JP2021088888A - Joint structure of precast concrete earthquake resistant wall - Google Patents

Joint structure of precast concrete earthquake resistant wall Download PDF

Info

Publication number
JP2021088888A
JP2021088888A JP2019220247A JP2019220247A JP2021088888A JP 2021088888 A JP2021088888 A JP 2021088888A JP 2019220247 A JP2019220247 A JP 2019220247A JP 2019220247 A JP2019220247 A JP 2019220247A JP 2021088888 A JP2021088888 A JP 2021088888A
Authority
JP
Japan
Prior art keywords
precast
joint
wall
column
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019220247A
Other languages
Japanese (ja)
Other versions
JP7449685B2 (en
Inventor
卓 田畑
Taku Tabata
卓 田畑
鈴木 英之
Hideyuki Suzuki
英之 鈴木
敏郎 牧田
Toshiro Makita
敏郎 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2019220247A priority Critical patent/JP7449685B2/en
Publication of JP2021088888A publication Critical patent/JP2021088888A/en
Application granted granted Critical
Publication of JP7449685B2 publication Critical patent/JP7449685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To make a joining construction of an earthquake resistant wall with a beam provided above and below a column and an earthquake resistant wall reasonable, in a joint structure of an earthquake resistant wall and a column of a building comprising a precast concrete earthquake resistant wall.SOLUTION: A joint structure of a precast concrete earthquake resistant wall comprises: a precast earthquake resistant wall 10 which is installed between neighboring precast column members 20 with a predetermined gap between itself and the precast column member 20 and at whose side end face in a width direction there are arranged wall joining reinforcements 16 which face a column joining reinforcement and a part of which protrudes to an outside with a predetermined interval in a height direction; a floor slab 50 laid above and below the precast column member 20 and the precast earthquake resistant wall 10; and a beam 30 installed above and below the precast earthquake resistant wall 10. A beam depth of the beam 30 is substantially the same as a slab thickness of the floor slab 50. The floor slab 50 and the beam 30 have the same installation height above and below the precast earthquake resistant wall 10. The precast earthquake resistant wall 10 is joined to the precast column member 20 since a joint is formed between the wall joining reinforcement and the column joining reinforcement via a filler filling the gap.SELECTED DRAWING: Figure 1

Description

本発明は、プレキャストコンクリート耐震壁を備えた建築物の構築における接合構造に係り、特に、耐震壁と柱、耐震壁の上下に設けられた梁の接合等の施工を合理化させたプレキャストコンクリート耐震壁の接合構造に関する。 The present invention relates to a joint structure in the construction of a building equipped with a precast concrete shear wall, and in particular, a precast concrete shear wall that rationalizes the construction such as joining of a seismic wall and a column, and beams provided above and below the seismic wall. Regarding the joint structure of.

鉄筋コンクリート耐震壁を備えた建築物において、耐震壁をプレキャストコンクリート部材(以下、プレキャスト部材と記す。)で構成する場合には、柱スパンの中央および端部等を分割位置としたプレキャスト部材同士を接合する壁接合部を設ける場合がある。この分割位置でプレキャスト部材を接合する際には、耐震壁の横筋や耐震壁の上下にある梁主筋を接合するために、壁接合部に600〜800mm程度の現場コンクリート打設部分が設けられるのが一般的である。このため、壁接合部では、鉄筋の溶接作業や継手作業および型枠の組み立てや解体作業が生じ、複数の職種による施工手間がかかり、作業効率が良いとは言えない。 In a building equipped with a reinforced concrete earthquake-resistant wall, when the earthquake-resistant wall is composed of precast concrete members (hereinafter referred to as precast members), the precast members are joined together with the center and ends of the column spans as divided positions. Wall joints may be provided. When joining the precast members at this division position, in order to join the horizontal bars of the shear wall and the beam main bars above and below the shear wall, an on-site concrete casting portion of about 600 to 800 mm is provided at the wall joint. Is common. For this reason, at the wall joint, welding work of reinforcing bars, joint work, assembling and disassembling work of formwork are required, and it takes time and effort for construction by a plurality of occupations, and it cannot be said that work efficiency is good.

非特許文献1には、耐震壁の柱−壁鉛直接合部にループ鉛直接合筋を使用したプレキャスト連層耐震壁が開示されている。 Non-Patent Document 1 discloses a precast multi-story shear wall in which a loop lead direct joint is used for a column-wall lead direct joint of the earthquake-resistant wall.

宮原貴昭、吉松賢二、松崎浩、岩淵一徳、「プレキャスト連層耐震壁の柱−壁鉛直接合部に関する実験的研究(その2)架構実験」日本建築学会大会学術講演梗概集(関東)、C−2、構造IV、1997年9月、第213〜214頁Takaaki Miyahara, Kenji Yoshimatsu, Hiroshi Matsuzaki, Kazunori Iwabuchi, "Experimental Study on Pillars of Precast Multilayer Shear-Wall Lead-Direct Joints (Part 2) Frame Experiment" Architectural Institute of Japan Conference Academic Lecture Abstracts (Kanto), C- 2. Structure IV, September 1997, pp. 213-214

しかしながら、非特許文献1に記載の接合構造では、壁接合部の上下に架構される梁の接合部の合理化については考慮されておらず、梁の主筋を接合するために柱−壁間または壁−壁間の接合部において依然として、幅広の後打ち接合部が必要となり、その部分の型枠工事や機械式継手等による鉄筋接合作業が必要となる。 However, in the joint structure described in Non-Patent Document 1, the rationalization of the joint portion of the beam erected above and below the wall joint portion is not considered, and the column-wall or wall is used to join the main reinforcing bars of the beam. -A wide post-casting joint is still required at the joint between the walls, and formwork and rebar joining work using mechanical joints, etc. are required for that part.

そこで、本発明の目的は、柱−壁間および壁−壁間の接合部の施工の合理化を図ることができるプレキャストコンクリート耐震壁の接合構造を提供することにある。 Therefore, an object of the present invention is to provide a joint structure of a precast concrete earthquake-resistant wall capable of rationalizing the construction of joints between columns and walls and between walls.

上記目的を達成するために、本発明は、幅方向の側端面に、高さ方向に沿って一部が外部に突出した柱接合筋が配筋されたプレキャスト柱部材と、隣接して立設された前記プレキャスト柱部材間に、前記プレキャスト柱部材と所定の隙間をあけて設置され、幅方向の側端面に、前記柱接合筋と対向して、高さ方向に所定間隔をあけて一部が外部に突出した壁接合筋が配筋されたプレキャスト耐震壁と、前記プレキャスト柱部材、前記プレキャスト耐震壁の上下に敷設された床スラブと、前記プレキャスト耐震壁の上下に設置された梁とを備え、前記梁は、梁成が前記床スラブのスラブ厚と略等しく、前記床スラブと前記梁とは、前記プレキャスト耐震壁の上下で同じ設置高さとなり、前記プレキャスト耐震壁は、前記隙間を塞ぐ充填材を介して前記壁接合筋と前記柱接合筋との間に継手が形成されて前記プレキャスト柱部材に接合されたことを特徴とする。 In order to achieve the above object, the present invention is erected adjacent to a precast column member in which column joining bars partially projecting outward along the height direction are arranged on the side end faces in the width direction. A predetermined gap is provided between the precast column members and the precast column members, and the side end faces in the width direction face the column joining bars and are partially spaced in the height direction. The precast seismic wall with the wall joints protruding to the outside, the precast column members, the floor slabs laid above and below the precast seismic wall, and the beams installed above and below the precast seismic wall. The beam is provided with a beam structure substantially equal to the slab thickness of the floor slab, the floor slab and the beam have the same installation height above and below the precast seismic wall, and the precast seismic wall has the gap. A joint is formed between the wall joint bar and the column joint bar via a filling material to be closed, and the joint is joined to the precast column member.

前記プレキャスト耐震壁は、壁面が平面をなすように複数枚で構成され、隣接するプレキャスト耐震壁間に所定の隙間をあけて設置される際、前記壁接合筋が前記隣接するプレキャスト耐震壁間の隙間位置で対向するように配筋され、前記隙間を塞ぐ充填材を介して互いの壁接合筋間に継手が形成されて前記隣接するプレキャスト耐震壁が接合されることが好ましい。 The precast shear wall is composed of a plurality of sheets so that the wall surface forms a flat surface, and when the precast shear wall is installed with a predetermined gap between the adjacent precast shear walls, the wall joint bar is formed between the adjacent precast shear walls. It is preferable that the reinforcing bars are arranged so as to face each other at the gap position, a joint is formed between the wall joining bars via the filler that closes the gap, and the adjacent precast shear walls are joined.

前記梁幅は、前記プレキャスト柱部材の柱幅と略等しいことが好ましい。 The beam width is preferably substantially equal to the column width of the precast column member.

前記壁接合筋および前記柱接合筋は、略U字の突出部を有し、前記突出部は、他の突出部とループ接合を形成することが好ましい。 It is preferable that the wall joint bar and the column joint bar have a substantially U-shaped protrusion, and the protrusion forms a loop joint with another protrusion.

前記壁接合筋および前記柱接合筋は、孔あき鋼板ジベルまたはナットを備える突出部を有し、前記突出部は、他の突出部と継手を形成することが好ましい。 It is preferable that the wall joint bar and the column joint bar have a protruding portion having a perforated steel plate gibber or a nut, and the protruding portion forms a joint with another protruding portion.

本発明によれば、柱−壁間および壁−壁間の接合部の施工の合理化とともに壁の上下の梁主筋の接合部の合理化、および型枠の削減を図ることができる。 According to the present invention, it is possible to rationalize the construction of the joints between columns and walls and between walls and walls, rationalize the joints of the beam main bars above and below the wall, and reduce the formwork.

(a)は、本発明の第1実施形態に係るプレキャスト耐震壁の接合構造の正面図、(b)は、(a)のIb−Ib断面線で示した側面断面図。(A) is a front view of a joint structure of a precast earthquake-resistant wall according to the first embodiment of the present invention, and (b) is a side sectional view shown by an Ib-Ib cross-sectional line of (a). 図1(a)のIb−Ib断面線で示した拡大側面断面図。The enlarged side sectional view shown by the Ib-Ib sectional line of FIG. 1A. (a)は、本発明の第1実施形態に係るプレキャスト耐震壁の接合構造の直交梁の設置工程を示す正面図、(b)は、(a)のIIIb−IIIb断面線で示した側面図。(A) is a front view showing an installation process of an orthogonal beam of a joint structure of a precast shear wall according to the first embodiment of the present invention, and (b) is a side view shown by a cross-sectional line IIIb-IIIb of (a). .. (a)は、本発明の第1実施形態に係るプレキャスト耐震壁の接合構造の耐震壁の設置時の正面図、(b)は、梁および床スラブの配筋後の正面図、(c)は、梁および床スラブにコンクリートを打設した後の正面図。(A) is a front view at the time of installation of the earthquake-resistant wall of the joint structure of the precast earthquake-resistant wall according to the first embodiment of the present invention, (b) is a front view of the beam and the floor slab after reinforcement, (c). Is a front view after placing concrete on beams and floor slabs. (a)は、本発明の第2実施形態に係るプレキャスト耐震壁の接合構造の正面図、(b)は、(a)のVb−Vb断面線で示した側面断面図。(A) is a front view of a joint structure of a precast earthquake-resistant wall according to a second embodiment of the present invention, and (b) is a side sectional view shown by a Vb-Vb cross-sectional line of (a). (a)は、本発明の第2実施形態に係るプレキャスト耐震壁の接合構造の直交梁の設置工程を示す正面図、(b)は、(a)のVIb−VIb断面線で示した側面図。(A) is a front view showing an installation process of an orthogonal beam of a joint structure of a precast shear wall according to a second embodiment of the present invention, and (b) is a side view shown by a VIb-VIb cross-sectional line of (a). .. (a)は、本発明の第2実施形態に係るプレキャスト耐震壁の接合構造の耐震壁の設置時の正面図、(b)は、梁および床スラブの配筋後の正面図、(c)は、梁および床スラブにコンクリートを打設した後の正面図。(A) is a front view at the time of installation of the seismic wall of the joint structure of the precast seismic wall according to the second embodiment of the present invention, (b) is a front view after the reinforcement of the beam and the floor slab, (c). Is a front view after placing concrete on beams and floor slabs. (a)は、プレキャスト耐震壁の変形例の壁−壁接合部の平面断面図、(b)は、壁−柱接合部の平面断面図。(A) is a plan sectional view of a wall-wall joint of a modified example of a precast earthquake-resistant wall, and (b) is a plan sectional view of a wall-column joint.

本発明のプレキャストコンクリート耐震壁の接合構造について、以下、添付図面を参照して説明する。なお、同一の構成要素は、同一の符号を付し、説明は省略する。 The joint structure of the precast concrete shear wall of the present invention will be described below with reference to the accompanying drawings. The same components are designated by the same reference numerals, and the description thereof will be omitted.

[第1実施形態]
図1(a)、(b)は、本発明の第1実施形態に係るプレキャストコンクリート耐震壁の接合構造1(以下、接合構造1とする。)を示している。接合構造1は、耐震壁を構成するプレキャスト耐震壁10(以下、耐震壁10とする。)と、所定の柱スパンで隣接して立設されたプレキャスト柱部材20(以下、柱部材20とする。)と、耐震壁10の上下に設けられた梁30と、梁30と平面視で直交する直交梁40と、梁30および直交梁40に四方を囲まれた床スラブ50と、が接合された構造からなる。図2に示すように、梁30の梁成aが床スラブ50のスラブ厚bに略等しく設置高さも同じである点が接合構造1の特徴である。
[First Embodiment]
1A and 1B show a joint structure 1 (hereinafter referred to as a joint structure 1) of a precast concrete earthquake-resistant wall according to the first embodiment of the present invention. The joint structure 1 is a precast column member 20 (hereinafter referred to as a column member 20) erected adjacent to a precast earthquake-resistant wall 10 (hereinafter referred to as an earthquake-resistant wall 10) constituting the earthquake-resistant wall with a predetermined column span. ), The beams 30 provided above and below the shear wall 10, the orthogonal beam 40 orthogonal to the beam 30 in a plan view, and the floor slab 50 surrounded on all sides by the beam 30 and the orthogonal beam 40 are joined. It consists of a structure. As shown in FIG. 2, the joint structure 1 is characterized in that the beam formation a of the beam 30 is substantially equal to the slab thickness b of the floor slab 50 and the installation height is also the same.

(接合構造1の構成要素)
図1(a)に示すように、耐震壁10には、両側端面に全高にわたって略U字状のループ接合筋11が高さ方向に約250mmピッチで壁体本体12の端面13からループ状部分を含んだ部分(突出部)が外部に突出するように配筋されている。ループ接合筋11には、本実施形態では、D13の異形鉄筋が使用され、U字部分は、約150mmのRを形成している。壁接合筋であるループ接合筋11は、他の耐震壁10または柱部材20に設けられたループ接合筋11(21)とあき重ね継手を形成する。ループ接合筋11は、壁体本体12の内部で重ね継手やあき重ね継手等で横筋(図示せず)と一体になるように配筋されている。なお、図4(a)に示すように、柱部材20に対向する側の端面13の上端付近(柱上面25の上側に配置される部分)には、ループ接合筋11の代わりに、直線状の部分(突出部)が外部に突出するように接合筋16が配筋されている。
(Components of Joining Structure 1)
As shown in FIG. 1A, the seismic wall 10 has substantially U-shaped loop joint muscles 11 on both side end faces at a pitch of about 250 mm in the height direction from the end face 13 of the wall body 12 to the loop-shaped portion. Reinforcement is arranged so that the portion (protruding portion) including the above projects outward. In the present embodiment, the deformed reinforcing bar of D13 is used for the loop joint bar 11, and the U-shaped portion forms an R of about 150 mm. The loop joint bar 11, which is a wall joint bar, forms a gap joint with the loop joint bar 11 (21) provided on the other shear wall 10 or the column member 20. The loop joint bar 11 is arranged inside the wall body body 12 with a lap joint, an open lap joint, or the like so as to be integrated with a horizontal bar (not shown). As shown in FIG. 4A, in the vicinity of the upper end of the end surface 13 on the side facing the column member 20 (the portion arranged above the column upper surface 25), instead of the loop joint bar 11, a linear shape is formed. The joint muscles 16 are arranged so that the portion (protruding portion) of the above projects outward.

耐震壁10の上端には、縦筋14が壁体本体12から上方に向けて突出している。縦筋14には、本実施形態では、D16の異形鉄筋が使用されている。図1(b)に示すように、縦筋14の下端には、壁体本体12の下端に設けられた公知の機械式継手15が装着されている。縦筋14の突出長は、機械式継手15の継手長に梁30の梁成を加算した長さに等しい。 At the upper end of the earthquake-resistant wall 10, a vertical streak 14 projects upward from the wall body 12. In the present embodiment, the deformed reinforcing bar of D16 is used for the vertical bar 14. As shown in FIG. 1B, a known mechanical joint 15 provided at the lower end of the wall body 12 is attached to the lower end of the vertical bar 14. The protruding length of the vertical bar 14 is equal to the length obtained by adding the beam formation of the beam 30 to the joint length of the mechanical joint 15.

図1(a)に示したように、柱部材20には、耐震壁10同様に両側端面に全高にわたって略U字状のループ接合筋21が高さ方向に約250mmピッチで柱体本体22の端面23からループ状部分を含んだ部分(突出部)が外部に突出するように配筋されている。ループ接合筋21には、本実施形態では、D13の異形鉄筋が使用され、U字部分は、約150mmのRを形成している。柱接合筋であるループ接合筋21は、柱体本体22の内部で十分な定着長を確保し、柱体本体22のコンクリートに定着されている。 As shown in FIG. 1A, the column member 20 has substantially U-shaped loop joint bars 21 on both end faces on both end faces at a pitch of about 250 mm in the height direction of the column body 22 as in the seismic wall 10. Reinforcements are arranged so that a portion (protruding portion) including a loop-shaped portion protrudes from the end surface 23 to the outside. In the present embodiment, the deformed reinforcing bar of D13 is used for the loop joint bar 21, and the U-shaped portion forms an R of about 150 mm. The loop joint bar 21, which is a column joint bar, secures a sufficient fixing length inside the column body 22 and is fixed to the concrete of the column body 22.

図3(b)に示すように、柱部材20の上端の柱上面25には、柱主筋24が柱体本体22から上方に向けて突出している。柱主筋24には、本実施形態では、D29の異形鉄筋が使用されている。柱主筋24の下端には、柱体本体22の下端に設けられた公知の機械式継手(図示せず)が装着されている。柱上面25に直交梁40が載置された後、機械式継手(図示せず)等で直交梁40の下端梁主筋44と柱部材20をはさんで反対側の直交梁40の下端梁主筋44を接合する。その後、この柱梁接合部には帯筋が配筋され、後述する上端梁主筋42を通しコンクリートを打設し一体化される。 As shown in FIG. 3B, a column main bar 24 projects upward from the column body 22 on the column upper surface 25 at the upper end of the column member 20. In the present embodiment, the deformed reinforcing bar of D29 is used for the column main bar 24. A known mechanical joint (not shown) provided at the lower end of the column body 22 is attached to the lower end of the column main bar 24. After the orthogonal beam 40 is placed on the upper surface 25 of the column, the lower end beam main bar 44 of the orthogonal beam 40 and the lower end beam main bar of the orthogonal beam 40 on the opposite side of the column member 20 are sandwiched by a mechanical joint (not shown) or the like. 44 are joined. After that, a band bar is arranged at the beam-column joint, and concrete is cast and integrated through the upper beam main bar 42, which will be described later.

図1(a)および(b)に示すように、梁30は、耐震壁10の上下に設けられる。梁30は、現場にて梁主筋31およびスターラップ筋32を配筋された後、コンクリート61を打設されることにより形成される現場打ちの梁である。図2に示すように、梁30は、梁成aを床スラブ50のスラブ厚bと等しくし、梁幅cを梁成aよりも大きくする(本実施形態では柱幅と略等しい梁幅とする)ことにより、床スラブ50と一体的に形成されている。梁30と床スラブ50との境界にラス網33を設けることにより、梁30と床スラブ50において、異なる設計強度のコンクリートを打設することもできる。例えば、梁30には設計強度36N/mm2のコンクリートが、床スラブ50には設計強度24N/mm2のコンクリートを打設することができる。なお、建築物の条件によっては、梁幅cを梁成aよりも大きくしなくてもよい場合もある。 As shown in FIGS. 1A and 1B, the beams 30 are provided above and below the earthquake-resistant wall 10. The beam 30 is a cast-in-place beam formed by placing concrete 61 after arranging beam main bars 31 and stirrup bars 32 at the site. As shown in FIG. 2, in the beam 30, the beam formation a is made equal to the slab thickness b of the floor slab 50, and the beam width c is made larger than the beam formation a (in the present embodiment, the beam width is substantially equal to the column width). By doing so, it is integrally formed with the floor slab 50. By providing the lath net 33 at the boundary between the beam 30 and the floor slab 50, concrete having different design strengths can be cast in the beam 30 and the floor slab 50. For example, concrete having a design strength of 36 N / mm 2 can be placed on the beam 30, and concrete having a design strength of 24 N / mm 2 can be placed on the floor slab 50. Depending on the conditions of the building, the beam width c may not be larger than the beam formation a.

図1(a)および図4各図に示すように、直交梁40は、平面視で梁30と直交方向に設けられる、梁体本体43の上面からスターラップ筋41の上部が突出した公知のハーフプレキャストの梁である。直交梁40は、床スラブ50のスラブ厚bに相当する部分にコンクリート61を打設した後には梁成≧梁幅となる構造梁である。上端梁主筋42は、直交梁40が柱部材20,20間に掛け渡された後にスターラップ筋41の上端内側に配筋される。 As shown in FIGS. 1 (a) and 4 and 4, the orthogonal beam 40 is known to be provided in a direction orthogonal to the beam 30 in a plan view, and the upper portion of the stirrup bar 41 projects from the upper surface of the beam body 43. It is a half precast beam. The orthogonal beam 40 is a structural beam in which the beam formation ≥ beam width after the concrete 61 is placed in the portion corresponding to the slab thickness b of the floor slab 50. The upper end beam main bar 42 is arranged inside the upper end of the stirrup bar 41 after the orthogonal beam 40 is hung between the column members 20 and 20.

床スラブ50は、本実施形態では、スラブ厚300mmの現場打ちのスラブである。床スラブ50のスラブ厚bは梁30の梁成aと等しく梁30と同一高さに設けられているので、床スラブ50と梁30とは型枠を共有でき、容易に配筋することができるので、施工効率が向上する。なお、床の型枠には、公知のハーフプレキャスト板やデッキプレート等を使用することもできる。 In the present embodiment, the floor slab 50 is a field-cast slab having a slab thickness of 300 mm. Since the slab thickness b of the floor slab 50 is provided at the same height as the beam 30 at the same height as the beam formation a of the beam 30, the floor slab 50 and the beam 30 can share the formwork, and the reinforcement can be easily arranged. Since it can be done, the construction efficiency is improved. A known half precast plate, deck plate, or the like can also be used for the floor formwork.

(接合構造1の構成)
接合構造1について、図1各図および図2を参照して説明する。耐震壁10−1は、耐震壁10−2と接合部J1を介して接合され、耐震壁となる平面視直線状の壁を構成している。接合部J1は、耐震壁10−1と耐震壁10−2とが所定の間隔を空けて近接して設けられ、その所定の間隔内で耐震壁10−1のループ接合筋11と耐震壁10−2のループ接合筋11とが正面視で対向して一部が互いにオーバーラップする(重ね合わせられる)ように設置され、耐震壁10−1の端面13と耐震壁10−2の端面13との間にグラウト材60を充填されることにより形成されている。
(Structure of Joining Structure 1)
The joint structure 1 will be described with reference to FIGS. 1 and 2. The earthquake-resistant wall 10-1 is joined to the earthquake-resistant wall 10-2 via the joint portion J1 to form a linear wall in a plan view that serves as the earthquake-resistant wall. In the joint portion J1, the seismic wall 10-1 and the seismic wall 10-2 are provided close to each other at a predetermined interval, and the loop joint bar 11 of the seismic wall 10-1 and the seismic wall 10 are provided within the predetermined interval. The loop joint bar 11 of -2 is installed so as to face each other in front view and a part of them overlap (overlap) with each other, and the end face 13 of the shear wall 10-1 and the end face 13 of the shear wall 10-2. It is formed by filling the grout material 60 between the two.

耐震壁10−1,10−2は、それぞれ柱部材20−1,20−2と接合部J2を介して接合されている。接合部J2は、耐震壁10と柱部材20とが同様に所定の間隔を空けて近接して設けられ、その所定の間隔内で耐震壁10のループ継手筋11と柱部材20のループ接合筋21が正面視で対向して一部が互いにオーバーラップするように設置され、耐震壁10の端面13と柱部材20の端面23との間にグラウト材60を充填されることにより形成されている。 The shear walls 10-1 and 10-2 are joined to the column members 20-1 and 20-2 via the joint portion J2, respectively. In the joint portion J2, the earthquake-resistant wall 10 and the column member 20 are similarly provided close to each other with a predetermined interval, and the loop joint bar 11 of the earthquake-resistant wall 10 and the loop joint bar of the column member 20 are provided within the predetermined interval. 21 are installed so as to face each other in a front view and part of them overlap each other, and are formed by filling a grout material 60 between the end surface 13 of the earthquake-resistant wall 10 and the end surface 23 of the column member 20. ..

梁30は、耐震壁10−1,10−2の上下に設けられている。梁成aが床スラブ50のスラブ厚bと等しく、梁30と床スラブ50とは同一高さに設けられているので、梁30は、外観上、床スラブ50に含まれるように構成されている。直交梁40は、長軸方向端部が柱部材20上端の柱上面25に載置され、上部に上端梁主筋42、床スラブ50のスラブ筋(図示しない)を配筋され、コンクリート61が打設されることにより、柱部材20、床スラブ50と一体的に形成される。このように、耐震壁10、柱部材20、梁30、直交梁40、床スラブ50が構築されることにより接合構造1が構成されている。なお、本実施形態において、接合部J1、J2における壁と壁、柱と壁の間の所定の間隔は100mmである。所定の間隔は100mm〜200mm程度が好ましい。 The beams 30 are provided above and below the earthquake-resistant walls 10-1 and 10-2. Since the beam formation a is equal to the slab thickness b of the floor slab 50 and the beam 30 and the floor slab 50 are provided at the same height, the beam 30 is configured to be included in the floor slab 50 in appearance. There is. The end of the orthogonal beam 40 in the long axis direction is placed on the upper surface 25 of the column at the upper end of the column member 20, the main bar of the upper beam 42 and the slab bar of the floor slab 50 (not shown) are arranged on the upper surface, and concrete 61 is struck. By being installed, it is integrally formed with the pillar member 20 and the floor slab 50. In this way, the joint structure 1 is constructed by constructing the earthquake-resistant wall 10, the column member 20, the beam 30, the orthogonal beam 40, and the floor slab 50. In the present embodiment, the predetermined distances between the walls and the pillars and the walls at the joints J1 and J2 are 100 mm. The predetermined interval is preferably about 100 mm to 200 mm.

(接合構造1の施工方法)
まず、図3(a)、(b)に示すように、任意の階の床面F上において、ループ接合筋21が耐震壁10の端面13と対向する位置にくるように所定の位置に柱部材20を設置した後、柱部材20,20間に直交梁40を掛け渡す。直交梁40は、柱部材20のループ接合筋21が設けられていない面に掛け渡される。
(Construction method of joint structure 1)
First, as shown in FIGS. 3A and 3B, a pillar is placed at a predetermined position on the floor surface F of an arbitrary floor so that the loop joint bar 21 faces the end surface 13 of the shear wall 10. After installing the member 20, the orthogonal beam 40 is hung between the column members 20 and 20. The orthogonal beam 40 is hung on the surface of the column member 20 where the loop joint bar 21 is not provided.

次に、図4(a)に示すように、柱部材20のループ接合筋21に一方のループ接合筋11が対向するように耐震壁10−1を下階の縦筋14上に建て込む。その後、耐震壁10−2の一方のループ接合筋11を耐震壁10−1の他方のループ接合筋11に対向させ、耐震壁10−2の他方のループ接合筋11を柱部材20−2の一方のループ接合筋21に対向するように、耐震壁10−2を下階の縦筋14上に建て込む。 Next, as shown in FIG. 4A, the seismic wall 10-1 is built on the vertical bar 14 on the lower floor so that one loop joint bar 11 faces the loop joint bar 21 of the column member 20. After that, one loop joint bar 11 of the seismic wall 10-2 is opposed to the other loop joint bar 11 of the seismic wall 10-1, and the other loop joint bar 11 of the seismic wall 10-2 is placed on the column member 20-2. The shear wall 10-2 is built on the vertical bar 14 on the lower floor so as to face one of the loop joint bars 21.

耐震壁10−1,10−2を建て込んだ後、接合部J1,J2に簡易な型枠(図示せず)を設置し、柱部材20−1、耐震壁10−1,10−2、柱部材20−2上に、梁30の梁主筋31およびスターラップ筋32を配筋し、図4(b)に示す状態になる。ここで梁主筋31は、柱スパン内の任意の位置で機械式継手または重ね継手とすることができる。合わせて、上端梁主筋42を柱部材20上および直交梁40のスターラップ筋41の上端内側に配筋する。また、床スラブ50のスラブ筋を配筋する。これに並行して、直交梁40と柱部材20の柱梁接合部に帯筋の配筋と型枠を設置する。 After building the shear walls 10-1 and 10-2, a simple formwork (not shown) is installed at the joints J1 and J2, and the column members 20-1, the shear walls 10-1, 10-2, The beam main bar 31 and the stirrup bar 32 of the beam 30 are arranged on the column member 20-2, and the state shown in FIG. 4B is obtained. Here, the beam main bar 31 can be a mechanical joint or a lap joint at an arbitrary position in the column span. At the same time, the upper end beam main bar 42 is arranged on the column member 20 and inside the upper end of the stirrup bar 41 of the orthogonal beam 40. In addition, the slab muscles of the floor slab 50 are arranged. In parallel with this, the reinforcement arrangement and the formwork of the band reinforcement are installed at the column-beam joint portion of the orthogonal beam 40 and the column member 20.

配筋後、梁30と床スラブ50との境界にラス網33(図2に示す)を設け、柱部材20−1と耐震壁10−1との間、耐震壁10−1,10−2間、耐震壁10−2と柱部材20−2との間をグラウト材60等の充填材で塞ぐようにして部材間を接合する。充填材の硬化後、スラブ用と梁用と柱梁仕口接合部用のコンクリート61をそれぞれ打設することにより梁30、床スラブ50を形成し、図4(c)に示すように、接合構造1が完成する。充填材としては、モルタルグラウト、高流動コンクリートの他、耐震壁と柱部材間、耐震壁間の隙間に確実に充填でき、壁部材、柱部材の強度と同等強度を発現可能材料であれば、各種の充填材料を使用できることは言うまでもない。なお、接合部J1,J2に高流動コンクリート等のコンクリートを打設する場合には、梁30のコンクリート打設と同時に行ってもよい。 After bar arrangement, a lath net 33 (shown in FIG. 2) is provided at the boundary between the beam 30 and the floor slab 50, and the shear walls 10-1 and 10-2 are provided between the column member 20-1 and the shear wall 10-1. In the meantime, the members are joined so as to close the space between the earthquake-resistant wall 10-2 and the column member 20-2 with a filler such as a grout material 60. After the filler is hardened, concrete 61 for the slab, the beam, and the beam-column joint is cast to form the beam 30 and the floor slab 50, which are joined as shown in FIG. 4 (c). Structure 1 is completed. As the filler, in addition to mortar grout and high-fluidity concrete, any material that can be reliably filled in the gap between the earthquake-resistant wall and the column member and between the earthquake-resistant wall and can exhibit the same strength as the wall member and the column member. It goes without saying that various filling materials can be used. When concrete such as high-fluidity concrete is placed in the joints J1 and J2, it may be placed at the same time as the concrete is placed in the beam 30.

本実施形態によると、直交梁40を構造梁とし、梁30の梁幅cを柱部材20の柱幅と略等しい程度に大きくしているので、梁30の梁成aを床スラブ50のスラブ厚bと略等しくできる。また、梁30と床スラブ50との設置高さを同じにしているので、梁30の主筋31の継手のために接合部J1およびJ2の上部を大きくする必要がない。また、床スラブ50と梁30との型枠工事を同時に並行して行うことができ、配筋工事についても同時に並行して行うことができる。また、柱−壁間および壁−壁間の接合部J1,J2は、壁接合筋、柱接合筋を使用することにより、通常のプレキャスト部材間の接合部に比べて小さくすることができる。従って、工期の短縮ができ、梁構築の作業効率が向上し、柱−壁間および壁−壁間の接合部の施工の合理化ができる。 According to the present embodiment, since the orthogonal beam 40 is a structural beam and the beam width c of the beam 30 is increased to substantially equal to the column width of the column member 20, the beam formation a of the beam 30 is a slab of the floor slab 50. It can be substantially equal to the thickness b. Further, since the installation heights of the beam 30 and the floor slab 50 are the same, it is not necessary to increase the upper portions of the joints J1 and J2 for the joint of the main bar 31 of the beam 30. Further, the formwork work for the floor slab 50 and the beam 30 can be performed in parallel at the same time, and the bar arrangement work can also be performed in parallel at the same time. Further, the joints J1 and J2 between the columns and the walls and between the walls can be made smaller than the normal joints between the precast members by using the wall joints and the column joints. Therefore, the construction period can be shortened, the work efficiency of beam construction can be improved, and the construction of the joint between columns and walls and between walls can be rationalized.

[第2実施形態]
図5(a)、(b)は、本発明の第2実施形態に係るプレキャストコンクリート耐震壁の接合構造2(以下、接合構造2とする。)を示している。接合構造2は、梁30と平面視で直交する直交梁40Aが異なり、梁30と直交梁40Aとの接合部分が異なる以外は、接合構造1と同じ構造である。接合構造1は、直交梁40を柱梁接合部で梁主筋を接続しコンクリートを打設するプレキャスト梁部材を用いた構造であったが、接合構造2は、直交梁として柱梁仕口一体型のプレキャスト梁部材を用いた構造である。図6(a)、(b)に示すように、直交梁40Aは、柱梁交差部45を含んだプレキャスト梁部材であり、柱スパンの途中で長軸方向端部を他の直交梁と接合される。梁30は、図5(a)に示すように、直交梁40Aと機械式継手70で接合される。
[Second Embodiment]
5 (a) and 5 (b) show the joint structure 2 (hereinafter referred to as the joint structure 2) of the precast concrete earthquake-resistant wall according to the second embodiment of the present invention. The joint structure 2 has the same structure as the joint structure 1 except that the orthogonal beam 40A orthogonal to the beam 30 in a plan view is different and the joint portion between the beam 30 and the orthogonal beam 40A is different. The joint structure 1 was a structure using a precast beam member in which the orthogonal beam 40 was connected to the beam main bar at the beam-column joint and concrete was cast, but the joint structure 2 was a beam-column integrated type as an orthogonal beam. It is a structure using the precast beam member of. As shown in FIGS. 6A and 6B, the orthogonal beam 40A is a precast beam member including the column-beam intersection 45, and the long-axis end portion is joined to another orthogonal beam in the middle of the column span. Will be done. As shown in FIG. 5A, the beam 30 is joined to the orthogonal beam 40A by a mechanical joint 70.

(接合構造2の構成要素)
図6(a)、(b)に示すように、直交梁40Aは、柱部材20の断面と等しい断面の柱梁交差部45を梁体本体43Aの中央に有するプレキャスト梁部材である。柱梁交差部45は主筋挿通孔46を有し、主筋挿通孔46に柱部材20の柱主筋24が挿通され、直交梁40Aは柱部材20に載置され、主筋挿通孔46にグラウト材を充填されて接合される。柱梁交差部45は、平面視で、梁長軸方向に直交する方向の側面47に、ループ接合筋48が配筋されており、直交梁40Aが柱部材20に載置される時、ループ接合筋48とループ接合筋21とが柱主筋24の軸方向に平行に並ぶ。直交梁40Aは、側面47から突出する梁主筋49を有する。
(Components of Joint Structure 2)
As shown in FIGS. 6A and 6B, the orthogonal beam 40A is a precast beam member having a column-beam intersection 45 having a cross section equal to that of the column member 20 in the center of the beam body 43A. The column-beam intersection 45 has a main bar insertion hole 46, the column main bar 24 of the column member 20 is inserted into the main bar insertion hole 46, the orthogonal beam 40A is placed on the column member 20, and a grout material is inserted into the main bar insertion hole 46. It is filled and joined. In the column-beam intersection 45, a loop joint bar 48 is arranged on a side surface 47 in a direction orthogonal to the beam major axis direction in a plan view, and when the orthogonal beam 40A is placed on the column member 20, a loop is formed. The joint bar 48 and the loop joint bar 21 are arranged parallel to the axial direction of the column main bar 24. The orthogonal beam 40A has a beam main bar 49 protruding from the side surface 47.

(接合構造2の構成)
接合構造2について、図5および図6各図を参照して説明する。接合部J1の構造は接合構造1と同様である。接合部J2Aは、ループ接合筋11のうちの上側に設けられているものがループ接合筋21の代わりにループ接合筋48と正面視で対向して一部が互いに重ね合わせられるように設置されている点が接合部J2と異なる。また、直交梁40Aは、柱部材20に載置され、梁主筋49が梁主筋31と公知の機械式継手70により梁30に接合され、隣接する直交梁と柱スパンの途中で接合されている点が異なっている。
(Structure of Joining Structure 2)
The joint structure 2 will be described with reference to FIGS. 5 and 6. The structure of the joint portion J1 is the same as that of the joint structure 1. The joint portion J2A is installed so that the one provided on the upper side of the loop joint muscle 11 faces the loop joint muscle 48 in front view instead of the loop joint muscle 21 and a part of the joint portion J2A is overlapped with each other. The point is different from the joint J2. Further, the orthogonal beam 40A is placed on the column member 20, and the beam main bar 49 is joined to the beam 30 by a known mechanical joint 70 with the beam main bar 31, and is joined to the adjacent orthogonal beam in the middle of the column span. The point is different.

なお、以上に述べた、各種鉄筋の径、配筋ピッチ、梁成、梁幅、スラブ厚等の各部寸法は本実施形態で示した数値に限られず、それぞれの建築物に必要とされる強度等に応じて適宜設定することができる。 The dimensions of each part such as the diameter of various reinforcing bars, the reinforcing bar arrangement pitch, the beam formation, the beam width, and the slab thickness described above are not limited to the numerical values shown in the present embodiment, and the strength required for each building. It can be set as appropriate according to the above.

(接合構造2の施工方法)
まず、図6(a)、(b)に示すように、任意の階の床面F上において、ループ接合筋21が耐震壁10の端面13と対向する位置にくるように所定の位置に柱部材20−1,20−2を設置する。その後、直交梁40Aは、柱部材20−1,20−2のループ接合筋21が設けられていない面に梁長手方向がくるように柱部材20−1,20−2の柱上面25上にそれぞれ載置される。
(Construction method of joint structure 2)
First, as shown in FIGS. 6A and 6B, a pillar is placed at a predetermined position on the floor surface F of an arbitrary floor so that the loop joint bar 21 faces the end surface 13 of the shear wall 10. Members 20-1 and 20-2 are installed. After that, the orthogonal beam 40A is placed on the column upper surface 25 of the column members 20-1 and 20-2 so that the beam longitudinal direction comes to the surface of the column members 20-1 and 20-2 where the loop joint bar 21 is not provided. Each is placed.

次に、図7(a)に示すように、柱部材20−1のループ接合筋21に一方のループ接合筋11が対向するように耐震壁10−1を下階の縦筋14上に建て込む。その後、耐震壁10−2の一方のループ接合筋11を耐震壁10−1の他方のループ接合筋11に対向させ、耐震壁10−2の他方のループ接合筋11を柱部材20−2の一方のループ接合筋21に対向するように、耐震壁10−2を下階の縦筋14上に建て込む。 Next, as shown in FIG. 7A, a seismic wall 10-1 is erected on the vertical bar 14 on the lower floor so that one loop joint bar 11 faces the loop joint bar 21 of the column member 20-1. Include. After that, one loop joint bar 11 of the seismic wall 10-2 is opposed to the other loop joint bar 11 of the seismic wall 10-1, and the other loop joint bar 11 of the seismic wall 10-2 is placed on the column member 20-2. The shear wall 10-2 is built on the vertical bar 14 on the lower floor so as to face one of the loop joint bars 21.

耐震壁10−1,10−2を建て込んだ後、接合部J1,J2Aに簡易な型枠(図示せず)を設置し、図7(b)に示すように、耐震壁10−1,10−2上に、梁30の梁主筋31およびスターラップ筋32を配筋する。梁主筋31の両端部に、機械式継手70を介して直交梁40Aの梁主筋49を接合する。梁主筋31は、柱スパン内の任意の位置で機械式継手または重ね継手とすることができる。また、床スラブ50の図示しないスラブ筋を配筋する。 After building the shear walls 10-1 and 10-2, a simple formwork (not shown) was installed at the joints J1 and J2A, and as shown in FIG. 7B, the shear walls 10-1, The beam main bar 31 and the stirrup bar 32 of the beam 30 are arranged on 10-2. The beam main bars 49 of the orthogonal beam 40A are joined to both ends of the beam main bar 31 via a mechanical joint 70. The beam main bar 31 can be a mechanical joint or a lap joint at any position within the column span. In addition, slab muscles (not shown) of the floor slab 50 are arranged.

配筋後、梁30と床スラブ50との境界にラス網33を設け、柱部材20−1と耐震壁10−1との間、耐震壁10−1,10−2間、耐震壁10−2と柱部材20−2との間を、グラウト材60等の充填材で塞ぐ。充填材の硬化後、コンクリート61を打設することにより梁30、床スラブ50を形成し、図7(c)に示すように、接合構造2が完成する。なお、充填材としては、上述のように、グラウト材60の代わりに各種のコンクリートを用いることができる。また、高流動コンクリート等のコンクリートを用いた場合には、接合部J1,J2Aと同時に梁30のコンクリートを打設してもよい。 After bar arrangement, a lath net 33 is provided at the boundary between the beam 30 and the floor slab 50, and between the column member 20-1 and the shear wall 10-1, between the shear walls 10-1 and 10-2, and the shear wall 10-. The space between 2 and the pillar member 20-2 is closed with a filler such as grout material 60. After the filler is hardened, the concrete 61 is cast to form the beam 30 and the floor slab 50, and the joint structure 2 is completed as shown in FIG. 7 (c). As the filler, as described above, various concretes can be used instead of the grout material 60. When concrete such as high-fluidity concrete is used, the concrete of the beam 30 may be cast at the same time as the joints J1 and J2A.

[変形例]
上記の各実施形態において、壁体本体は、略直方体であったが、図8(a)、(b)に示すように、壁体本体の幅方向の側端面に、高さ方向に沿って凹部17が形成されていてもよい。凹部17が形成されていることにより、耐震壁同士の接合部や耐震壁と柱部材との接合部に型枠を設置する必要がなくなり、作業効率が向上する。
[Modification example]
In each of the above embodiments, the wall body is a substantially rectangular parallelepiped, but as shown in FIGS. 8A and 8B, the wall body is on the side end surface in the width direction of the wall body along the height direction. The recess 17 may be formed. Since the recess 17 is formed, it is not necessary to install a formwork at the joint between the earthquake-resistant walls and the joint between the earthquake-resistant wall and the column member, and the work efficiency is improved.

上記の各実施形態において、柱部材間には2つの耐震壁が設けられていたが、柱部材間には1つの耐震壁だけが設けられていてもよく、3つ以上の耐震壁が設けられていてもよい。 In each of the above embodiments, two earthquake-resistant walls are provided between the column members, but only one earthquake-resistant wall may be provided between the column members, and three or more earthquake-resistant walls are provided. You may be.

上記の各実施形態において、梁30の梁幅は、柱部材20の柱幅に略等しかったが、柱部材20の柱幅より小さくてもよいし、柱部材20の柱幅より大きくてもよい。 In each of the above embodiments, the beam width of the beam 30 is substantially equal to the column width of the column member 20, but may be smaller than the column width of the column member 20 or larger than the column width of the column member 20. ..

上記の各実施形態において、直交梁は、柱梁仕口接続型や柱梁仕口一体型のプレキャスト梁部材を使用していたが、建物荷重を支持できるものであれば梁中央接続型や梁端部接続型のプレキャスト梁部材を使用してもよいし、現場打ちのRC梁であってもよい。 In each of the above embodiments, the orthogonal beam uses a precast beam member of a beam-column joint connection type or a beam-column joint integrated type, but if it can support a building load, a beam center connection type or a beam An end connection type precast beam member may be used, or a cast-in-place RC beam may be used.

上記の各実施形態において、壁接合筋および柱接合筋には、ループ接合筋が配筋されていたが、ループ接合筋の代わりに先端にナットを取り付けられた鉄筋棒や特開2018−123644の図1,3等に示すような孔あき鋼板ジベル等を使用してもよい。また、ループ接合筋のループ部分や孔あき鋼板ジベルの円孔に鉄筋棒を挿入することで、接合部のせん断強度を向上させることができる。 In each of the above embodiments, loop joints are arranged in the wall joints and column joints, but instead of the loop joints, a reinforced rod having a nut attached to the tip or Japanese Patent Application Laid-Open No. 2018-123644 Perforated steel plate gibber or the like as shown in FIGS. 1 and 3 may be used. Further, by inserting the reinforcing bar into the loop portion of the loop joint bar or the circular hole of the perforated steel plate gibber, the shear strength of the joint can be improved.

なお、本発明は、上述した実施形態に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope shown in each claim. That is, an embodiment obtained by combining technical means appropriately modified within the scope of the claims is also included in the technical scope of the present invention.

1,2 接合構造
10 耐震壁
11,21,48 ループ接合筋
12 壁体本体
13,23 端面
14 縦筋
15,70 機械式継手
16 接合筋
17 凹部
20 柱部材
22 柱体本体
24 柱主筋
25,25A 柱上面
30 梁
31 梁主筋
32,41 スターラップ筋
40,40A 直交梁
42 上端梁主筋
43,43A 梁体本体
44 下端梁主筋
45 柱梁交差部
46 主筋挿通孔
47 側面
49 梁主筋
50 床スラブ
60 グラウト材
61 コンクリート
1, 2, Joint structure 10 Seismic wall 11, 21, 48 Loop joint bar 12 Wall body 13, 23 End face 14 Vertical bar 15, 70 Mechanical joint 16 Joint bar 17 Recess 20 Pillar member 22 Pillar body 24 Pillar main bar 25, 25A Column upper surface 30 Beam 31 Beam main reinforcement 32,41 Stirrup reinforcement 40,40A Orthogonal beam 42 Upper end beam main reinforcement 43,43A Beam body 44 Lower end beam main reinforcement 45 Column beam intersection 46 Main reinforcement insertion hole 47 Side 49 Beam main reinforcement 50 Floor slab 60 Beam 61 Concrete

Claims (5)

幅方向の側端面に、高さ方向に沿って一部が外部に突出した柱接合筋が配筋されたプレキャスト柱部材と、
隣接して立設された前記プレキャスト柱部材間に、前記プレキャスト柱部材と所定の隙間をあけて設置され、幅方向の側端面に、前記柱接合筋と対向して、高さ方向に所定間隔をあけて一部が外部に突出した壁接合筋が配筋されたプレキャスト耐震壁と、
前記プレキャスト柱部材、前記プレキャスト耐震壁の上下に敷設された床スラブと、
前記プレキャスト耐震壁の上下に設置された梁と、
を備え、
前記梁は、梁成が前記床スラブのスラブ厚と略等しく、
前記床スラブと前記梁とは、前記プレキャスト耐震壁の上下で同じ設置高さとなり、
前記プレキャスト耐震壁は、前記隙間を塞ぐ充填材を介して前記壁接合筋と前記柱接合筋との間に継手が形成されて前記プレキャスト柱部材に接合されたことを特徴とするプレキャストコンクリート耐震壁の接合構造。
A precast column member in which column joint bars partially projecting outward along the height direction are arranged on the side end faces in the width direction.
It is installed with a predetermined gap from the precast column member between the precast column members erected adjacently, and faces the column joint bar in the width direction at a predetermined interval in the height direction. A precast earthquake-resistant wall with wall joints that partially protrude to the outside
The precast column member, floor slabs laid above and below the precast shear wall, and
Beams installed above and below the precast shear wall,
With
The beam has a beam formation substantially equal to the slab thickness of the floor slab.
The floor slab and the beam have the same installation height above and below the precast shear wall.
The precast concrete shear wall is characterized in that a joint is formed between the wall joint bar and the column joint bar via a filler that closes the gap and is joined to the precast column member. Joint structure.
前記プレキャスト耐震壁は、壁面が平面をなすように複数枚で構成され、隣接するプレキャスト耐震壁間に所定の隙間をあけて設置される際、前記壁接合筋が前記隣接するプレキャスト耐震壁間の隙間位置で対向するように配筋され、前記隙間を塞ぐ充填材を介して互いの壁接合筋間に継手が形成されて前記隣接するプレキャスト耐震壁が接合されたことを特徴とする請求項1に記載のプレキャストコンクリート耐震壁の接合構造。 The precast shear wall is composed of a plurality of sheets so that the wall surface forms a flat surface, and when the precast shear wall is installed with a predetermined gap between the adjacent precast shear walls, the wall joining bar is formed between the adjacent precast shear walls. The first aspect of the present invention is that the reinforcing bars are arranged so as to face each other at the gap position, a joint is formed between the wall joining bars of each other via a filler that closes the gap, and the adjacent precast shear walls are joined. Joint structure of precast concrete shear wall described in. 前記梁幅は、前記プレキャスト柱部材の柱幅と略等しいことを特徴とする請求項1または2に記載のプレキャストコンクリート耐震壁の接合構造。 The joint structure of a precast concrete earthquake-resistant wall according to claim 1 or 2, wherein the beam width is substantially equal to the column width of the precast column member. 前記壁接合筋および前記柱接合筋は、略U字の突出部を有し、前記突出部は、他の突出部とループ接合を形成することを特徴とする請求項1から3のいずれか1項に記載のプレキャストコンクリート耐震壁の接合構造。 Any one of claims 1 to 3, wherein the wall joint and the column joint have a substantially U-shaped protrusion, and the protrusion forms a loop joint with another protrusion. The joint structure of the precast concrete shear wall described in the section. 前記壁接合筋および前記柱接合筋は、孔あき鋼板ジベルまたはナットを備える突出部を有し、前記突出部は、他の突出部と継手を形成することを特徴とする請求項1から3のいずれか1項に記載のプレキャストコンクリート耐震壁の接合構造。 The wall joint bar and the column joint bar have a protrusion provided with a perforated steel plate gibber or a nut, and the protrusion forms a joint with another protrusion, according to claims 1 to 3. The joint structure of the precast concrete shear wall according to any one item.
JP2019220247A 2019-12-05 2019-12-05 Precast concrete shear wall joint structure Active JP7449685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220247A JP7449685B2 (en) 2019-12-05 2019-12-05 Precast concrete shear wall joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220247A JP7449685B2 (en) 2019-12-05 2019-12-05 Precast concrete shear wall joint structure

Publications (2)

Publication Number Publication Date
JP2021088888A true JP2021088888A (en) 2021-06-10
JP7449685B2 JP7449685B2 (en) 2024-03-14

Family

ID=76219641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220247A Active JP7449685B2 (en) 2019-12-05 2019-12-05 Precast concrete shear wall joint structure

Country Status (1)

Country Link
JP (1) JP7449685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737981A (en) * 2021-08-23 2021-12-03 清华大学 Connection node of reinforced concrete floor and steel plate concrete shear wall
CN113863532A (en) * 2021-09-30 2021-12-31 南通职业大学 Vertical connecting node of concrete shear wall and manufacturing and mounting method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136318A (en) * 1975-05-22 1976-11-25 Takasaka Kouzou Setsukei Jimus Connection method of precast concrete plate
JP2000310057A (en) * 1999-04-27 2000-11-07 Takenaka Komuten Co Ltd Flat slab structural building
JP2000328652A (en) * 1999-05-18 2000-11-28 Shimizu Corp Multi-story building
JP2016216900A (en) * 2015-05-14 2016-12-22 株式会社竹中工務店 Structure
JP2018123644A (en) * 2017-02-03 2018-08-09 株式会社安藤・間 Junction structure of precast concrete member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136318A (en) * 1975-05-22 1976-11-25 Takasaka Kouzou Setsukei Jimus Connection method of precast concrete plate
JP2000310057A (en) * 1999-04-27 2000-11-07 Takenaka Komuten Co Ltd Flat slab structural building
JP2000328652A (en) * 1999-05-18 2000-11-28 Shimizu Corp Multi-story building
JP2016216900A (en) * 2015-05-14 2016-12-22 株式会社竹中工務店 Structure
JP2018123644A (en) * 2017-02-03 2018-08-09 株式会社安藤・間 Junction structure of precast concrete member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737981A (en) * 2021-08-23 2021-12-03 清华大学 Connection node of reinforced concrete floor and steel plate concrete shear wall
CN113737981B (en) * 2021-08-23 2023-02-24 清华大学 Connection node of reinforced concrete floor and steel plate concrete shear wall
CN113863532A (en) * 2021-09-30 2021-12-31 南通职业大学 Vertical connecting node of concrete shear wall and manufacturing and mounting method thereof
WO2023051842A1 (en) * 2021-09-30 2023-04-06 南通职业大学 Concrete shear wall vertical connection joint and manufacturing and installation method therefor

Also Published As

Publication number Publication date
JP7449685B2 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
KR100971736B1 (en) Shear reinforcement with dual anchorage function each up and down
JP2009249851A (en) Seismic strengthening method for existing building
KR20130012898A (en) Joint of steel column
JP5574328B2 (en) Tokai seismic wall and its construction method
JP2021088888A (en) Joint structure of precast concrete earthquake resistant wall
JP5620462B2 (en) Seismic reinforcement method for existing buildings
JP6574336B2 (en) Steel-framed reinforced concrete columns and buildings using the same
JP6850143B2 (en) Joint structure of precast concrete members
JP2009046829A (en) Aseismatic reinforcing wall
JP2009013616A (en) Long span structure building
JP4657993B2 (en) Beam-column joint structure and construction method thereof
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP7118507B2 (en) Steel reinforced concrete wall pillar building structure
KR101466683B1 (en) The remodeling earthquake resistant connection details by using precast concrete member for old reinforced beam-column building structures and the remodeling construction method using the same
JPH10252187A (en) Earthquake resistant construction of building structure and construction method thereof
JP6953723B2 (en) Construction method of seismic isolation structure
JP2017218855A (en) Rebuilt-building including existing underground exterior wall
JP6611303B2 (en) Foundation structure
JP6877612B2 (en) Rebuilding building with existing underground outer wall
JP2012112210A (en) Earthquake-resisting wall and construction method of earthquake-resisting wall
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
KR102452802B1 (en) A construction method to use the seismic resistant precast concrete members
JPH11152908A (en) Earthquake resistant reinforcing structure for existing building, and its method
JPH0444541A (en) Steel frame-reinforced concrete structure and building
JP2017040122A (en) Reinforced concrete column-beam joint precast member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7449685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150