JP2021092523A - Noncontact shape-measuring device - Google Patents

Noncontact shape-measuring device Download PDF

Info

Publication number
JP2021092523A
JP2021092523A JP2020014605A JP2020014605A JP2021092523A JP 2021092523 A JP2021092523 A JP 2021092523A JP 2020014605 A JP2020014605 A JP 2020014605A JP 2020014605 A JP2020014605 A JP 2020014605A JP 2021092523 A JP2021092523 A JP 2021092523A
Authority
JP
Japan
Prior art keywords
axis
objective lens
laser
measuring device
probe mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020014605A
Other languages
Japanese (ja)
Other versions
JP6980304B2 (en
Inventor
勝弘 三浦
Katsuhiro Miura
勝弘 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to CN202011327103.0A priority Critical patent/CN112880585A/en
Publication of JP2021092523A publication Critical patent/JP2021092523A/en
Application granted granted Critical
Publication of JP6980304B2 publication Critical patent/JP6980304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a noncontact shape-measuring device capable of measuring even a small inner diameter of several mm or less.SOLUTION: Since a light axis K of a laser probe mechanism 11 is inclined relative to X axis, an inner surface shape can be measured by applying laser beams L into a holding hole 2 having a small inner diameter. Since no mirrors inserted into the holding hole 2 are used, even a small inner diameter of several mm or less can be measured. By scanning a measurement work in the Z direction or rotating it in the θ direction, the roundness and diameter of the holding hole 2 or the cross-sectional contour and three-dimensional shape can be measured.SELECTED DRAWING: Figure 1

Description

本発明は非接触形状測定装置に関する。 The present invention relates to a non-contact shape measuring device.

レーザオートフォーカスを用いたレーザプローブ式の非接触形状測定装置は精密部品の形状や粗さを広範囲にわたりナノレベルの分解能で計測できることが知られている。すなわち、三次元直交座標軸XYZとして、測定対象である測定ワークの表面に対し、Z軸を光軸としたレーザプローブのレーザー光によりZ方向でオートフォーカスをかけながら、測定ワークをXY方向に走査し、オートフォーカス光学系の対物レンズの移動量から測定ワークの表面形状に関する測定データを取得する構造である。 It is known that a laser probe type non-contact shape measuring device using laser autofocus can measure the shape and roughness of precision parts over a wide range with nano-level resolution. That is, as the three-dimensional orthogonal coordinate axis XYZ, the surface of the measurement work to be measured is scanned in the XY direction while autofocusing in the Z direction with the laser beam of the laser probe having the Z axis as the optical axis. , The structure is such that measurement data regarding the surface shape of the measurement work is acquired from the amount of movement of the objective lens of the autofocus optical system.

最近では、レーザー光を直角に反射するミラーを対物レンズ側に設けてレーザプローブの光軸をX方向に変換し、そのミラーを測定ワークの穴部等に挿入して、その内面に対してオートフォーカスをかけながら内面形状を測定する技術も知られている(例えば、特許文献1参照)。 Recently, a mirror that reflects laser light at a right angle is provided on the objective lens side to convert the optical axis of the laser probe in the X direction, and the mirror is inserted into a hole or the like of a measuring workpiece to automatically detect the inner surface thereof. A technique for measuring the inner surface shape while focusing is also known (see, for example, Patent Document 1).

特開2012−2573号公報Japanese Unexamined Patent Publication No. 2012-2573

しかしながら、このような従来の技術にあっては、測定ワークの穴部等にミラーを挿入して内面形状を測定する構造のため、挿入するミラーの大きさから測定できる内径に制約があり、数mm以下の小さな内径の測定を行うことができなかった。 However, in such a conventional technique, since the mirror is inserted into the hole of the measuring work to measure the inner surface shape, there is a limitation on the inner diameter that can be measured from the size of the inserted mirror. It was not possible to measure the inner diameter as small as mm or less.

本発明はこのような関連技術に着目してなされたものであり、数mm以下の小さな内径も測定することができる非接触形状測定装置を提供することを目的としている。 The present invention has been made focusing on such a related technique, and an object of the present invention is to provide a non-contact shape measuring device capable of measuring a small inner diameter of several mm or less.

本発明の第1の技術的側面によれば、三次元直交座標軸XYZが規定され、光軸上に設置される対物レンズと、対物レンズへ向けて光軸と平行なレーザー光を照射する光照射手段と、対物レンズを経て測定ワークの表面に照射されそこで反射されて且つ再度対物レンズを通過したレーザー光を受光する光位置検出手段とからレーザープローブ機構を構成し、光位置検出手段からの位置信号に基づいてレーザー光の焦点を測定ワークの表面に合致させるべくレーザープローブ機構全体をX方向に移動させるフォーカス手段を備えた非接触形状測定装置であって、前記レーザープローブ機構の光軸がX軸及びZ軸を含む垂直面内でX軸に対して傾斜していることを特徴とする。 According to the first technical aspect of the present invention, the three-dimensional orthogonal coordinate axis XYZ is defined, and the objective lens installed on the optical axis and the light irradiation for irradiating the objective lens with a laser beam parallel to the optical axis. A laser probe mechanism is composed of a means and an optical position detecting means that irradiates the surface of the measurement work through the objective lens, is reflected there, and receives the laser light that has passed through the objective lens again, and the position from the optical position detecting means. A non-contact shape measuring device provided with a focusing means for moving the entire laser probe mechanism in the X direction so that the focus of the laser beam is aligned with the surface of the measurement work based on the signal, and the optical axis of the laser probe mechanism is X. It is characterized in that it is inclined with respect to the X axis in a vertical plane including the axis and the Z axis.

本発明の第2の技術的側面によれば、測定ワークをレーザー光に対してZ方向へ相対的に移動させるZ方向移動手段と、Z方向に沿うθ軸を中心にθ方向へ相対的に回転させるθ方向移動手段を設けたことを特徴とする。 According to the second technical aspect of the present invention, the Z-direction moving means for moving the measurement work relative to the laser beam in the Z direction and the relative θ-direction centered on the θ-axis along the Z-direction. It is characterized by providing a means for moving in the θ direction to rotate.

本発明の第3の技術的側面によれば、対物レンズの倍率が50倍で、レーザープローブ機構の光軸のX軸に対する傾斜角度が45度以下であることを特徴とする。 According to the third technical aspect of the present invention, the magnification of the objective lens is 50 times, and the inclination angle of the optical axis of the laser probe mechanism with respect to the X axis is 45 degrees or less.

本発明の第1の技術的側面によれば、レーザープローブ機構の光軸がX軸に対して傾斜しているため、測定ワークの表面に内径の小さい穴部等がある場合、レーザー光をその穴部等の内部に照射して内面形状を測定することができる。穴部等内に挿入するミラーを使用しないため、数mm以下の小さな内径も測定することができる。 According to the first technical aspect of the present invention, since the optical axis of the laser probe mechanism is inclined with respect to the X axis, if there is a hole having a small inner diameter on the surface of the measuring work, the laser beam is used. The inner surface shape can be measured by irradiating the inside of a hole or the like. Since a mirror to be inserted into a hole or the like is not used, a small inner diameter of several mm or less can be measured.

本発明の第2の技術的側面によれば、θ方向移動手段が設けられているため、θ軸を中心に回転することで内周の二次元形状(真円度や直径)を測定することができる。更にZ方向移動手段が設けられているため、Z方向に走査し、θ軸をステップ軸とすることで内周の断面輪郭データを取得することもできる。 According to the second technical aspect of the present invention, since the means for moving in the θ direction is provided, the two-dimensional shape (roundness and diameter) of the inner circumference is measured by rotating around the θ axis. Can be done. Further, since the Z-direction moving means is provided, it is possible to obtain the cross-sectional contour data of the inner circumference by scanning in the Z direction and using the θ-axis as the step axis.

本発明の第3の技術的側面によれば、一定の戻り光を保ち、フォーカススピードの低下を防止することができる。 According to the third technical aspect of the present invention, it is possible to maintain a constant return light and prevent a decrease in focus speed.

非接触形状測定装置を示す概略図。The schematic which shows the non-contact shape measuring apparatus. レンズを収納したバレルを示す断面図。Sectional drawing which shows the barrel which housed a lens. バレルを示す断面図。Sectional view showing the barrel. 測定可能最大傾斜角度を示す説明図。Explanatory drawing which shows the maximum measurable tilt angle. バレルの4段の内周真円度の測定結果を示すグラフ。The graph which shows the measurement result of the inner circumference roundness of 4 steps of a barrel.

図1〜図5は、本発明の好適な実施形態を示す図である。 1 to 5 are views showing a preferred embodiment of the present invention.

図1は本実施形態に係る非接触形状測定装置を示しており、XYは水平面上で直交する二方向で、Xはオートフォーカス(AF)方向で、Yはスキャン方向である。Zは鉛直方向である。θはZ方向に沿うθ軸を中心とした測定ワークの回転方向である。 FIG. 1 shows a non-contact shape measuring device according to the present embodiment, in which XY is two directions orthogonal to each other on a horizontal plane, X is an autofocus (AF) direction, and Y is a scanning direction. Z is in the vertical direction. θ is the rotation direction of the measuring work centered on the θ axis along the Z direction.

この実施形態では、測定ワークとしてスマートフォン用カメラレンズのバレル1を用いた。カメラレンズはバレル1の保持孔2内に5枚の非球面レンズ3〜7を組み込んだ構造をしている。非球面レンズ3〜7の場合、各レンズの偏芯量が光学性能に大きく影響を与える。偏芯量を小さくするためにバレル1の保持孔2における内径とレンズの外径の嵌め合いをμmレベルの精度で組込まなくてはならない。 In this embodiment, the barrel 1 of the camera lens for a smartphone is used as the measurement work. The camera lens has a structure in which five aspherical lenses 3 to 7 are incorporated in the holding hole 2 of the barrel 1. In the case of aspherical lenses 3 to 7, the amount of eccentricity of each lens greatly affects the optical performance. In order to reduce the amount of eccentricity, the fitting of the inner diameter of the holding hole 2 of the barrel 1 and the outer diameter of the lens must be incorporated with an accuracy of μm level.

そのためには各レンズが入る多段の内径の直径、真円度、同軸度をサブミクロンレベルで測定する必要がある。また光軸の基準となるレンズは多段のレンズにおいて一番下のレンズとなり、バレス1の底の内周R形状やその下の絞りの輪郭形状測定も高精度が要求される。バレル1の大きさは数mmで反射率の低い黒い樹脂材で作られている。肉厚も薄いために従来の接触式では高精度な測定が行えない。 For that purpose, it is necessary to measure the diameter, roundness, and coaxiality of the multi-stage inner diameter of each lens at the submicron level. Further, the lens that serves as the reference of the optical axis is the lowest lens in the multi-stage lens, and high accuracy is required for measuring the inner peripheral radius shape of the bottom of Valles 1 and the contour shape of the diaphragm below it. The barrel 1 is several millimeters in size and is made of a black resin material with low reflectance. Since the wall thickness is thin, high-precision measurement cannot be performed with the conventional contact type.

バレル1はθ方向へ回転自在な回転ステージ(θ方向移動手段)8の上にセットされている。回転ステージ8はY方向にスライド自在なY軸ステージ9に載っており、Y軸ステージ9は定盤10の上に載っている。 The barrel 1 is set on a rotating stage (moving means in the θ direction) 8 that is rotatable in the θ direction. The rotary stage 8 is mounted on a Y-axis stage 9 that is slidable in the Y direction, and the Y-axis stage 9 is mounted on a surface plate 10.

このバレル1に対してレーザープローブ機構11からレーザープローブとしてレーザー光Lが照射される。レーザープローブ機構11は、光軸K上に設置された対物レンズ(50倍)12と、レーザー光Lを照射する半導体レーザー照射装置(光照射手段を構成)13と、レーザー光Lを対物レンズ12側へ反射して光軸Kと平行にするビームスプリッタ(光照射手段を構成)14と、対物レンズ12を経てバレル1の内面に照射されそこで反射され且つ再度対物レンズ12及びビームスプリッタ14を通過したレーザー光Lを受光するAFセンサ(光位置検出手段)15と、AFセンサ15の直前に配置された結像レンズ16とを具備している。 The barrel 1 is irradiated with laser light L as a laser probe from the laser probe mechanism 11. The laser probe mechanism 11 includes an objective lens (50 times) 12 installed on the optical axis K, a semiconductor laser irradiation device (which constitutes a light irradiation means) 13 for irradiating the laser light L, and an objective lens 12 for irradiating the laser light L. A beam splitter (which constitutes a light irradiation means) 14 that reflects to the side and is parallel to the optical axis K, is irradiated to the inner surface of the barrel 1 via the objective lens 12, is reflected there, and passes through the objective lens 12 and the beam splitter 14 again. It includes an AF sensor (light position detecting means) 15 that receives the laser light L, and an imaging lens 16 that is arranged immediately before the AF sensor 15.

レーザープローブ機構11は全体が傾斜した状態で、フォーカス手段としてのX軸ステージ17の上に載っており、X軸ステージ17はZ軸ステージ(Z方向移動手段)18に載せられている。X軸ステージ17はZ軸ステージ18によりZ方向へ移動自在であると共に、レーザープローブ機構11ごとZ軸ステージ18に対してX方向(フォーカス方向)へ移動することができる。X軸ステージ17、Y軸ステージ9、Z軸ステージ18には10nmのリニアスケールが取り付けられている。 The laser probe mechanism 11 is mounted on the X-axis stage 17 as a focusing means in an inclined state as a whole, and the X-axis stage 17 is mounted on the Z-axis stage (Z-direction moving means) 18. The X-axis stage 17 can be moved in the Z direction by the Z-axis stage 18, and can be moved in the X direction (focus direction) with respect to the Z-axis stage 18 together with the laser probe mechanism 11. A 10 nm linear scale is attached to the X-axis stage 17, the Y-axis stage 9, and the Z-axis stage 18.

回転ステージ8、Y軸ステージ9、Z軸ステージ18はステージコントローラ22により制御される。ステージコントローラ22は各ステージをそれぞれの方向へ移動させる信号を出力する共にバレル1のθ方向、X方向、Y方向、Z方向での位置をメインコントローラ21に出力する。 The rotary stage 8, the Y-axis stage 9, and the Z-axis stage 18 are controlled by the stage controller 22. The stage controller 22 outputs a signal for moving each stage in each direction, and outputs the positions of the barrel 1 in the θ direction, the X direction, the Y direction, and the Z direction to the main controller 21.

レーザープローブ機構11はその光軸KがX軸及びZ軸を含む垂直面内で、対物レンズ12側を下にした状態で、X軸に対して45度の傾斜角度GでX軸ステージ17に固定されている。この傾斜角度GはX軸ステージ17に設けられた図示せぬ円弧レールに沿ってレーザープローブ機構11をX軸ステージ17に対して動かすことにより変更することができる。 The laser probe mechanism 11 is mounted on the X-axis stage 17 at an inclination angle G of 45 degrees with respect to the X-axis with the objective lens 12 side down in a vertical plane whose optical axis K includes the X-axis and the Z-axis. It is fixed. The inclination angle G can be changed by moving the laser probe mechanism 11 with respect to the X-axis stage 17 along an arc rail (not shown) provided on the X-axis stage 17.

レーザー光LはX軸及びZ軸を含む垂直面内の光路に沿って、対物レンズ12からバレル1の保持孔2内に斜め上方より照射され、その内面で反射される。バレル1の内面で反射されたレーザー光Lは、再度対物レンズ12からビームスプリッタ14を通過した後、結像レンズ16を経て、AFセンサ15に至る。 The laser beam L is emitted from the objective lens 12 into the holding hole 2 of the barrel 1 from diagonally above along the optical path in the vertical plane including the X-axis and the Z-axis, and is reflected on the inner surface thereof. The laser beam L reflected on the inner surface of the barrel 1 passes through the beam splitter 14 from the objective lens 12 again, passes through the imaging lens 16, and reaches the AF sensor 15.

AFセンサ15は対物レンズ12の光軸Kを中心に上下に二分割されたセンサ部α、βより構成されている。2つのセンサ部α、βからの出力は比較器(差動増幅器)19を介してAFコントローラ20に入力される。AFコントローラ20からは2つのセンサ部α、βの信号がメインコントローラ21に出力される。 The AF sensor 15 is composed of sensor units α and β divided into upper and lower parts about the optical axis K of the objective lens 12. The outputs from the two sensor units α and β are input to the AF controller 20 via the comparator (differential amplifier) 19. The AF controller 20 outputs the signals of the two sensor units α and β to the main controller 21.

またAFコントローラ20は、X軸ステージ17により、AFセンサ15の2つのセンサ部α、βからの出力が等しくなるように、レーザープローブ機構11全体をフォーカス方向(X方向)へ移動させる。その時のX方向での移動量からバレル1の保持孔2の内面のフォーカス方向での位置情報を検出することができる。 Further, the AF controller 20 moves the entire laser probe mechanism 11 in the focus direction (X direction) by the X-axis stage 17 so that the outputs from the two sensor units α and β of the AF sensor 15 are equal. From the amount of movement in the X direction at that time, the position information in the focus direction of the inner surface of the holding hole 2 of the barrel 1 can be detected.

レーザープローブ機構11はX軸ステージ17を介してZ軸ステージ18により上下動自在となっているため、全体を上下させてバレル1の保持孔2の内面に対して上下方向で移動しながらレーザー光Lを当てることもできる。 Since the laser probe mechanism 11 is vertically movable by the Z-axis stage 18 via the X-axis stage 17, the laser beam is moved up and down with respect to the inner surface of the holding hole 2 of the barrel 1 by moving the entire laser probe mechanism 11 up and down. You can also hit L.

レーザープローブ機構11が傾斜しているため、レーザー光Lがそのままバレル1の保持孔2内に照射され、その内面を測定することができる(図3)。Z方向に沿い保持孔2の中心を貫通するθ軸をステップ軸とし、θ軸0度でZ方向スキャン測定にて保持孔2の上下方向で断面測定を行い、その後にθ軸を180度回転させて同様にZ方向キャン測定にて反対面の断面測定を行う。そのデータをθ軸基準にて極座標変換して結合することにより内周の断面輪郭データを得ることができる。また保持孔2の内面の三次元形状を測定することもできる。 Since the laser probe mechanism 11 is inclined, the laser beam L is irradiated into the holding hole 2 of the barrel 1 as it is, and the inner surface thereof can be measured (FIG. 3). The θ-axis that penetrates the center of the holding hole 2 along the Z direction is used as the step axis, and the cross-sectional measurement is performed in the vertical direction of the holding hole 2 by the Z-direction scan measurement at the θ-axis 0 degree, and then the θ-axis is rotated 180 degrees. Similarly, the cross section of the opposite surface is measured by the Z-direction can measurement. The cross-sectional contour data of the inner circumference can be obtained by converting the data into polar coordinates based on the θ-axis and combining them. It is also possible to measure the three-dimensional shape of the inner surface of the holding hole 2.

次に傾斜角度Gについて検討する。図4は光Lが光軸Kに沿って対物レンズ12に入光した場合で、表面粗さがnmレベルで散乱光が発生しない場合のバレル1の例を示しており、その測定可能最大傾斜角度A3は次式で表される。 Next, the inclination angle G will be examined. FIG. 4 shows an example of the barrel 1 when the light L enters the objective lens 12 along the optical axis K and the surface roughness is at the nm level and scattered light is not generated, and the maximum measurable inclination thereof is shown. The angle A3 is expressed by the following equation.

A3 <(α/2)+(b/4)
本実施形態で使用している50倍の対物レンズ12は半開口角(a)=30度、集光角(b)=40度であるため、最大傾斜角度A3=25度となる。しかし、表面粗さが数十nm以上あるバレル1の内面では散乱光が発生するためにAFセンサ15はその散乱光を捕えてこの測定可能限界傾斜角度A3以上の傾斜面の測定が可能となる。例えば表面粗さRa=0.1のピンゲージの断面形状を測定した場合、±88度の傾斜面まで測定可能であった。しかし傾斜角度が大きくなるにつれて散乱光の戻り光が少なくなるのでS/Nが落ちてフォーカススピードが低下する。それらを考慮して45度の傾斜角度Gを越えない方が良い。対物レンズ12が50倍(WD=10.5mm)で、傾斜角度を45度にした場合、バレル1において7mm以下の内径と深さを有する保持孔2の測定が可能となる。
A3 <(α / 2) + (b / 4)
Since the 50x objective lens 12 used in this embodiment has a half-opening angle (a) = 30 degrees and a focusing angle (b) = 40 degrees, the maximum tilt angle A3 = 25 degrees. However, since scattered light is generated on the inner surface of the barrel 1 having a surface roughness of several tens of nm or more, the AF sensor 15 can capture the scattered light and measure the inclined surface having the measurable limit inclination angle A3 or more. .. For example, when the cross-sectional shape of a pin gauge having a surface roughness Ra = 0.1 was measured, it was possible to measure up to an inclined surface of ± 88 degrees. However, as the tilt angle increases, the return light of the scattered light decreases, so that the S / N decreases and the focus speed decreases. Considering them, it is better not to exceed the inclination angle G of 45 degrees. When the objective lens 12 is 50 times (WD = 10.5 mm) and the inclination angle is 45 degrees, it is possible to measure the holding hole 2 having an inner diameter and depth of 7 mm or less in the barrel 1.

図5は4枚の非球面レンズを収納する構造のバレルの実施例を示すものであり、保持孔における各レンズに対応する4段の内面をそれぞれ測定した結果である。いずれも偏差が0.8μm以下に入っており良好な真円度であった。 FIG. 5 shows an example of a barrel having a structure for accommodating four aspherical lenses, and is the result of measuring the inner surface of each of the four stages corresponding to each lens in the holding hole. In each case, the deviation was 0.8 μm or less, and the roundness was good.

1 バレル(測定ワーク)
8 回転ステージ(θ方向移動手段)
9 Y軸ステージ(Y方向移動手段)
11 レーザープローブ機構
12 対物レンズ
13 半導体レーザー照射装置(光照射手段)
14 ビームスプリッタ(光照射手段)
15 AFセンサ(光位置検出手段)
17 X軸ステージ(フォーカス手段)
18 Z軸ステージ(Z方向移動手段)
L レーザー光
K 光軸
G 傾斜角度
1 barrel (measurement work)
8 Rotating stage (means for moving in the θ direction)
9 Y-axis stage (Y-direction moving means)
11 Laser probe mechanism 12 Objective lens 13 Semiconductor laser irradiation device (light irradiation means)
14 Beam splitter (light irradiation means)
15 AF sensor (optical position detecting means)
17 X-axis stage (focusing means)
18 Z-axis stage (Z-direction moving means)
L Laser light K Optical axis G Tilt angle

A3 <(/2)+(b/4)
本実施形態で使用している50倍の対物レンズ12は半開口角(a)=30度、集光角(b)=40度であるため、最大傾斜角度A3=25度となる。しかし、表面粗さが数十nm以上あるバレル1の内面では散乱光が発生するためにAFセンサ15はその散乱光を捕えてこの測定可能限界傾斜角度A3以上の傾斜面の測定が可能となる。例えば表面粗さRa=0.1のピンゲージの断面形状を測定した場合、±88度の傾斜面まで測定可能であった。しかし傾斜角度が大きくなるにつれて散乱光の戻り光が少なくなるのでS/Nが落ちてフォーカススピードが低下する。それらを考慮して45度の傾斜角度Gを越えない方が良い。対物レンズ12が50倍(WD=10.5mm)で、傾斜角度を45度にした場合、バレル1において7mm以下の内径と深さを有する保持孔2の測定が可能となる。
A3 <( a / 2) + (b / 4)
Since the 50x objective lens 12 used in this embodiment has a half-opening angle (a) = 30 degrees and a focusing angle (b) = 40 degrees, the maximum tilt angle A3 = 25 degrees. However, since scattered light is generated on the inner surface of the barrel 1 having a surface roughness of several tens of nm or more, the AF sensor 15 can capture the scattered light and measure the inclined surface having the measurable limit inclination angle A3 or more. .. For example, when the cross-sectional shape of a pin gauge having a surface roughness Ra = 0.1 was measured, it was possible to measure up to an inclined surface of ± 88 degrees. However, as the tilt angle increases, the return light of the scattered light decreases, so that the S / N decreases and the focus speed decreases. Considering them, it is better not to exceed the inclination angle G of 45 degrees. When the objective lens 12 is 50 times (WD = 10.5 mm) and the inclination angle is 45 degrees, it is possible to measure the holding hole 2 having an inner diameter and depth of 7 mm or less in the barrel 1.

Claims (3)

三次元直交座標軸XYZが規定され、
光軸上に設置される対物レンズと、対物レンズへ向けて光軸と平行なレーザー光を照射する光照射手段と、対物レンズを経て測定ワークの表面に照射されそこで反射されて且つ再度対物レンズを通過したレーザー光を受光する光位置検出手段とからレーザープローブ機構を構成し、
光位置検出手段からの位置信号に基づいてレーザー光の焦点を測定ワークの表面に合致させるべくレーザープローブ機構全体をX方向に移動させるフォーカス手段を備えた非接触形状測定装置であって、
前記レーザープローブ機構の光軸がX軸及びZ軸を含む垂直面内でX軸に対して傾斜していることを特徴とする非接触形状測定装置。
The three-dimensional orthogonal coordinate axis XYZ is defined,
An objective lens installed on the optical axis, a light irradiation means for irradiating a laser beam parallel to the optical axis toward the objective lens, and an objective lens that is irradiated on the surface of the measurement work via the objective lens, reflected there, and again. A laser probe mechanism is constructed from an optical position detecting means that receives the laser light that has passed through the device.
A non-contact shape measuring device provided with a focusing means for moving the entire laser probe mechanism in the X direction so that the focus of the laser beam is aligned with the surface of the measuring workpiece based on the position signal from the light position detecting means.
A non-contact shape measuring device characterized in that the optical axis of the laser probe mechanism is inclined with respect to the X axis in a vertical plane including the X axis and the Z axis.
測定ワークをレーザー光に対してZ方向へ相対的に移動させるZ方向移動手段と、Z方向に沿うθ軸を中心にθ方向へ相対的に回転させるθ方向移動手段を設けたことを特徴とする請求項1記載の非接触形状測定装置。 It is characterized by providing a Z-direction moving means that moves the measurement work relative to the laser beam in the Z direction and a θ-direction moving means that rotates the measuring work relatively in the θ direction around the θ axis along the Z direction. The non-contact shape measuring device according to claim 1. 対物レンズの倍率が50倍で、レーザープローブ機構の光軸のX軸に対する傾斜角度が45度以下であることを特徴とする請求項1又は請求項2記載の非接触形状測定装置。 The non-contact shape measuring device according to claim 1 or 2, wherein the magnification of the objective lens is 50 times, and the inclination angle of the optical axis of the laser probe mechanism with respect to the X axis is 45 degrees or less.
JP2020014605A 2019-11-29 2020-01-31 Non-contact inner surface shape measuring device Active JP6980304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011327103.0A CN112880585A (en) 2019-11-29 2020-11-24 Non-contact shape measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216143 2019-11-29
JP2019216143 2019-11-29

Publications (2)

Publication Number Publication Date
JP2021092523A true JP2021092523A (en) 2021-06-17
JP6980304B2 JP6980304B2 (en) 2021-12-15

Family

ID=76313176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014605A Active JP6980304B2 (en) 2019-11-29 2020-01-31 Non-contact inner surface shape measuring device

Country Status (1)

Country Link
JP (1) JP6980304B2 (en)

Also Published As

Publication number Publication date
JP6980304B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2017107777A1 (en) Method for measuring surface shape error of rotary symmetrical unknown aspheric surface, and measurement device thereof
CN108731595B (en) Optical rotating shaft multi-degree-of-freedom error detection device and method
CN107339955B (en) High-precision lens center deviation detection instrument and measurement method thereof
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
JP6193218B2 (en) Method and apparatus for non-contact measurement of surfaces
WO2007018118A1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
JPWO2011152441A1 (en) Micromaterial strain measuring apparatus and method
JP2011215016A (en) Aspheric surface measuring apparatus
JP6288280B2 (en) Surface shape measuring device
CN109990733B (en) Bilateral dislocation differential confocal curvature radius measuring method
CN110702026A (en) Flatness three-dimensional shape detection device based on complex beam angle adaptive optics and processing method thereof
KR940002356B1 (en) Method and apparatus for noncontact automatic focusing
CN109990732B (en) Transverse subtraction differential confocal curvature radius measuring method
JP5242940B2 (en) Non-contact shape measuring device
US7804605B2 (en) Optical multi-axis linear displacement measurement system and a method thereof
JP2005070225A (en) Surface image projector and the surface image projection method
JP2002257523A (en) Ultraprecise shape measuring method and its device
JPS63131116A (en) Confocal microscope
CN109945804B (en) Transverse subtraction differential confocal measuring method for super-large curvature radius
JP6980304B2 (en) Non-contact inner surface shape measuring device
JP2012002548A (en) Light wave interference measurement device
CN110068290B (en) Bilateral dislocation differential confocal measuring method for super-large curvature radius
CN112880585A (en) Non-contact shape measuring device
JP6928982B1 (en) Non-contact roundness and diameter measurement method
JPWO2019069926A1 (en) Surface shape measuring device, surface shape measuring method, structure manufacturing system, structure manufacturing method, and surface shape measuring program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R150 Certificate of patent or registration of utility model

Ref document number: 6980304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250