JP2021092485A - Method for evaluating metal impurities on silicon substrate surface - Google Patents

Method for evaluating metal impurities on silicon substrate surface Download PDF

Info

Publication number
JP2021092485A
JP2021092485A JP2019224209A JP2019224209A JP2021092485A JP 2021092485 A JP2021092485 A JP 2021092485A JP 2019224209 A JP2019224209 A JP 2019224209A JP 2019224209 A JP2019224209 A JP 2019224209A JP 2021092485 A JP2021092485 A JP 2021092485A
Authority
JP
Japan
Prior art keywords
silicon substrate
phase decomposition
gas phase
mass
metal impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019224209A
Other languages
Japanese (ja)
Other versions
JP7196825B2 (en
Inventor
健司 荒木
Kenji Araki
健司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019224209A priority Critical patent/JP7196825B2/en
Publication of JP2021092485A publication Critical patent/JP2021092485A/en
Application granted granted Critical
Publication of JP7196825B2 publication Critical patent/JP7196825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a method for performing TXRF analysis with high sensitivity while keeping position information of metal impurities on a silicon substrate surface.SOLUTION: A method for evaluating metal impurities on a silicon substrate surface, comprises: bring vapor 3 generated from acid mixture solution 2 into contact with the silicon substrate surface for 15 to 30 minutes to decompose the vapor phase of the silicon substrate surface, wherein the acid mixture solution contains 10.0 to 15.0 mass% of hydrogen fluoride, 19.0 to 23.0 mass% of hydrogen peroxide, and 1.5 to 3.2 mass% of hydrogen chloride; and evaluating metal impurities on the silicon substrate surface after the vapor phase decomposition by the total reflection fluorescent X-ray analysis method.SELECTED DRAWING: Figure 1

Description

本発明は、シリコン基板表面の金属不純物分析方法に関し、特に全反射蛍光X線分析に関する。 The present invention relates to a method for analyzing metal impurities on the surface of a silicon substrate, and particularly to total internal reflection fluorescent X-ray analysis.

半導体デバイス製造工程では、ウェーハ清浄度管理が重要であり、ウェーハ表面不純物分析方法としてWSA(Wafer Surface Analysis)が行われている。WSAでは、ウェーハ表面に酸蒸気を晒し、ウェーハ表面自然酸化膜を溶解後、酸溶液でウェーハ表面を走査することで、自然酸化膜を含むウェーハ表面の不純物を回収し、回収した酸溶液を誘導結合プラズマ質量分析装置等で測定している。この方法は、ウェーハ表面不純物を回収・濃縮することで高感度分析が行えることを特徴とする反面、ウェーハ面内の不純物の位置情報は消失してしまう欠点がある。 Wafer cleanliness control is important in the semiconductor device manufacturing process, and WSA (Wafer Surface Analysis) is used as a wafer surface impurity analysis method. In WSA, acid vapor is exposed to the wafer surface, the natural oxide film on the wafer surface is dissolved, and then the wafer surface is scanned with an acid solution to recover impurities on the wafer surface including the natural oxide film and induce the recovered acid solution. It is measured by an inductively coupled plasma mass spectrometer or the like. This method is characterized in that high-sensitivity analysis can be performed by recovering and concentrating impurities on the wafer surface, but has a drawback that the position information of impurities on the wafer surface is lost.

一方、簡便にウェーハ表面不純物を分析できる方法として、全反射蛍光X線分析法(Total refrection X−Ray Fluorescence analysis。以下、「TXRF法」という)がある。TXRF法は、全反射条件で入射したX線によりウェーハ表面不純物を励起し、発生する蛍光X線を検出することで、ウェーハ表面の不純物を高感度に検出できる方法である。図10にTXRF法の原理図を示す。TXRF法は、非破壊で、かつ不純物のウェーハ面内分布を分析することが可能で、局所的な汚染の検出には威力を発揮する。一方、WSA等の化学分析に比べ、検出感度が劣るという問題もある。 On the other hand, as a method capable of easily analyzing wafer surface impurities, there is a total reflection X-Ray Fluorescence analysis method (hereinafter referred to as "TXRF method"). The TXRF method is a method capable of detecting impurities on the wafer surface with high sensitivity by exciting the wafer surface impurities with X-rays incident under total reflection conditions and detecting the generated fluorescent X-rays. FIG. 10 shows a principle diagram of the TXRF method. The TXRF method is non-destructive and can analyze the in-plane distribution of impurities, which is effective in detecting local contamination. On the other hand, there is also a problem that the detection sensitivity is inferior to that of chemical analysis such as WSA.

そこで、近年は、WSAとTXRF法を組み合わせ、不純物回収を行った酸溶液をウェーハ上で乾燥させ、その乾燥痕上でTXRF分析を行うことで、TXRF法の高感度化することも行われているが、TXRF法の利点であった不純物の位置情報が失われる欠点がある。このため、ウェーハ表面を気相分解した後に乾燥することで、ウェーハ表面の不純物をパーティクル状に凝集させ(図11)、その状態でTXRF分析を行うことで、ウェーハ面内不純物の位置情報を保ったまま、検出強度が増加する効果を利用した方法も行われている(特許文献1)。図12に、気相分解−TXRF法のフロー図を示す。 Therefore, in recent years, the TXRF method has been made more sensitive by combining the WSA and the TXRF method, drying the acid solution from which impurities have been recovered on the wafer, and performing TXRF analysis on the drying marks. However, there is a drawback that the position information of impurities, which is an advantage of the TXRF method, is lost. Therefore, the wafer surface is gas-phase decomposed and then dried to aggregate the impurities on the wafer surface into particles (FIG. 11), and TXRF analysis is performed in that state to maintain the position information of the impurities in the wafer surface. As it is, a method utilizing the effect of increasing the detection intensity is also performed (Patent Document 1). FIG. 12 shows a flow chart of the gas phase decomposition-TXRF method.

TXRF法は、X線を臨界角以下の極浅い角度で入射させると、全反射が起こることを利用する分析方法であり、ウェーハ表面の不純物のみを励起することができる。このため、入射X線の散乱や基板からの蛍光X線によるバックグラウンド上昇の影響を抑えることが可能な高感度分析法である。また、TXRF法の更なる高感度化において、ウェーハ面内不純物の位置情報を維持したまま高感度化を行うには、特許文献1に記載されているように、ウェーハ表面を気相分解後に乾燥することで、ウェーハ表面不純物をパーティクル状に凝集させ、パーティクルからの散乱X線量を増加させることが効果的である。しかし、特許文献1には、気相分解におけるガスはHFのみが規定されており、また、気相分解時間と気相分解前後におけるTXRFのX線強度の関係について示されていない。 The TXRF method is an analysis method that utilizes the fact that total reflection occurs when X-rays are incident at an extremely shallow angle equal to or less than the critical angle, and can excite only impurities on the wafer surface. Therefore, it is a high-sensitivity analysis method capable of suppressing the influence of scattering of incident X-rays and background rise due to fluorescent X-rays from a substrate. Further, in order to further increase the sensitivity of the TXRF method, in order to increase the sensitivity while maintaining the position information of impurities in the wafer surface, as described in Patent Document 1, the wafer surface is dried after vapor phase decomposition. By doing so, it is effective to agglomerate the wafer surface impurities into particles and increase the scattered X-ray dose from the particles. However, Patent Document 1 defines only HF as the gas in the gas phase decomposition, and does not show the relationship between the gas phase decomposition time and the X-ray intensity of TXRF before and after the gas phase decomposition.

特許第3690484号公報Japanese Patent No. 3690484

上述のように、ウェーハ表面不純物のパーティクル状への形態変化における気相分解条件は、一般的にフッ化水素酸(HF水溶液)が用いられているものの、濃度や気相分解時間の最適値までは言及されていなかった。このため適切な気相分解が行われず、パーティクル状への形態変化が不十分となり、この結果、ばらつきの増大につながることが問題となることがわかった。特に、シリコンよりイオン化傾向の小さいCuのような元素はその傾向が顕著である。 As described above, the vapor phase decomposition conditions for changing the morphology of wafer surface impurities into particles are generally hydrofluoric acid (HF aqueous solution), but up to the optimum values for concentration and vapor phase decomposition time. Was not mentioned. For this reason, it has been found that proper gas phase decomposition is not performed, and the morphological change into particles becomes insufficient, and as a result, it becomes a problem that the variation increases. In particular, the tendency is remarkable for elements such as Cu, which have a lower ionization tendency than silicon.

本発明は、上記問題を解決するためになされたものであり、気相分解によりパーティクル状へ形態を変化させるための適切な気相分解条件を提供することにより、シリコン基板表面の金属不純物の位置情報を保ったまま、高感度でTXRF分析を行う方法を提供することを目的とする。 The present invention has been made to solve the above problems, and by providing appropriate gas phase decomposition conditions for changing the morphology into particles by gas phase decomposition, the positions of metal impurities on the surface of the silicon substrate are provided. It is an object of the present invention to provide a method for performing TXRF analysis with high sensitivity while preserving information.

本発明は、上記目的を達成するためになされたものであり、シリコン基板表面の金属不純物を評価する方法であって、10.0〜15.0質量%のフッ化水素と、19.0〜23.0質量%の過酸化水素と、1.5〜3.2質量%の塩化水素を含む酸混合溶液から発生する蒸気を、シリコン基板表面に15〜30分間接触させて前記シリコン基板表面の気相分解を行い、前記気相分解後の前記シリコン基板表面の金属不純物を全反射蛍光X線分析法により評価するシリコン基板表面の金属不純物評価方法を提供する。 The present invention has been made to achieve the above object, and is a method for evaluating metal impurities on the surface of a silicon substrate, in which 10.0 to 15.0% by mass of hydrogen peroxide and 19.0 to 19.0 to 19.0 to 15.0% by mass of hydrogen peroxide are used. Steam generated from an acid mixed solution containing 23.0% by mass of hydrogen peroxide and 1.5 to 3.2% by mass of hydrogen chloride is brought into contact with the surface of the silicon substrate for 15 to 30 minutes to bring the surface of the silicon substrate into contact with the surface of the silicon substrate. Provided is a method for evaluating metal impurities on the surface of a silicon substrate, which performs gas phase decomposition and evaluates the metal impurities on the surface of the silicon substrate after the vapor phase decomposition by a total reflection fluorescent X-ray analysis method.

このようなシリコン基板表面の金属不純物評価方法によれば、位置精度を保ったまま、高感度のTXRF分析を行うことができる。 According to such a method for evaluating metal impurities on the surface of a silicon substrate, highly sensitive TXRF analysis can be performed while maintaining position accuracy.

このとき、前記気相分解は、上部に開口を有する容器内に前記酸混合溶液を注入し、前記開口を覆うように前記シリコン基板を設置して、前記金属不純物評価を行う前記シリコン基板表面と前記容器内の前記酸混合溶液との間に密閉空間を形成し、前記酸混合溶液から発生する蒸気により、前記密閉空間に面した前記シリコン基板表面を気相分解処理するシリコン基板表面の金属不純物評価方法とすることができる。 At this time, in the vapor phase decomposition, the acid mixed solution is injected into a container having an opening at the upper part, the silicon substrate is installed so as to cover the opening, and the surface of the silicon substrate is evaluated for metal impurities. A closed space is formed between the container and the acid mixed solution, and the vapor generated from the acid mixed solution is used to vapor-phase decompose the surface of the silicon substrate facing the closed space. Metal impurities on the surface of the silicon substrate. It can be an evaluation method.

これにより、より簡便に、位置精度がより高い、高感度のTXRF分析を行うことができる。 This makes it possible to perform highly sensitive TXRF analysis with higher position accuracy more easily.

以上のように、本発明のシリコン基板表面の金属不純物評価方法によれば、位置精度の高い、高感度のTXRF分析を行うことが可能となる。 As described above, according to the method for evaluating metal impurities on the surface of a silicon substrate of the present invention, it is possible to perform TXRF analysis with high position accuracy and high sensitivity.

本発明に係る金属不純物評価方法における、気相分解処理の一例を示す。An example of the gas phase decomposition treatment in the metal impurity evaluation method according to the present invention is shown. 気相分解時間と気相分解前後のCr、Fe、Ni、CuのX線強度増大比(Ratio)の関係を示す。The relationship between the gas phase decomposition time and the X-ray intensity increase ratio (Ratio) of Cr, Fe, Ni, and Cu before and after the gas phase decomposition is shown. 気相分解時間とTXRF検出下限値の関係を示す。The relationship between the gas phase decomposition time and the lower limit of TXRF detection is shown. 比較例1及び比較例2における気相分解前後のCr、Fe、Ni、CuのX線強度増大比(Ratio)を示す。The X-ray intensity increase ratios (Ratio) of Cr, Fe, Ni, and Cu before and after gas phase decomposition in Comparative Example 1 and Comparative Example 2 are shown. 比較例1及び比較例2における気相分解前のTXRF検出下限値を示す。The lower limit value of TXRF detection before gas phase decomposition in Comparative Example 1 and Comparative Example 2 is shown. 比較例1及び比較例2における気相分解後のTXRF検出下限値を示す。The lower limit value of TXRF detection after gas phase decomposition in Comparative Example 1 and Comparative Example 2 is shown. 比較例1〜9、実施例1〜3における気相分解前後のX線強度増大比(Ratio)を示す。The X-ray intensity increase ratio (Ratio) before and after the gas phase decomposition in Comparative Examples 1 to 9 and Examples 1 to 3 is shown. 比較例1〜9、実施例1〜3における気相分解前の各分析対象元素の検出下限値を示す。The lower limit of detection of each element to be analyzed before gas phase decomposition in Comparative Examples 1 to 9 and Examples 1 to 3 is shown. 比較例1〜9、実施例1〜3における気相分解後の各分析対象元素の検出下限値を示す。The lower limit of detection of each element to be analyzed after gas phase decomposition in Comparative Examples 1 to 9 and Examples 1 to 3 is shown. TXRF法の原理図を示す。The principle diagram of the TXRF method is shown. 気相分解〜乾燥過程におけるパーティクルへの形態変化の説明図を示す。The explanatory diagram of the morphological change into particles in the process of vapor phase decomposition-drying is shown. 気相分解−TXRF法のフロー図を示す。The flow chart of the gas phase decomposition-TXRF method is shown.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

上述のように、シリコン基板表面の金属不純物の位置情報を保ったまま、高感度でTXRF分析を行う方法が求められていた。 As described above, there has been a demand for a method of performing TXRF analysis with high sensitivity while maintaining the position information of metal impurities on the surface of the silicon substrate.

本発明者は、上記課題について鋭意検討を重ねた結果、フッ化水素酸と過酸化水素水と塩酸とを含む酸混合溶液が、気相分解時のTXRF分析に適したパーティクル状への形態変化に影響を及ぼすことを見出した。さらに、酸混合溶液中におけるフッ化水素(HF)と、過酸化水素(H)と、塩化水素(HCl)の濃度を特定の濃度とし、かつ、特定の気相分解時間とすることで、シリコン基板表面の金属不純物の位置情報を保ったまま、従来より高感度にTXRF分析を行うことが可能となることを見出した。 As a result of diligent studies on the above problems, the present inventor changes the morphology of an acid mixed solution containing hydrofluoric acid, hydrogen peroxide solution, and hydrochloric acid into particles suitable for TXRF analysis during gas phase decomposition. Was found to affect. Further, the concentrations of hydrogen fluoride (HF), hydrogen peroxide (H 2 O 2 ), and hydrogen chloride (HCl) in the acid mixed solution should be set to a specific concentration and a specific gas phase decomposition time. Therefore, it has been found that TXRF analysis can be performed with higher sensitivity than before while maintaining the position information of metal impurities on the surface of the silicon substrate.

本発明者は、シリコン基板表面の金属不純物を評価する方法であって、10.0〜15.0質量%のフッ化水素と、19.0〜23.0質量%の過酸化水素と、1.5〜3.2質量%の塩化水素を含む酸混合溶液から発生する蒸気を、シリコン基板表面に15〜30分間接触させて前記シリコン基板表面の気相分解を行い、前記気相分解後の前記シリコン基板表面の金属不純物を全反射蛍光X線分析法により評価するシリコン基板表面の金属不純物評価方法により、気相分解前後のTXRF分析によるCuのX線強度増大比が、気相分解の薬液としてフッ化水素酸のみ(HF50質量%)を用いたときや、フッ化水素酸と過酸化水素水の酸混合溶液を用いたときのTXRF分析によるX線強度増大比よりも高く、5倍以上に増大し、また、検出感度を向上させることができることを見出し、本発明を完成した。 The present inventor is a method for evaluating metal impurities on the surface of a silicon substrate, which comprises 10.0 to 15.0% by mass of hydrogen fluoride, 19.0 to 23.0% by mass of hydrogen peroxide, and 1 .The vapor generated from the acid mixed solution containing 5 to 3.2% by mass of hydrogen peroxide is brought into contact with the surface of the silicon substrate for 15 to 30 minutes to perform gas phase decomposition on the surface of the silicon substrate, and after the vapor phase decomposition. By the metal impurity evaluation method on the surface of the silicon substrate, which evaluates the metal impurities on the surface of the silicon substrate by the total reflection fluorescent X-ray analysis method, the X-ray intensity increase ratio of Cu by TXRF analysis before and after the gas phase decomposition is the chemical solution for the gas phase decomposition. It is higher than the X-ray intensity increase ratio by TXRF analysis when using only hydrofluoric acid (HF 50% by mass) or when using an acid mixed solution of hydrofluoric acid and hydrogen peroxide solution, which is 5 times or more. The present invention has been completed by finding that the detection sensitivity can be improved.

以下、図面を参照して説明する。 Hereinafter, description will be made with reference to the drawings.

本発明に係る金属不純物評価方法では、シリコン基板における、TXRF分析を行う表面を気相分解してから、TXRF分析を行う。このとき、気相分解時における蒸気とシリコン基板表面との接触効率を考慮して、図1に示すように、上部に開口を有する気相分解容器1を用いて行うことが好ましい。上部に開口を有する気相分解容器1内に酸混合溶液2を注入し、開口を覆うようにシリコン基板Wを設置して、シリコン基板Wの表面と気相分解容器1内の酸混合溶液2との間に密閉空間を形成し、酸混合溶液2から発生する蒸気3により、密閉空間に面したシリコン基板Wの表面を気相分解処理することができる。このようにして気相分解処理を行えば、より簡便に、位置精度がより高い、高感度のTXRF分析を行うことができる。但し、気相分解の方法はこれに限定されず、シリコン基板表面に、10.0〜15.0質量%のフッ化水素(HF)と、19.0〜23.0質量%の過酸化水素(H)と、1.5〜3.2質量%の塩化水素(HCl)を含む酸混合溶液から発生する蒸気を、15〜30分間接触させてシリコン基板表面の気相分解を行うことができれば、どのような方法であっても構わない。 In the metal impurity evaluation method according to the present invention, the surface of the silicon substrate on which TXRF analysis is to be performed is gas-phase decomposed, and then TXRF analysis is performed. At this time, in consideration of the contact efficiency between the steam and the surface of the silicon substrate during the gas phase decomposition, it is preferable to use the gas phase decomposition container 1 having an opening at the top as shown in FIG. The acid mixed solution 2 is injected into the gas phase decomposition container 1 having an opening at the upper part, the silicon substrate W is placed so as to cover the opening, and the surface of the silicon substrate W and the acid mixed solution 2 in the gas phase decomposition container 1 are provided. A closed space is formed between the two, and the surface of the silicon substrate W facing the closed space can be subjected to vapor phase decomposition treatment by the steam 3 generated from the acid mixed solution 2. If the gas phase decomposition process is performed in this way, it is possible to perform a highly sensitive TXRF analysis with higher position accuracy more easily. However, the method of vapor phase decomposition is not limited to this, and 10.0 to 15.0% by mass of hydrogen fluoride (HF) and 19.0 to 23.0% by mass of hydrogen peroxide are applied to the surface of the silicon substrate. (H 2 O 2 ) and steam generated from an acid mixed solution containing 1.5 to 3.2% by mass of hydrogen peroxide (HCl) are brought into contact with each other for 15 to 30 minutes to perform gas phase decomposition on the surface of the silicon substrate. Any method can be used as long as it can be done.

また、気相分解時には気相分解容器をヒーター等で加熱しても良いし、シリコン基板上部から赤外線ランプ等を照射しても良く、気相分解時にシリコン基板表面に凝集した液滴が大きくなり過ぎないようにすることが好ましい。以下に述べる例では、室温(23℃)で、ヒーター等の加熱は行わない条件で気相分解を実施した。 Further, the gas phase decomposition container may be heated by a heater or the like at the time of gas phase decomposition, or an infrared lamp or the like may be irradiated from the upper part of the silicon substrate, and the droplets aggregated on the surface of the silicon substrate become large during the gas phase decomposition. It is preferable not to go too far. In the example described below, the gas phase decomposition was carried out at room temperature (23 ° C.) under the condition that the heater or the like was not heated.

本発明者は、気相分解における蒸気発生源の薬液が、フッ化水素酸のみの場合や、フッ化水素酸+過酸化水素水の酸混合溶液の場合のみならず、フッ化水素酸+過酸化水素水+塩酸の酸混合溶液の場合について、気相分解時間におけるX線強度変化について調査した。その結果、詳細は後述するが、気相分解後のCuのX線強度は、気相分解前のX線強度に対して、フッ化水素酸のみの場合や、フッ化水素酸+過酸化水素水の酸混合溶液の場合では約1.5倍の増大であるのに対して、10.0〜15.0質量%のフッ化水素(HF)と、19.0〜23.0質量%の過酸化水素(H)と、1.5〜3.2質量%の塩化水素(HCl)を含む酸混合溶液の場合は、最大で約7倍の増大が見られることを見出した。これは、フッ化水素酸+過酸化水素水にさらに塩酸が加わることで、シリコン基板表面に凝集した水滴の酸化還元電位が高くなるとともに、酸化力が増加するため、フッ化水素酸単独の場合やフッ化水素酸+過酸化水素水の酸混合溶液の場合ではイオン化されなかったCuがイオン化し、乾燥時に他の元素と同様に凝集したためと考えられる。その結果、入射X線は凝集体(パーティクル)内部に僅かに侵入し、凝集体表面及び内部からも蛍光X線が放出されることから、X線検出強度が増加したものと考えられる。 The present inventor is not limited to the case where the chemical solution of the steam source in the vapor phase decomposition is only hydrofluoric acid or the acid mixed solution of hydrofluoric acid + hydrochloric acid aqueous solution, but also hydrofluoric acid + excess. In the case of an acid mixed solution of hydrogen oxide water + hydrochloric acid, the change in X-ray intensity during the gas phase decomposition time was investigated. As a result, although details will be described later, the X-ray intensity of Cu after gas phase decomposition is higher than that before gas phase decomposition when only hydrofluoric acid is used or hydrofluoric acid + hydrogen chloride. In the case of an acid mixed solution of water, the increase was about 1.5 times, whereas it was 10.0 to 15.0% by mass of hydrogen fluoride (HF) and 19.0 to 23.0% by mass. It has been found that in the case of an acid mixed solution containing hydrofluoric acid (H 2 O 2 ) and 1.5 to 3.2% by mass of hydrogen chloride (HCl), an increase of up to about 7 times is observed. This is because the addition of hydrochloric acid to hydrofluoric acid + hydrogen peroxide solution increases the oxidation-reduction potential of water droplets aggregated on the surface of the silicon substrate and increases the oxidizing power. Therefore, in the case of hydrofluoric acid alone. It is probable that in the case of the acid mixed solution of hydrofluoric acid + hydrogen peroxide solution, Cu that was not ionized was ionized and aggregated in the same manner as other elements during drying. As a result, the incident X-rays slightly invade the inside of the aggregate (particles), and the fluorescent X-rays are emitted from the surface and the inside of the aggregate, so that it is considered that the X-ray detection intensity is increased.

また、気相分解時間におけるX線強度増大比は、後述するようにおよそ15分で最大に達するが、30分以降は低下傾向が見られた。これは、凝集時に生成する凝集核を構成する凝集体が大きくなり過ぎると凝集体表面でのX線の乱反射の影響が増大し、X線の検出器への収率が減少するためと考えられる。 In addition, the X-ray intensity increase ratio in the gas phase decomposition time reached the maximum in about 15 minutes as described later, but tended to decrease after 30 minutes. It is considered that this is because if the aggregates constituting the aggregate nuclei generated at the time of aggregation become too large, the influence of diffused reflection of X-rays on the surface of the aggregates increases, and the yield of X-rays to the detector decreases. ..

特に、フッ化水素(HF)濃度が10.0〜11.0質量%、過酸化水素(H)濃度が21.9〜22.1質量%、塩化水素(HCl)濃度が2.1〜2.6質量%の混合酸溶液を用いることが好ましい。このような混合酸溶液を用いたときの、気相分解前後のTXRF分析によるCuのX線強度増大比は、フッ化水素酸のみ(HF50質量%)の薬液の場合や、フッ化水素酸+過酸化水素水の酸混合溶液の場合の気相分解前後のTXRF分析によるX線強度増大比(Ratio)より大きくなり、約7倍となる。また、気相分解時間は15〜30分間で最大の効果を発揮する。 In particular, the hydrogen fluoride (HF) concentration is 10.0 to 11.0% by mass, the hydrogen peroxide (H 2 O 2 ) concentration is 21.9 to 22.1% by mass, and the hydrogen chloride (HCl) concentration is 2. It is preferable to use a mixed acid solution of 1 to 2.6% by mass. When such a mixed acid solution is used, the ratio of increase in X-ray intensity of Cu by TXRF analysis before and after gas phase decomposition is the case of a chemical solution containing only hydrofluoric acid (HF 50% by mass) or hydrofluoric acid +. In the case of an acid mixed solution of hydrofluoric acid solution, it is larger than the X-ray intensity increase ratio (Ratio) by TXRF analysis before and after gas phase decomposition, and is about 7 times. In addition, the gas phase decomposition time is 15 to 30 minutes, and the maximum effect is exhibited.

図2に、10.7質量%のフッ化水素(HF)+22.1質量%の過酸化水素(H)+2.6質量%の塩化水素(HCl)を含む酸混合溶液を用いて気相分解した場合について、気相分解時間と気相分解前後のCr、Fe、Ni、CuのX線強度増大比(Ratio)の関係を示す。気相分解時間の増加に伴いX線強度比(Ratio)は増大するが、気相分解時間が30分以上ではX線強度増大比(Ratio)が低下することが確認できた。言い換えると、気相分解時間を15〜30分とすれば、高いX線強度比(Ratio)が得られることがわかった。 In FIG. 2, an acid mixed solution containing 10.7% by mass of hydrogen fluoride (HF) + 22.1% by mass of hydrogen peroxide (H 2 O 2 ) + 2.6% by mass of hydrogen chloride (HCl) was used. In the case of vapor phase decomposition, the relationship between the vapor phase decomposition time and the X-ray intensity increase ratio (Ratio) of Cr, Fe, Ni, and Cu before and after the vapor phase decomposition is shown. It was confirmed that the X-ray intensity ratio (Ratio) increases as the gas phase decomposition time increases, but the X-ray intensity increase ratio (Ratio) decreases when the gas phase decomposition time is 30 minutes or more. In other words, it was found that a high X-ray intensity ratio (Ratio) can be obtained if the gas phase decomposition time is 15 to 30 minutes.

同様に、図3に、10.7質量%のフッ化水素(HF)+22.1質量%の過酸化水素(H)+2.6質量%の塩化水素(HCl)を含む酸混合溶液を用いて気相分解した場合の、気相分解時間とTXRF検出下限値の関係を示す。X線強度増大比が最も高い15〜30分の気相分解時間において、検出下限値も低い値を示すことがわかる。したがって、気相分解時間は15〜30分間とすることにより、高感度でTXRF分析を行うことが可能となる。 Similarly, FIG. 3 shows an acid mixed solution containing 10.7% by mass of hydrogen fluoride (HF) + 22.1% by mass of hydrogen peroxide (H 2 O 2 ) + 2.6% by mass of hydrogen chloride (HCl). The relationship between the gas phase decomposition time and the TXRF detection lower limit value when the gas phase decomposition is performed using. It can be seen that the lower limit of detection also shows a low value in the gas phase decomposition time of 15 to 30 minutes, which has the highest X-ray intensity increase ratio. Therefore, by setting the gas phase decomposition time to 15 to 30 minutes, it is possible to perform TXRF analysis with high sensitivity.

このように、10.0〜15.0質量%のフッ化水素(HF)と、19.0〜23.0質量%の過酸化水素(H)と、1.5〜3.2質量%の塩化水素(HCl)を含む酸混合溶液から発生する蒸気を用いて、15〜30分の気相分解を行った場合、シリコン基板表面の金属不純物の位置情報を保ったまま、高感度でTXRF分析を行うことが可能となる。一方、上記範囲外の条件では、特に、CuのX線強度増大比が低く、検出下限値が高くなるため、高感度でTXRF分析を行うことが困難である。 As described above, 10.0 to 15.0% by mass of hydrogen fluoride (HF), 19.0 to 23.0% by mass of hydrogen peroxide (H 2 O 2 ), and 1.5 to 3.2 by mass. When vapor phase decomposition is performed for 15 to 30 minutes using steam generated from an acid mixed solution containing mass% hydrogen peroxide (HCl), high sensitivity is maintained while maintaining the position information of metal impurities on the surface of the silicon substrate. TXRF analysis can be performed at. On the other hand, under conditions outside the above range, it is difficult to perform TXRF analysis with high sensitivity because the X-ray intensity increase ratio of Cu is particularly low and the lower limit of detection is high.

以下、実施例、比較例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but this does not limit the present invention.

以下の実施例、比較例では、強制汚染ウェーハを用いて対比を行った。本評価を行うための強制汚染ウェーハは、清浄な直径200mmのp型のシリコンPWウェーハを用い、関東化学製1000ppm原子吸光用標準溶液(Cr、Fe、Ni、Cu)を適宜希釈し、多摩化学製超高純度エタノール(AA100)溶媒で調製した溶液を、ウェーハ中心に20μL滴下し、自然乾燥させ、滴下溶液中の各元素含有量が0.05ng、0.5ng、5ng、50ngである強制汚染ウェーハを準備した。 In the following examples and comparative examples, comparisons were made using forced contaminated wafers. For the forced contamination wafer for this evaluation, a clean p-type silicon PW wafer with a diameter of 200 mm was used, and a 1000 ppm atomic absorption standard solution (Cr, Fe, Ni, Cu) manufactured by Kanto Chemical Co., Ltd. was appropriately diluted and Tama Chemical Co., Ltd. A solution prepared with an ultra-high purity ethanol (AA100) solvent was added dropwise to the center of the wafer in an amount of 20 μL, air-dried, and the content of each element in the added dropwise solution was 0.05 ng, 0.5 ng, 5 ng, and 50 ng. The wafer was prepared.

全反射蛍光X線分析装置は、テクノス製TREX630Tを使用した。分析条件は、40kV、40mAで、X線入射角は0.05度で、測定時間は300秒/点とした。なお、本評価(実施例と比較例の対比)においては、気相分解前後で、シリコン基板表面の全反射蛍光X線分析法による評価を行った。 As the total internal reflection fluorescent X-ray analyzer, TREX630T manufactured by Technos was used. The analysis conditions were 40 kV, 40 mA, the X-ray incident angle was 0.05 degrees, and the measurement time was 300 seconds / point. In this evaluation (contrast between Examples and Comparative Examples), evaluation was performed by total reflection fluorescent X-ray analysis on the surface of the silicon substrate before and after gas phase decomposition.

シリコンウェーハの気相分解は、図1に示す気相分解容器1を用いて行った。気相分解容器1内に、蒸気発生源となる薬液2を注入し、金属不純物評価を行うシリコン基板Wの表面であるPW面が下向きになるように気相分解容器1に載せ、薬液2からの蒸気3を密閉することで気相分解を行った。 The gas phase decomposition of the silicon wafer was performed using the gas phase decomposition container 1 shown in FIG. A chemical solution 2 serving as a vapor generation source is injected into the gas phase decomposition container 1, placed on the gas phase decomposition container 1 so that the PW surface, which is the surface of the silicon substrate W for metal impurity evaluation, faces downward, and the chemical solution 2 is used. The vapor phase was decomposed by sealing the steam 3 of the above.

(比較例1)
図1に示す気相分解容器1内に、薬液2としてステラケミファ製EL級フッ化水素酸(50質量%)を200mL注入した場合について、金属不純物評価を行うシリコン基板Wの表面であるPW面が下向きになるように気相分解容器1に載せ、蒸気3を密閉することで気相分解を行った。気相分解時間は15分とし、気相分解後はクリーンドラフト内で自然乾燥を行った。
(Comparative Example 1)
When 200 mL of STELLA CHEMIFA EL-grade hydrofluoric acid (50% by mass) is injected into the gas phase decomposition container 1 shown in FIG. 1, the PW surface is the surface of the silicon substrate W for metal impurity evaluation. The vapor phase decomposition was carried out by placing it on the gas phase decomposition container 1 so that the surface was facing downward and sealing the steam 3. The gas phase decomposition time was 15 minutes, and after the gas phase decomposition, natural drying was performed in a clean draft.

(比較例2)
気相分解容器内に注入する薬液として、ステラケミファ製EL級フッ化水素酸(50質量%)と三徳化学製EL級過酸化水素水(31質量%)を1:1で混合した酸混合溶液を使用したこと以外は比較例1と同様にして気相分解を行った。
(Comparative Example 2)
An acid mixed solution in which Stella Chemifer's EL-grade hydrofluoric acid (50% by mass) and Santoku Kagaku's EL-grade hydrogen peroxide solution (31% by mass) are mixed 1: 1 as a chemical solution to be injected into the gas phase decomposition container. Gas phase decomposition was carried out in the same manner as in Comparative Example 1 except that the above was used.

図4に、比較例1及び比較例2における、気相分解前後のCr、Fe、Ni、CuのX線強度増大比(Ratio)を示す。このX線強度増大比(Ratio)は、(気相分解後のX線強度)/(気相分解前のX線強度)で計算され、気相分解前のX線強度に対し、気相分解のX線強度がどの程度増大したかを意味する。比較例1の気相分解後のCr、Fe、NiのX線強度は、気相分解前の約3倍、Cuは1.4倍である。一方、比較例2の気相分解後のCr、Fe、NiのX線強度は、気相分解前の12〜13倍に増大するが、Cuは1.5倍であり、CuのX線強度の向上効果はほとんど見られない。 FIG. 4 shows the X-ray intensity increase ratios (Ratio) of Cr, Fe, Ni, and Cu before and after gas phase decomposition in Comparative Example 1 and Comparative Example 2. This X-ray intensity increase ratio (Ratio) is calculated by (X-ray intensity after gas phase decomposition) / (X-ray intensity before gas phase decomposition), and is compared with the X-ray intensity before gas phase decomposition. It means how much the X-ray intensity of is increased. The X-ray intensities of Cr, Fe, and Ni after the gas phase decomposition of Comparative Example 1 are about 3 times that before the gas phase decomposition, and Cu is 1.4 times. On the other hand, the X-ray intensities of Cr, Fe, and Ni after the gas phase decomposition in Comparative Example 2 are 12 to 13 times higher than those before the gas phase decomposition, but Cu is 1.5 times, and the X-ray intensity of Cu is 1.5 times. There is almost no improvement effect.

同様に、比較例1及び比較例2について、図5に気相分解前のTXRF検出下限値を、図6に気相分解後のTXRF検出下限値を示す。X線強度増大比(Ratio)の大きなCr、Fe、Niは一定の検出下限値低下効果が見られたが、X線強度増大比(Ratio)の小さなCuは検出下限値の低下は見られなかった。 Similarly, for Comparative Example 1 and Comparative Example 2, FIG. 5 shows the lower limit of TXRF detection before gas phase decomposition, and FIG. 6 shows the lower limit of TXRF detection after gas phase decomposition. Cr, Fe, and Ni with a large X-ray intensity increase ratio (Ratio) showed a certain effect of lowering the lower limit of detection, but Cu with a small X-ray intensity increase ratio (Ratio) did not show a decrease in the lower limit of detection. It was.

(比較例3)
気相分解容器内に注入する薬液として、ステラケミファ製EL級フッ化水素酸(50質量%)と三徳化学製EL級過酸化水素水(31質量%)を1:3で混合した酸混合溶液を使用したこと以外は比較例1,2と同様にして気相分解を行った。
(Comparative Example 3)
An acid mixed solution in which Stella Chemifer's EL-grade hydrofluoric acid (50% by mass) and Santoku Kagaku's EL-grade hydrogen peroxide solution (31% by mass) are mixed at a ratio of 1: 3 as a chemical solution to be injected into the gas phase decomposition container. Gas phase decomposition was carried out in the same manner as in Comparative Examples 1 and 2 except that the above was used.

(比較例4〜9、実施例1〜3)
比較例1〜3と同様に、シリコンウェーハの気相分解を、図1に示す気相分解容器1を用いて行った。気相分解容器1内に注入する薬液2として、ステラケミファ製EL級フッ化水素酸(50質量%)と、三徳化学製EL級過酸化水素水(31質量%)と、関東化学製EL級塩酸(36質量%)を表1に示した比率で混合した合計200mLの酸混合溶液を注入し、金属不純物評価を行うシリコン基板Wの表面であるPW面が下向きになるように気相分解容器1に載せ、HF+H+HClを含む蒸気3を密閉することで気相分解を行った。気相分解時間は15分とし、気相分解後はクリーンドラフト内で自然乾燥を行うこととした。
(Comparative Examples 4 to 9, Examples 1 to 3)
Similar to Comparative Examples 1 to 3, the vapor phase decomposition of the silicon wafer was performed using the vapor phase decomposition container 1 shown in FIG. As the chemical solution 2 to be injected into the gas phase decomposition container 1, Stella Chemifa EL grade hydrofluoric acid (50% by mass), Santoku Chemical EL grade hydrochloric acid solution (31% by mass), and Kanto Chemical EL grade EL grade. A total of 200 mL of an acid mixed solution in which hydrochloric acid (36% by mass) is mixed at the ratio shown in Table 1 is injected, and a gas phase decomposition container is provided so that the PW surface, which is the surface of the silicon substrate W for metal impurity evaluation, faces downward. The gas phase decomposition was carried out by placing on No. 1 and sealing the steam 3 containing HF + H 2 O 2 + HCl. The gas phase decomposition time was 15 minutes, and after the gas phase decomposition, natural drying was performed in a clean draft.

表1に、比較例1〜9、実施例1〜3で使用した薬液(比較例1以外は酸混合溶液)の混合比率を示す。 Table 1 shows the mixing ratios of the chemical solutions used in Comparative Examples 1 to 9 and Examples 1 to 3 (acid mixed solutions other than Comparative Example 1).

Figure 2021092485
Figure 2021092485

まず、シリコン基板表面の全反射蛍光X線分析法による評価結果に基づいて、各種薬液を使用した場合の気相分解前後のX線強度増大比(Ratio)を算出した。図7に、比較例1〜9、実施例1〜3についてのX線強度増大比(Ratio)を示す。比較例1〜9、実施例1〜3のすべてにおいて、気相分解前のX線強度に比べ、気相分解後のX線強度が高くなっていることがわかる。 First, the X-ray intensity increase ratio (Ratio) before and after gas phase decomposition when various chemical solutions were used was calculated based on the evaluation result by the total reflection fluorescent X-ray analysis method on the surface of the silicon substrate. FIG. 7 shows the X-ray intensity increase ratios (Ratio) for Comparative Examples 1 to 9 and Examples 1 to 3. It can be seen that in all of Comparative Examples 1 to 9 and Examples 1 to 3, the X-ray intensity after the gas phase decomposition is higher than the X-ray intensity before the gas phase decomposition.

一方、実施例のようにフッ化水素(HF)の濃度が10.0〜15.0質量%、過酸化水素(H)の濃度が19.0〜23.0質量%、塩化水素(HCl)の濃度が1.5〜3.2質量%である酸混合溶液を用いて気相分解を行った場合のCuのX線強度増大比は、比較例1のフッ化水素(HF)のみ(50質量%)や、比較例2のフッ化水素(HF)と過酸化水素(H)の酸混合溶液による気相分解の場合のX線強度増大比より高く、5倍以上に増大することがわかる。特に、フッ化水素(HF)の濃度が10.0〜11.0質量%、過酸化水素(H)の濃度が21.9〜22.1質量%、塩化水素(HCl)の濃度が2.1〜2.6質量%の組成となるように混合した酸混合溶液を用いて気相分解を行った場合(実施例3)のCuのX線強度増大比は、約7倍に増大することがわかる。 On the other hand, as in the examples, the concentration of hydrogen peroxide (HF) is 10.0 to 15.0% by mass, the concentration of hydrogen peroxide (H 2 O 2 ) is 19.0 to 23.0% by mass, and hydrogen chloride. The ratio of increase in X-ray intensity of Cu when gas phase decomposition was performed using an acid mixed solution having a concentration of (HCl) of 1.5 to 3.2% by mass is the hydrogen peroxide (HF) of Comparative Example 1. only (50 wt%) and higher than the X-ray intensity increasing ratio in the case of vapor phase decomposition with an acid mixture solution of hydrogen fluoride of Comparative example 2 (HF) and hydrogen peroxide (H 2 O 2), 5 times or more It can be seen that it increases to. In particular, the concentration of hydrogen fluoride (HF) is 10.0 to 11.0% by mass, the concentration of hydrogen peroxide (H 2 O 2 ) is 21.9 to 22.1% by mass, and the concentration of hydrogen chloride (HCl). When vapor phase decomposition was performed using an acid mixed solution mixed so as to have a composition of 2.1 to 2.6% by mass (Example 3), the X-ray intensity increase ratio of Cu was about 7 times. It can be seen that it increases.

また、実施例1−3、比較例1−9における、気相分解前の各分析対象元素の検出下限値(atoms/cm)を図8に、気相分解後の各分析対象元素の検出下限値(atoms/cm)を図9に示す。この結果から、気相分解前後のX線強度増大比(Ratio)が大きくなる程、検出下限値が低くなることがわかる。特に、実施例1〜3においては、高いX線強度増大比と、低い検出下限値が得られることがわかる。つまり、バックグラウンド強度変化はほとんど影響せず、単純にX線強度の増加が検出下限値の改善に結びついていると考えられる。 Further, the lower limit of detection (atoms / cm 2 ) of each analysis target element before gas phase decomposition in Examples 1-3 and Comparative Example 1-9 is shown in FIG. 8, and the detection of each analysis target element after gas phase decomposition is shown in FIG. The lower limit (atoms / cm 2 ) is shown in FIG. From this result, it can be seen that the larger the X-ray intensity increase ratio (Ratio) before and after the gas phase decomposition, the lower the detection lower limit value. In particular, in Examples 1 to 3, it can be seen that a high X-ray intensity increase ratio and a low detection lower limit value can be obtained. That is, it is considered that the change in background intensity has almost no effect, and the increase in X-ray intensity is simply linked to the improvement of the lower limit of detection.

以上詳述したように、10.0〜15.0質量%のフッ化水素(HF)と、19.0〜23.0質量%の過酸化水素(H)と、1.5〜3.2質量%の塩化水素(HCl)を含む酸混合溶液から発生する蒸気を用いて、15〜30分の気相分解を行った場合、気相分解後のTXRF分析によるCuのX線強度増大比は、気相分解の薬液としてフッ化水素酸のみ(HF50質量%)を用いたときや、フッ化水素酸と過酸化水素水の酸混合溶液を用いたときより著しく高く、5倍以上に増大した。特に、フッ化水素(HF)濃度が10.0〜11.0質量%、過酸化水素(H)濃度が21.9〜22.1質量%、塩化水素(HCl)濃度が2.1〜2.6質量%の混合酸溶液を用いて気相分解を行うと、TXRF分析によるCuのX線強度増大比は、約7倍に増大し、Cuの検出下限値は約1/6に改善した。このように、シリコン基板表面の金属不純物の位置情報を保ったまま、高感度でTXRF分析を行うことが可能となる。一方、上記範囲外の条件では、特に、CuのX線強度増大比が低く、検出下限値が高くなるため、高感度でTXRF分析を行うことが困難であることがわかる。 As described in detail above, 10.0 to 15.0% by mass of hydrogen fluoride (HF), 19.0 to 23.0% by mass of hydrogen chloride (H 2 O 2 ), and 1.5 to 15.0% by mass. When gas phase decomposition is performed for 15 to 30 minutes using steam generated from an acid mixed solution containing 3.2% by mass of hydrogen chloride (HCl), the X-ray intensity of Cu by TXRF analysis after gas phase decomposition The increase ratio is significantly higher than when hydrofluoric acid alone (HF 50% by mass) is used as the chemical solution for gas phase decomposition or when a mixed solution of hydrofluoric acid and hydrogen peroxide solution is used, which is 5 times or more. Increased to. In particular, the hydrogen fluoride (HF) concentration is 10.0 to 11.0% by mass, the hydrogen peroxide (H 2 O 2 ) concentration is 21.9 to 22.1% by mass, and the hydrogen chloride (HCl) concentration is 2. When gas phase decomposition is performed using a mixed acid solution of 1 to 2.6% by mass, the X-ray intensity increase ratio of Cu by TXRF analysis increases about 7 times, and the lower limit of detection of Cu is about 1/6. Improved to. In this way, it is possible to perform TXRF analysis with high sensitivity while maintaining the position information of metal impurities on the surface of the silicon substrate. On the other hand, under conditions outside the above range, it can be seen that it is difficult to perform TXRF analysis with high sensitivity because the X-ray intensity increase ratio of Cu is particularly low and the detection lower limit value is high.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

1…気相分解容器、 2…薬液(混合酸溶液)、 3…蒸気、 W…シリコン基板。 1 ... Gas phase decomposition container, 2 ... Chemical solution (mixed acid solution), 3 ... Steam, W ... Silicon substrate.

Claims (2)

シリコン基板表面の金属不純物を評価する方法であって、
10.0〜15.0質量%のフッ化水素と、19.0〜23.0質量%の過酸化水素と、1.5〜3.2質量%の塩化水素を含む酸混合溶液から発生する蒸気を、シリコン基板表面に15〜30分間接触させて前記シリコン基板表面の気相分解を行い、
前記気相分解後の前記シリコン基板表面の金属不純物を全反射蛍光X線分析法により評価することを特徴とするシリコン基板表面の金属不純物評価方法。
This is a method for evaluating metal impurities on the surface of a silicon substrate.
It is generated from an acid mixed solution containing 10.0 to 15.0% by mass of hydrogen fluoride, 19.0 to 23.0% by mass of hydrogen peroxide, and 1.5 to 3.2% by mass of hydrogen chloride. The steam is brought into contact with the surface of the silicon substrate for 15 to 30 minutes to perform gas phase decomposition on the surface of the silicon substrate.
A method for evaluating metal impurities on the surface of a silicon substrate, which comprises evaluating the metal impurities on the surface of the silicon substrate after vapor phase decomposition by a total reflection fluorescent X-ray analysis method.
前記気相分解は、上部に開口を有する容器内に前記酸混合溶液を注入し、前記開口を覆うように前記シリコン基板を設置して、前記金属不純物評価を行う前記シリコン基板表面と前記容器内の前記酸混合溶液との間に密閉空間を形成し、前記酸混合溶液から発生する蒸気により、前記密閉空間に面した前記シリコン基板表面を気相分解処理することを特徴とする請求項1に記載のシリコン基板表面の金属不純物評価方法。 In the gas phase decomposition, the acid mixed solution is injected into a container having an opening at the upper part, the silicon substrate is installed so as to cover the opening, and the surface of the silicon substrate and the inside of the container for evaluating metal impurities. The first aspect of the present invention is characterized in that a closed space is formed between the silicon substrate and the acid mixed solution, and the surface of the silicon substrate facing the closed space is subjected to gas phase decomposition treatment by the vapor generated from the acid mixed solution. The method for evaluating metal impurities on the surface of a silicon substrate according to the above method.
JP2019224209A 2019-12-12 2019-12-12 Metal impurity evaluation method on silicon substrate surface Active JP7196825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019224209A JP7196825B2 (en) 2019-12-12 2019-12-12 Metal impurity evaluation method on silicon substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019224209A JP7196825B2 (en) 2019-12-12 2019-12-12 Metal impurity evaluation method on silicon substrate surface

Publications (2)

Publication Number Publication Date
JP2021092485A true JP2021092485A (en) 2021-06-17
JP7196825B2 JP7196825B2 (en) 2022-12-27

Family

ID=76312162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019224209A Active JP7196825B2 (en) 2019-12-12 2019-12-12 Metal impurity evaluation method on silicon substrate surface

Country Status (1)

Country Link
JP (1) JP7196825B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208899A (en) * 1990-01-12 1991-09-12 Nippon Steel Corp Washing method for silicon wafer
JPH07229864A (en) * 1993-12-20 1995-08-29 Toshiba Corp Method for treating surface of object to be measured for performing total reflection fluorescent x-ray analysis
KR100646525B1 (en) * 2005-12-28 2006-11-15 동부일렉트로닉스 주식회사 Metal impurities measuring method of sioc layer for semiconductor device
KR100661239B1 (en) * 2005-08-26 2006-12-22 동부일렉트로닉스 주식회사 Method of monitoring contamination on semiconductor wafer
JP2019201118A (en) * 2018-05-17 2019-11-21 信越半導体株式会社 Evaluation method for semiconductor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208899A (en) * 1990-01-12 1991-09-12 Nippon Steel Corp Washing method for silicon wafer
JPH07229864A (en) * 1993-12-20 1995-08-29 Toshiba Corp Method for treating surface of object to be measured for performing total reflection fluorescent x-ray analysis
KR100661239B1 (en) * 2005-08-26 2006-12-22 동부일렉트로닉스 주식회사 Method of monitoring contamination on semiconductor wafer
KR100646525B1 (en) * 2005-12-28 2006-11-15 동부일렉트로닉스 주식회사 Metal impurities measuring method of sioc layer for semiconductor device
JP2019201118A (en) * 2018-05-17 2019-11-21 信越半導体株式会社 Evaluation method for semiconductor substrate

Also Published As

Publication number Publication date
JP7196825B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP6075307B2 (en) Method for evaluating carbon concentration in silicon single crystal and method for manufacturing semiconductor device
Bermudez et al. Chemisorption of H2O on GaN (0001)
JP5087855B2 (en) Heat treatment evaluation wafer, heat treatment evaluation method, and semiconductor wafer manufacturing method
JP6118031B2 (en) Impurity analysis apparatus and method
JP2014041030A (en) Impurity analysis method of semiconductor substrate
Özsan et al. Chemical etching and surface oxidation studies of cadmium zinc telluride radiation detectors
JP2015111615A (en) Method of evaluating carbon concentration in silicon single crystal, and method of manufacturing semiconductor device
JP7196825B2 (en) Metal impurity evaluation method on silicon substrate surface
JP6819883B2 (en) Metal impurity analysis method for silicon wafers
US8815107B2 (en) Method of etching surface layer portion of silicon wafer and method of analyzing metal contamination of silicon wafer
JP7409806B2 (en) Method for analyzing impurities on silicon substrate surface
JP3690484B2 (en) Method for analyzing metal impurities on silicon substrate surface
JP2002005799A (en) Analytical method for trace metal impurities
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
Tan Application of vapor phase decomposition techniques (VPD/AAS and ICP-MS) for trace element analysis in oxide coatings on silicon
Lu et al. Evaluation of cleaning efficiency with a radioactive tracer and development of a microwave digestion method for semiconductor processes
Tang et al. Research on activation mechanism of AlGaN photocathodes in an ultra-high vacuum system
KR102456011B1 (en) Etching method of boron-doped p-type silicon wafer, metal contamination evaluation method and manufacturing method
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
JP6856052B2 (en) Evaluation method of semiconductor substrate
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
Wang et al. Analytical techniques for trace elemental analyses on wafer surfaces for monitoring and controlling contamination
TWI847455B (en) Enrichment method and analysis method of noble metal elements on wafer surface
Romanyuk et al. Atomic and electronic structure of N-terminated GaN (0001̄)(1× 1) surface
JP2005340298A (en) Method for analyzing dopant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150