JP2021088099A - Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same - Google Patents

Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same Download PDF

Info

Publication number
JP2021088099A
JP2021088099A JP2019219058A JP2019219058A JP2021088099A JP 2021088099 A JP2021088099 A JP 2021088099A JP 2019219058 A JP2019219058 A JP 2019219058A JP 2019219058 A JP2019219058 A JP 2019219058A JP 2021088099 A JP2021088099 A JP 2021088099A
Authority
JP
Japan
Prior art keywords
metal
layer
resin composite
resin
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019219058A
Other languages
Japanese (ja)
Inventor
悠貴友 山本
Yukitomo Yamamoto
悠貴友 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019219058A priority Critical patent/JP2021088099A/en
Priority to TW109137203A priority patent/TWI824190B/en
Priority to KR1020200164367A priority patent/KR102304040B1/en
Priority to CN202011380324.4A priority patent/CN112895629B/en
Publication of JP2021088099A publication Critical patent/JP2021088099A/en
Priority to JP2024016628A priority patent/JP2024040281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/002Agents changing electric characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Abstract

To provide a molding method of a metal-resin composite material that can suppress spring back.SOLUTION: The molding method of a metal-resin composite material having a laminated structure which is symmetrical and is formed by alternately laminating a metal layer and a resin layer includes splitting the metal-resin composite material into a part "a" and a part "b" at half of the total layer thickness, disposing the part "a" side on a surface to which a pressing force is imparted to perform molding when Tma/Tra>Tmb/Trb is satisfied while the total layer thickness of the resin layer present in the part "a" is denoted as Tra, the total thickness of the metal layer present in the part "a" is denoted as Tma, and the total thickness of the resin layer present in the part "b" is denoted as Trb, and the total thickness of the metal layer present in the part "b" is denoted as Tmb, disposing the part "b" side on a surface to which a pressing force is imparted to perform molding when Tma/Tra<Tmb/Trb is satisfied, and disposing the side where the metal layer is located at a front layer or the side where the metal layer is closer among the part "a" or part "b" on a surface to which a pressing force is imparted when Tma/Tra=Tmb/Trb is satisfied.SELECTED DRAWING: Figure 2

Description

本開示は、金属樹脂複合材料の成形方法、並びに金属樹脂複合部品及びその製造方法に関する。 The present disclosure relates to a method for molding a metal-resin composite material, a metal-resin composite part, and a method for manufacturing the same.

近年、環境問題に対する関心の高まりに伴い、電気自動車やハイブリッド自動車などの二次電池を搭載した環境配慮型自動車の普及が進展している。このような環境配慮型自動車では、搭載した二次電池から発生する直流電流を、インバータを介して交流電流に変換した後、必要な電力を交流モータに供給し、駆動力を得る方式を採用するものが多い。そのため、インバータのスイッチング動作などに起因して電磁波が発生する。電磁波は、車載センサーの障害になることから、インバータ又はインバータとともにバッテリーやモータなどを、所定の塗膜を表面に有するアルミニウム板材から形成された筐体内に収容して電磁波シールドするという対策が行われている(特許文献1)。 In recent years, with increasing interest in environmental issues, environmentally friendly vehicles equipped with secondary batteries such as electric vehicles and hybrid vehicles have become widespread. In such an environment-friendly vehicle, a method is adopted in which the DC current generated from the mounted secondary battery is converted into an AC current via an inverter, and then the necessary power is supplied to the AC motor to obtain the driving force. There are many things. Therefore, electromagnetic waves are generated due to the switching operation of the inverter. Since electromagnetic waves interfere with in-vehicle sensors, measures are taken to shield the electromagnetic waves by accommodating the inverter or the inverter together with the battery or motor in a housing made of an aluminum plate having a predetermined coating film on the surface. (Patent Document 1).

特開2003−285002号公報Japanese Unexamined Patent Publication No. 2003-285002

近年、電磁波シールドに用いられる材料には、軽量であり且つ複雑な形状に成形加工できること(特に、複雑な形状の金型に追従して成形できること)が要求されている。しかしながら、特許文献1に記載のアルミニウム板材は、上記の要求に十分対応できているとはいえない。
一方、上記の要求を解決する方法として、樹脂フィルムにアルミニウムを蒸着させたAl蒸着フィルムを用いる方法、成形加工性が良好な材料に無電解めっきを施す方法などが考えられる。しかしながら、Al蒸着フィルムを用いる方法は、安価で成形加工性が良好であるものの、蒸着されたAl層は、厚みが小さく、銅箔などに比べて導電性が低いため、電磁波シールド効果が十分でないという問題がある。また、成形加工性が良好な材料に無電解めっきを施す方法は、コストが高い上、めっき層の厚みを大きくすることも難しいため電磁波シールド効果が十分でないという問題がある。
In recent years, the material used for the electromagnetic wave shield is required to be lightweight and to be able to be molded into a complicated shape (particularly, to be able to follow a mold having a complicated shape). However, it cannot be said that the aluminum plate material described in Patent Document 1 can sufficiently meet the above requirements.
On the other hand, as a method for solving the above requirements, a method using an Al-deposited film in which aluminum is vapor-deposited on a resin film, a method of performing electroless plating on a material having good molding processability, and the like can be considered. However, although the method using an Al-deposited film is inexpensive and has good molding processability, the vapor-deposited Al layer has a small thickness and is less conductive than copper foil or the like, so that the electromagnetic wave shielding effect is not sufficient. There is a problem. Further, the method of performing electroless plating on a material having good molding processability has a problem that the electromagnetic wave shielding effect is not sufficient because the cost is high and it is difficult to increase the thickness of the plating layer.

そこで、本発明者らは、金属層と樹脂層とを積層した金属樹脂複合材料に着目し、金属層及び樹脂層の構成を最適化することにより、電磁波シールド効果を確保しつつ、上記の要求を解決することを試みた。
しかしながら、金属樹脂複合材料は、電磁波シールド効果が良好であるものの、成形加工(例えば、張り出し加工や絞り加工)時にスプリングバックが曲げ部(フランジ部)に生じ易く、所望の寸法精度が十分に得られないという問題がある。
Therefore, the present inventors have focused on a metal-resin composite material in which a metal layer and a resin layer are laminated, and by optimizing the composition of the metal layer and the resin layer, the above requirements are ensured while ensuring the electromagnetic wave shielding effect. I tried to solve it.
However, although the metal-resin composite material has a good electromagnetic wave shielding effect, springback is likely to occur in the bent portion (flange portion) during molding (for example, overhanging or drawing), and desired dimensional accuracy can be sufficiently obtained. There is a problem that it cannot be done.

本発明の実施形態は、上記のような問題を解決するためになされたものであり、スプリングバックを抑制可能な金属樹脂複合材料の成形方法を提供することを目的とする。
また、本発明の実施形態は、寸法精度が高い金属樹脂複合部品及びその製造方法を提供することを目的とする。
An embodiment of the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for forming a metal resin composite material capable of suppressing springback.
Another object of the present invention is to provide a metal resin composite part having high dimensional accuracy and a method for manufacturing the same.

本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、金属樹脂複合材料の積層構造及び成形時の押圧力の付与方向が、スプリングバックの発生と関係しているという知見に基づき、特定の積層構造を有する金属樹脂複合材料において特定の方向に押圧力を付与して成形を行うことにより、スプリングバックの抑制効果を向上させ得ることを見出し、本発明の実施形態を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have found that the laminated structure of the metal-resin composite material and the direction of applying the pressing force during molding are related to the occurrence of springback. Based on this, it has been found that the effect of suppressing springback can be improved by applying a pressing force in a specific direction to molding a metal-resin composite material having a specific laminated structure, and completes the embodiment of the present invention. It came to.

すなわち、本発明の実施形態は、金属層と樹脂層とが交互に積層された積層構造を有し、前記積層構造が非対称である金属樹脂複合材料の成形方法であって、
前記金属樹脂複合材料の全体層厚みの半分の位置でa部及びb部に分割して、前記a部に存在する前記樹脂層の合計層厚みをTra、前記a部に存在する前記金属層の合計層厚みをTma、前記b部に存在する前記樹脂層の合計層厚みをTrb、及び前記b部に存在する前記金属層の合計層厚みをTmbとし、
Tma/Tra>Tmb/Trbの場合に、押圧力を付与する面に前記a部側を配置して成形を行い、
Tma/Tra<Tmb/Trbの場合に、押圧力を付与する面に前記b部側を配置して成形を行い、
Tma/Tra=Tmb/Trbの場合に、押圧力を付与する面に、前記a部又は前記b部の中で表層に前記金属層が位置する側又は前記金属層が近い側を配置して成形を行う、金属樹脂複合材料の成形方法である。
That is, the embodiment of the present invention is a method for molding a metal-resin composite material having a laminated structure in which metal layers and resin layers are alternately laminated, and the laminated structure is asymmetrical.
The metal resin composite material is divided into a part and b part at a position half of the total layer thickness, and the total layer thickness of the resin layer existing in the a part is Tra, and the total layer thickness of the metal layer existing in the a part is The total layer thickness is Tma, the total layer thickness of the resin layer existing in the b portion is Trb, and the total layer thickness of the metal layer existing in the b portion is Tmb.
When Tma / Tra> Tmb / Trb, the a part side is arranged on the surface to which the pressing force is applied to perform molding.
In the case of Tma / Tra <Tmb / Trb, the b portion side is arranged on the surface to which the pressing force is applied to perform molding.
In the case of Tma / Tra = Tmb / Trb, the side where the metal layer is located on the surface layer or the side close to the metal layer in the a part or the b part is arranged on the surface to which the pressing force is applied and molded. Is a method for molding a metal-resin composite material.

また、本発明の実施形態は、上記の金属樹脂複合材料の成形方法を含む、金属樹脂複合部品の製造方法である。 Further, an embodiment of the present invention is a method for manufacturing a metal-resin composite part, including the above-mentioned method for molding a metal-resin composite material.

さらに、本発明の実施形態は、金属層と樹脂層とが交互に積層された積層構造を有し、前記積層構造が非対称である金属樹脂複合材料から形成された金属樹脂複合部品であって、
前記金属樹脂複合材料の全体層厚みの半分の位置でa部及びb部に分割して、前記a部に存在する前記樹脂層の合計層厚みをTra、前記a部に存在する前記金属層の合計層厚みをTma、前記b部に存在する前記樹脂層の合計層厚みをTrb、及び前記b部に存在する前記金属層の合計層厚みをTmbとし、
Tma/Tra>Tmb/Trbの場合に、押圧力が付与された面に前記a部側が配置され、
Tma/Tra<Tmb/Trbの場合に、押圧力が付与された面に前記b部側が配置され、
Tma/Tra=Tmb/Trbの場合に、押圧力が付与された面に、前記a部又は前記b部の中で表層に前記金属層が位置する側又は前記金属層が近い側が配置される、金属樹脂複合部品である。
Further, the embodiment of the present invention is a metal-resin composite part formed of a metal-resin composite material having a laminated structure in which metal layers and resin layers are alternately laminated, and the laminated structure is asymmetrical.
The metal resin composite material is divided into a part and b part at a position half of the total layer thickness, and the total layer thickness of the resin layer existing in the a part is Tra, and the total layer thickness of the metal layer existing in the a part is The total layer thickness is Tma, the total layer thickness of the resin layer existing in the b portion is Trb, and the total layer thickness of the metal layer existing in the b portion is Tmb.
When Tma / Tra> Tmb / Trb, the a part side is arranged on the surface to which the pressing force is applied.
In the case of Tma / Tra <Tmb / Trb, the b portion side is arranged on the surface to which the pressing force is applied.
In the case of Tma / Tra = Tmb / Trb, the side where the metal layer is located on the surface layer or the side close to the metal layer is arranged on the surface to which the pressing force is applied. It is a metal-resin composite part.

本発明の実施形態によれば、スプリングバックを抑制可能な金属樹脂複合材料の成形方法を提供することができる。
また、本発明の実施形態によれば、寸法精度が高い金属樹脂複合部品及びその製造方法を提供することができる。
According to the embodiment of the present invention, it is possible to provide a method for molding a metal resin composite material capable of suppressing springback.
Further, according to the embodiment of the present invention, it is possible to provide a metal resin composite part having high dimensional accuracy and a method for manufacturing the same.

金属層/樹脂層の2層構造を有する金属樹脂複合材料の断面図である。It is sectional drawing of the metal resin composite material which has a two-layer structure of a metal layer / resin layer. 金属層/樹脂層/金属層の3層構造を有する金属樹脂複合材料の断面図である。It is sectional drawing of the metal resin composite material which has a three-layer structure of a metal layer / resin layer / metal layer. 金属層/樹脂層/金属層/樹脂層の4層構造を有する金属樹脂複合材料の断面図である。It is sectional drawing of the metal resin composite material which has a four-layer structure of a metal layer / resin layer / metal layer / resin layer. 絞り加工で押圧力Fを付与する方法を説明するための図である。It is a figure for demonstrating the method of applying a pressing force F in drawing processing. 実施例1及び比較例1で成形した成形品の写真である。It is a photograph of the molded product molded in Example 1 and Comparative Example 1.

以下、本発明の好適な実施形態について図面を参照しながら具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。この実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、この実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings, but the present invention should not be construed as being limited thereto, and those skilled in the art will be skilled in the art as long as they do not deviate from the gist of the present invention. Various changes and improvements can be made based on the knowledge of. The plurality of components disclosed in this embodiment can form various inventions by appropriate combinations. For example, some components may be deleted from all the components shown in this embodiment, or components of different embodiments may be combined as appropriate.

本発明の実施形態に係る金属樹脂複合材料の成形方法は、金属樹脂複合材料の積層構造の種類に応じて、特定の方向から押圧力を付与して成形する。
金属樹脂複合材料は、金属層と樹脂層とが交互に積層された積層構造を有する。このような構造を有する金属樹脂複合材料は、電磁波シールド効果を有するため、電磁波シールド材料として用いることができる。
The method for molding a metal-resin composite material according to an embodiment of the present invention applies a pressing force from a specific direction to mold the metal-resin composite material according to the type of the laminated structure of the metal-resin composite material.
The metal-resin composite material has a laminated structure in which metal layers and resin layers are alternately laminated. Since the metal resin composite material having such a structure has an electromagnetic wave shielding effect, it can be used as an electromagnetic wave shielding material.

金属樹脂複合材料の積層構造における層数としては、2層以上であれば特に限定されないが、好ましくは2〜15層、より好ましくは2〜10層、さらに好ましくは2〜8層である。積層構造の例としては、金属層/樹脂層の2層構造、樹脂層/金属層/樹脂層や金属層/樹脂層/金属層の3層構造、樹脂層/金属層/樹脂層/金属層や金属層/樹脂層/金属層/樹脂層の4層構造などが挙げられる。
金属樹脂複合材料の積層構造は非対称である。金属樹脂複合材料の層数が偶数の場合、積層構造は非対称となる。一方、金属樹脂複合材料の層数が奇数(1を除く)の場合、積層構造は非対称又は対称となる。対称な積層構造の例としては、3層構造の第1層及び第3層の厚みが等しい場合などである。また、非対称な積層構造の例としては、3層構造の第1層及び第3層の厚みが異なる場合などである。
また、金属樹脂複合材料の積層構造は、金属層を2つ以上有することが好ましい。このような構成とすることにより、電磁波の反射面が増えるため、電磁波シールド効果を向上させることができる。
The number of layers in the laminated structure of the metal-resin composite material is not particularly limited as long as it is two or more layers, but is preferably 2 to 15 layers, more preferably 2 to 10 layers, and further preferably 2 to 8 layers. Examples of the laminated structure include a two-layer structure of a metal layer / resin layer, a three-layer structure of a resin layer / metal layer / resin layer and a metal layer / resin layer / metal layer, and a resin layer / metal layer / resin layer / metal layer. And a four-layer structure of a metal layer / resin layer / metal layer / resin layer.
The laminated structure of the metal-resin composite material is asymmetric. When the number of layers of the metal-resin composite material is even, the laminated structure becomes asymmetric. On the other hand, when the number of layers of the metal resin composite material is odd (excluding 1), the laminated structure is asymmetrical or symmetrical. An example of a symmetrical laminated structure is a case where the thicknesses of the first layer and the third layer of the three-layer structure are the same. Further, an example of an asymmetric laminated structure is a case where the thicknesses of the first layer and the third layer of the three-layer structure are different.
Further, the laminated structure of the metal resin composite material preferably has two or more metal layers. With such a configuration, the electromagnetic wave reflecting surface increases, so that the electromagnetic wave shielding effect can be improved.

本発明の実施形態に係る金属樹脂複合材料の成形方法は、次のようにして行われる。
金属樹脂複合材料の積層構造において、金属樹脂複合材料の全体層厚みの半分の位置でa部及びb部の2つに分割する。そして、a部に存在する樹脂層の合計層厚みをTra、a部に存在する金属層の合計層厚みをTma、b部に存在する樹脂層の合計層厚みをTrb、及びb部に存在する金属層の合計層厚みをTmbとする。その後、下記の(1)〜(3)のそれぞれの場合に応じて押圧力の付与方向を決定し、成形を行う。
(1)Tma/Tra>Tmb/Trbの場合に、押圧力を付与する面にa部側を配置して成形を行う。
(2)Tma/Tra<Tmb/Trbの場合に、押圧力を付与する面にb部側を配置して成形を行う。
(3)Tma/Tra=Tmb/Trbの場合に、押圧力を付与する面に、a部又はb部の中で表層に金属層が位置する側又は金属層が近い側を配置して成形を行う。
上記のようにして押圧力を付与しながら成形を行うことにより、スプリングバックの発生を抑制することができる。
The method for molding the metal-resin composite material according to the embodiment of the present invention is performed as follows.
In the laminated structure of the metal-resin composite material, the metal-resin composite material is divided into two parts, a part and b part, at a position half the thickness of the entire layer. Then, the total layer thickness of the resin layer existing in the a part is in Tra, the total layer thickness of the metal layer existing in the a part is Tma, the total layer thickness of the resin layer existing in the b part is in Trb, and the b part is present. Let Tmb be the total thickness of the metal layers. After that, the pressing force application direction is determined according to each of the following cases (1) to (3), and molding is performed.
(1) When Tma / Tra> Tmb / Trb, molding is performed by arranging the a part side on the surface to which the pressing force is applied.
(2) When Tma / Tra <Tmb / Trb, molding is performed by arranging the b portion side on the surface to which the pressing force is applied.
(3) In the case of Tma / Tra = Tmb / Trb, molding is performed by arranging the side where the metal layer is located on the surface layer or the side close to the metal layer in part a or b on the surface to which the pressing force is applied. Do.
By performing the molding while applying the pressing force as described above, the occurrence of springback can be suppressed.

ここで、(1)の場合に相当する金属樹脂複合材料の断面図を図1に示す。
図1は、金属層10/樹脂層20の2層構造を有する金属樹脂複合材料の断面図である。金属樹脂複合材料を全体層厚みの半分の位置でa部及びb部に分割した場合、Tra、Tma及びTrbを図1のように決定することができる。なお、図1の金属樹脂複合材料では、2層構造のためTmbはゼロとなるが、3層以上の積層構造とすればTmbをゼロより大きく設定することができる。
図1の金属樹脂複合材料は、Tma/Tra>Tmb/Trbの関係を満たすため、押圧力Fを付与する面にa部側を配置して成形が行われる。
Here, FIG. 1 shows a cross-sectional view of the metal resin composite material corresponding to the case of (1).
FIG. 1 is a cross-sectional view of a metal-resin composite material having a two-layer structure of a metal layer 10 and a resin layer 20. When the metal-resin composite material is divided into a part and b part at a position of half the thickness of the entire layer, Tra, Tma and Trb can be determined as shown in FIG. In the metal-resin composite material of FIG. 1, Tmb is zero because of the two-layer structure, but Tmb can be set to be larger than zero if the laminated structure has three or more layers.
In order to satisfy the relationship of Tma / Tra> Tmb / Trb, the metal-resin composite material of FIG. 1 is molded by arranging the a portion side on the surface to which the pressing force F is applied.

次に、(2)の場合に相当する金属樹脂複合材料の断面図を図2に示す。
図2は、金属層10/樹脂層20/金属層10の3層構造を有する金属樹脂複合材料の断面図である。金属樹脂複合材料を全体層厚みの半分の位置でa部及びb部に分割した場合、Tra、Tma、Tmb及びTrbを図2のように決定することができる。なお、図2の金属樹脂複合材料では、2つの金属層10の厚みが異なっており、b部の金属層10の厚みがa部の金属層10の厚みよりも大きく設定されている。
図2の金属樹脂複合材料は、Tma/Tra<Tmb/Trbの関係を満たすため、押圧力Fを付与する面にb部側を配置して成形が行われる。
Next, FIG. 2 shows a cross-sectional view of the metal resin composite material corresponding to the case of (2).
FIG. 2 is a cross-sectional view of a metal-resin composite material having a three-layer structure of a metal layer 10 / a resin layer 20 / a metal layer 10. When the metal-resin composite material is divided into a part and b part at a position of half the thickness of the entire layer, Tra, Tma, Tmb and Trb can be determined as shown in FIG. In the metal resin composite material of FIG. 2, the thicknesses of the two metal layers 10 are different, and the thickness of the metal layer 10 of the b portion is set to be larger than the thickness of the metal layer 10 of the a portion.
In order to satisfy the relationship of Tma / Tra <Tmb / Trb, the metal-resin composite material of FIG. 2 is molded by arranging the b portion side on the surface to which the pressing force F is applied.

次に、(3)の場合に相当する金属樹脂複合材料の断面図を図3に示す。
図3は、金属層10/樹脂層20/金属層10/樹脂層20の4層構造を有する金属樹脂複合材料の断面図である。金属樹脂複合材料を全体層厚みの半分の位置でa部及びb部に分割した場合、Tra、Tma、Tmb及びTrbを図3のように決定することができる。なお、図3の金属樹脂複合材料では、2つの金属層10及び2つの樹脂層20の厚みはそれぞれ同じである。
図3の金属樹脂複合材料は、Tma/Tra=Tmb/Trbの関係を満たし、a部の表層に金属層10が位置しているため、押圧力Fを付与する面にa部側を配置して成形が行われる。
Next, FIG. 3 shows a cross-sectional view of the metal resin composite material corresponding to the case of (3).
FIG. 3 is a cross-sectional view of a metal-resin composite material having a four-layer structure of a metal layer 10 / a resin layer 20 / a metal layer 10 / a resin layer 20. When the metal-resin composite material is divided into a part and b part at a position of half the thickness of the entire layer, Tra, Tma, Tmb and Trb can be determined as shown in FIG. In the metal-resin composite material of FIG. 3, the thicknesses of the two metal layers 10 and the two resin layers 20 are the same, respectively.
The metal-resin composite material of FIG. 3 satisfies the relationship of Tma / Tra = Tmb / Trb, and since the metal layer 10 is located on the surface layer of the a part, the a part side is arranged on the surface to which the pressing force F is applied. Is molded.

金属樹脂複合材料の成形方法としては、所定の面に押圧力Fを付与し得る方法であれば特に限定されず、当該技術分野において公知の方法を用いることができる。成形方法の例としては、絞り加工、張り出し加工、曲げ加工、圧空成形などが挙げられる。これらの中でも、複雑な形状への加工性が良好な絞り加工が好ましい。成形方法が絞り加工である場合、押圧力Fはパンチによって付与される。
ここで、一例として、絞り加工で押圧力Fを付与する方法について図4を用いて説明する。押圧力Fを付与する面が金属樹脂複合材料のa部側である場合、押圧力Fを付与するパンチ30と接触する面に金属樹脂複合材料のa部側を配置する。そして、パンチ30を金属樹脂複合材料の厚み方向に押し付けて成形することにより、所定の形状を有する成形体(金属樹脂複合部品)を得ることができる。なお、図示していないが、金属樹脂複合材料は、ダイスに配置し、周縁部をブランクホルダーによって固定した後に、パンチ30による成形が行われる。
また、金属樹脂複合材料の成形は、常温又は温間で行うことができるが、常温で行ってもスプリングバックの発生を抑制することができる。
押圧力Fの大きさは、使用する成形方法や金属樹脂複合材料の厚みなどに応じて適宜調整すればよく、特に限定されない。
The method for molding the metal-resin composite material is not particularly limited as long as it can apply a pressing force F to a predetermined surface, and a method known in the art can be used. Examples of the molding method include drawing, overhanging, bending, compressed air forming, and the like. Among these, drawing processing having good workability into a complicated shape is preferable. When the forming method is drawing, the pressing force F is applied by a punch.
Here, as an example, a method of applying a pressing force F by drawing will be described with reference to FIG. When the surface to which the pressing force F is applied is on the a portion side of the metal resin composite material, the a portion side of the metal resin composite material is arranged on the surface in contact with the punch 30 to which the pressing force F is applied. Then, by pressing the punch 30 in the thickness direction of the metal resin composite material for molding, a molded body (metal resin composite part) having a predetermined shape can be obtained. Although not shown, the metal-resin composite material is placed on a die, the peripheral edge thereof is fixed by a blank holder, and then molding is performed by a punch 30.
Further, although the metal resin composite material can be molded at room temperature or warm, the occurrence of springback can be suppressed even if it is performed at room temperature.
The size of the pressing force F may be appropriately adjusted according to the molding method used, the thickness of the metal resin composite material, and the like, and is not particularly limited.

金属樹脂複合材料は、押圧力Fを付与する面に金属層10が配置されていることが好ましい。このような構成とすることにより、金属樹脂複合材料を成形して電磁波シールド筐体を作製した場合に、電磁波シールド筐体の内面が金属層10となるため、アースをとることが容易になる。 In the metal-resin composite material, it is preferable that the metal layer 10 is arranged on the surface to which the pressing force F is applied. With such a configuration, when the electromagnetic wave shield housing is manufactured by molding the metal resin composite material, the inner surface of the electromagnetic wave shield housing becomes the metal layer 10, so that grounding can be easily performed.

金属層10の材料としては、特に限定されず、各種金属を用いることができる。その中でも交流磁界や交流電界に対する電磁波シールド効果を高める観点からは、導電性に優れた金属を用いることができる。具体的には、金属層10に用いられる金属の導電率が、好ましくは1.0×106S/m(20℃の値、以下同じ)以上、より好ましくは10.0×106S/m以上、更に好ましくは30.0×106S/m以上、最も好ましくは50.0×106S/m以上である。このような導電性に優れた金属としては、導電率が約9.9×106S/mの鉄、導電率が約14.5×106S/mのニッケル、導電率が約39.6×106S/mのアルミニウム、導電率が約58.0×106S/mの銅、導電率が約61.4×106S/mの銀などが挙げられる。これらの中でも導電率及びコストの双方を考慮すると、アルミニウム又は銅を採用することが実用性上好ましい。また、上述した金属の合金を金属層10に用いてもよい。
なお、金属樹脂複合材料中に金属層10が複数存在する場合、複数の金属層10は同一であっても異なっていてもよい。
The material of the metal layer 10 is not particularly limited, and various metals can be used. Among them, a metal having excellent conductivity can be used from the viewpoint of enhancing the electromagnetic wave shielding effect against an alternating magnetic field or an alternating electric field. Specifically, the conductivity of the metal used for the metal layer 10 is preferably 1.0 × 10 6 S / m (value at 20 ° C., the same applies hereinafter) or more, more preferably 10.0 × 10 6 S / m. It is m or more, more preferably 30.0 × 10 6 S / m or more, and most preferably 50.0 × 10 6 S / m or more. The excellent metal in the conductive iron conductivity of about 9.9 × 10 6 S / m, the conductivity of about 14.5 × 10 6 S / m nickel, conductivity about 39. aluminum 6 × 10 6 S / m, the conductivity of copper of approximately 58.0 × 10 6 S / m, conductivity and the like of silver of approximately 61.4 × 10 6 S / m. Among these, considering both conductivity and cost, it is practically preferable to use aluminum or copper. Further, the above-mentioned metal alloy may be used for the metal layer 10.
When a plurality of metal layers 10 are present in the metal resin composite material, the plurality of metal layers 10 may be the same or different.

金属層10の表面には接着促進性、耐環境性、耐熱性及び防錆性などの向上を目的とした各種の表面処理層が形成されていてもよい。
例えば、金属面が最外層となる場合に必要とされる耐環境性、耐熱性を高めることを目的として、金属層10の表面に、Auめっき層、Agめっき層、Snめっき層、Niめっき層、Znめっき層、Sn合金めっき層(Sn−Ag層、Sn−Ni層、Sn−Cu層など)、クロメート処理層などを形成することができる。これらの処理層は、単数又は複数とすることができる。また、これらの処理層の中でも、コスト面から、Snめっき層又はSn合金めっき層を行うことが好ましい。
また、金属層10と樹脂層20との間の接着性を高めることを目的として、金属層10の表面に、クロメート処理層、粗化処理層、Niめっき層などを形成してもよい。これらの処理層は、単独又は複数とすることができる。また、これらの処理層の中でも、粗化処理層は接着性を高める効果が高いため好ましい。
さらに、直流磁界に対する電磁波シールド効果を高めることを目的として、比透磁率の高い層を金属層10の表面に設けてもよい。比透磁率の高い層としてはFe−Ni合金めっき層、Niめっき層などが挙げられる。
Various surface treatment layers may be formed on the surface of the metal layer 10 for the purpose of improving adhesion promoting property, environmental resistance, heat resistance, rust prevention and the like.
For example, an Au plating layer, an Ag plating layer, a Sn plating layer, and a Ni plating layer are formed on the surface of the metal layer 10 for the purpose of enhancing the environmental resistance and heat resistance required when the metal surface is the outermost layer. , Zn plating layer, Sn alloy plating layer (Sn—Ag layer, Sn—Ni layer, Sn—Cu layer, etc.), chromate-treated layer and the like can be formed. These treatment layers may be singular or plural. Further, among these treated layers, it is preferable to perform a Sn plating layer or a Sn alloy plating layer from the viewpoint of cost.
Further, a chromate-treated layer, a roughened-treated layer, a Ni-plated layer, or the like may be formed on the surface of the metal layer 10 for the purpose of enhancing the adhesiveness between the metal layer 10 and the resin layer 20. These treatment layers may be single or plural. Further, among these treated layers, the roughened treated layer is preferable because it has a high effect of enhancing the adhesiveness.
Further, a layer having a high relative magnetic permeability may be provided on the surface of the metal layer 10 for the purpose of enhancing the electromagnetic wave shielding effect against the DC magnetic field. Examples of the layer having a high relative magnetic permeability include a Fe—Ni alloy plating layer and a Ni plating layer.

金属層10として銅箔層を用いる場合、電磁波シールド効果を向上させる観点から、純度が高いものが好ましい。銅箔層に用いられる銅箔の純度は、好ましくは99.5質量%以上、より好ましくは99.8質量%以上である。
銅箔としては、圧延銅箔、電解銅箔、メタライズによる銅箔などを用いることができるが、屈曲性及び成形加工性に優れた圧延銅箔が好ましい。銅箔中に合金元素を添加して銅合金箔とする場合、これらの元素と不可避的不純物との合計含有量が0.5質量%未満であればよい。特に、銅箔中に、Sn、Mn、Cr、Zn、Zr、Mg、Ni、Si、及びAgの群から選ばれる少なくとも1種以上を合計で200〜2000質量ppm含有すると、同じ厚みの純銅箔よりも伸びが向上するので好ましい。
When a copper foil layer is used as the metal layer 10, one having a high purity is preferable from the viewpoint of improving the electromagnetic wave shielding effect. The purity of the copper foil used for the copper foil layer is preferably 99.5% by mass or more, more preferably 99.8% by mass or more.
As the copper foil, rolled copper foil, electrolytic copper foil, metallized copper foil and the like can be used, but rolled copper foil having excellent flexibility and moldability is preferable. When alloying elements are added to the copper foil to obtain a copper alloy foil, the total content of these elements and unavoidable impurities may be less than 0.5% by mass. In particular, when the copper foil contains at least one selected from the group of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, and Ag in a total amount of 200 to 2000 mass ppm, a pure copper foil having the same thickness. It is preferable because the elongation is improved as compared with the above.

金属層10の厚みは、特に限定されないが1層当たり、10μm以上、好ましくは15μm以上、より好ましくは20μm以上、更に好ましくは25μm以上、特に好ましくは30μm以上である。金属層10の厚さを10μm以上とすることにより、電磁波シールド効果を十分に確保することができる。また、金属層10の厚みは、1層当たり、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは45μm以下、特に好ましくは40μm以下である。金属層10の厚みを100μm以下とすることにより、成形加工性の低下を抑えることができる。
金属樹脂複合材料中に金属層10が複数存在する場合、複数の金属層10の厚みは同一であっても異なっていてもよい。
The thickness of the metal layer 10 is not particularly limited, but is 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, still more preferably 25 μm or more, and particularly preferably 30 μm or more per layer. By setting the thickness of the metal layer 10 to 10 μm or more, the electromagnetic wave shielding effect can be sufficiently ensured. The thickness of the metal layer 10 is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 45 μm or less, and particularly preferably 40 μm or less per layer. By setting the thickness of the metal layer 10 to 100 μm or less, it is possible to suppress a decrease in molding processability.
When a plurality of metal layers 10 are present in the metal-resin composite material, the thicknesses of the plurality of metal layers 10 may be the same or different.

樹脂層20の材料としては、特に限定されず、各種樹脂を用いることができる。樹脂の例としては、PET(ポリエチレンテレフタレート)樹脂、PEN(ポリエチレンナフタレート)樹脂、PI(ポリイミド)樹脂、PC(ポリカーボネート)樹脂、PE(ポリエチレン)樹脂、PP(ポリプロピレン)樹脂などが挙げられる。これらの樹脂はいずれもスプリングバックが比較的大きいため、これらの樹脂を用いて本開示に従う成形方法を適用した場合に、スプリングバックを効果的に抑制できる。また、上述の樹脂の中でも安価なPET樹脂が好ましい。
なお、金属樹脂複合材料中に樹脂層20が複数存在する場合、複数の樹脂層20は同一であっても異なっていてもよい。
The material of the resin layer 20 is not particularly limited, and various resins can be used. Examples of the resin include PET (polyethylene terephthalate) resin, PEN (polyethylene naphthalate) resin, PI (polyethylene) resin, PC (polyethylene) resin, PE (polyethylene) resin, PP (polyethylene) resin and the like. Since all of these resins have a relatively large springback, springback can be effectively suppressed when the molding method according to the present disclosure is applied using these resins. Further, among the above-mentioned resins, inexpensive PET resin is preferable.
When a plurality of resin layers 20 are present in the metal resin composite material, the plurality of resin layers 20 may be the same or different.

樹脂層20の厚みは、特に限定されないが、1層当たり、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは30μm以上、特に更に好ましくは40μm以上である。樹脂層20の厚みを10μm以上とすることにより、金属樹脂複合材料から筐体を作製する場合に、筐体としての強度を確保することができる。また、樹脂層20の厚みは、1層当たり、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは150μm以下である。また、樹脂層20の厚さを300μm以下とすることにより、成形加工性の低下を抑えることができる。
金属樹脂複合材料中に樹脂層20が複数存在する場合、複数の樹脂層20の厚みは同一であっても異なっていてもよいが、同一であることが好ましい。
The thickness of the resin layer 20 is not particularly limited, but is preferably 10 μm or more, more preferably 20 μm or more, still more preferably 30 μm or more, and particularly preferably 40 μm or more per layer. By setting the thickness of the resin layer 20 to 10 μm or more, the strength of the housing can be ensured when the housing is manufactured from the metal resin composite material. The thickness of the resin layer 20 is preferably 300 μm or less, more preferably 200 μm or less, and further preferably 150 μm or less per layer. Further, by setting the thickness of the resin layer 20 to 300 μm or less, it is possible to suppress a decrease in molding processability.
When a plurality of resin layers 20 are present in the metal-resin composite material, the thicknesses of the plurality of resin layers 20 may be the same or different, but are preferably the same.

樹脂層20は、樹脂フィルムを用いて形成することができるが、金属層10上に樹脂材料を直接塗布して硬化させることによって形成してもよい。
樹脂層20として樹脂フィルムを用いる場合、金属層10と樹脂フィルムとの接着方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、金属層10と樹脂フィルムとを熱圧着によって接着させてもよいし、接着剤を用いて金属層10と樹脂フィルムとを接着させてもよい。ただし、PET樹脂フィルムなどの樹脂フィルムは、金属層10と熱圧着させ難いため、接着剤を用いて接着させることが好ましい。
The resin layer 20 can be formed by using a resin film, but it may also be formed by directly applying a resin material on the metal layer 10 and curing it.
When a resin film is used as the resin layer 20, the method of adhering the metal layer 10 and the resin film is not particularly limited, and a method known in the art can be used. For example, the metal layer 10 and the resin film may be bonded by thermocompression bonding, or the metal layer 10 and the resin film may be bonded using an adhesive. However, since it is difficult for a resin film such as a PET resin film to be thermocompression bonded to the metal layer 10, it is preferable to bond it with an adhesive.

接着剤としては、特に限定されず、熱可塑性接着剤や熱硬化性接着剤などの公知の接着剤を用いることができる。その中でも、熱硬化性接着剤は、化学的に安定であるため、接着部の経時変化を起こり難くすることができる。
ここで、熱可塑性接着剤とは、加熱すると軟化し、冷却すると硬化する熱可塑性樹脂を主成分とする接着剤を意味する。熱可塑性樹脂としては、特に限定されないが、ポリ酢酸ビニル、酢酸ビニル−塩化ビニル共重合体、ポリビニルブチラール、α−オレフィン系樹脂、セルロース系樹脂、アクリル樹脂、塩化ビニル樹脂、ポリビニルアセタールなどが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
また、熱硬化性接着剤とは、加熱すると硬化する熱硬化性樹脂を主成分とする接着剤を意味する。熱硬化性樹脂としては、特に限定されないが、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、構造用アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂などが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
The adhesive is not particularly limited, and known adhesives such as thermoplastic adhesives and thermosetting adhesives can be used. Among them, the thermosetting adhesive is chemically stable, so that it is possible to prevent the adhesive portion from changing with time.
Here, the thermoplastic adhesive means an adhesive containing a thermoplastic resin as a main component, which softens when heated and cures when cooled. The thermoplastic resin is not particularly limited, and examples thereof include polyvinyl acetate, vinyl acetate-vinyl chloride copolymer, polyvinyl butyral, α-olefin resin, cellulose resin, acrylic resin, vinyl chloride resin, and polyvinyl acetal. .. These can be used alone or in combination of two or more.
Further, the thermosetting adhesive means an adhesive containing a thermosetting resin as a main component, which cures when heated. The thermosetting resin is not particularly limited, and examples thereof include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, structural acrylic resin, polyester resin, and polyurethane resin. These can be used alone or in combination of two or more.

金属樹脂複合材料の全体層厚みとしては、特に限定されないが、好ましくは110〜800μm、より好ましくは150〜700μm、更に好ましくは200〜600μm、特に好ましくは250〜500μmである。金属樹脂複合材料の全体層厚みを110μm以上とすることにより、金属樹脂複合材料から筐体を作製する場合に、筐体としての強度を確保することができる。また、金属樹脂複合材料の全体層厚みを800μm以下とすることにより、成形加工性の低下を抑えることができる。 The total layer thickness of the metal-resin composite material is not particularly limited, but is preferably 110 to 800 μm, more preferably 150 to 700 μm, still more preferably 200 to 600 μm, and particularly preferably 250 to 500 μm. By setting the overall layer thickness of the metal-resin composite material to 110 μm or more, the strength of the housing can be ensured when the housing is manufactured from the metal-resin composite material. Further, by setting the total layer thickness of the metal resin composite material to 800 μm or less, it is possible to suppress a decrease in molding processability.

本発明の実施形態に係る金属樹脂複合材料の成形方法は、金属樹脂複合部品の製造方法に用いることができる。したがって、この金属樹脂複合部品の製造方法は、本発明の実施形態に係る金属樹脂複合材料の成形方法を含む。
ここで、本明細書において「金属樹脂複合部品」とは、金属樹脂複合材料を所定の形状に成形して得られた部品のことを意味する。金属樹脂複合部品としては、特に限定されないが、電磁波シールド特性が要求される各種部品が挙げられる。その中でも金属樹脂複合部品は電磁波シールド筐体であることが好ましい。
The method for molding a metal-resin composite material according to an embodiment of the present invention can be used for a method for manufacturing a metal-resin composite part. Therefore, the method for manufacturing the metal-resin composite part includes the method for molding the metal-resin composite material according to the embodiment of the present invention.
Here, the term "metal-resin composite part" as used herein means a part obtained by molding a metal-resin composite material into a predetermined shape. The metal-resin composite part is not particularly limited, and examples thereof include various parts that require electromagnetic wave shielding characteristics. Among them, the metal resin composite part is preferably an electromagnetic wave shield housing.

上記のようにして製造される本発明の実施形態に係る金属樹脂複合部品は、金属層10と樹脂層20とが交互に積層された積層構造を有し、該積層構造が非対称である金属樹脂複合材料から形成されている。
また、本発明の実施形態に係る金属樹脂複合部品は、金属樹脂複合材料の全体層厚みの半分の位置でa部及びb部に分割して、a部に存在する樹脂層20の合計層厚みをTra、a部に存在する金属層10の合計層厚みをTma、b部に存在する樹脂層20の合計層厚みをTrb、及びb部に存在する金属層10の合計層厚みをTmbとした場合に、下記の(1)〜(3)のいずれか1つの構造を有する。
(1)Tma/Tra>Tmb/Trbの場合に、押圧力Fが付与された面にa部側が配置される。
(2)Tma/Tra<Tmb/Trbの場合に、押圧力Fが付与された面にb部側が配置される。
(3)Tma/Tra=Tmb/Trbの場合に、押圧力Fが付与された面に、a部又はb部の中で表層に金属層10が位置する側又は金属層10が近い側が配置される。
上記のような構造とすることにより、金属樹脂複合材料の成形時にスプリングバックの発生を抑制することができるため、金属樹脂複合部品の寸法精度を高めることができる。
The metal-resin composite component according to the embodiment of the present invention manufactured as described above has a laminated structure in which metal layers 10 and resin layers 20 are alternately laminated, and the laminated structure is asymmetrical. It is made of composite material.
Further, the metal resin composite part according to the embodiment of the present invention is divided into a part and b part at a position of half the total layer thickness of the metal resin composite material, and the total layer thickness of the resin layer 20 existing in the a part is formed. The total layer thickness of the metal layer 10 existing in the a part was Tma, the total layer thickness of the resin layer 20 existing in the b part was Trb, and the total layer thickness of the metal layer 10 existing in the b part was Tmb. In some cases, it has any one of the following structures (1) to (3).
(1) When Tma / Tra> Tmb / Trb, the a part side is arranged on the surface to which the pressing force F is applied.
(2) When Tma / Tra <Tmb / Trb, the b portion side is arranged on the surface to which the pressing force F is applied.
(3) In the case of Tma / Tra = Tmb / Trb, the side where the metal layer 10 is located on the surface layer or the side close to the metal layer 10 is arranged on the surface to which the pressing force F is applied. To.
With the above structure, it is possible to suppress the occurrence of springback during molding of the metal resin composite material, so that the dimensional accuracy of the metal resin composite part can be improved.

なお、金属樹脂複合部品を形成する金属樹脂複合材料の詳細については、上述した通りであるため、説明を省略する。 Since the details of the metal-resin composite material forming the metal-resin composite part are as described above, the description thereof will be omitted.

以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<金属樹脂複合材料Aの作製>
粗化処理層が表面に形成された圧延銅箔(厚み17μm)とPET樹脂フィルム(厚み100μm)とを積層させて2層構造の金属樹脂複合材料A(以下、この積層構造を「Cu/PET」と略すことがある)を作製した。なお、圧延銅箔とPET樹脂フィルムとの接着には、熱硬化性接着剤を用いた。また、この金属樹脂複合材料Aにおいて、圧延銅箔側をa部側、PET樹脂フィルム側をb部側とする。
<Making of metal resin composite material A>
A metal resin composite material A having a two-layer structure by laminating a rolled copper foil (thickness 17 μm) having a roughened layer formed on the surface and a PET resin film (thickness 100 μm) (hereinafter, this laminated structure is referred to as “Cu / PET”. May be abbreviated). A thermosetting adhesive was used to bond the rolled copper foil and the PET resin film. Further, in the metal resin composite material A, the rolled copper foil side is the a part side and the PET resin film side is the b part side.

<金属樹脂複合材料Bの作製>
粗化処理層が表面に形成された圧延銅箔(厚み18μm)とPET樹脂フィルム(厚み100μm)とを積層させて2層構造の金属樹脂複合材料B(以下、この積層構造を「Cu/PET」と略すことがある)を作製した。なお、圧延銅箔とPET樹脂フィルムとの接着には、熱硬化性接着剤を用いた。また、この金属樹脂複合材料Bにおいて、圧延銅箔側をa部側、PET樹脂フィルム側をb部側とする。
<Making of metal resin composite material B>
A metal resin composite material B having a two-layer structure (hereinafter, this laminated structure is referred to as “Cu / PET”) by laminating a rolled copper foil (thickness 18 μm) having a roughened layer formed on the surface and a PET resin film (thickness 100 μm). May be abbreviated). A thermosetting adhesive was used to bond the rolled copper foil and the PET resin film. Further, in the metal resin composite material B, the rolled copper foil side is the a part side and the PET resin film side is the b part side.

<金属樹脂複合材料Cの作製>
粗化処理層が表面に形成された圧延銅箔(厚み35μm)とPET樹脂フィルム(厚み100μm)とを積層させて2層構造の金属樹脂複合材料C(以下、この積層構造を「Cu/PET」と略すことがある)を作製した。なお、圧延銅箔とPET樹脂フィルムとの接着には、熱硬化性接着剤を用いた。また、この金属樹脂複合材料Cにおいて、圧延銅箔側をa部側、PET樹脂フィルム側をb部側とする。
<Making of metal resin composite material C>
A metal resin composite material C having a two-layer structure (hereinafter, this laminated structure is referred to as “Cu / PET”) by laminating a rolled copper foil (thickness 35 μm) having a roughened layer formed on the surface and a PET resin film (thickness 100 μm). May be abbreviated). A thermosetting adhesive was used to bond the rolled copper foil and the PET resin film. Further, in the metal resin composite material C, the rolled copper foil side is the a part side and the PET resin film side is the b part side.

<金属樹脂複合材料Dの作製>
粗化処理層が表面に形成された3つの圧延銅箔(厚み18μm)と3つのPET樹脂フィルム(厚み100μm)とを交互に積層させて6層構造の金属樹脂複合材料D(以下、この積層構造を「Cu/PET/Cu/PET/Cu/PET」と略すことがある)を作製した。なお、圧延銅箔とPET樹脂フィルムとの接着には、熱硬化性接着剤を用いた。また、この金属樹脂複合材料Dにおいて、表層に露出した圧延銅箔側をa部側、表層に露出したPET樹脂フィルム側をb部側とする。
<Making of metal resin composite material D>
Three rolled copper foils (thickness 18 μm) and three PET resin films (thickness 100 μm) having a roughened layer formed on the surface are alternately laminated to form a six-layered metal resin composite material D (hereinafter, this laminate). The structure may be abbreviated as "Cu / PET / Cu / PET / Cu / PET"). A thermosetting adhesive was used to bond the rolled copper foil and the PET resin film. Further, in the metal resin composite material D, the rolled copper foil side exposed on the surface layer is referred to as the a part side, and the PET resin film side exposed on the surface layer is referred to as the b part side.

<金属樹脂複合材料Eの作製>
粗化処理層が表面に形成された3つの圧延銅箔(厚み18μm)と3つのPET樹脂フィルム(厚み50μm)とを交互に積層させて6層構造の金属樹脂複合材料E(以下、この積層構造を「Cu/PET/Cu/PET/Cu/PET」と略すことがある)を作製した。なお、圧延銅箔とPET樹脂フィルムとの接着には、熱硬化性接着剤を用いた。また、この金属樹脂複合材料Eにおいて、表層に露出した圧延銅箔側をa部側、表層に露出したPET樹脂フィルム側をb部側とする。
<Making of metal resin composite material E>
Three rolled copper foils (thickness 18 μm) and three PET resin films (thickness 50 μm) having a roughened layer formed on the surface are alternately laminated to form a six-layered metal resin composite material E (hereinafter, this laminate). The structure may be abbreviated as "Cu / PET / Cu / PET / Cu / PET"). A thermosetting adhesive was used to bond the rolled copper foil and the PET resin film. Further, in the metal resin composite material E, the rolled copper foil side exposed on the surface layer is referred to as the a part side, and the PET resin film side exposed on the surface layer is referred to as the b part side.

<金属樹脂複合材料Fの作製>
粗化処理層が表面に形成された2つの圧延銅箔(厚み35μm)と2つのPET樹脂フィルム(厚み50μm)とを交互に積層させて4層構造の金属樹脂複合材料F(以下、この積層構造を「Cu/PET/Cu/PET」と略すことがある)を作製した。なお、圧延銅箔とPET樹脂フィルムとの接着には、熱硬化性接着剤を用いた。また、この金属樹脂複合材料Fにおいて、表層に露出した圧延銅箔側をa部側、表層に露出したPET樹脂フィルム側をb部側とする。
<Making of metal resin composite material F>
Two rolled copper foils (thickness 35 μm) and two PET resin films (thickness 50 μm) having a roughened layer formed on the surface are alternately laminated to form a four-layered metal resin composite material F (hereinafter, this laminate). The structure may be abbreviated as "Cu / PET / Cu / PET"). A thermosetting adhesive was used to bond the rolled copper foil and the PET resin film. Further, in the metal resin composite material F, the rolled copper foil side exposed on the surface layer is referred to as the a part side, and the PET resin film side exposed on the surface layer is referred to as the b part side.

上記のようにして作製した金属樹脂複合材料A〜Fの積層構造から算出したTma/Tra及びTmb/Trbの値を表1に示す。
また、上記の金属樹脂複合材料A〜Fを用いて以下の評価を行った。
Table 1 shows the values of Tma / Tra and Tmb / Trb calculated from the laminated structure of the metal resin composite materials A to F produced as described above.
Moreover, the following evaluation was performed using the above-mentioned metal resin composite materials A to F.

<成形加工性>
上記の金属樹脂複合材料A〜Fを用い、フランジ部が90°の角筒状に絞り加工を行った。絞り加工では、金属樹脂複合材料A〜Fのそれぞれについて、パンチによる押圧力を付与する面にa部側及びb部側を配置して2回ずつ行った。
この評価において、同種の金属樹脂複合材料を用いた成形方法による成形加工性の結果を対比した場合に、フランジ部のスプリングバックが小さくなった成形方法を○、大きくなった成形方法を×と表す。例えば、図5に示されるように、金属樹脂複合材料Aにおいて、パンチによる押圧力を付与する面にa部側を配置して成形された実施例1の成形品(金属樹脂複合部品)の方が、押圧力を付与する面にb部側を配置して成形された比較例1の成形品に比して、明らかにフランジ部のスプリングバックが小さくなった。そのため、実施例1の成形品の加工成形性を○、比較例1の成形品の加工成形性を×とそれぞれ評価した。
<Moldability>
Using the above-mentioned metal resin composite materials A to F, the flange portion was drawn into a square cylinder having a 90 ° angle. In the drawing process, each of the metal resin composite materials A to F was performed twice by arranging the a part side and the b part side on the surface to which the pressing force by the punch was applied.
In this evaluation, when the results of molding processability by the molding method using the same type of metal resin composite material are compared, the molding method in which the springback of the flange portion is reduced is indicated by ◯, and the forming method in which the spring back of the flange portion is increased is indicated by ×. .. For example, as shown in FIG. 5, in the metal resin composite material A, the molded product (metal resin composite part) of Example 1 formed by arranging the a part side on the surface to which the pressing force by the punch is applied. However, the springback of the flange portion was clearly smaller than that of the molded product of Comparative Example 1 in which the b portion side was arranged on the surface to which the pressing force was applied. Therefore, the process moldability of the molded product of Example 1 was evaluated as ◯, and the process moldability of the molded product of Comparative Example 1 was evaluated as x.

<W曲げ試験>
上記の金属樹脂複合材料A〜Fから幅10mm×長さ60mmの試験片を切り出した。この試験片について、常温下、加工速度900mm/分、曲げ半径0mm、荷重2kN、下死点での保持時間2秒にて90°W曲げ加工を行った。W曲げ加工した試験片の山となる曲げ加工部(中央部)において、曲げ部の角度を測定し、90°からのずれ(90°−測定角度)、すなわち、スプリングバックの大きさを求めた。
上記の各評価結果を表1に示す。
<W bending test>
A test piece having a width of 10 mm and a length of 60 mm was cut out from the above-mentioned metal-resin composite materials A to F. This test piece was bent at 90 ° W at room temperature at a processing speed of 900 mm / min, a bending radius of 0 mm, a load of 2 kN, and a holding time of 2 seconds at bottom dead center. The angle of the bent portion was measured at the bent portion (center portion) which is the mountain of the W-bent test piece, and the deviation from 90 ° (90 ° − measurement angle), that is, the size of the springback was determined. ..
The results of each of the above evaluations are shown in Table 1.

Figure 2021088099
Figure 2021088099

表1に示されるように、金属樹脂複合材料Aは、Tma/Tra>Tmb/Trbであった。そのため、押圧力の付与面にb部側を配置して成形した場合(比較例1)に比べて、押圧力の付与面にa部側を配置して成形した場合(実施例1)の方が、成形加工性及びW曲げ試験の結果が良好であった。
金属樹脂複合材料Bは、Tma/Tra>Tmb/Trbであったため、押圧力の付与面にb部側を配置して成形した場合(比較例2)に比べて、押圧力の付与面にa部側を配置して成形した場合(実施例2)の方が、成形加工性及びW曲げ試験の結果が良好であった。
金属樹脂複合材料Cは、Tma/Tra>Tmb/Trbであったため、押圧力の付与面にb部側を配置して成形した場合(比較例3)に比べて、押圧力の付与面にa部側を配置して成形した場合(実施例3)の方が、成形加工性及びW曲げ試験の結果が良好であった。
As shown in Table 1, the metal-resin composite material A was Tma / Tra> Tmb / Trb. Therefore, compared to the case where the b portion side is arranged on the pressing force applying surface and molded (Comparative Example 1), the case where the a portion side is arranged on the pressing force applying surface and molded (Example 1). However, the molding processability and the results of the W bending test were good.
Since the metal-resin composite material B had Tma / Tra> Tmb / Trb, the pressing force applied surface was a as compared with the case where the b portion side was arranged on the pressing force applying surface (Comparative Example 2). When the part side was arranged and molded (Example 2), the molding processability and the result of the W bending test were better.
Since the metal-resin composite material C had Tma / Tra> Tmb / Trb, the pressing force applied surface was a as compared with the case where the b portion side was arranged on the pressing force applying surface (Comparative Example 3). When the part side was arranged and molded (Example 3), the molding processability and the result of the W bending test were better.

金属樹脂複合材料Dは、Tma/Tra>Tmb/Trbであったため、押圧力の付与面にb部側を配置して成形した場合(比較例4)に比べて、押圧力の付与面にa部側を配置して成形した場合(実施例4)の方が、成形加工性及びW曲げ試験の結果が良好であった。
金属樹脂複合材料Eは、Tma/Tra>Tmb/Trbであったため、押圧力の付与面にb部側を配置して成形した場合(比較例5)に比べて、押圧力の付与面にa部側を配置して成形した場合(実施例5)の方が、成形加工性及びW曲げ試験の結果が良好であった。
金属樹脂複合材料Eは、Tma/Tra=Tmb/Trbであり、表層に金属層が位置するのがa部側であった。そのため、押圧力の付与面にb部側を配置して成形した場合(比較例6)に比べて、押圧力の付与面にa部側を配置して成形した場合(実施例6)の方が、成形加工性及びW曲げ試験の結果が良好であった。
Since the metal-resin composite material D had Tma / Tra> Tmb / Trb, the pressing force applied surface was a as compared with the case where the b portion side was arranged on the pressing force applying surface (Comparative Example 4). When the part side was arranged and molded (Example 4), the molding processability and the result of the W bending test were better.
Since the metal-resin composite material E had Tma / Tra> Tmb / Trb, the pressing force applied surface was a as compared with the case where the b portion side was arranged on the pressing force applying surface (Comparative Example 5). When the part side was arranged and molded (Example 5), the molding processability and the result of the W bending test were better.
The metal-resin composite material E had Tma / Tra = Tmb / Trb, and the metal layer was located on the surface layer on the a-part side. Therefore, compared to the case where the b portion side is arranged on the pressing force applying surface and molded (Comparative Example 6), the case where the a portion side is arranged on the pressing force applying surface and molded (Example 6). However, the molding processability and the results of the W bending test were good.

以上の結果からわかるように、本発明の実施形態によれば、スプリングバックを抑制可能な金属樹脂複合材料の成形方法を提供することができる。また、本発明の実施形態によれば、寸法精度が高い金属樹脂複合部品及びその製造方法を提供することができる。 As can be seen from the above results, according to the embodiment of the present invention, it is possible to provide a method for molding a metal resin composite material capable of suppressing springback. Further, according to the embodiment of the present invention, it is possible to provide a metal resin composite part having high dimensional accuracy and a method for manufacturing the same.

10 金属層
20 樹脂層
30 パンチ
10 Metal layer 20 Resin layer 30 Punch

Claims (17)

金属層と樹脂層とが交互に積層された積層構造を有し、前記積層構造が非対称である金属樹脂複合材料の成形方法であって、
前記金属樹脂複合材料の全体層厚みの半分の位置でa部及びb部に分割して、前記a部に存在する前記樹脂層の合計層厚みをTra、前記a部に存在する前記金属層の合計層厚みをTma、前記b部に存在する前記樹脂層の合計層厚みをTrb、及び前記b部に存在する前記金属層の合計層厚みをTmbとし、
Tma/Tra>Tmb/Trbの場合に、押圧力を付与する面に前記a部側を配置して成形を行い、
Tma/Tra<Tmb/Trbの場合に、押圧力を付与する面に前記b部側を配置して成形を行い、
Tma/Tra=Tmb/Trbの場合に、押圧力を付与する面に、前記a部又は前記b部の中で表層に前記金属層が位置する側又は前記金属層が近い側を配置して成形を行う、金属樹脂複合材料の成形方法。
A method for molding a metal-resin composite material having a laminated structure in which metal layers and resin layers are alternately laminated, and the laminated structure is asymmetrical.
The metal resin composite material is divided into a part and b part at a position half of the total layer thickness, and the total layer thickness of the resin layer existing in the a part is Tra, and the total layer thickness of the metal layer existing in the a part is The total layer thickness is Tma, the total layer thickness of the resin layer existing in the b portion is Trb, and the total layer thickness of the metal layer existing in the b portion is Tmb.
When Tma / Tra> Tmb / Trb, the a part side is arranged on the surface to which the pressing force is applied to perform molding.
In the case of Tma / Tra <Tmb / Trb, the b portion side is arranged on the surface to which the pressing force is applied to perform molding.
In the case of Tma / Tra = Tmb / Trb, the side where the metal layer is located on the surface layer or the side close to the metal layer in the a part or the b part is arranged on the surface to which the pressing force is applied and molded. A method for molding a metal-resin composite material.
前記成形が絞り加工によって行われる、請求項1に記載の金属樹脂複合材料の成形方法。 The method for molding a metal-resin composite material according to claim 1, wherein the molding is performed by drawing. 前記金属層が銅箔層である、請求項1又は2に記載の金属樹脂複合材料の成形方法。 The method for molding a metal-resin composite material according to claim 1 or 2, wherein the metal layer is a copper foil layer. 前記樹脂層がPET樹脂層である、請求項1〜3のいずれか一項に記載の金属樹脂複合材料の成形方法。 The method for molding a metal resin composite material according to any one of claims 1 to 3, wherein the resin layer is a PET resin layer. 1つの前記金属層の厚みが10〜50μmである、請求項1〜4のいずれか一項に記載の金属樹脂複合材料の成形方法。 The method for molding a metal-resin composite material according to any one of claims 1 to 4, wherein the thickness of one metal layer is 10 to 50 μm. 1つの前記樹脂層の厚みが20〜200μmである、請求項1〜5のいずれか一項に記載の金属樹脂複合材料の成形方法。 The method for molding a metal-resin composite material according to any one of claims 1 to 5, wherein the thickness of one resin layer is 20 to 200 μm. 前記押圧力を付与する面に前記金属層が配置されている、請求項1〜6のいずれか一項に記載の金属樹脂複合材料の成形方法。 The method for molding a metal-resin composite material according to any one of claims 1 to 6, wherein the metal layer is arranged on the surface to which the pressing force is applied. 前記金属層と前記樹脂層とが接着剤によって接着されている、請求項1〜7のいずれか一項に記載の金属樹脂複合材料の成形方法。 The method for molding a metal-resin composite material according to any one of claims 1 to 7, wherein the metal layer and the resin layer are adhered with an adhesive. 請求項1〜8のいずれか一項に記載の金属樹脂複合材料の成形方法を含む、金属樹脂複合部品の製造方法。 A method for manufacturing a metal-resin composite part, which comprises the method for molding a metal-resin composite material according to any one of claims 1 to 8. 金属層と樹脂層とが交互に積層された積層構造を有し、前記積層構造が非対称である金属樹脂複合材料から形成された金属樹脂複合部品であって、
前記金属樹脂複合材料の全体層厚みの半分の位置でa部及びb部に分割して、前記a部に存在する前記樹脂層の合計層厚みをTra、前記a部に存在する前記金属層の合計層厚みをTma、前記b部に存在する前記樹脂層の合計層厚みをTrb、及び前記b部に存在する前記金属層の合計層厚みをTmbとし、
Tma/Tra>Tmb/Trbの場合に、押圧力が付与された面に前記a部側が配置され、
Tma/Tra<Tmb/Trbの場合に、押圧力が付与された面に前記b部側が配置され、
Tma/Tra=Tmb/Trbの場合に、押圧力が付与された面に、前記a部又は前記b部の中で表層に前記金属層が位置する側又は前記金属層が近い側が配置される、金属樹脂複合部品。
A metal-resin composite part formed of a metal-resin composite material having a laminated structure in which metal layers and resin layers are alternately laminated, and the laminated structure is asymmetrical.
The metal resin composite material is divided into a part and b part at a position half of the total layer thickness, and the total layer thickness of the resin layer existing in the a part is Tra, and the total layer thickness of the metal layer existing in the a part is The total layer thickness is Tma, the total layer thickness of the resin layer existing in the b portion is Trb, and the total layer thickness of the metal layer existing in the b portion is Tmb.
When Tma / Tra> Tmb / Trb, the a part side is arranged on the surface to which the pressing force is applied.
In the case of Tma / Tra <Tmb / Trb, the b portion side is arranged on the surface to which the pressing force is applied.
In the case of Tma / Tra = Tmb / Trb, the side where the metal layer is located on the surface layer or the side close to the metal layer is arranged on the surface to which the pressing force is applied. Metal resin composite parts.
前記金属層が銅箔層である、請求項10に記載の金属樹脂複合部品。 The metal-resin composite component according to claim 10, wherein the metal layer is a copper foil layer. 前記樹脂層がPET樹脂層である、請求項10又は11に記載の金属樹脂複合部品。 The metal resin composite component according to claim 10 or 11, wherein the resin layer is a PET resin layer. 1つの前記金属層の厚みが10〜50μmである、請求項10〜12のいずれか一項に記載の金属樹脂複合部品。 The metal-resin composite component according to any one of claims 10 to 12, wherein the thickness of one metal layer is 10 to 50 μm. 1つの前記樹脂層の厚みが20〜200μmである、請求項10〜13のいずれか一項に記載の金属樹脂複合部品。 The metal-resin composite component according to any one of claims 10 to 13, wherein the thickness of one resin layer is 20 to 200 μm. 前記押圧力が付与された面に前記金属層が配置されている、請求項10〜14のいずれか一項に記載の金属樹脂複合部品。 The metal-resin composite component according to any one of claims 10 to 14, wherein the metal layer is arranged on the surface to which the pressing force is applied. 前記金属層と前記樹脂層とが接着剤によって接着されている、請求項10〜15のいずれか一項に記載の金属樹脂複合部品。 The metal-resin composite component according to any one of claims 10 to 15, wherein the metal layer and the resin layer are adhered to each other by an adhesive. 電磁波シールド筐体である、請求項10〜16のいずれか一項に記載の金属樹脂複合部品。 The metal-resin composite component according to any one of claims 10 to 16, which is an electromagnetic wave shield housing.
JP2019219058A 2019-12-03 2019-12-03 Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same Pending JP2021088099A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019219058A JP2021088099A (en) 2019-12-03 2019-12-03 Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same
TW109137203A TWI824190B (en) 2019-12-03 2020-10-27 Molding method of metal-resin composite material, metal-resin composite parts and manufacturing method thereof
KR1020200164367A KR102304040B1 (en) 2019-12-03 2020-11-30 Forming method of metal resin composite material, metal resin composite component and its manufacturing method
CN202011380324.4A CN112895629B (en) 2019-12-03 2020-11-30 Method for molding metal-resin composite material, and metal-resin composite component and method for manufacturing same
JP2024016628A JP2024040281A (en) 2019-12-03 2024-02-06 Molding method of metal-resin composite material, metal-resin composite parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219058A JP2021088099A (en) 2019-12-03 2019-12-03 Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024016628A Division JP2024040281A (en) 2019-12-03 2024-02-06 Molding method of metal-resin composite material, metal-resin composite parts and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021088099A true JP2021088099A (en) 2021-06-10

Family

ID=76111352

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019219058A Pending JP2021088099A (en) 2019-12-03 2019-12-03 Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same
JP2024016628A Pending JP2024040281A (en) 2019-12-03 2024-02-06 Molding method of metal-resin composite material, metal-resin composite parts and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024016628A Pending JP2024040281A (en) 2019-12-03 2024-02-06 Molding method of metal-resin composite material, metal-resin composite parts and manufacturing method thereof

Country Status (4)

Country Link
JP (2) JP2021088099A (en)
KR (1) KR102304040B1 (en)
CN (1) CN112895629B (en)
TW (1) TWI824190B (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235396B2 (en) 2002-03-29 2009-03-11 真和工業株式会社 Inverter cover
JP4720172B2 (en) * 2004-12-10 2011-07-13 ソニー株式会社 battery
EP2416639B1 (en) * 2009-03-31 2018-11-28 JX Nippon Mining & Metals Corporation Electromagnetic shielding material and process for producing electromagnetic shielding material
KR101630219B1 (en) * 2010-12-02 2016-06-14 도레이 카부시키가이샤 Method for producing metal composite, and chassis for electronic equipment
JP6289914B2 (en) * 2014-01-17 2018-03-07 東洋鋼鈑株式会社 Resin film for metal plate lamination, resin laminated metal plate, container and container lid using the same
WO2016021279A1 (en) * 2014-08-05 2016-02-11 昭和電工株式会社 Adhesive for laminating metal foil to resin film, laminate obtained using said composition, packaging material for battery casing, and battery case
JP6379071B2 (en) * 2015-06-15 2018-08-22 Jx金属株式会社 Electromagnetic shielding material
JP6832102B2 (en) * 2015-10-27 2021-02-24 昭和電工パッケージング株式会社 Small electronic equipment case and its molding method and aluminum alloy rolled laminated plate material for small electronic equipment case
JP6826370B2 (en) * 2016-03-18 2021-02-03 藤森工業株式会社 Manufacturing method of resin-coated metal laminate and manufacturing method of battery exterior
JP6341948B2 (en) * 2016-03-31 2018-06-13 Jx金属株式会社 Electromagnetic shielding material
JP6883456B2 (en) * 2017-03-31 2021-06-09 Jx金属株式会社 Manufacturing method of laminates and molded products
CN108696987B (en) * 2017-03-31 2021-11-30 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
TW201903013A (en) * 2017-03-31 2019-01-16 日商新日鐵住金化學股份有限公司 Metal-fiber reinforced resin material composite and method of producing the same
JP2019150976A (en) * 2018-03-01 2019-09-12 パナソニックIpマネジメント株式会社 Processing method of decorative metal component and decorative metal component

Also Published As

Publication number Publication date
KR102304040B1 (en) 2021-09-23
JP2024040281A (en) 2024-03-25
CN112895629A (en) 2021-06-04
CN112895629B (en) 2022-12-30
KR20210069577A (en) 2021-06-11
TW202142379A (en) 2021-11-16
TWI824190B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR102576950B1 (en) Laminated body and method of producing shaped article
JP6379071B2 (en) Electromagnetic shielding material
KR101990243B1 (en) Electromagnetic wave shielding member
TWI679106B (en) Electromagnetic wave shielding material
JP2021088099A (en) Molding method of metal resin composite material, metal resin composite component, and manufacturing method of the same
CN108886883B (en) Electromagnetic wave shielding material
TWI790797B (en) Electromagnetic wave shielding materials, covering materials or outer packaging materials for electrical equipment or electronic equipment, and electrical equipment or electronic equipment
US10272646B2 (en) Electromagnetic shielding material
JP2021111705A (en) Copper foil composite material, electromagnetic wave shielding enclosure, and manufacturing method of the same
JP2023154282A (en) Electromagnetic wave shielding laminate, coating material or exterior material, electrical/electronic equipment, and manufacturing method of electromagnetic wave shielding laminate
JP2021111704A (en) Electromagnetic wave shield material, electromagnetic wave shield housing, and manufacturing method thereof
JP2016076664A (en) Electromagnetic wave shield material
JP2003001755A (en) Metal laminated sheet excellent in rigidity and housing constructed using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231205