合部20eを越えて、第2ケース20b内にわたって形成される。これにより、傾斜壁30aは、チューブ11の積層方向全体にわたって形成されるので、すべての第2流路2にエンジン冷却水を均等に導くことができる。 The inclined wall 30a is formed so as to extend toward the first case 20a with respect to the joint portion 20e. That is, the inclined wall 30a is formed from the inside of the first case 20a, beyond the joint portion 20e, and over the inside of the second case 20b. As a result, the inclined wall 30a is formed over the entire stacking direction of the tubes 11, so that the engine cooling water can be evenly guided to all the second flow paths 2.

次に、図9から図11を参照して、傾斜壁31,33,35の形状について説明する。図9は、図2におけるIX−IX断面図である。図10は、図2におけるX−X断面図である。図11は、図2におけるXI−XI断面図である。 Next, the shapes of the inclined walls 31, 33, and 35 will be described with reference to FIGS. 9 to 11. FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. FIG. 10 is a cross-sectional view taken along the line XX in FIG. FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG.

図9に示すように、傾斜壁31は、他の傾斜壁33,35よりも短く形成される。即ち、傾斜壁31は、最も短く形成される。傾斜壁31の先端部31aは、対向するチューブ11との間にC1[mm]の隙間をあけて形成される。傾斜壁31は、先端部31aに向かって半径R1[mm]の円弧を描くように曲げられて傾斜する。 As shown in FIG. 9, the inclined wall 31 is formed shorter than the other inclined walls 33 and 35. That is, the inclined wall 31 is formed to be the shortest. The tip portion 31a of the inclined wall 31 is formed with a gap of C1 [mm] between the inclined wall 31 and the opposing tube 11. The inclined wall 31 is bent and inclined so as to draw an arc having a radius R1 [mm] toward the tip portion 31a.

図10に示すように、傾斜壁33は、傾斜壁31よりも長く、かつ傾斜壁35よりも短く形成される。傾斜壁33の先端部33aは、対向するチューブ11との間にC2[mm]の隙間をあけて形成される。傾斜壁33は、先端部33aに向かって半径R2[mm]の円弧を描くように曲げられて傾斜する。 As shown in FIG. 10, the inclined wall 33 is formed to be longer than the inclined wall 31 and shorter than the inclined wall 35. The tip portion 33a of the inclined wall 33 is formed with a gap of C2 [mm] between the inclined wall 33 and the opposing tube 11. The inclined wall 33 is bent and inclined toward the tip end portion 33a so as to draw an arc having a radius of R2 [mm].

隙間C2は、隙間C1よりも小さく設定される(C1>C2)。また、半径R2は、半径R1よりも大きく形成される(R1<R2)。よって、傾斜壁33は、傾斜壁31よりも曲率半径が大きい。換言すれば、傾斜壁33は、傾斜壁31よりも曲率が小さい。 The gap C2 is set smaller than the gap C1 (C1> C2). Further, the radius R2 is formed larger than the radius R1 (R1 <R2). Therefore, the inclined wall 33 has a larger radius of curvature than the inclined wall 31. In other words, the sloping wall 33 has a smaller curvature than the sloping wall 31.

図11に示すように、傾斜壁35は、他の傾斜壁31,33よりも長く形成される。即ち、傾斜壁35は、最も長く形成される。傾斜壁35の先端部35aは、対向するチューブ11との間にC3[mm]の隙間をあけて形成される。傾斜壁35は、先端部35aに向かって半径R3[mm]の円弧を描くように曲げられて傾斜する。 As shown in FIG. 11, the inclined wall 35 is formed longer than the other inclined walls 31 and 33. That is, the inclined wall 35 is formed to be the longest. The tip end portion 35a of the inclined wall 35 is formed with a gap of C3 [mm] between the inclined wall 35 and the opposing tube 11. The inclined wall 35 is bent and inclined toward the tip portion 35a so as to draw an arc having a radius of R3 [mm].

隙間C3は、隙間C2よりも小さく設定される(C2>C3)。また、半径R3は、半径R2よりも大きく形成される(R2<R3)。よって、傾斜壁35は、傾斜壁33よりも曲率半径が大きい。換言すれば、傾斜壁35は、傾斜壁33よりも曲率が小さい。 The gap C3 is set smaller than the gap C2 (C2> C3). Further, the radius R3 is formed larger than the radius R2 (R2 <R3). Therefore, the inclined wall 35 has a larger radius of curvature than the inclined wall 33. In other words, the sloping wall 35 has a smaller curvature than the sloping wall 33.

このように、傾斜壁31,33,35の先端部31a,33a,35aは、チューブ11の積層方向の長さが長いほどチューブ11との隙間が小さい。また、傾斜壁31,33,35は、チューブ11の積層方向の長さが長いほど先端部31a,33a,35aに向けて曲がる曲率が小さい。 As described above, the longer the length of the tip portions 31a, 33a, 35a of the inclined walls 31, 33, 35 in the stacking direction of the tubes 11, the smaller the gap between them and the tubes 11. Further, the longer the length of the inclined walls 31, 33, 35 in the stacking direction of the tubes 11, the smaller the curvature of the inclined walls 31, 33, 35 to bend toward the tip portions 31a, 33a, 35a.

これにより、入口流路23に近い位置では、エンジン冷却水の流速が比較的速いので、傾斜壁31の曲率を大きくし、先端部31aとチューブ11との隙間C1を大きくすることで、流路抵抗が大きくなることを抑制しながら、傾斜壁31と対向するチューブ11の第2流路2にエンジン冷却水を導くことができる。一方、入口流路23から離れた位置では、エンジン冷却水の流速が比較的遅いので、傾斜壁35の曲率を小さくし、先端部35aとチューブ11との隙間C3を小さくすることで、流路抵抗が大きくなることを抑制しながら、傾斜壁35と対向するチューブ11の第2流路2にエンジン冷却水を導くことができる。 As a result, since the flow velocity of the engine cooling water is relatively high near the inlet flow path 23, the curvature of the inclined wall 31 is increased and the gap C1 between the tip portion 31a and the tube 11 is increased to increase the flow path. The engine cooling water can be guided to the second flow path 2 of the tube 11 facing the inclined wall 31 while suppressing the increase in resistance. On the other hand, at a position away from the inlet flow path 23, the flow velocity of the engine cooling water is relatively slow, so the curvature of the inclined wall 35 is reduced and the gap C3 between the tip portion 35a and the tube 11 is reduced to reduce the flow path. The engine cooling water can be guided to the second flow path 2 of the tube 11 facing the inclined wall 35 while suppressing the increase in resistance.

次に、図12及び図13を参照して、熱交換器100の作用について説明する。図12は、ガイド部材30の周辺におけるエンジン冷却水の流れについて説明する断面図である。図13は、ガイド部材30の周辺におけるエンジン冷却水の流れについて説明する斜視図である。 Next, the operation of the heat exchanger 100 will be described with reference to FIGS. 12 and 13. FIG. 12 is a cross-sectional view illustrating the flow of engine cooling water around the guide member 30. FIG. 13 is a perspective view illustrating the flow of engine cooling water around the guide member 30.

図12に矢印で示すように、入口流路23から流入したエンジン冷却水は、その慣性によって膨出部21内を直進しようとする。 As shown by an arrow in FIG. 12, the engine cooling water flowing in from the inlet flow path 23 tends to go straight in the bulging portion 21 due to its inertia.

図12及び図13に示すように、エンジン冷却水は、傾斜壁31の裏面に当たると、傾斜壁31の形状に沿うように第2流路2に導かれる。このとき、エンジン冷却水の一部は、傾斜壁31の一端側の隙間32及びその反対側の端面から傾斜壁31の表面側に回り込み、傾斜壁31の表面に沿って流れて第2流路2へと進行方向を変える。即ち、エンジン冷却水は、傾斜壁31の裏面だけでなく表面にも沿って進行方向を変える。 As shown in FIGS. 12 and 13, when the engine cooling water hits the back surface of the inclined wall 31, it is guided to the second flow path 2 so as to follow the shape of the inclined wall 31. At this time, a part of the engine cooling water wraps around from the gap 32 on one end side of the inclined wall 31 and the end surface on the opposite side to the surface side of the inclined wall 31, and flows along the surface of the inclined wall 31 to the second flow path. Change the direction of travel to 2. That is, the engine cooling water changes the traveling direction not only on the back surface of the inclined wall 31 but also on the front surface.

同様に、エンジン冷却水は、傾斜壁33の裏面に当たると、傾斜壁33の形状に沿うように第2流路2に導かれる。このとき、エンジン冷却水の一部は、傾斜壁33の両側の隙間32,34から傾斜壁33の表面側に回り込み、傾斜壁33の表面に沿って流れて第2流路2へと進行方向を変える。即ち、エンジン冷却水は、傾斜壁33の裏面だけでなく表面にも沿って進行方向を変える。 Similarly, when the engine cooling water hits the back surface of the inclined wall 33, it is guided to the second flow path 2 so as to follow the shape of the inclined wall 33. At this time, a part of the engine cooling water wraps around the gaps 32 and 34 on both sides of the inclined wall 33 toward the surface side of the inclined wall 33, flows along the surface of the inclined wall 33, and travels in the second flow path 2. change. That is, the engine cooling water changes the traveling direction not only on the back surface of the inclined wall 33 but also on the front surface.

更に、エンジン冷却水は、傾斜壁35の裏面に当たると、傾斜壁35の形状に沿うように第2流路2に導かれる。このとき、エンジン冷却水の一部は、傾斜壁35の一端側の隙間34から傾斜壁35の表面側に回り込み、傾斜壁35の表面に沿って流れて第2流路2へと進行方向を変える。即ち、エンジン冷却水は、傾斜壁35の裏面だけでなく表面にも沿って進行方向を変える。 Further, when the engine cooling water hits the back surface of the inclined wall 35, it is guided to the second flow path 2 so as to follow the shape of the inclined wall 35. At this time, a part of the engine cooling water wraps around from the gap 34 on one end side of the inclined wall 35 to the surface side of the inclined wall 35, flows along the surface of the inclined wall 35, and travels in the second flow path 2. Change. That is, the engine cooling water changes the traveling direction not only on the back surface of the inclined wall 35 but also on the front surface.

以上のように、エンジン冷却水は、傾斜壁31,33,35の裏面に沿って第2流路2へと進行方向を変えるだけでなく、表面側に回り込み表面に沿って第2流路2へと進行方向を変える。したがって、エンジン冷却水の流れを妨げることがないので、流路抵抗を増加させずに、入口流路23から流入したエンジン冷却水を第2流路2に導くことができる。 As described above, the engine cooling water not only changes the traveling direction to the second flow path 2 along the back surfaces of the inclined walls 31, 33, 35, but also wraps around to the front surface side and follows the second flow path 2 along the surface. Change the direction of travel. Therefore, since the flow of the engine cooling water is not obstructed, the engine cooling water flowing in from the inlet flow path 23 can be guided to the second flow path 2 without increasing the flow path resistance.

以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are obtained.

EGRガスとエンジン冷却水との間で熱交換が行われる熱交換器100は、積層して設けられ、EGRガスが流通する第1流路1が内部に形成される複数のチューブ11と、チューブ11を収容し、隣り合うチューブ11の間にエンジン冷却水が流通する複数の第2流路2を形成するケース20と、チューブ11の積層方向からケース20内にエンジン冷却水を流入させる入口流路23と、ケース20内に設けられ、入口流路23から流入したエンジン冷却水を各々の第2流路2に案内するガイド部材30と、を備え、ガイド部材30は、チューブ11におけるEGRガスの流れ方向に沿って互いに間隔をあけて複数配置されてチューブ11に向かって傾斜し、チューブ11の積層方向における長さが互いに異なる傾斜壁31,33,35を有する。 The heat exchanger 100 in which heat exchange is performed between the EGR gas and the engine cooling water is provided in a laminated manner, and a plurality of tubes 11 in which a first flow path 1 through which the EGR gas flows is formed, and tubes. A case 20 that accommodates 11 and forms a plurality of second flow paths 2 through which engine cooling water flows between adjacent tubes 11 and an inlet flow that allows engine cooling water to flow into the case 20 from the stacking direction of the tubes 11. A road 23 and a guide member 30 provided in the case 20 and guiding the engine cooling water flowing from the inlet flow path 23 to each second flow path 2 are provided, and the guide member 30 is an EGR gas in the tube 11. It has inclined walls 31, 33, 35 which are arranged at intervals along the flow direction of the above and are inclined toward the tube 11 and have different lengths in the stacking direction of the tubes 11.

この構成によれば、ケース20内にガイド部材30を設けることで、入口流路23から流入したエンジン冷却水を第2流路2に案内できるので、入口流路23を複雑な構造にする必要はない。また、チューブ11の積層方向における長さが互いに異なる傾斜壁31,33,35が設けられるので、傾斜壁31,33,35の長さに応じた位置の第2流路2
に各々エンジン冷却水を案内することができる。したがって、簡素な構成で流体の流れを均一化することができる。更に、エンジン冷却水は、傾斜壁31,33,35の裏面に沿って第2流路2へと進行方向を変えるだけでなく、表面側に回り込み表面に沿って第2流路2へと進行方向を変える。したがって、エンジン冷却水の流れを妨げることがないので、流路抵抗を増加させずに、入口流路23から流入したエンジン冷却水を第2流路2に導くことができる。
According to this configuration, by providing the guide member 30 in the case 20, the engine cooling water flowing from the inlet flow path 23 can be guided to the second flow path 2, so that the inlet flow path 23 needs to have a complicated structure. There is no. Further, since the inclined walls 31, 33, 35 having different lengths in the stacking direction of the tubes 11 are provided, the second flow path 2 at a position corresponding to the length of the inclined walls 31, 33, 35
Each engine cooling water can be guided to. Therefore, the fluid flow can be made uniform with a simple configuration. Further, the engine cooling water not only changes the traveling direction to the second flow path 2 along the back surfaces of the inclined walls 31, 33, 35, but also wraps around to the front surface side and proceeds to the second flow path 2 along the surface. Change direction. Therefore, since the flow of the engine cooling water is not obstructed, the engine cooling water flowing in from the inlet flow path 23 can be guided to the second flow path 2 without increasing the flow path resistance.

また、傾斜壁31,33,35は、チューブ11の積層方向の長さが長いほどチューブ11との隙間C1,C2,C3が小さい先端部31a,33a,35aを有する。 Further, the inclined walls 31, 33, 35 have tip portions 31a, 33a, 35a, in which the gaps C1, C2, and C3 with the tube 11 are smaller as the length of the tube 11 in the stacking direction is longer.

また、傾斜壁31,33,35は、チューブ11の積層方向の長さが長いほど先端部31a,33a,35aに向けて曲がる曲率が小さい。 Further, the longer the length of the inclined walls 31, 33, 35 in the stacking direction of the tubes 11, the smaller the curvature of the inclined walls 31, 33, 35 to bend toward the tip portions 31a, 33a, 35a.

これらの構成によれば、入口流路23に近い位置では、エンジン冷却水の流速が比較的速いので、傾斜壁31の曲率を大きくし、先端部31aとチューブ11との隙間C1を大きくすることで、流路抵抗が大きくなることを抑制しながら、傾斜壁31と対向するチューブ11の第2流路2にエンジン冷却水を導くことができる。一方、入口流路23から離れた位置では、エンジン冷却水の流速が比較的遅いので、傾斜壁35の曲率を小さくし、先端部35aとチューブ11との隙間C3を小さくすることで、流路抵抗が大きくなることを抑制しながら、傾斜壁35と対向するチューブ11の第2流路2にエンジン冷却水を導くことができる。 According to these configurations, since the flow velocity of the engine cooling water is relatively high near the inlet flow path 23, the curvature of the inclined wall 31 is increased and the gap C1 between the tip portion 31a and the tube 11 is increased. Therefore, the engine cooling water can be guided to the second flow path 2 of the tube 11 facing the inclined wall 31 while suppressing the increase in the flow path resistance. On the other hand, at a position away from the inlet flow path 23, the flow velocity of the engine cooling water is relatively slow, so the curvature of the inclined wall 35 is reduced and the gap C3 between the tip portion 35a and the tube 11 is reduced to reduce the flow path. The engine cooling water can be guided to the second flow path 2 of the tube 11 facing the inclined wall 35 while suppressing the increase in resistance.

また、傾斜壁31,33,35は、チューブ11におけるEGRガスの流れ方向の下流側に向かって順に長くなるように配置される。 Further, the inclined walls 31, 33, and 35 are arranged so as to become longer in order toward the downstream side in the flow direction of the EGR gas in the tube 11.

この構成によれば、傾斜壁31,33,35がEGRガスの流れ方向の下流側に向かって段階的に長くなるので、エンジン冷却水の流れを乱さずに第2流路2に導くことができる。 According to this configuration, the inclined walls 31, 33, and 35 gradually become longer toward the downstream side in the flow direction of the EGR gas, so that the flow of the engine cooling water can be guided to the second flow path 2 without being disturbed. it can.

また、チューブ11におけるEGRガスの流れ方向の最下流に配置される傾斜壁35には、EGRガスの流れ方向の下流に向かってエンジン冷却水が流れるのを抑制する側壁部37が設けられる。 Further, the inclined wall 35 arranged at the most downstream side in the flow direction of the EGR gas in the tube 11 is provided with a side wall portion 37 for suppressing the flow of the engine cooling water toward the downstream side in the flow direction of the EGR gas.

この構成によれば、側壁部37が設けられることで、第2流路2に入らずにEGRガスの流れ方向の下流に向かってエンジン冷却水が流れるバイパス流れが発生することが抑制される。 According to this configuration, by providing the side wall portion 37, it is possible to suppress the occurrence of a bypass flow in which the engine cooling water flows downstream in the flow direction of the EGR gas without entering the second flow path 2.

また、ガイド部材30は、板状に形成されてケース20の内面に取り付けられる。 Further, the guide member 30 is formed in a plate shape and is attached to the inner surface of the case 20.

この構成によれば、ケース20の内面に板状のガイド部材30が取り付けられるので、簡素な構成で流体の流れを均一化することができる。 According to this configuration, since the plate-shaped guide member 30 is attached to the inner surface of the case 20, the fluid flow can be made uniform with a simple configuration.

また、傾斜壁31,33,35は、入口流路23側で互いに連結される連結部36と、連結部36におけるエンジン冷却水の流れ方向の上流側の端部に形成され、ケース20の内面に近接する方向に曲げられる切り起こし部36aを有する。 Further, the inclined walls 31, 33, 35 are formed at the connecting portion 36 connected to each other on the inlet flow path 23 side and the upstream end portion of the connecting portion 36 in the flow direction of the engine cooling water, and are formed on the inner surface of the case 20. It has a cut-up portion 36a that can be bent in a direction close to the above.

この構成によれば、切り起こし部36aが設けられることで、エンジン冷却水がガイド部材30とケース20の内面との間を通過してEGRガスの流れ方向の下流に向かって流れるのを防止する。 According to this configuration, the cut-up portion 36a is provided to prevent the engine cooling water from passing between the guide member 30 and the inner surface of the case 20 and flowing downstream in the flow direction of the EGR gas. ..

また、ガイド部材30は、チューブ11におけるEGRガスの流れ方向の下流に延設されてケース20の内面に取り付けられる取付部38を有する。 Further, the guide member 30 has a mounting portion 38 extending downstream in the flow direction of the EGR gas in the tube 11 and mounted on the inner surface of the case 20.

また、ケース20は、入口流路23から流入して第2流路2に案内されるエンジン冷却水をチューブ11の積層方向に流すための膨出部21を有し、傾斜壁30aは、膨出部21内に設けられ、取付部38は、膨出部21の外に設けられる。 Further, the case 20 has a bulging portion 21 for flowing the engine cooling water flowing from the inlet flow path 23 and being guided to the second flow path 2 in the stacking direction of the tubes 11, and the inclined wall 30a bulges. The mounting portion 38 is provided inside the protruding portion 21, and the mounting portion 38 is provided outside the protruding portion 21.

これらの構成によれば、傾斜壁30aは膨出部21内に設けられるが、ケース20の内面にガイド部材30を取り付けるための取付部38は膨出部21の外に設けられる。そのため、膨出部21を避けた平らな面にガイド部材30を取り付けることができる。また、取付部38と傾斜壁30aとの間を側壁部37によって連結することができる。 According to these configurations, the inclined wall 30a is provided inside the bulging portion 21, but the mounting portion 38 for mounting the guide member 30 on the inner surface of the case 20 is provided outside the bulging portion 21. Therefore, the guide member 30 can be attached to a flat surface avoiding the bulging portion 21. Further, the mounting portion 38 and the inclined wall 30a can be connected by the side wall portion 37.

また、EGRガスとエンジン冷却水との間で熱交換が行われる熱交換器100は、積層して設けられ、EGRガスが流通する第1流路1が内部に形成される複数のチューブ11と、チューブ11を収容し、隣り合うチューブ11の間にエンジン冷却水が流通する複数の第2流路2を形成するケース20と、チューブ11の積層方向からケース20内にエンジン冷却水を流入させる入口流路23と、ケース20内に設けられ、入口流路23から流入したエンジン冷却水を各々の第2流路2に案内するガイド部材30と、を備え、ケース20は、第1ケース20aと、平面部20dと第1ケース20aに内嵌接合される接合部20eとを有する第2ケース20bと、を有し、ガイド部材30は、平面部20dにおける接合部20eから離間した位置にて第2ケース20bに接合される。 Further, the heat exchanger 100 in which heat exchange is performed between the EGR gas and the engine cooling water is provided in a laminated manner with a plurality of tubes 11 in which the first flow path 1 through which the EGR gas flows is formed. , A case 20 that accommodates the tubes 11 and forms a plurality of second flow paths 2 through which the engine cooling water flows between adjacent tubes, and an engine cooling water that flows into the case 20 from the stacking direction of the tubes 11. The case 20 includes an inlet flow path 23 and a guide member 30 provided in the case 20 that guides the engine cooling water flowing from the inlet flow path 23 to the respective second flow paths 2, and the case 20 is the first case 20a. And a second case 20b having a flat surface portion 20d and a joint portion 20e that is internally fitted and joined to the first case 20a, and the guide member 30 is located at a position separated from the joint portion 20e in the flat surface portion 20d. It is joined to the second case 20b.

この構成によれば、ケース20内にガイド部材30を設けることで、入口流路23から流入したエンジン冷却水を第2流路2に案内できるので、入口流路23を複雑な構造にする必要はない。したがって、簡素な構成で流体の流れを均一化することができる。また、ガイド部材30は、平面部20dにおける接合部20eから離間した位置にて第2ケース20bに接合される。そのため、ロウ付けによってケース20を形成する場合に、ガイド部材30をケース20に接合するためのロウ材が接合部20eに流入することが防止される。したがって、ケース20に対するガイド部材30のロウ付けを確実に行うことができる。 According to this configuration, by providing the guide member 30 in the case 20, the engine cooling water flowing from the inlet flow path 23 can be guided to the second flow path 2, so that the inlet flow path 23 needs to have a complicated structure. There is no. Therefore, the fluid flow can be made uniform with a simple configuration. Further, the guide member 30 is joined to the second case 20b at a position separated from the joint portion 20e on the flat surface portion 20d. Therefore, when the case 20 is formed by brazing, the brazing material for joining the guide member 30 to the case 20 is prevented from flowing into the joining portion 20e. Therefore, the guide member 30 can be brazed to the case 20 without fail.

また、ガイド部材30は、接合部20eよりも第1ケース20a側に延びて形成される傾斜壁30aを有する。 Further, the guide member 30 has an inclined wall 30a formed so as to extend toward the first case 20a with respect to the joint portion 20e.

この構成によれば、傾斜壁30aは、チューブ11の積層方向全体にわたって形成されるので、すべての第2流路2にエンジン冷却水を均等に導くことができる。 According to this configuration, since the inclined wall 30a is formed over the entire stacking direction of the tubes 11, the engine cooling water can be evenly guided to all the second flow paths 2.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments are only a part of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configurations of the above embodiments. Absent.

例えば、上記実施形態に係る熱交換器100は、EGRクーラに限らず、車両に搭載されるチャージエアクーラなどの熱交換器にも適用できる。また、車両以外に使用される熱交換器にも適用できる。 For example, the heat exchanger 100 according to the above embodiment can be applied not only to an EGR cooler but also to a heat exchanger such as a charge air cooler mounted on a vehicle. It can also be applied to heat exchangers used other than vehicles.

また、上記実施形態では、3個の傾斜壁31,33,35が設けられるが、これに限られるものではない。積層コア10の積層方向の大きさにあわせて、単一又は複数の傾斜壁を設けることが可能である。 Further, in the above embodiment, three inclined walls 31, 33, 35 are provided, but the present invention is not limited to these. It is possible to provide a single or a plurality of inclined walls according to the size of the laminated core 10 in the laminating direction.

100 熱交換器
1 第1流路
2 第2流路
11 チューブ
11d 膨出部
20 ケース
20a 第1ケース
20b 第2ケース
20c 平面部
20d 平面部
20e 接合部
21 膨出部
22 膨出部
23 入口流路
24 出口流路
30 ガイド部材
30a 傾斜壁
31 傾斜壁
31a 先端部
32 隙間
33 傾斜壁
33a 先端部
34 隙間
35 傾斜壁
35a 先端部
36 連結部
36a 切り起こし部
37 側壁部
38 取付部
100 Heat exchanger 1 1st flow path 2 2nd flow path 11 Tube 11d Swelling part 20 Case 20a 1st case 20b 2nd case 20c Flat part 20d Flat part 20e Joint part 21 Swelling part 22 Swelling part 23 Inlet flow Road 24 Exit flow path 30 Guide member 30a Inclined wall 31 Inclined wall 31a Tip 32 Gap 33 Inclined wall 33a Tip 34 Gap 35 Inclined wall 35a Tip 36 Connecting 36a Cut-out 37 Side wall 38 Mounting

Claims (12)

第1流体と第2流体との間で熱交換が行われる熱交換器であって、
積層して設けられ、第1流体が流通する第1流路が内部に形成される複数のチューブと、
前記チューブを収容し、隣り合う前記チューブの間に第2流体が流通する複数の第2流路を形成するケースと、
前記チューブの積層方向から前記ケース内に第2流体を流入させる入口流路と、
前記ケース内に設けられ、前記入口流路から流入した第2流体を各々の前記第2流路に案内するガイド部材と、を備え、
前記ガイド部材は、前記チューブにおける第1流体の流れ方向に沿って互いに間隔をあけて複数配置されて前記チューブに向かって傾斜し、前記チューブの積層方向における長さが互いに異なる傾斜壁を有する、
ことを特徴とする熱交換器。
A heat exchanger in which heat is exchanged between the first fluid and the second fluid.
A plurality of tubes provided in a laminated manner and having a first flow path through which the first fluid flows are formed inside.
A case in which the tube is housed and a plurality of second flow paths through which the second fluid flows are formed between the adjacent tubes.
An inlet flow path that allows a second fluid to flow into the case from the stacking direction of the tubes,
A guide member provided in the case and guiding the second fluid flowing in from the inlet flow path to each of the second flow paths is provided.
A plurality of the guide members are arranged at intervals along the flow direction of the first fluid in the tube and are inclined toward the tube, and have inclined walls having different lengths in the stacking direction of the tubes.
A heat exchanger characterized by that.
請求項1に記載の熱交換器であって、
前記傾斜壁は、前記チューブの積層方向の長さが長いほど前記チューブとの隙間が小さい先端部を有する、
ことを特徴とする熱交換器。
The heat exchanger according to claim 1.
The inclined wall has a tip portion in which the gap with the tube is smaller as the length of the tube in the stacking direction is longer.
A heat exchanger characterized by that.
請求項2に記載の熱交換器であって、
前記傾斜壁は、前記チューブの積層方向の長さが長いほど前記先端部に向けて曲がる曲率が小さい、
ことを特徴とする熱交換器。
The heat exchanger according to claim 2.
The longer the length of the inclined wall in the stacking direction of the tube, the smaller the curvature that bends toward the tip portion.
A heat exchanger characterized by that.
請求項1から3のいずれか一つに記載の熱交換器であって、
前記傾斜壁は、前記チューブにおける第1流体の流れ方向の下流側に向かって順に長くなるように配置される、
ことを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 3.
The inclined wall is arranged so as to become longer in order toward the downstream side in the flow direction of the first fluid in the tube.
A heat exchanger characterized by that.
請求項1から4のいずれか一つに記載の熱交換器であって、
前記チューブにおける第1流体の流れ方向の最下流に配置される前記傾斜壁には、第1流体の流れ方向の下流に向かって第2流体が流れるのを抑制する側壁部が設けられる、
ことを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 4.
The inclined wall arranged at the most downstream side in the flow direction of the first fluid in the tube is provided with a side wall portion for suppressing the flow of the second fluid toward the downstream side in the flow direction of the first fluid.
A heat exchanger characterized by that.
請求項1から5のいずれか一つに記載の熱交換器であって、
前記ガイド部材は、板状に形成されて前記ケースの内面に取り付けられる、
ことを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 5.
The guide member is formed in a plate shape and attached to the inner surface of the case.
A heat exchanger characterized by that.
請求項6に記載の熱交換器であって、
前記傾斜壁は、
前記入口流路側で互いに連結される連結部と、
前記連結部における第2流体の流れ方向の上流側の端部に形成され、前記ケースの内面に近接する方向に曲げられる切り起こし部を有する、
ことを特徴とする熱交換器。
The heat exchanger according to claim 6.
The sloping wall
With the connecting portion connected to each other on the inlet flow path side,
It has a cut-out portion formed at the upstream end of the connecting portion in the flow direction of the second fluid and bent in a direction close to the inner surface of the case.
A heat exchanger characterized by that.
請求項6又は7に記載の熱交換器であって、
前記ガイド部材は、前記チューブにおける第1流体の流れ方向の下流に延設されて前記ケースの内面に取り付けられる取付部を有する、
ことを特徴とする熱交換器。
The heat exchanger according to claim 6 or 7.
The guide member has a mounting portion that extends downstream in the flow direction of the first fluid in the tube and is mounted on the inner surface of the case.
A heat exchanger characterized by that.
請求項8に記載の熱交換器であって、
前記ケースは、前記入口流路から流入して前記第2流路に案内される第2流体を前記チューブの積層方向に流すための膨出部を有し、
前記傾斜壁は、前記膨出部内に設けられ、
前記取付部は、前記膨出部の外に設けられる、
ことを特徴とする熱交換器。
The heat exchanger according to claim 8.
The case has a bulge for allowing a second fluid flowing in from the inlet flow path and guided to the second flow path to flow in the stacking direction of the tubes.
The sloping wall is provided in the bulge and
The mounting portion is provided outside the bulging portion.
A heat exchanger characterized by that.
第1流体と第2流体との間で熱交換が行われる熱交換器であって、
積層して設けられ、第1流体が流通する第1流路が内部に形成される複数のチューブと、
前記チューブを収容し、隣り合う前記チューブの間に第2流体が流通する複数の第2流路を形成するケースと、
前記チューブの積層方向から前記ケース内に第2流体を流入させる入口流路と、
前記ケース内に設けられ、前記入口流路から流入した第2流体を各々の前記第2流路に案内するガイド部材と、を備え、
前記ケースは、第1ケースと、平面部と前記第1ケースに内嵌接合される接合部とを有する第2ケースと、を有し、
前記ガイド部材は、前記平面部における前記接合部から離間した位置にて前記第2ケースに接合される、
ことを特徴とする熱交換器。
A heat exchanger in which heat is exchanged between the first fluid and the second fluid.
A plurality of tubes provided in a laminated manner and having a first flow path through which the first fluid flows are formed inside.
A case in which the tube is housed and a plurality of second flow paths through which the second fluid flows are formed between the adjacent tubes.
An inlet flow path that allows a second fluid to flow into the case from the stacking direction of the tubes,
A guide member provided in the case and guiding the second fluid flowing in from the inlet flow path to each of the second flow paths is provided.
The case has a first case and a second case having a flat surface portion and a joint portion internally fitted and joined to the first case.
The guide member is joined to the second case at a position separated from the joint portion on the flat surface portion.
A heat exchanger characterized by that.
請求項10に記載の熱交換器であって、
前記ガイド部材は、前記接合部よりも前記第1ケース側に延びて形成される傾斜壁を有する、
ことを特徴とする熱交換器。
The heat exchanger according to claim 10.
The guide member has an inclined wall formed so as to extend toward the first case side from the joint portion.
A heat exchanger characterized by that.
請求項11に記載の熱交換器であって、
前記傾斜壁は、前記チューブにおける第1流体の流れ方向に沿って互いに間隔をあけて複数配置され前記チューブの積層方向における長さが互いに異なる、
ことを特徴とする熱交換器。
The heat exchanger according to claim 11.
A plurality of the inclined walls are arranged at intervals along the flow direction of the first fluid in the tube, and the lengths of the tubes in the stacking direction are different from each other.
A heat exchanger characterized by that.
JP2019231421A 2019-12-23 2019-12-23 Heat exchanger Active JP6706713B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019231421A JP6706713B1 (en) 2019-12-23 2019-12-23 Heat exchanger
CN202080065286.5A CN114402175B (en) 2019-12-23 2020-12-04 Heat exchanger
PCT/JP2020/045240 WO2021131613A1 (en) 2019-12-23 2020-12-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231421A JP6706713B1 (en) 2019-12-23 2019-12-23 Heat exchanger

Publications (2)

Publication Number Publication Date
JP6706713B1 JP6706713B1 (en) 2020-06-10
JP2021099195A true JP2021099195A (en) 2021-07-01

Family

ID=70976383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231421A Active JP6706713B1 (en) 2019-12-23 2019-12-23 Heat exchanger

Country Status (3)

Country Link
JP (1) JP6706713B1 (en)
CN (1) CN114402175B (en)
WO (1) WO2021131613A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6706713B1 (en) * 2019-12-23 2020-06-10 マレリ株式会社 Heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303499A (en) * 2001-03-30 2002-10-18 Hisaka Works Ltd Plate type heat exchanger
JP2008215681A (en) * 2007-03-01 2008-09-18 Fanuc Ltd Heat exchanger and gas laser device comprising the same
JP2008231929A (en) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd Cooling water inlet structure of heat exchanger for egr cooler
JP2017008911A (en) * 2015-06-26 2017-01-12 カルソニックカンセイ株式会社 Heat exchanger
JP2017008913A (en) * 2015-06-26 2017-01-12 カルソニックカンセイ株式会社 Heat exchanger
JP2017036868A (en) * 2015-08-07 2017-02-16 カルソニックカンセイ株式会社 Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143335B2 (en) * 2013-03-28 2017-06-07 臼井国際産業株式会社 Multi-tube heat exchanger
JP6005267B2 (en) * 2013-05-15 2016-10-12 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
CN204115550U (en) * 2014-08-13 2015-01-21 三菱电机株式会社 Cascade type collector, heat exchanger and aircondition
JP6560313B2 (en) * 2017-08-31 2019-08-14 有限会社和氣製作所 Heat exchanger and manufacturing method thereof
JP6706713B1 (en) * 2019-12-23 2020-06-10 マレリ株式会社 Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303499A (en) * 2001-03-30 2002-10-18 Hisaka Works Ltd Plate type heat exchanger
JP2008215681A (en) * 2007-03-01 2008-09-18 Fanuc Ltd Heat exchanger and gas laser device comprising the same
JP2008231929A (en) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd Cooling water inlet structure of heat exchanger for egr cooler
JP2017008911A (en) * 2015-06-26 2017-01-12 カルソニックカンセイ株式会社 Heat exchanger
JP2017008913A (en) * 2015-06-26 2017-01-12 カルソニックカンセイ株式会社 Heat exchanger
JP2017036868A (en) * 2015-08-07 2017-02-16 カルソニックカンセイ株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP6706713B1 (en) 2020-06-10
CN114402175A (en) 2022-04-26
CN114402175B (en) 2024-04-12
WO2021131613A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US9909812B2 (en) Heat exchanger
US20060137867A1 (en) Exhaust gas heat exchanger
EP0625686A2 (en) Laminated heat exchanger
JP2000097578A (en) Heat exchanger and, especially, exhaust gas heat exchanger
WO2018180058A1 (en) Heat exchanger
KR20080088328A (en) Heat exchanger and method
US7774937B2 (en) Heat exchanger with divided coolant chamber
KR101793752B1 (en) Heat exchanger for gases, in particular for the exhaust gases of an engine
EP2944911B1 (en) Heat exchanger
KR20170047997A (en) Egr cooler
WO2021131613A1 (en) Heat exchanger
WO2020017176A1 (en) Heat exchanger
JP2009103404A (en) Heat exchanger
JP6577282B2 (en) Heat exchanger
US20110011376A1 (en) Exhaust gas recirculation system and method of operating the same
WO2015107814A1 (en) Heat transfer pipe for heat exchanger and heat exchanger
JP2020003188A (en) Heat exchanger
JP2020091056A (en) Heat exchanger
KR20180023348A (en) Heat exchanger
KR20190017365A (en) Intercooler
JP7006626B2 (en) Heat exchanger
JP6848772B2 (en) Heat exchanger
WO2022210035A1 (en) Egr cooler
CN113167555B (en) Heat exchanger
WO2021090564A1 (en) Exhaust device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350