JP2021095597A - Variation amount prediction method of bath surface position of hot dip metal bath and manufacturing method of hot dip metal plated steel plate - Google Patents

Variation amount prediction method of bath surface position of hot dip metal bath and manufacturing method of hot dip metal plated steel plate Download PDF

Info

Publication number
JP2021095597A
JP2021095597A JP2019226051A JP2019226051A JP2021095597A JP 2021095597 A JP2021095597 A JP 2021095597A JP 2019226051 A JP2019226051 A JP 2019226051A JP 2019226051 A JP2019226051 A JP 2019226051A JP 2021095597 A JP2021095597 A JP 2021095597A
Authority
JP
Japan
Prior art keywords
surface position
bath surface
bath
amount
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019226051A
Other languages
Japanese (ja)
Other versions
JP7088157B2 (en
Inventor
航平 川崎
Kohei Kawasaki
航平 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019226051A priority Critical patent/JP7088157B2/en
Publication of JP2021095597A publication Critical patent/JP2021095597A/en
Application granted granted Critical
Publication of JP7088157B2 publication Critical patent/JP7088157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

To provide a variation amount prediction method of a bath surface position of a hot-dip bath capable of precisely predicting the bath surface position of the hot-dip metal bath.SOLUTION: An variation amount prediction method of a bath surface position of a hot-dip metal bath according to the invention includes a step where a variation amount of a bath surface position accompanied by feeding a metal ingot is calculated by using a first model equation for calculating a variation amount of the bath surface position when the metal ingot is being molten and a second model equation for calculating the variation amount of the bath surface position after the metal ingot is molten. The first model equation and the second model equation include a term expressing the variation amount of the bath surface position by a metal ingot volume and a feeder arm volume, a term expressing the variation amount of the bath surface position by taking a molten metal out by a steel plate, and the variation amount of the bath surface position by a thermal expansion of the molten metal.SELECTED DRAWING: Figure 1

Description

本発明は、溶融金属浴の浴面位置変動量予測方法及び溶融金属めっき鋼板の製造方法に関する。 The present invention relates to a method for predicting the amount of fluctuation in the bath surface position of a molten metal bath and a method for manufacturing a molten metal plated steel sheet.

冷延表面処理ラインである溶融亜鉛系めっき等の溶融金属めっきラインでは、溶融金属めっき浴を収容するポット内に鋼板を通板させることにより金属めっき処理を行っている。このような溶融金属めっきラインでは、消費された溶融金属を補充するためにポット内に亜鉛等の溶融金属めっき浴成分の金属インゴットを投入しており、従来までは、溶融金属めっき浴の浴面位置が所定値以下になるとバッチ処理的に溶融金属めっき浴成分の金属インゴットを1段階で投入していた。しかしながら、溶融金属めっき浴成分の金属インゴットを1段階で投入すると、浴面位置が大きく変動し、アッシュ欠陥が発生する要因となる。このような背景から、特許文献1には、亜鉛インゴットの溶解時間及び亜鉛消費量から亜鉛インゴットの浸漬量を計算して亜鉛インゴットを投入する方法が提案されている。この方法によれば、亜鉛インゴットの投入直前の浴面位置と亜鉛インゴットの溶解後の浴面位置とが一致するように亜鉛インゴットの浸漬量を制御することにより、一度に投入される亜鉛インゴットの量を抑えて浴面位置の変動量を最小限に抑えることができる。 In a hot-dip metal plating line such as hot-dip galvanizing, which is a cold-rolled surface treatment line, metal plating is performed by passing a steel plate through a pot accommodating a hot-dip metal plating bath. In such a molten metal plating line, a metal ingot of a molten metal plating bath component such as zinc is put into a pot in order to replenish the consumed molten metal. When the position became less than a predetermined value, the metal ingot of the molten metal plating bath component was charged in one step in a batch process. However, when the metal ingot of the molten metal plating bath component is added in one step, the position of the bath surface fluctuates greatly, which causes ash defects. Against this background, Patent Document 1 proposes a method of adding zinc ingot by calculating the immersion amount of zinc ingot from the dissolution time of zinc ingot and the amount of zinc consumed. According to this method, by controlling the immersion amount of the zinc ingot so that the position of the bath surface immediately before the addition of the zinc ingot and the position of the bath surface after the dissolution of the zinc ingot match, the zinc ingot to be charged at one time can be used. The amount can be suppressed to minimize the amount of fluctuation in the bath surface position.

特開平11−50216号公報Japanese Unexamined Patent Publication No. 11-50216

しかしながら、特許文献1に記載の方法であっても、溶融亜鉛の消費量が多い場合には、亜鉛インゴットの浸漬量が大きくなるので、浴面位置の変動量が大きくなる。そこで、このような課題を解決するために、亜鉛インゴットを複数段階に分けて浸漬させるピッチ投入制御を用いることが考えられる。しかしながら、過剰なピッチ投入段数の増加は亜鉛インゴットの投入制御に用いられるコンタクタ接点の消耗に繋がる。このため、コンタクタ接点の消耗を抑制しつつ浴面位置の変動量を所定範囲内に制御可能な最適なピッチ投入段数を決定可能にするために、亜鉛インゴットの投入に伴う浴面位置の変動量を精度よく予測可能な技術の提供が期待されていた。 However, even with the method described in Patent Document 1, when the amount of molten zinc consumed is large, the amount of immersion of the zinc ingot is large, so that the amount of fluctuation in the bath surface position is large. Therefore, in order to solve such a problem, it is conceivable to use pitch injection control in which the zinc ingot is immersed in a plurality of stages. However, an excessive increase in the number of pitch input stages leads to wear of the contactor contacts used for input control of the zinc ingot. Therefore, in order to determine the optimum number of pitch injection stages that can control the fluctuation amount of the bath surface position within a predetermined range while suppressing the wear of the contactor contact, the fluctuation amount of the bath surface position due to the injection of the zinc ingot. It was expected to provide a technology that can accurately predict.

本発明は、上記課題に鑑みてなされたものであって、その目的は、金属インゴットの投入に伴う溶融金属浴の浴面位置の変動量を精度よく予測可能な溶融金属浴の浴面位置変動量予測方法を提供することにある。また、本発明の他の目的は、コンタクタ接点の損耗を抑制しつつ溶融金属浴の浴面位置の変動量を所定範囲内に制御しながら溶融金属めっき鋼板を製造可能な溶融金属めっき鋼板の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to accurately predict the amount of change in the bath surface position of the molten metal bath due to the introduction of the metal ingot. The purpose is to provide a quantity prediction method. Another object of the present invention is to manufacture a molten metal-plated steel sheet capable of producing a molten metal-plated steel sheet while suppressing wear of contactor contacts and controlling the amount of fluctuation of the bath surface position of the molten metal bath within a predetermined range. To provide a method.

本発明に係る溶融金属浴の浴面位置変動量予測方法は、投入機アームを用いてポット内の溶融金属浴に金属インゴットを投入することにより溶融金属を補充しつつ、前記ポット内に鋼板を通板させることにより該鋼板に金属めっき処理を施す連続溶融金属めっき装置における溶融金属浴の浴面位置の変動量を予測する溶融金属浴の浴面位置変動量予測方法であって、前記金属インゴットが溶解中であるときの前記浴面位置の変動量を算出する第1モデル式と、前記金属インゴットの溶解後の前記浴面位置の変動量を算出する第2モデル式と、を用いて、前記金属インゴットの投入に伴う前記浴面位置の変動量を算出するステップを含み、前記第1モデル式及び前記第2モデル式は、前記金属インゴット及び前記投入機アームの体積による前記浴面位置の変動量を示す項、前記鋼板によって前記溶融金属が持ち出されることによる前記浴面位置の変動量を示す項、及び前記溶融金属の熱膨張による前記浴面位置の変動量を示す項を含む。 In the method for predicting the amount of fluctuation in the bath surface position of the molten metal bath according to the present invention, a steel plate is placed in the pot while replenishing the molten metal by charging a metal ingot into the molten metal bath in the pot using a throwing machine arm. A method for predicting the amount of fluctuation in the bath surface position of a molten metal bath in a continuous molten metal plating apparatus that applies a metal plating treatment to the steel plate by passing the plate through the metal ingot. Using the first model formula for calculating the fluctuation amount of the bath surface position when the metal ingot is being melted and the second model formula for calculating the fluctuation amount of the bath surface position after the metal ingot is melted, The first model formula and the second model formula include a step of calculating the amount of fluctuation of the bath surface position due to the charging of the metal ingot, and the first model formula and the second model formula include the volume of the bath surface position according to the volume of the metal ingot and the throwing machine arm. The term includes a term indicating the amount of fluctuation, a term indicating the amount of fluctuation of the bath surface position due to the molten metal being taken out by the steel plate, and a term indicating the amount of fluctuation of the bath surface position due to thermal expansion of the molten metal.

前記第1モデル式は、前記金属インゴットが固体から液体に変化することに伴う体積増加による前記浴面位置の変動量を示す項を含むことが望ましい。 It is desirable that the first model formula includes a term indicating the amount of change in the bath surface position due to the volume increase accompanying the change of the metal ingot from a solid to a liquid.

本発明に係る溶融金属めっき鋼板の製造方法は、本発明に係る溶融金属浴の浴面位置変動量予測方法を用いて、前記金属インゴットのピッチ投入段数の変化に伴う浴面位置の変動量の変化を算出し、浴面位置の変動量が所定範囲内にあるピッチ投入段数の中から最小のピッチ投入段数を選択し、選択したピッチ投入段数で金属インゴットをポット内に投入するステップを含む。 The method for producing a hot-dip metal-plated steel sheet according to the present invention uses the method for predicting the amount of change in the bath surface position of the molten metal bath according to the present invention, and the amount of change in the bath surface position due to a change in the number of pitch-inserted stages of the metal ingot. This includes a step of calculating the change, selecting the minimum number of pitch injection stages from the number of pitch injection stages in which the amount of fluctuation of the bath surface position is within a predetermined range, and charging the metal ingot into the pot with the selected number of pitch injection stages.

本発明に係る溶融金属浴の浴面位置変動量予測方法によれば、金属インゴットの投入に伴う溶融金属浴の浴面位置の変動量を精度よく予測することができる。また、本発明に係る溶融金属めっき鋼板の製造方法によれば、コンタクタ接点の損耗を抑制しつつ溶融金属浴の浴面位置の変動量を所定範囲内に制御しながら溶融金属めっき鋼板を製造することができる。 According to the method for predicting the fluctuation amount of the bath surface position of the molten metal bath according to the present invention, the fluctuation amount of the bath surface position of the molten metal bath due to the introduction of the metal ingot can be accurately predicted. Further, according to the method for manufacturing a hot-dip metal-plated steel sheet according to the present invention, the hot-dip metal-plated steel sheet is manufactured while suppressing the wear of contactor contacts and controlling the fluctuation amount of the bath surface position of the hot-dip metal bath within a predetermined range. be able to.

図1は、本発明の一実施形態である連続溶融亜鉛めっき装置の構成を示す模式図である。FIG. 1 is a schematic view showing the configuration of a continuous hot-dip galvanizing apparatus according to an embodiment of the present invention. 図2は、亜鉛インゴットの投入機構を示す模式図である。FIG. 2 is a schematic view showing a zinc ingot charging mechanism. 図3は、溶融亜鉛消費速度を平均速度とした8段階、4段階、及び2段階のピッチ投入制御シミュレーションによる浴面位置変動量の評価結果を示す図である。FIG. 3 is a diagram showing the evaluation results of the amount of fluctuation in the bath surface position by the 8-step, 4-step, and 2-step pitch injection control simulation with the hot-dip zinc consumption rate as the average speed. 図4は、溶融亜鉛消費速度を最大速度とした8段階、4段階、及び2段階のピッチ投入制御シミュレーションによる浴面位置変動量の評価結果を示す図である。FIG. 4 is a diagram showing the evaluation results of the bath surface position fluctuation amount by the 8-step, 4-step, and 2-step pitch injection control simulation with the hot-dip zinc consumption rate as the maximum speed.

以下、図面を参照して、本発明の一実施形態である連続溶融亜鉛めっき装置の構成について説明する。 Hereinafter, the configuration of the continuous hot-dip galvanizing apparatus according to the embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態である連続溶融亜鉛めっき装置の構成を示す模式図である。図1に示すように、本発明の一実施形態である連続溶融亜鉛めっき装置1は、スナウト2及び溶融亜鉛ポット3を備えている。この連続溶融亜鉛めっき装置1では、鋼板Sは、図示しない連続焼鈍炉で熱処理された後、スナウト2を介して溶融亜鉛ポット3内の溶融亜鉛浴4内に導かれて亜鉛めっき処理される。その後、鋼板Sは、溶融亜鉛ポット3内のシンクロール5によって方向転換されることにより溶融亜鉛ポット3の上方に導かれ、ガスワイピングノズル6によって亜鉛めっき付着量が調整された後、次工程へと導かれる。 FIG. 1 is a schematic view showing the configuration of a continuous hot-dip galvanizing apparatus according to an embodiment of the present invention. As shown in FIG. 1, the continuous hot-dip galvanizing apparatus 1 according to the embodiment of the present invention includes a snout 2 and a hot-dip zinc pot 3. In this continuous hot-dip galvanizing apparatus 1, the steel sheet S is heat-treated in a continuous annealing furnace (not shown), and then guided into the hot-dip galvanizing bath 4 in the hot-dip zinc pot 3 via a snout 2 for galvanizing. After that, the steel plate S is guided above the hot-dip zinc pot 3 by being turned by the sink roll 5 in the hot-dip zinc pot 3, and after the zinc plating adhesion amount is adjusted by the gas wiping nozzle 6, the next step is performed. Is guided.

また、この連続溶融亜鉛めっき装置1には、消費された溶融亜鉛を補充するために亜鉛インゴット10の投入機構が設けられている。図2は、亜鉛インゴットの投入機構を示す模式図である。図2に示すように、この亜鉛インゴットの投入機構では、亜鉛インゴット10は、コンベア21によって投入台車22まで搬送された後、投入台車22によって搬送台車23に搬送される。そして、亜鉛インゴット10は、搬送台車23によって待機位置P1まで搬送された後、投入機アーム24によって溶融亜鉛ポット3と連通しているインゴットボックス11内に投入される。これにより、亜鉛インゴット10はインゴットボックス11内で溶融し、溶融亜鉛ポット3に溶融亜鉛を補充することができる。 Further, the continuous hot-dip galvanizing apparatus 1 is provided with a zinc ingot 10 charging mechanism for replenishing the consumed hot-dip zinc. FIG. 2 is a schematic view showing a zinc ingot charging mechanism. As shown in FIG. 2, in this zinc ingot loading mechanism, the zinc ingot 10 is transported to the loading carriage 22 by the conveyor 21, and then transported to the transport carriage 23 by the loading carriage 22. Then, the zinc ingot 10 is conveyed to the standby position P1 by the transport carriage 23, and then is charged into the ingot box 11 communicating with the hot-dip zinc pot 3 by the throwing machine arm 24. As a result, the zinc ingot 10 is melted in the ingot box 11, and the hot-dip zinc pot 3 can be replenished with hot-dip zinc.

ところで、このような構成を有する連続溶融亜鉛めっき装置1では、亜鉛インゴット10を1段階でインゴットボックス11内に投入すると、溶融亜鉛浴4の浴面位置4aが大きく変動し、アッシュ欠陥が発生する要因となる。このため、本実施形態では、コンピュータ等の情報処理装置によって構成された制御装置30が、亜鉛インゴット10を複数段階(複数ピッチ)に分けてインゴットボックス11内に投入するピッチ投入制御によって溶融亜鉛を補充する。 By the way, in the continuous hot-dip galvanizing apparatus 1 having such a configuration, when the zinc ingot 10 is put into the ingot box 11 in one step, the bath surface position 4a of the hot-dip zinc bath 4 fluctuates greatly, and ash defects occur. It becomes a factor. Therefore, in the present embodiment, the control device 30 configured by an information processing device such as a computer dispenses the molten zinc by pitch injection control in which the zinc ingot 10 is divided into a plurality of stages (plural pitches) and charged into the ingot box 11. refill.

具体的には、まず、制御装置30は、以下の数式(1),(2)に示す亜鉛インゴット10の投入に伴う浴面位置4aの変動量の予測モデル式(第1モデル式、第2モデル式)を用いて、異なる複数のピッチ投入段数についてピッチ投入制御シミュレーションを実行し、ピッチ投入段数の変化に伴う浴面位置4aの変動量の変化を算出する。ここで、数式(1)は、亜鉛インゴット10が溶解中であるときの浴面位置4aの変動量の予測モデル式を示し、数式(2)は亜鉛インゴット10の溶解後の浴面位置4aの変動量の予測モデル式を示す。 Specifically, first, the control device 30 uses the following mathematical formulas (1) and (2) to predict the amount of fluctuation of the bath surface position 4a due to the introduction of the zinc ingot 10 (first model formula, second model formula). Using the model formula), a pitch input control simulation is executed for a plurality of different pitch input stages, and a change in the amount of fluctuation of the bath surface position 4a due to a change in the number of pitch input stages is calculated. Here, the mathematical formula (1) shows a prediction model formula of the fluctuation amount of the bath surface position 4a when the zinc ingot 10 is being dissolved, and the mathematical formula (2) is the bath surface position 4a after the zinc ingot 10 is dissolved. The prediction model formula of the fluctuation amount is shown.

Figure 2021095597
Figure 2021095597

Figure 2021095597
Figure 2021095597

数式(1),(2)中のパラメータが示す物理量は以下の表1に示す通りである。なお、表1において、フロント側付着量実績及びバック側付着量実績とは、鋼板Sのインゴットボックス11側及び反対側の表面における亜鉛めっき付着量を意味する。また、数式(1),(2)中のパラメータβは実験により求められる定数値である。また、数式(1),(2)において、右辺の第1項は、亜鉛インゴット10および投入機アーム24の体積による浴面位置4aの変動量、右辺の第2項は、鋼板Sによって溶融亜鉛が持ち出されることによる浴面位置4aの変動量(溶融亜鉛消費速度)を示す。また、数式(1)の右辺の第3項は、亜鉛インゴット10が固体から液体に変化することに伴う体積増加による浴面位置4aの変動量、数式(1)の右辺の第4項及び数式(2)の右辺の第3項は、溶融亜鉛の熱膨張による浴面位置4aの変動量を示している。なお、数式(1)の右辺の第3項を省略してもよい。また、数式(2)には、ドロス除去作業による浴面位置3aの変動量を示す補正項を加えてもよい。 The physical quantities indicated by the parameters in the formulas (1) and (2) are as shown in Table 1 below. In Table 1, the actual amount of adhesion on the front side and the actual amount of adhesion on the back side mean the amount of galvanized adhesion on the surfaces of the steel sheet S on the ingot box 11 side and the opposite side. Further, the parameter β in the mathematical formulas (1) and (2) is a constant value obtained by an experiment. Further, in the mathematical formulas (1) and (2), the first term on the right side is the amount of fluctuation of the bath surface position 4a depending on the volume of the zinc ingot 10 and the throwing machine arm 24, and the second term on the right side is the hot-dip galvanized iron by the steel plate S. The amount of change (hot-dip zinc consumption rate) of the bath surface position 4a due to being taken out is shown. Further, the third term on the right side of the formula (1) is the amount of change in the bath surface position 4a due to the volume increase accompanying the change of the zinc ingot 10 from a solid to a liquid, and the fourth term on the right side of the formula (1) and the formula. The third term on the right side of (2) indicates the amount of change in the bath surface position 4a due to thermal expansion of molten zinc. The third term on the right side of the mathematical formula (1) may be omitted. Further, a correction term indicating the amount of fluctuation of the bath surface position 3a due to the dross removing operation may be added to the mathematical formula (2).

Figure 2021095597
Figure 2021095597

次に、制御装置30は、浴面位置4aの変動量が所定範囲内であるピッチ投入段数の中から最小のピッチ投入段数を選択し、選択したピッチ投入段数で亜鉛インゴット10をインゴットボックス11内に投入する。このような構成によれば、コンタクタ接点の損耗を抑えつつ亜鉛インゴット10の投入に伴う浴面位置4aの変動量を所定範囲内に抑制しながら亜鉛めっき鋼板を製造することができる。 Next, the control device 30 selects the minimum number of pitch input stages from the number of pitch input stages in which the amount of fluctuation of the bath surface position 4a is within a predetermined range, and inserts the zinc ingot 10 into the ingot box 11 with the selected number of pitch input stages. Put it in. According to such a configuration, the galvanized steel sheet can be manufactured while suppressing the wear of the contactor contact and suppressing the fluctuation amount of the bath surface position 4a due to the introduction of the zinc ingot 10 within a predetermined range.

図3(a)〜(c)は、溶融亜鉛消費速度を平均速度とした8段階、4段階、及び2段階のピッチ投入制御シミュレーションによる浴面位置変動量の評価結果を示す図である。
図4(a)〜(c)は、溶融亜鉛消費速度を最大速度とした8段階、4段階、及び2段階のピッチ投入制御シミュレーションによる浴面位置変動量の評価結果を示す図である。図3及び図4に示すように、8段階のピッチ投入制御(図3(a),図4(a))において浴面位置(浴レベル)の変動量(変動量H)が最も小さくなった。しかしながら、8段階のピッチ投入制御と4段階のピッチ投入制御(図3(b),図4(b))とでは浴面位置の変動量に大きな差はなく、一方で2段階のピッチ投入制御(図3(c),図4(c))よりは浴面位置の変動量を抑えることができる。よって、コンタクタ接点の損耗を考えると4段階のピッチ投入制御が最適な投入段数であると結論付けられる。このことから、4段階のピッチ投入制御により、コンタクタ接点の損耗を抑えつつ亜鉛インゴットの投入に伴う浴面位置の変動量を所定範囲内に抑制しながら溶融亜鉛めっき鋼板を製造できることが確認された。
3 (a) to 3 (c) are diagrams showing the evaluation results of the amount of change in the bath surface position by the 8-step, 4-step, and 2-step pitch injection control simulation with the hot-dip zinc consumption rate as the average speed.
FIGS. 4 (a) to 4 (c) are diagrams showing the evaluation results of the amount of change in the bath surface position by the 8-step, 4-step, and 2-step pitch injection control simulation with the hot-dip zinc consumption rate as the maximum speed. As shown in FIGS. 3 and 4, the fluctuation amount (variation amount H) of the bath surface position (bath level) was the smallest in the eight-step pitch input control (FIGS. 3 (a) and 4 (a)). .. However, there is no big difference in the amount of fluctuation of the bath surface position between the 8-step pitch throw-in control and the 4-step pitch throw-in control (FIGS. 3 (b) and 4 (b)), while the 2-step pitch feed control is performed. The amount of fluctuation in the bath surface position can be suppressed as compared with (FIGS. 3 (c) and 4 (c)). Therefore, considering the wear of the contactor contacts, it can be concluded that the four-stage pitch input control is the optimum number of input stages. From this, it was confirmed that the hot-dip galvanized steel sheet can be manufactured while suppressing the wear of the contactor contact and suppressing the fluctuation amount of the bath surface position due to the addition of the zinc ingot within a predetermined range by the four-step pitch injection control. ..

以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings which form a part of the disclosure of the present invention according to the present embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 連続溶融亜鉛めっき装置
2 スナウト
3 溶融亜鉛ポット
4 溶融亜鉛浴
5 シンクロール
6 ガスワイピングノズル
10 亜鉛インゴット
11 インゴットボックス
21 コンベア
22 投入台車
23 搬送台車
24 投入機アーム
30 制御装置
S 鋼板
1 Continuous hot-dip galvanizing device 2 Snout 3 Hot-dip galvanized pot 4 Hot-dip zinc bath 5 Sink roll 6 Gas wiping nozzle 10 Zinc ingot 11 Ingot box 21 Conveyor 22 Input trolley 23 Transport trolley 24 Input machine arm 30 Control device S Steel plate

Claims (3)

投入機アームを用いてポット内の溶融金属浴に金属インゴットを投入することにより溶融金属を補充しつつ、前記ポット内に鋼板を通板させることにより該鋼板に金属めっき処理を施す連続溶融金属めっき装置における溶融金属浴の浴面位置の変動量を予測する溶融金属浴の浴面位置変動量予測方法であって、
前記金属インゴットが溶解中であるときの前記浴面位置の変動量を算出する第1モデル式と、前記金属インゴットの溶解後の前記浴面位置の変動量を算出する第2モデル式と、を用いて、前記金属インゴットの投入に伴う前記浴面位置の変動量を算出するステップを含み、
前記第1モデル式及び前記第2モデル式は、前記金属インゴット及び前記投入機アームの体積による前記浴面位置の変動量を示す項、前記鋼板によって前記溶融金属が持ち出されることによる前記浴面位置の変動量を示す項、及び前記溶融金属の熱膨張による前記浴面位置の変動量を示す項を含む
ことを特徴とする溶融金属浴の浴面位置変動量予測方法。
Continuous molten metal plating in which a metal ingot is charged into a molten metal bath in a pot using a throwing machine arm to replenish the molten metal, and a steel plate is passed through the pot to perform metal plating on the steel plate. It is a method for predicting the fluctuation amount of the bath surface position of the molten metal bath in the apparatus, which predicts the fluctuation amount of the bath surface position of the molten metal bath.
The first model formula for calculating the fluctuation amount of the bath surface position when the metal ingot is being melted, and the second model formula for calculating the fluctuation amount of the bath surface position after the metal ingot is melted. Including the step of calculating the amount of change in the bath surface position due to the introduction of the metal ingot by using the metal ingot.
The first model formula and the second model formula are terms indicating the amount of change in the bath surface position depending on the volume of the metal ingot and the throwing machine arm, and the bath surface position due to the molten metal being taken out by the steel plate. A method for predicting the amount of change in the bath surface position of a molten metal bath, which comprises a term indicating the amount of fluctuation of the molten metal and a term indicating the amount of change in the bath surface position due to thermal expansion of the molten metal.
前記第1モデル式は、前記金属インゴットが固体から液体に変化することに伴う体積増加による前記浴面位置の変動量を示す項を含むことを特徴とする請求項1に記載の溶融金属浴の浴面位置変動量予測方法。 The molten metal bath according to claim 1, wherein the first model formula includes a term indicating the amount of change in the bath surface position due to a volume increase accompanying the change of the metal ingot from a solid to a liquid. Bath surface position fluctuation amount prediction method. 請求項1又は請求項2に記載の溶融金属浴の浴面位置変動量予測方法を用いて、前記金属インゴットのピッチ投入段数の変化に伴う浴面位置の変動量の変化を算出し、浴面位置の変動量が所定範囲内にあるピッチ投入段数の中から最小のピッチ投入段数を選択し、選択したピッチ投入段数で金属インゴットをポット内に投入するステップを含むことを特徴とする溶融金属めっき鋼板の製造方法。 Using the method for predicting the amount of change in the bath surface position of the molten metal bath according to claim 1 or 2, the change in the amount of change in the bath surface position due to the change in the number of pitch feeding stages of the metal ingot is calculated, and the bath surface is calculated. Molten metal plating including a step of selecting the minimum number of pitch injection stages from the number of pitch input stages in which the amount of position fluctuation is within a predetermined range and charging the metal ingot into the pot with the selected number of pitch input stages. Method of manufacturing steel plate.
JP2019226051A 2019-12-16 2019-12-16 Method for predicting change in bath surface position of molten metal bath and method for manufacturing molten metal plated steel sheet Active JP7088157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226051A JP7088157B2 (en) 2019-12-16 2019-12-16 Method for predicting change in bath surface position of molten metal bath and method for manufacturing molten metal plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226051A JP7088157B2 (en) 2019-12-16 2019-12-16 Method for predicting change in bath surface position of molten metal bath and method for manufacturing molten metal plated steel sheet

Publications (2)

Publication Number Publication Date
JP2021095597A true JP2021095597A (en) 2021-06-24
JP7088157B2 JP7088157B2 (en) 2022-06-21

Family

ID=76430728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226051A Active JP7088157B2 (en) 2019-12-16 2019-12-16 Method for predicting change in bath surface position of molten metal bath and method for manufacturing molten metal plated steel sheet

Country Status (1)

Country Link
JP (1) JP7088157B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159423U (en) * 1974-11-01 1976-05-11
JPS5483637A (en) * 1977-12-16 1979-07-03 Nippon Kokan Kk <Nkk> Zinc bath surface controlling method in galvanizing
JPS5638459A (en) * 1979-09-07 1981-04-13 Nisshin Steel Co Ltd Charging device for zinc ingot
JPS57101655A (en) * 1980-12-17 1982-06-24 Hitachi Ltd Control of liquid level of paint
JPH01177346A (en) * 1988-01-07 1989-07-13 Kawasaki Steel Corp Method for supplying component to plating bath
JPH05186857A (en) * 1992-01-09 1993-07-27 Kawasaki Steel Corp Hot dipping apparatus and method for operating hot dipping apparatus
JPH09157816A (en) * 1995-12-12 1997-06-17 Nkk Corp Hot-dip metal plating method for steel sheet
JPH10183320A (en) * 1996-12-25 1998-07-14 Kawasaki Steel Corp Hot dip galvanizing bath control method in hot dip galvanizing
JPH1150216A (en) * 1997-07-30 1999-02-23 Kawasaki Steel Corp Method for feeding metallic ingot to metal hot-dip plating bath
JPH1150217A (en) * 1997-07-31 1999-02-23 Kawasaki Steel Corp Method for preventing formation of dross in continuous hot-dip metal plating bath
JP2001181812A (en) * 1999-12-21 2001-07-03 Kawasaki Steel Corp Continuous hot dip metal coating method and apparatus
KR20030080859A (en) * 2002-04-11 2003-10-17 주식회사 포스코 Control device for level, temperature and aluminum density of zinc pot
JP2008266723A (en) * 2007-04-20 2008-11-06 Jfe Steel Kk Hot dip metal plating method for steel sheet using continuous hot dip metal plating device
JP2016169430A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet
JP2019210537A (en) * 2018-06-08 2019-12-12 Jfeスチール株式会社 Method for controlling bath surface level of plating bath, method and device for charging metal ingot into plating bath, continuous hot-dip equipment and method for manufacturing plated steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186857B2 (en) 2006-09-29 2013-04-24 東レ株式会社 Black resin composition, resin black matrix, and color filter

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159423U (en) * 1974-11-01 1976-05-11
JPS5483637A (en) * 1977-12-16 1979-07-03 Nippon Kokan Kk <Nkk> Zinc bath surface controlling method in galvanizing
JPS5638459A (en) * 1979-09-07 1981-04-13 Nisshin Steel Co Ltd Charging device for zinc ingot
JPS57101655A (en) * 1980-12-17 1982-06-24 Hitachi Ltd Control of liquid level of paint
JPH01177346A (en) * 1988-01-07 1989-07-13 Kawasaki Steel Corp Method for supplying component to plating bath
JPH05186857A (en) * 1992-01-09 1993-07-27 Kawasaki Steel Corp Hot dipping apparatus and method for operating hot dipping apparatus
JPH09157816A (en) * 1995-12-12 1997-06-17 Nkk Corp Hot-dip metal plating method for steel sheet
JPH10183320A (en) * 1996-12-25 1998-07-14 Kawasaki Steel Corp Hot dip galvanizing bath control method in hot dip galvanizing
JPH1150216A (en) * 1997-07-30 1999-02-23 Kawasaki Steel Corp Method for feeding metallic ingot to metal hot-dip plating bath
JPH1150217A (en) * 1997-07-31 1999-02-23 Kawasaki Steel Corp Method for preventing formation of dross in continuous hot-dip metal plating bath
JP2001181812A (en) * 1999-12-21 2001-07-03 Kawasaki Steel Corp Continuous hot dip metal coating method and apparatus
KR20030080859A (en) * 2002-04-11 2003-10-17 주식회사 포스코 Control device for level, temperature and aluminum density of zinc pot
JP2008266723A (en) * 2007-04-20 2008-11-06 Jfe Steel Kk Hot dip metal plating method for steel sheet using continuous hot dip metal plating device
JP2016169430A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet
JP2019210537A (en) * 2018-06-08 2019-12-12 Jfeスチール株式会社 Method for controlling bath surface level of plating bath, method and device for charging metal ingot into plating bath, continuous hot-dip equipment and method for manufacturing plated steel sheet

Also Published As

Publication number Publication date
JP7088157B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
US8623194B2 (en) Multi-anode system for uniform plating of alloys
JPWO2016056178A1 (en) Continuous molten metal plating method, hot dip galvanized steel strip, and continuous molten metal plating facility
KR20200027498A (en) How to operate a continuous processing line
KR20120044085A (en) Bearing part of pot roll in galvanizing line and method for coating bearing part of pot roll
JP7088157B2 (en) Method for predicting change in bath surface position of molten metal bath and method for manufacturing molten metal plated steel sheet
KR20010007442A (en) Method of manufacturing hot dip coated metal strip
JP5592770B2 (en) Electric tin plating method
JP2005029890A (en) Method for controlling temperature of plating bath for hot dip galvanized steel sheet, and hot dip galvanized steel sheet
JP2643048B2 (en) Hot-dip plating apparatus and method of operating hot-dip plating apparatus
JP4884676B2 (en) Electric tin plating method
JP2019210537A (en) Method for controlling bath surface level of plating bath, method and device for charging metal ingot into plating bath, continuous hot-dip equipment and method for manufacturing plated steel sheet
JP4692132B2 (en) Hot dipping apparatus and method of operating hot dipping apparatus
JP2016169430A (en) Method for manufacturing hot-dip galvanized steel sheet
KR101294913B1 (en) Ash and dross preventing apparatus in snout and plated steel sheet manufacturing apparatus using the same
JPH10183320A (en) Hot dip galvanizing bath control method in hot dip galvanizing
JP2021036065A (en) Method of supplying metal to molten metal plating bath and method of manufacturing molten metal plated steel sheet
KR20200022095A (en) Apparatus and method for managing aluminum concentration of cgl plating pot
JP2009228073A (en) Method for manufacturing hot dip coated steel sheet
KR101517772B1 (en) Method for controlling dip coating weight in hot dip coating process
JP2006283069A (en) Production method of electrogalvanized steel sheet
JPH1150216A (en) Method for feeding metallic ingot to metal hot-dip plating bath
JP7318816B2 (en) Steel sheet unplated defect prediction method, steel sheet defect reduction method, hot dip galvanized steel sheet manufacturing method, and steel sheet unplated defect prediction model generation method
JP2001254162A (en) Method of supplying molten metal into continuous hot dipping coating metal bath and its supplying device
JP5067428B2 (en) Method for producing electrotinned steel sheet
JP2022000535A (en) Method for generating coating weight prediction model, method for predicting plating coating weight, method for controlling plating coating weight, method for manufacturing hot-dip metal coated steel sheet, device for performing them and method for generating quality prediction model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7088157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150