JP2021087328A - Unmanned carrier and unmanned transportation system - Google Patents

Unmanned carrier and unmanned transportation system Download PDF

Info

Publication number
JP2021087328A
JP2021087328A JP2019216465A JP2019216465A JP2021087328A JP 2021087328 A JP2021087328 A JP 2021087328A JP 2019216465 A JP2019216465 A JP 2019216465A JP 2019216465 A JP2019216465 A JP 2019216465A JP 2021087328 A JP2021087328 A JP 2021087328A
Authority
JP
Japan
Prior art keywords
power receiving
power
unit
automatic guided
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019216465A
Other languages
Japanese (ja)
Inventor
秀樹 長末
Hideki NAGASUE
秀樹 長末
昌昭 中川
Masaaki Nakagawa
昌昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Seiki Co Ltd filed Critical DMG Mori Seiki Co Ltd
Priority to JP2019216465A priority Critical patent/JP2021087328A/en
Publication of JP2021087328A publication Critical patent/JP2021087328A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To perform power supply from a power supply device to a power receiving part of a carrier vehicle body without damaging, ss much as possible, degree of freedom of a device layout on a floor surface on which the carrier vehicle body travels, in an unmanned guided vehicle including a power receiving device having a power receiving part to receive power from a power supplying device and a power storage part to store power supplied from the power receiving part by cooperation of the carrying vehicle body and a power feeding device mounted on the carrying vehicle body and provided at a predetermined position.SOLUTION: A power receiving device 60 includes a plurality of power receiving coils 71a and 72a.SELECTED DRAWING: Figure 1

Description

本発明は、搬送車本体と、該搬送車本体に取付けられ、所定位置に設けられた給電装置との連携によって該給電装置から受電する受電部及び該受電部から供給される電力を蓄電する蓄電部を有する受電装置とを備えた無人搬送車、並びに、該無人搬送車を備えた無人搬送システムに関する。 According to the present invention, a power receiving unit that receives power from the power supply device and a power storage unit that stores electric power supplied from the power receiving unit in cooperation with the vehicle body and a power supply device attached to the vehicle body and provided at a predetermined position. The present invention relates to an automatic guided vehicle provided with a power receiving device having a unit, and an automatic guided vehicle provided with the automatic guided vehicle.

従来、上述した無人搬送車の一例として、特開2012−239334号公報(下記特許文献1)に開示された無人搬送車が知られている。 Conventionally, as an example of the above-mentioned automatic guided vehicle, an automatic guided vehicle disclosed in Japanese Patent Application Laid-Open No. 2012-239334 (Patent Document 1 below) is known.

この無人搬送車では、受電部は搬送車本体の一側面に一つだけ設けられている。給電装置は、搬送車本体が所定の停車エリアに停止した際に該一つの受電コイルと対峙する地上側給電コイルを有している。受電コイルは、地上側給電コイルが発生する交流磁界に基づく電磁誘導によって交流電力を非接触で受電して受電回路に出力する。受電回路は、受電コイルから入力される交流電力を直流電力に変換して蓄電部に供給する。そうして、給電装置は、所定の停車エリアに停止した無人搬送車に対して非接触給電を行うように構成されている。 In this automatic guided vehicle, only one power receiving unit is provided on one side of the main body of the automatic guided vehicle. The power feeding device has a ground-side power feeding coil that faces the one power receiving coil when the transport vehicle main body stops in a predetermined stop area. The power receiving coil receives AC power in a non-contact manner by electromagnetic induction based on an AC magnetic field generated by the ground side feeding coil, and outputs the power to the power receiving circuit. The power receiving circuit converts the AC power input from the power receiving coil into DC power and supplies it to the power storage unit. Then, the power feeding device is configured to perform non-contact power feeding to the automatic guided vehicle stopped in the predetermined stop area.

尚、給電装置による給電方式として、上述した非接触給電方式の他に、給電装置に設けられた給電用電極と搬送車本体に設けられた受電用電極とを接触させて給電を行う接触給電方式を採用する場合もある。 In addition to the non-contact power feeding method described above, the power feeding method using the power feeding device is a contact power feeding method in which the power feeding electrode provided in the power feeding device and the power receiving electrode provided in the main body of the transport vehicle are brought into contact with each other to supply power. May be adopted.

特開2012−239334号公報Japanese Unexamined Patent Publication No. 2012-239334

上述した従来の無人搬送車のように受電部を搬送車本体の側面に一つだけ設ける構成では、受電部の高さ位置に合せて地上側給電コイル等を配置する必要がある。このため、例えば給電装置を床面から所定の高さ以下のスペースに配置したい場合でも、受電部が床面から高い位置にあると、給電装置を該スペース内に収めることができず別の場所に配置せざるを得なくなる。この結果、無人搬送車が走行する床面上の装置レイアウトが制限されるという問題が生じる。 In a configuration in which only one power receiving unit is provided on the side surface of the automatic guided vehicle as in the conventional automatic guided vehicle described above, it is necessary to arrange the ground-side power feeding coil or the like according to the height position of the power receiving unit. Therefore, for example, even if it is desired to arrange the power feeding device in a space below a predetermined height from the floor surface, if the power receiving unit is at a high position from the floor surface, the power feeding device cannot be accommodated in the space and is placed in another place. I have no choice but to place it in. As a result, there arises a problem that the layout of the device on the floor on which the automatic guided vehicle travels is limited.

また、仮に受電部の高さに応じたスペースに給電装置を配置することができたとしても、従来の無人搬送車のように受電部が一つしかないと、無人搬送車を受電位置(受電部と給電装置とが連携可能な位置)に移動させる際にその移動経路(例えば旋回方向等)が制限される。無人搬送車の移動経路が制限されると、無人搬送車との干渉を回避するために周辺の装置レイアウトが制限されるという問題が生じる。 Even if the power supply device can be arranged in a space corresponding to the height of the power receiving unit, if there is only one power receiving unit as in the conventional automatic guided vehicle, the automatic guided vehicle will be placed in the power receiving position (power receiving position). The movement path (for example, turning direction) is restricted when the unit and the power feeding device are moved to a position where they can cooperate with each other. When the movement route of the automatic guided vehicle is restricted, there arises a problem that the layout of peripheral devices is restricted in order to avoid interference with the automatic guided vehicle.

本発明は、以上の実情に鑑みてなされたものであって、搬送車本体が走行する床面上の装置レイアウトの自由度を極力損なわずに、給電装置から搬送車本体の受電部に給電可能な無人搬送車及び無人搬送システムを提供することを、その目的とする。 The present invention has been made in view of the above circumstances, and power can be supplied from the power feeding device to the power receiving portion of the transport vehicle body without impairing the degree of freedom in the layout of the device on the floor on which the transport vehicle body travels. The purpose is to provide automatic guided vehicles and unmanned transportation systems.

前記課題を解決するための本発明の一局面では、
搬送車本体と、該搬送車本体に取付けられ、所定位置に設けられた給電装置との連携によって該給電装置から受電する受電部及び該受電部から供給される電力を蓄電する蓄電部を有する受電装置と、を備えた無人搬送車であって、
前記受電装置は、前記受電部を複数備えている。
In one aspect of the present invention for solving the above problems,
A power receiving unit having a power receiving unit that receives power from the power supply device and a power storage unit that stores power supplied from the power receiving unit in cooperation with the vehicle body and a power supply device attached to the vehicle body and provided at a predetermined position. An automated guided vehicle equipped with a device
The power receiving device includes a plurality of the power receiving units.

この無人搬送車によれば、複数の受電部のうちの一の受電部が所定位置に設けられた給電装置との連携(例えば非接触給電や接触給電による連携)によって該給電装置から電力を受電し、該一の受電部が受電した電力は蓄電部に供給されて蓄電される。 According to this automatic guided vehicle, one of a plurality of power receiving units receives power from the power supply device by cooperation with a power supply device provided at a predetermined position (for example, cooperation by non-contact power supply or contact power supply). Then, the electric power received by the one power receiving unit is supplied to the power storage unit and stored.

この無人搬送車では、受電部が複数設けられているので、例えば各受電部の高さを異ならせることで、給電装置の設置高さにバリエーションを持たせることができる。よって、受電部が一つの場合に比べて給電装置のレイアウト自由度を高めることができる。また、各受電部の高さを異ならせる以外に、例えば各受電部の前後方向位置や左右方向位置を異ならせることで、搬送車本体を、その受電部と給電装置とが連携可能な位置(以下、受電位置という)に移動させる際の移動経路の自由度を高めることができる。延いては、搬送車本体と干渉しないように配置される周辺装置のレイアウト自由度を高めることができる。 Since this automatic guided vehicle is provided with a plurality of power receiving units, for example, by making the height of each power receiving unit different, it is possible to give variation in the installation height of the power feeding device. Therefore, the degree of freedom in layout of the power feeding device can be increased as compared with the case where there is only one power receiving unit. In addition to making the height of each power receiving part different, for example, by making the position in the front-rear direction and the position in the left-right direction of each power receiving part different, the carrier body can be moved to a position where the power receiving part and the power feeding device can cooperate ( Hereinafter, it is possible to increase the degree of freedom of the movement route when moving to the power receiving position). As a result, the degree of freedom in layout of peripheral devices arranged so as not to interfere with the main body of the transport vehicle can be increased.

この無人搬送車において、前記搬送車本体は、所定の一方向である前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回移動可能に構成されており、前記受電装置は、複数の前記受電部として、少なくとも第一受電部及び第二受電部を含み、前記第二受電部が、前記第一受電部に対して、前記搬送車本体を基準とする左右方向位置が異なる位置に配置されている態様を採用することができる。 In this automatic guided vehicle, the main body of the automatic guided vehicle is configured to be linearly movable in the front-rear direction, which is a predetermined direction, and to be able to swivel and move in the left-right direction with reference to the front-rear direction. The plurality of power receiving units include at least a first power receiving unit and a second power receiving unit, and positions where the second power receiving unit is different from the first power receiving unit in the left-right direction with respect to the vehicle body. It is possible to adopt the embodiment arranged in.

この態様によれば、複数の受電部には、搬送車本体を基準とする左右方向位置が異なる第一受電部及び第二受電部が含まれているので、搬送車本体を受電位置に移動させる際の搬送車本体の旋回方向、旋回位置及び旋回回数等の選択自由度が高まる。この結果、搬送車本体を受電位置に移動させる際の移動経路の自由度が高まる。そして、このように搬送車本体の受電位置までの移動経路の自由度が高まることで、該移動経路と干渉しないように配置される周辺装置のレイアウト自由度が高まる。 According to this aspect, since the plurality of power receiving units include the first power receiving unit and the second power receiving unit having different positions in the left-right direction with respect to the transport vehicle main body, the transport vehicle main body is moved to the power receiving position. The degree of freedom in selecting the turning direction, turning position, number of turns, etc. of the transport vehicle body is increased. As a result, the degree of freedom of the movement route when moving the transport vehicle main body to the power receiving position is increased. Then, by increasing the degree of freedom of the movement path to the power receiving position of the transport vehicle body in this way, the degree of freedom of layout of the peripheral devices arranged so as not to interfere with the movement path is increased.

また、この無人搬送車において、前記搬送車本体は、所定の一方向である前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回移動可能に構成されており、前記受電装置は、複数の前記受電部として、少なくとも第一受電部及び第二受電部を含み、前記第二受電部が、前記第一受電部に対して、前記搬送車本体を基準とする前後方向位置が異なる位置に配置されている態様を採用することができる。 Further, in this automatic guided vehicle, the main body of the automatic guided vehicle is configured to be linearly movable in the front-rear direction, which is a predetermined one direction, and to be swivelly moved in the left-right direction with reference to the front-rear direction. The plurality of power receiving units include at least a first power receiving unit and a second power receiving unit, and the position of the second power receiving unit in the front-rear direction with respect to the first power receiving unit with respect to the vehicle body is It is possible to adopt an embodiment in which they are arranged at different positions.

この態様によれば、複数の受電部には、搬送車本体を基準とする前後方向位置が異なる第一受電部及び第二受電部が含まれているので、搬送車本体を受電位置に移動させる際の移動経路の自由度が高まる。延いては、搬送車本体の移動経路と干渉しないように配置される周辺装置のレイアウト自由度が高まる。 According to this aspect, since the plurality of power receiving units include the first power receiving unit and the second power receiving unit having different positions in the front-rear direction with respect to the transport vehicle main body, the transport vehicle main body is moved to the power receiving position. The degree of freedom of the movement route is increased. As a result, the degree of freedom in layout of peripheral devices arranged so as not to interfere with the movement path of the main body of the transport vehicle is increased.

また、この無人搬送車において、前記搬送車本体は、所定の一方向である前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回移動可能に構成されており、前記搬送車本体は、前後方向に対向する一対の外壁と左右方向に対向する一対の外壁とを有していて平面視で矩形状をなしており、前記受電装置は、前記第一受電部及び第二受電部がそれぞれ、前記搬送車本体における前後左右の外壁のうち異なる二つの外壁に取付けられている態様を採用することができる。 Further, in this unmanned transport vehicle, the transport vehicle main body is configured to be linearly movable in the front-rear direction, which is a predetermined direction, and to be able to swivel and move in the left-right direction with reference to the front-rear direction. The main body has a pair of outer walls facing each other in the front-rear direction and a pair of outer walls facing each other in the left-right direction, and has a rectangular shape in a plan view. It is possible to adopt a mode in which the portions are attached to two different outer walls of the front, rear, left and right outer walls of the transport vehicle main body.

この態様によれば、第一受電部及び第二受電部を、同じ一つの外壁に設ける場合に比べて、搬送車本体が受電位置に移動する際の移動経路の自由度を高めることができる。延いては、搬送車本体の移動経路と干渉しないように配置される周辺装置のレイアウト自由度を高めることができる According to this aspect, the degree of freedom of the movement path when the transport vehicle main body moves to the power receiving position can be increased as compared with the case where the first power receiving unit and the second power receiving unit are provided on the same one outer wall. As a result, the degree of freedom in layout of peripheral devices arranged so as not to interfere with the movement path of the transport vehicle body can be increased.

また、この無人搬送車において、前記受電装置は、前記第一受電部及び第二受電部がそれぞれ、前記搬送車本体における互いに対向する外壁に取付けられている態様を採用することができる。 Further, in the automatic guided vehicle, the power receiving device can adopt a mode in which the first power receiving unit and the second power receiving unit are attached to the outer walls of the automatic guided vehicle body facing each other.

この態様によれば、搬送車本体を受電位置に移動させる際の搬送車本体の旋回方向、旋回位置及び旋回回数等の選択自由度を可及的に高めることができる。延いては、搬送車本体の移動経路の自由度を高めて周辺装置のレイアウト自由度を高めることができる。また、例えば、搬送車本体の移動経路が例えば直線状である場合に、該移動経路を挟んでその両側に給電装置を設けることができる。よって、無人搬送車の周辺装置のレイアウト自由度を可及的に高めることができる。 According to this aspect, it is possible to increase the degree of freedom in selecting the turning direction, turning position, number of turns, etc. of the transport vehicle body when moving the transport vehicle body to the power receiving position as much as possible. As a result, the degree of freedom of the movement path of the main body of the transport vehicle can be increased to increase the degree of freedom of layout of peripheral devices. Further, for example, when the moving path of the main body of the transport vehicle is linear, for example, power feeding devices can be provided on both sides of the moving path. Therefore, the degree of freedom in layout of peripheral devices of the automatic guided vehicle can be increased as much as possible.

また、この無人搬送車において、前記受電装置は、前記蓄電部が一つであり、複数の前記受電部のうち受電中の一の受電部と前記蓄電部とを接続する配電回路部を備えている態様を採用することができる。 Further, in this automatic guided vehicle, the power receiving device has one power storage unit, and includes a power distribution circuit unit that connects one of the plurality of power receiving units that is receiving power and the power storage unit. A mode can be adopted.

この態様によれば、複数の受電部のうちの一の受電部が給電装置から電力を受電すると、受電中の該受電部が配電回路によって蓄電部に接続される。 According to this aspect, when one of the plurality of power receiving units receives power from the power feeding device, the power receiving unit being received is connected to the power storage unit by the power distribution circuit.

このように配電回路部を設けることで、複数の受電部のうち一の受電部にて受電した電力の全てを蓄電部に供給することができる。よって、一の受電部にて受電した電力の一部が他の受電部に流れて蓄電部への給電効率が低下するのを防止することができる。 By providing the power distribution circuit unit in this way, it is possible to supply all of the power received by one of the plurality of power receiving units to the power storage unit. Therefore, it is possible to prevent a part of the electric power received by one power receiving unit from flowing to the other power receiving unit and lowering the power supply efficiency to the power storage unit.

また、この無人搬送車において、前記搬送車本体の車輪の操舵角を変更する操舵部と、前記搬送車本体と前記給電装置との位置関係を取得する位置関係取得部と、前記位置関係取得部が取得した位置関係を基に、前記搬送車本体における所定条件を満たす移動経路を算出する経路算出部と、前記経路算出部が算出した前記移動経路に沿って前記搬送車本体が移動するように前記操舵部を制御する制御部とを備えている態様を採用することができる。 Further, in this automatic guided vehicle, a steering unit that changes the steering angle of the wheels of the vehicle body, a position relationship acquisition unit that acquires the positional relationship between the vehicle body and the power feeding device, and the position relationship acquisition unit. A route calculation unit that calculates a movement route that satisfies a predetermined condition in the transport vehicle main body based on the positional relationship acquired by the vehicle, and the transport vehicle main body that moves along the movement route calculated by the route calculation unit. An embodiment including a control unit that controls the steering unit can be adopted.

この態様によれば、無人搬送車の走行時には、搬送車本体と給電装置との位置関係が位置関係取得部により取得され、該位置関係取得部が取得した位置関係を基に、前記搬送車本体における所定条件を満たす移動経路が経路算出部により算出され、該経路算出部が算出した移動経路に沿って前記搬送車本体が移動するように、該搬送車本体の操舵部が制御部により制御される。こうして、無人搬送車は所定条件を満たす移動経路に沿って走行する。この所定条件としては、例えば、搬送車本体に搭載された蓄電部の消費電力を最小にするという条件や、搬送車本体から受電装置までの走行距離を最小にするという条件を採用することができる。 According to this aspect, when the automatic guided vehicle is traveling, the positional relationship between the transport vehicle main body and the power feeding device is acquired by the positional relationship acquisition unit, and the transport vehicle main body is based on the positional relationship acquired by the positional relationship acquisition unit. The steering unit of the transport vehicle body is controlled by the control unit so that the movement route satisfying the predetermined conditions in the above is calculated by the route calculation unit and the transport vehicle main body moves along the movement route calculated by the route calculation unit. Rudder. In this way, the automatic guided vehicle travels along a movement route satisfying a predetermined condition. As the predetermined condition, for example, a condition of minimizing the power consumption of the power storage unit mounted on the transport vehicle main body and a condition of minimizing the mileage from the transport vehicle main body to the power receiving device can be adopted. ..

このように、無人搬送車が所定条件を満たす移動経路を算出して、該算出した移動経路に沿って走行する態様では、移動経路が同じ二点間を結ぶ場合でも移動経路の軌跡は毎回変化し易い。移動経路の軌跡が毎回変化すると、該移動経路と干渉しないように配置する周辺装置のレイアウト自由度が低下し易い。このような場合において、搬送車本体に受電部を複数設けて搬送車本体が受電位置に移動する際の移動経路の自由度を高めることは、周辺装置のレイアウト自由度の低下を回避する上で特に有用である。 In this way, in the mode in which the automatic guided vehicle calculates a movement route that satisfies a predetermined condition and travels along the calculated movement route, the trajectory of the movement route changes every time even if the movement route connects two points with the same movement route. Easy to do. When the locus of the movement path changes every time, the degree of freedom in layout of peripheral devices arranged so as not to interfere with the movement path tends to decrease. In such a case, providing a plurality of power receiving units on the transport vehicle main body to increase the degree of freedom of the movement path when the transport vehicle main body moves to the power receiving position is to avoid a decrease in the layout freedom of the peripheral device. Especially useful.

本発明の他の局面では、
本発明の一局面に係る無人搬送車と、前記無人搬送車を遠隔制御する制御装置と、を備えた無人搬送システムであって、
前記搬送車本体は、該搬送車本体の車輪の操舵角を変更する操舵部を有し、
前記制御装置は、
前記搬送車本体と前記給電装置との位置関係を取得する位置関係取得部と、
前記位置関係取得部が取得した位置関係を基に、前記搬送車本体における所定条件を満たす移動経路を算出する経路算出部と、
前記経路算出部が算出した前記移動経路に沿って前記搬送車本体が移動するように前記操舵部を制御する制御部とを備えている。
In other aspects of the invention
An automatic guided vehicle according to one aspect of the present invention, and a control device for remotely controlling the automatic guided vehicle.
The transport vehicle main body has a steering unit that changes the steering angle of the wheels of the transport vehicle main body.
The control device is
A positional relationship acquisition unit that acquires the positional relationship between the transport vehicle main body and the power feeding device, and
Based on the positional relationship acquired by the positional relationship acquisition unit, a route calculation unit that calculates a movement route that satisfies a predetermined condition in the transport vehicle main body, and a route calculation unit.
It is provided with a control unit that controls the steering unit so that the transport vehicle main body moves along the movement route calculated by the route calculation unit.

この無人搬送システムでは、無人搬送車とは別の制御装置によって無人搬送車が遠隔制御される。制御装置は、位置関係取得部と経路算出部と制御部とを有している。そして、無人搬送車の走行時には、搬送車本体と給電装置との位置関係が位置関係取得部により取得され、該位置関係取得部が取得した位置関係を基に、前記搬送車本体における所定条件を満たす移動経路が経路算出部により算出され、該経路算出部が算出した移動経路に沿って前記搬送車本体が移動するように、該搬送車本体の操舵部が制御部により制御される。こうして、無人搬送車は、制御装置によって、所定条件を満たす移動経路に沿って走行するように制御される。 In this automatic guided vehicle, the automatic guided vehicle is remotely controlled by a control device different from the automatic guided vehicle. The control device has a positional relationship acquisition unit, a route calculation unit, and a control unit. Then, when the automatic guided vehicle is traveling, the positional relationship between the transport vehicle main body and the power feeding device is acquired by the positional relationship acquisition unit, and based on the positional relationship acquired by the positional relationship acquisition unit, predetermined conditions in the transport vehicle main body are set. The moving route to be satisfied is calculated by the route calculation unit, and the steering unit of the transport vehicle body is controlled by the control unit so that the transport vehicle main body moves along the movement route calculated by the route calculation unit. In this way, the automatic guided vehicle is controlled by the control device so as to travel along a movement route satisfying a predetermined condition.

このように、無人搬送車とは別の制御装置によって無人搬送車を遠隔制御する態様を採用した場合であっても、上述した本発明の一局面と同様の作用、効果が奏される。 As described above, even when the mode in which the automatic guided vehicle is remotely controlled by a control device different from the automatic guided vehicle is adopted, the same operations and effects as those in one aspect of the present invention described above can be obtained.

以上のように、本発明に係る無人搬送車及び無人搬送システムによれば、搬送車本体に受電部を複数設けるようにしたことで、搬送車本体が走行する床面上の装置レイアウトの自由度を極力損なわずに、給電装置から搬送車本体の受電部への給電を実行することができる。 As described above, according to the automatic guided vehicle and the automatic guided vehicle system according to the present invention, by providing a plurality of power receiving units in the automatic guided vehicle body, the degree of freedom in the layout of the device on the floor on which the automatic guided vehicle body travels is increased. It is possible to supply power from the power supply device to the power receiving unit of the main body of the automatic guided vehicle without impairing the power supply as much as possible.

本発明の第1の実施形態に係る無人搬送車を示した斜視図である。It is a perspective view which showed the automatic guided vehicle which concerns on 1st Embodiment of this invention. 第1の実施形態に係る無人搬送車の車輪構成を説明するための説明図である。It is explanatory drawing for demonstrating the wheel composition of the automatic guided vehicle which concerns on 1st Embodiment. 第1の実施形態に係る無人搬送車の使用形態の一例を説明するための説明用平面図である。It is explanatory plan view for demonstrating an example of the use form of the automatic guided vehicle which concerns on 1st Embodiment. 第1の実施形態に係る無人搬送車の制御ブロック図である。It is a control block diagram of the automatic guided vehicle which concerns on 1st Embodiment. 第1の実施形態に係る無人搬送車に搭載された受電装置と該受電装置に電力を供給する給電装置とを含む非接触給電システムの全体構成を示す概略図である。It is a schematic diagram which shows the whole structure of the non-contact power feeding system which includes the power receiving device mounted on the automatic guided vehicle which concerns on 1st Embodiment, and the power feeding device which supplies electric power to the power receiving device. 非接触式給電システムによる無人搬送車1への給電態様の一例を説明するための説明用平面図であって、第1の実施形態に係る無人搬送車が測定ステーションを経由して洗浄ステーションに移動する際の給電態様を示している。It is explanatory plan view for demonstrating an example of the power feeding mode to the automatic guided vehicle 1 by the non-contact power feeding system, and the automatic guided vehicle according to 1st Embodiment moves to a washing station via a measuring station. The power supply mode at the time of operation is shown. 比較例を示す図6相当図である。It is a figure corresponding to FIG. 6 which shows a comparative example. 第1の実施形態に係る無人搬送車の使用形態の他の例を説明するための説明図である。It is explanatory drawing for demonstrating another example of the use form of the automatic guided vehicle which concerns on 1st Embodiment. 第1の実施形態に係る無人搬送車の使用形態の他の例を説明するための説明図である。It is explanatory drawing for demonstrating another example of the use form of the automatic guided vehicle which concerns on 1st Embodiment. 本発明の第2の実施形態に係る無人搬送車を示した斜視図である。It is a perspective view which showed the automatic guided vehicle which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る無人搬送車を示した斜視図である。It is a perspective view which showed the automatic guided vehicle which concerns on 3rd Embodiment of this invention. 実施形態の変形例1に係る無人搬送車の制御ブロック図である。It is a control block diagram of the automatic guided vehicle which concerns on modification 1 of embodiment. 実施形態の変形例2に係る無人搬送車と該無人搬送車を遠隔制御する制御装置とを含む無人搬送システムの制御ブロック図である。FIG. 5 is a control block diagram of an automatic guided vehicle including an automatic guided vehicle according to a second modification of the embodiment and a control device for remotely controlling the automatic guided vehicle.

以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
まず、本発明の第1の実施形態について説明する。図1に示すように、本例の無人搬送車1は、略直方体状をなす搬送車本体10と、該搬送車本体10の上側に搭載されたロボット20とを有していて、該ロボット20によりワークを把持しながら搬送車本体10を所定の移動経路に沿って移動させることで該ワークを搬送する。
(First Embodiment)
First, the first embodiment of the present invention will be described. As shown in FIG. 1, the automatic guided vehicle 1 of this example has a transport vehicle main body 10 having a substantially rectangular parallelepiped shape and a robot 20 mounted on the upper side of the transport vehicle main body 10. The work is conveyed by moving the transport vehicle main body 10 along a predetermined movement path while grasping the work.

搬送車本体10の内部には、その走行用電力やロボット20の駆動用電力を蓄電する蓄電部95(図5参照)を含む受電装置60が設けられている。受電装置60は、工場内に設けられた給電装置50から非接触給電により電力を受電して蓄電部95に蓄電する。本実施形態では、給電装置50による給電方式の一例として磁界共鳴による非接触給電方式を採用している。給電装置50及び受電装置60を含む非接触給電システムの詳細は後述する。 Inside the transport vehicle main body 10, a power receiving device 60 including a power storage unit 95 (see FIG. 5) for storing the traveling power and the driving power of the robot 20 is provided. The power receiving device 60 receives electric power from the power feeding device 50 provided in the factory by non-contact power feeding and stores the electric power in the power storage unit 95. In this embodiment, a non-contact power feeding method by magnetic field resonance is adopted as an example of the power feeding method by the power feeding device 50. Details of the non-contact power feeding system including the power feeding device 50 and the power receiving device 60 will be described later.

図2に示すように、搬送車本体10は、平面視で見て所定の一方向(図2の左右方向)に長い矩形状をなしている。本実施形態では、この一方向(図2の左右方向)が搬送車本体10の前後方向に一致し、該一方向に直交する方向(図2の上下方向)が搬送車本体10の左右方向に一致している。搬送車本体10の下面における前側端部には一つの前輪11が取付けられ、該下面における後側端部には左右一対の後輪12が取付けられている。 As shown in FIG. 2, the transport vehicle main body 10 has a long rectangular shape in a predetermined direction (left-right direction in FIG. 2) when viewed in a plan view. In the present embodiment, this one direction (horizontal direction in FIG. 2) coincides with the front-rear direction of the transport vehicle main body 10, and the direction orthogonal to the one direction (vertical direction in FIG. 2) is the horizontal direction of the transport vehicle main body 10. Match. One front wheel 11 is attached to the front end portion on the lower surface of the transport vehicle main body 10, and a pair of left and right rear wheels 12 are attached to the rear end portion on the lower surface.

前輪11は、平面視で見て、搬送車本体10の幅方向中央線C上に位置している。左右の後輪12は、平面視で見て、該中央線Cを挟んで対称に配置されている。前輪11は、その車軸に連結された走行モータ13により回転駆動される駆動輪である。一対の後輪12は、搬送車本体10の進行方向に追従して旋回可能な従動輪である。 The front wheel 11 is located on the width direction center line C of the transport vehicle main body 10 when viewed in a plan view. The left and right rear wheels 12 are arranged symmetrically with the center line C in between when viewed in a plan view. The front wheel 11 is a drive wheel that is rotationally driven by a traveling motor 13 connected to the axle. The pair of rear wheels 12 are driven wheels that can turn following the traveling direction of the transport vehicle main body 10.

前輪11は、不図示の減速機構を介して操舵モータ14に連結されている。搬送車本体10は、前後方向に直線移動する状態(図2の状態)を基準として、操舵モータ14により前輪11をその操舵角を変更することで左右に旋回可能に構成されている。以下の説明において、特に断らない限り、前側、後側、左側及び右側は、無人搬送車1の前側、後側、左側及び右側を意味するものとする。 The front wheels 11 are connected to the steering motor 14 via a reduction mechanism (not shown). The transport vehicle main body 10 is configured to be able to turn left and right by changing the steering angle of the front wheels 11 by the steering motor 14 based on the state of linearly moving in the front-rear direction (the state of FIG. 2). In the following description, unless otherwise specified, the front side, the rear side, the left side and the right side mean the front side, the rear side, the left side and the right side of the automatic guided vehicle 1.

図1に示すように、搬送車本体10には、その上面10eにおける前側端部に前記ロボット20が搭載され、また、オペレータが操作可能な操作盤30が付設されている。 As shown in FIG. 1, the transport vehicle main body 10 is provided with the robot 20 mounted on the front end portion on the upper surface 10e thereof, and an operation panel 30 that can be operated by an operator.

前記ロボット20は、第1アーム21、第2アーム22及び第3アーム23の3つのアームを備えた多関節型のロボットであり、第3アーム23の先端部にはエンドエフェクタとしてのハンド24が装着されている。ロボット20は、ハンド24によってワークを把持可能に構成されている。 The robot 20 is an articulated robot having three arms, a first arm 21, a second arm 22, and a third arm 23, and a hand 24 as an end effector is attached to the tip of the third arm 23. It is installed. The robot 20 is configured so that the work can be gripped by the hand 24.

操作盤30は、データの入出力を行う入出力部、及び画面表示可能なディスプレイなどを備えている。オペレータは、この操作盤30を操作することで、例えば工場内のマップデータの作成や無人搬送車1の移動経路の設定を行うことができる。尚、本明細書で参照する説明用平面図では見易さの観点から操作盤30を省略している。 The operation panel 30 includes an input / output unit for inputting / outputting data, a display capable of displaying a screen, and the like. By operating the operation panel 30, the operator can, for example, create map data in the factory and set the movement route of the automatic guided vehicle 1. In the explanatory plan view referred to in the present specification, the operation panel 30 is omitted from the viewpoint of easy viewing.

搬送車本体10は、工場内における自身の位置を認識可能なセンサ(例えば、レーザ光を用いた距離計測センサ)を備えており、オペレータが操作盤30を介して予め設定した移動経路に沿って工場の床面上を走行する。 The transport vehicle main body 10 is provided with a sensor capable of recognizing its own position in the factory (for example, a distance measurement sensor using a laser beam), and is along a movement path preset by the operator via an operation panel 30. Drive on the floor of the factory.

図3に示すように、無人搬送車1は、例えば工作機械3を利用したワーク加工システムにおいて使用される。具体的には、この加工システムは、材料ストッカ2、前記工作機械3、測定ステーション4、洗浄ステーション5、製品ストッカ6、並びに、無人搬送車1を制御する制御装置40(図4参照)などから構成される。 As shown in FIG. 3, the automatic guided vehicle 1 is used, for example, in a work processing system using a machine tool 3. Specifically, this processing system starts with the material stocker 2, the machine tool 3, the measuring station 4, the cleaning station 5, the product stocker 6, and the control device 40 (see FIG. 4) that controls the automatic guided vehicle 1. It is composed.

材料ストッカ2は、図3において工作機械3の左隣に配設され、工作機械3で加工される材料をストックする装置である。工作機械3は例えば複合加工型のNC工作機械からなる。測定ステーション4は、図3において工作機械3の右隣に配設され、工作機械3で加工された製品の精度(例えば真円度や面粗度等)を測定する装置である。洗浄ステーション5は、図3において測定ステーション4の右斜め下側に配設されている。洗浄ステーション5は、測定ステーション4にて寸法基準を満たした製品を洗浄する装置である。製品ストッカ6は、洗浄ステーション5に対して図3の左側に離間して配設されている。製品ストッカ6は、洗浄が終了した製品をストックする装置である。尚、図3の例では、工場内のスペース上の制約により洗浄ステーション5が測定ステーション4と対向せずに図3の右側にややオフセットして配置されている。 The material stocker 2 is a device arranged on the left side of the machine tool 3 in FIG. 3 and stocks the material processed by the machine tool 3. The machine tool 3 is composed of, for example, a multi-tasking type NC machine tool. The measuring station 4 is a device arranged on the right side of the machine tool 3 in FIG. 3 and measures the accuracy (for example, roundness, surface roughness, etc.) of the product machined by the machine tool 3. The cleaning station 5 is arranged on the diagonally lower right side of the measurement station 4 in FIG. The cleaning station 5 is a device for cleaning products that meet the dimensional standards at the measuring station 4. The product stocker 6 is disposed at a distance from the cleaning station 5 on the left side of FIG. The product stocker 6 is a device for stocking products that have been washed. In the example of FIG. 3, the cleaning station 5 is arranged slightly offset to the right side of FIG. 3 without facing the measurement station 4 due to space restrictions in the factory.

そうして、無人搬送車1の移動経路(図3の二点鎖線参照)は、材料ストッカ2、工作機械3、測定ステーション4、洗浄ステーション5、及び製品ストッカ6のそれぞれに対して設定された各作業位置を経由する略台形状の循環経路として設定されている。 Then, the movement path of the automatic guided vehicle 1 (see the alternate long and short dash line in FIG. 3) is set for each of the material stocker 2, the machine tool 3, the measurement station 4, the cleaning station 5, and the product stocker 6. It is set as a substantially trapezoidal circulation path that passes through each work position.

前記材料ストッカ2、測定ステーション4、洗浄ステーション5、及び製品ストッカ6には給電装置50が設けられており、それぞれの作業位置(以下、所定の受電位置という)で無人搬送車1が停止した際に、無人搬送車1に搭載された受電装置60(後述する)によって給電装置50からの電力を受電して蓄電部95を充電する。 A power feeding device 50 is provided in the material stocker 2, the measuring station 4, the cleaning station 5, and the product stocker 6, and when the automatic guided vehicle 1 stops at each working position (hereinafter referred to as a predetermined power receiving position). In addition, the power receiving device 60 (described later) mounted on the automatic guided vehicle 1 receives the electric power from the power feeding device 50 to charge the power storage unit 95.

制御装置40は、搬送車本体10に格納されており、図4に示すように、動作プログラム記憶部40a、移動経路記憶部40b、マップ情報記憶部40c、位置認識部40d、自動運転制御部40e、及び入出力インターフェース40fを有している。 The control device 40 is stored in the transport vehicle main body 10, and as shown in FIG. 4, the operation program storage unit 40a, the movement route storage unit 40b, the map information storage unit 40c, the position recognition unit 40d, and the automatic operation control unit 40e , And an input / output interface 40f.

そして、制御装置40は、この入出力インターフェース40fを介して、操作盤30、無人搬送車1の走行モータ13、操舵モータ14、及びロボット20に接続されている。 The control device 40 is connected to the operation panel 30, the traveling motor 13, the steering motor 14, and the robot 20 of the automatic guided vehicle 1 via the input / output interface 40f.

尚、制御装置40は、CPU、RAM、ROMなどを含むコンピュータから構成され、位置認識部40d、自動運転制御部40e及び入出力インターフェース40fは、コンピュータプログラムによってその機能が実現され、後述する処理を実行する。また、動作プログラム記憶部40a、移動経路記憶部40b、マップ情報記憶部40cはRAMなどの適宜記憶媒体から構成される。 The control device 40 is composed of a computer including a CPU, RAM, ROM, etc., and the functions of the position recognition unit 40d, the automatic operation control unit 40e, and the input / output interface 40f are realized by a computer program, and the processing described later is performed. Execute. Further, the operation program storage unit 40a, the movement path storage unit 40b, and the map information storage unit 40c are appropriately composed of storage media such as RAM.

前記動作プログラム記憶部40aは、無人搬送車1を自動運転するための自動運転用プログラムを記憶する機能部である。自動運転用プログラムは、例えば、前記操作盤30に設けられた入出力部から入力され、当該動作プログラム記憶部40aに格納される。 The operation program storage unit 40a is a functional unit that stores an automatic driving program for automatically driving the automatic guided vehicle 1. The automatic operation program is input from, for example, an input / output unit provided on the operation panel 30 and stored in the operation program storage unit 40a.

移動経路記憶部40bは、無人搬送車1が移動する移動経路(図3の例では循環経路)、移動速度及び無人搬送車1の向きに関する指令コードを記憶する。また、移動経路記憶部40bは、材料ストッカ2、工作機械3、測定ステーション4、洗浄ステーション5及び製品ストッカ6のそれぞれに対して設定される無人搬送車1の作業位置を記憶する。これら移動経路及び作業位置に関する情報は、操作盤30を介してオペレータにより設定される。 The movement route storage unit 40b stores command codes relating to the movement route (circulation route in the example of FIG. 3), the movement speed, and the orientation of the automatic guided vehicle 1 to which the automatic guided vehicle 1 moves. Further, the movement path storage unit 40b stores the working position of the automatic guided vehicle 1 set for each of the material stocker 2, the machine tool 3, the measurement station 4, the cleaning station 5, and the product stocker 6. Information on these movement paths and work positions is set by the operator via the operation panel 30.

マップ情報記憶部40cは、無人搬送車1が走行する工場内に配置される機械、装置、機器など(装置等)の配置情報を含むマップ情報を記憶する機能部である。このマップ情報は、オペレータにより操作盤30から入力される。尚、このマップ情報は、搬送車本体10に搭載した前記センサからの情報を基に自動生成してもよい。 The map information storage unit 40c is a functional unit that stores map information including arrangement information of machines, devices, devices, etc. (devices, etc.) arranged in the factory where the unmanned carrier 1 travels. This map information is input from the operation panel 30 by the operator. The map information may be automatically generated based on the information from the sensor mounted on the transport vehicle main body 10.

前記位置認識部40dは、前記センサによって検出される距離データ、及び前記マップ情報記憶部40cに格納された工場内のマップ情報を基に、工場内における無人搬送車1の位置を認識する機能部である。 The position recognition unit 40d is a functional unit that recognizes the position of the automatic guided vehicle 1 in the factory based on the distance data detected by the sensor and the map information in the factory stored in the map information storage unit 40c. Is.

自動運転制御部40eは、位置認識部40dによって認識される無人搬送車1の位置を基に、走行モータ13及び操舵モータ14(操舵部の一例)を制御して、無人搬送車1を、オペレータにより設定された前記移動経路に沿って走行させるとともに、無人搬送車1をオペレータにより設定された前記各作業位置で停止させてロボット20による作業を実行させる。 The automatic operation control unit 40e controls the traveling motor 13 and the steering motor 14 (an example of the steering unit) based on the position of the automatic guided vehicle 1 recognized by the position recognition unit 40d, and operates the automatic guided vehicle 1. The automatic guided vehicle 1 is stopped at each of the work positions set by the operator to execute the work by the robot 20 while traveling along the movement route set by.

図5は、本実施形態の無人搬送車1の蓄電部95を充電するための非接触給電システムの概略構成図である。この非接触給電システムは、上述した所定の受電位置に設けられた給電装置50と、搬送車本体10に設けられた受電装置60と含んで構成されている。 FIG. 5 is a schematic configuration diagram of a non-contact power supply system for charging the power storage unit 95 of the automatic guided vehicle 1 of the present embodiment. This non-contact power feeding system includes a power feeding device 50 provided at the predetermined power receiving position described above and a power receiving device 60 provided in the transport vehicle main body 10.

給電装置50は、送電コイル51と送電ユニット55とを備えている。送電コイル51は、後述する受電コイル71a,72a対して送電可能な非接触給電用のコイルである。送電コイル51は、その設置高さが、該受電コイル71a,72aの設置高さと一致するように配置されている。 The power feeding device 50 includes a power transmission coil 51 and a power transmission unit 55. The power transmission coil 51 is a non-contact power feeding coil capable of transmitting power to the power receiving coils 71a and 72a, which will be described later. The power transmission coil 51 is arranged so that its installation height matches the installation height of the power reception coils 71a and 72a.

送電ユニット55は、外部の電源57から電力が供給される。電源57は、DC電源であってもよいし、商用電源等の交流電源であってもよい。送電ユニット55は、高周波電源装置52と送電側通信部53と送電制御部54とを有している。 The power transmission unit 55 is supplied with electric power from an external power source 57. The power source 57 may be a DC power source or an AC power source such as a commercial power source. The power transmission unit 55 includes a high-frequency power supply device 52, a power transmission side communication unit 53, and a power transmission control unit 54.

高周波電源装置52は、送電制御部54により制御され、外部の電源57から供給された電力を高周波数(例えば85kHz)に変換して送電コイル51に送信する。 The high-frequency power supply device 52 is controlled by the power transmission control unit 54, converts the power supplied from the external power supply 57 into a high frequency (for example, 85 kHz), and transmits the power to the power transmission coil 51.

送電側通信部53は、受電装置60に設けられる受電側通信部71b又は受電側通信部72bとの間で双方向の無線通信を行うものである。本実施形態では、この無線通信の一例としてIrDA(Infrared Association)規格に基づく赤外線通信を行う。 The power transmission side communication unit 53 performs two-way wireless communication with the power reception side communication unit 71b or the power reception side communication unit 72b provided in the power reception device 60. In the present embodiment, infrared communication based on the IrDA (Infrared Association) standard is performed as an example of this wireless communication.

送電側通信部53は、受電側通信部71b又は受電側通信部72bから受信した信号を送電制御部54に出力する。受信信号には、送電開始を指示する送電開始信号や、送電停止を指示する送電停止信号等が含まれる。 The power transmission side communication unit 53 outputs a signal received from the power reception side communication unit 71b or the power reception side communication unit 72b to the power transmission control unit 54. The received signal includes a power transmission start signal instructing the start of power transmission, a power transmission stop signal instructing the stop of power transmission, and the like.

送電制御部54は、CPU、ROM及びRAMを有するマイクロコンピュータにより構成されていて、高周波電源装置52の起動及び停止を制御する。具体的には、送電制御部54は、送電開始信号を受信した場合には高周波電源装置52を起動させる一方、送電停止信号を受信した場合には高周波電源装置52を停止させる。 The power transmission control unit 54 is composed of a microcomputer having a CPU, a ROM, and a RAM, and controls the start and stop of the high frequency power supply device 52. Specifically, the power transmission control unit 54 starts the high-frequency power supply device 52 when it receives the power transmission start signal, and stops the high-frequency power supply device 52 when it receives the power transmission stop signal.

受電装置60は、搬送車本体10に搭載されており、第一受電コイルユニット71及び第二受電コイルユニット72と、配電ユニット80と、受電ユニット90と、前記蓄電部95とを有している。 The power receiving device 60 is mounted on the transport vehicle main body 10, and includes a first power receiving coil unit 71, a second power receiving coil unit 72, a power distribution unit 80, a power receiving unit 90, and the power storage unit 95. ..

第一受電コイルユニット71と第二受電コイルユニット72とは、搬送車本体10に対する配置位置が異なっているが同じ構成である。 The first power receiving coil unit 71 and the second power receiving coil unit 72 have the same configuration, although the arrangement positions with respect to the transport vehicle main body 10 are different.

すなわち、第一受電コイルユニット71は、第一受電部としての受電コイル71aと、受電側通信部71bとを有していて、搬送車本体10の左側壁10c(図1参照)に取付けられている。第二受電コイルユニット72は、第二受電部としての受電コイル72aと、受電側通信部71bとを有していて、搬送車本体10の右側壁10d(図1参照)に取付けられている。 That is, the first power receiving coil unit 71 has a power receiving coil 71a as the first power receiving unit and a power receiving side communication unit 71b, and is attached to the left side wall 10c (see FIG. 1) of the transport vehicle main body 10. There is. The second power receiving coil unit 72 has a power receiving coil 72a as a second power receiving unit and a power receiving side communication unit 71b, and is attached to the right side wall 10d (see FIG. 1) of the transport vehicle main body 10.

第一受電コイルユニット71は、偏平矩形状の密閉ケースにより覆われていて、その受電面が、搬送車本体10の左側壁10cの前側端部から露出するように配置されている。第一受電コイルユニット71の下端部の前後方向の中央部には、前記受電側通信部71bが設けられている。受電側通信部71bは、充電開始信号又は充電停止信号を赤外線信号の形で出力する。 The first power receiving coil unit 71 is covered with a flat rectangular sealed case, and the power receiving surface is arranged so as to be exposed from the front end portion of the left side wall 10c of the transport vehicle main body 10. The power receiving side communication unit 71b is provided at the center of the lower end of the first power receiving coil unit 71 in the front-rear direction. The power receiving side communication unit 71b outputs a charging start signal or a charging stop signal in the form of an infrared signal.

第二受電コイルユニット72も同様に、偏平矩形状の密閉ケースにより覆われていて、その受電面が、搬送車本体10の右側壁10dの前側端部から露出するように配置されている。第二受電コイルユニットの下端部の前後方向の中央部には、前記受電側通信部72bが設けられている。前記受電側通信部72bは、充電開始信号又は充電停止信号を赤外線信号の形で出力する。 Similarly, the second power receiving coil unit 72 is also covered with a flat rectangular sealed case, and the power receiving surface is arranged so as to be exposed from the front end portion of the right side wall 10d of the transport vehicle main body 10. The power receiving side communication unit 72b is provided at the center of the lower end of the second power receiving coil unit in the front-rear direction. The power receiving side communication unit 72b outputs a charging start signal or a charging stop signal in the form of an infrared signal.

第一受電コイルユニット71及び第二受電コイルユニット72は、それぞれの受電コイル71a及び受電コイル72aの設置高さ及び前後方向位置が同じになるように配置されている。尚、受電コイルaと受電コイル72aとを、平面視で見て対角位置に配置する等してもよい。 The first power receiving coil unit 71 and the second power receiving coil unit 72 are arranged so that the installation height and the front-rear direction position of the power receiving coil 71a and the power receiving coil 72a are the same. The power receiving coil a and the power receiving coil 72a may be arranged at diagonal positions when viewed in a plan view.

第一受電コイルユニット71の受電コイル71aは、給電装置50によって搬送車本体10の左側から給電を行う場合に使用される。この給電に際しては、無人搬送車1が所定の受電位置に停止することで、受電コイル71aが送電コイル51に対して所定距離以下に接近する。この状態で、高周波電源装置52より送電コイル51に高周波電力が供給されると、磁界共鳴により送電コイル51から受電コイル71aに高周波電力が伝送される。受電コイル71aが受電した電力は後述する配電ユニット80の第一整流回路部81に出力される。 The power receiving coil 71a of the first power receiving coil unit 71 is used when power is supplied from the left side of the transport vehicle main body 10 by the power feeding device 50. At the time of this power supply, the automatic guided vehicle 1 stops at a predetermined power receiving position, so that the power receiving coil 71a approaches the power transmission coil 51 by a predetermined distance or less. In this state, when high-frequency power is supplied from the high-frequency power supply device 52 to the power transmission coil 51, the high-frequency power is transmitted from the power transmission coil 51 to the power reception coil 71a by magnetic field resonance. The power received by the power receiving coil 71a is output to the first rectifier circuit section 81 of the power distribution unit 80, which will be described later.

第二受電コイルユニット72の受電コイル72aは、給電装置50によって搬送車本体10の右側から給電を行う場合に使用される。この給電に際しては、無人搬送車1が所定の受電位置に停止することで、受電コイル72aが送電コイル51に対して所定距離以下に接近する。この状態で、高周波電源装置52より送電コイル51に高周波電力が供給されると、磁界共鳴により送電コイル51から受電コイル72aに高周波電力が伝送される。受電コイル72aが受電した電力は後述する配電ユニット80の第二整流回路部82に出力される。 The power receiving coil 72a of the second power receiving coil unit 72 is used when power is supplied from the right side of the transport vehicle main body 10 by the power feeding device 50. At the time of this power supply, the automatic guided vehicle 1 stops at a predetermined power receiving position, so that the power receiving coil 72a approaches the power transmission coil 51 by a predetermined distance or less. In this state, when high-frequency power is supplied from the high-frequency power supply device 52 to the power transmission coil 51, high-frequency power is transmitted from the power transmission coil 51 to the power reception coil 72a by magnetic field resonance. The electric power received by the power receiving coil 72a is output to the second rectifier circuit unit 82 of the power distribution unit 80, which will be described later.

配電ユニット80は、第一整流回路部81、第二整流回路部82、配電回路部83及び通信回路部84を有している。 The power distribution unit 80 includes a first rectifier circuit unit 81, a second rectifier circuit unit 82, a power distribution circuit unit 83, and a communication circuit unit 84.

第一整流回路部81は、第一受電コイルユニット71の受電コイル71aより出力される高周波電力を整流して直流電力に変換する。第一整流回路部81は、四つのダイオードをブリッジ接続した全波整流回路を有している。また、図示しないが、第一整流回路部81は、整流後の出力を平滑化するための平滑回路を有していてもよい。第一整流回路部81から出力される直流電力は配電回路部83に供給される。 The first rectifier circuit unit 81 rectifies the high frequency power output from the power receiving coil 71a of the first power receiving coil unit 71 and converts it into DC power. The first rectifier circuit unit 81 has a full-wave rectifier circuit in which four diodes are bridge-connected. Further, although not shown, the first rectifying circuit unit 81 may have a smoothing circuit for smoothing the output after rectification. The DC power output from the first rectifier circuit unit 81 is supplied to the distribution circuit unit 83.

第二整流回路部82は、第二受電コイルユニット72の受電コイル72aより出力される高周波電力を整流して直流電力に変換する。第二整流回路部82は、四つのダイオードをブリッジ接続した全波整流回路を有している。また、図示しないが、第二整流回路部82は、整流後の出力を平滑化するための平滑回路を有していてもよい。第二整流回路部82から出力される直流電力は配電回路部83に供給される。 The second rectifier circuit unit 82 rectifies the high frequency power output from the power receiving coil 72a of the second power receiving coil unit 72 and converts it into DC power. The second rectifier circuit unit 82 has a full-wave rectifier circuit in which four diodes are bridge-connected. Further, although not shown, the second rectifying circuit unit 82 may have a smoothing circuit for smoothing the output after rectification. The DC power output from the second rectifier circuit unit 82 is supplied to the distribution circuit unit 83.

配電回路部83は、第一整流回路部81及び第二整流回路部82のうちの一方を受電ユニット90に選択的に接続するスイッチ回路を有している。配電回路部83は、このスイッチ回路を制御することで、二つの受電コイル71a,72aのうち受電中の一の受電コイル(図5の例では受電コイル71a)を、受電ユニット90(延いては蓄電部95)に接続する。 The power distribution circuit unit 83 has a switch circuit that selectively connects one of the first rectifier circuit unit 81 and the second rectifier circuit unit 82 to the power receiving unit 90. By controlling this switch circuit, the power distribution circuit unit 83 transfers one of the two power receiving coils 71a and 72a, which is receiving power (the power receiving coil 71a in the example of FIG. 5), to the power receiving unit 90 (and by extension, the power receiving coil 71a). Connect to the power storage unit 95).

この配電回路部83では、二つの受電コイル71a,72aのうち受電中のコイルがいずれかを判別する必要があるが、例えば制御装置40からこの判別情報を受信するようにしてもよい。制御装置40は、無人搬送車1の向きや作業位置を基に、搬送車本体10の左側面が給電装置50に対向している状態で給電を開始する際には、左側の受電コイル71aが受電中であると判別し、搬送車本体10の右側面が給電装置50に対向している状態で給電を開始する際には、右側の受電コイル72aが受電中であると判定すればよい。この他にも、例えば第一受電コイルユニット71の受電側通信部71b及び第二受電コイルユニット72の受電側通信部72bにおいて、送電側通信部53との通信が確立した場合に通信確立信号を出力させ、この通信確立信号を配電回路部83にて受信した場合に、該通信確立信号を受信した側の受電コイル71a,72aを受電中であると判定するようにしてもよい。 In the power distribution circuit unit 83, it is necessary to discriminate which of the two power receiving coils 71a and 72a is receiving power. For example, this discriminating information may be received from the control device 40. When the control device 40 starts power supply with the left side surface of the automatic guided vehicle body 10 facing the power supply device 50 based on the orientation and working position of the automatic guided vehicle 1, the power receiving coil 71a on the left side is used. When it is determined that power is being received and power supply is started in a state where the right side surface of the transport vehicle main body 10 faces the power feeding device 50, it may be determined that the power receiving coil 72a on the right side is receiving power. In addition to this, for example, when the power receiving side communication unit 71b of the first power receiving coil unit 71 and the power receiving side communication unit 72b of the second power receiving coil unit 72 establish communication with the power transmission side communication unit 53, a communication establishment signal is transmitted. When the communication establishment signal is output and the power distribution circuit unit 83 receives the communication establishment signal, it may be determined that the power receiving coils 71a and 72a on the side receiving the communication establishment signal are receiving power.

通信回路部84は、受電ユニット90より出力される通信信号(本実施形態ではIrDA通信規格の赤外線信号)を、第一受電コイルユニット71の受電側通信部71bと第二受電コイルユニット72の受電側通信部72bとに送信する。 The communication circuit unit 84 transmits the communication signal output from the power receiving unit 90 (infrared signal of IrDA communication standard in this embodiment) to the power receiving side communication unit 71b of the first power receiving coil unit 71 and the power receiving coil unit 72 of the second power receiving coil unit 72. It transmits to the side communication unit 72b.

受電ユニット90は、充電制御部91、充電電源部92、及び通信回路部93を有している。 The power receiving unit 90 includes a charge control unit 91, a charge power supply unit 92, and a communication circuit unit 93.

充電制御部91は、CPU、ROM及びRAMを有するマイクロコンピュータにより構成されている。充電電源部92は、充電制御部91による制御に基づいて、受電装置60から供給された電力を蓄電部95に出力する。 The charge control unit 91 is composed of a microcomputer having a CPU, a ROM, and a RAM. The charging power supply unit 92 outputs the electric power supplied from the power receiving device 60 to the power storage unit 95 based on the control by the charging control unit 91.

充電制御部91は、蓄電部95への充電の開始および停止を制御する。これにより、充電制御部91は、受電コイル71a,72aから蓄電部95への給電を制御する The charge control unit 91 controls the start and stop of charging the power storage unit 95. As a result, the charge control unit 91 controls the power supply from the power receiving coils 71a and 72a to the power storage unit 95.

具体的には、充電制御部91は、無人搬送車1が前記所定の受電位置に停止した場合に、無人搬送車1の制御装置40からの指令を受けて、通信回路部93より送電開始信号を出力させる。 Specifically, when the automatic guided vehicle 1 stops at the predetermined power receiving position, the charge control unit 91 receives a command from the control device 40 of the automatic guided vehicle 1 and receives a power transmission start signal from the communication circuit unit 93. Is output.

充電制御部91は、所定の受電位置から移動した場合には、無人搬送車1の制御装置40からの指令を受けて、通信回路部93より送信停止信号を出力させる。また、充電制御部91は、蓄電部95が満充電になったことを検知した場合や蓄電部95の異常を検知した場合にも、通信回路部93より送信停止信号を出力させる。 When the charge control unit 91 moves from a predetermined power receiving position, the charge control unit 91 receives a command from the control device 40 of the automatic guided vehicle 1 and outputs a transmission stop signal from the communication circuit unit 93. Further, the charge control unit 91 outputs a transmission stop signal from the communication circuit unit 93 even when it detects that the power storage unit 95 is fully charged or detects an abnormality in the power storage unit 95.

通信回路部93より出力された信号は、図5の破線矢印に示すように配電ユニット80の通信回路部84に入力され、通信回路部84から、第一受電コイルユニット71の受電側通信部71bと、第二受電コイルユニット72の受電側通信部71bとに送信され、各受電側通信部71b,72bから赤外線として射出される。そして、各受電側通信部71b,72bから射出された赤外線が給電装置50の送電側通信部53に入射して赤外線通信が確立することで送電コイル51による送電が開始する。 The signal output from the communication circuit unit 93 is input to the communication circuit unit 84 of the power distribution unit 80 as shown by the broken line arrow in FIG. 5, and is transmitted from the communication circuit unit 84 to the power receiving side communication unit 71b of the first power receiving coil unit 71. Is transmitted to the power receiving side communication unit 71b of the second power receiving coil unit 72, and is emitted as infrared rays from the power receiving side communication units 71b and 72b. Then, the infrared rays emitted from the power receiving side communication units 71b and 72b are incident on the power transmission side communication unit 53 of the power feeding device 50, and the infrared communication is established, so that the power transmission by the power transmission coil 51 is started.

蓄電部95は、例えば充電式のバッテリやキャパシターにより構成されている。蓄電部95は、制御装置40及び無人搬送車電源部41に電気的に接続されている。無人搬送車電源部41は、制御装置40による制御に基づいて蓄電部95から供給される電力を無人搬送車1の電動負荷150に供給する。電動負荷150としては、例えば、操作盤30、無人搬送車1の走行モータ13及び操舵モータ14、並びにロボット20等が挙げられる。 The power storage unit 95 is composed of, for example, a rechargeable battery or a capacitor. The power storage unit 95 is electrically connected to the control device 40 and the automatic guided vehicle power supply unit 41. The automatic guided vehicle power supply unit 41 supplies the electric power supplied from the power storage unit 95 to the electric load 150 of the automatic guided vehicle 1 based on the control by the control device 40. Examples of the electric load 150 include an operation panel 30, a traveling motor 13 and a steering motor 14 of the automatic guided vehicle 1, a robot 20, and the like.

以上のように構成された非接触式給電システムによる無人搬送車1への給電態様の一例を、図6の説明用平面図を参照しながら説明する。 An example of the mode of feeding power to the automatic guided vehicle 1 by the non-contact power feeding system configured as described above will be described with reference to the explanatory plan view of FIG.

図6中の実線は、無人搬送車1が測定ステーション4の作業位置に停車して、該測定ステーション4に設けられた給電装置50により給電を受けている状態を示し、図6中の二点鎖線は、無人搬送車1が洗浄ステーション5の作業位置に停車して、該洗浄ステーション5に設けられた給電装置50により給電を受けている状態を示している。 The solid line in FIG. 6 indicates a state in which the automatic guided vehicle 1 is stopped at the working position of the measurement station 4 and is receiving power from the power supply device 50 provided in the measurement station 4. Two points in FIG. The chain line indicates a state in which the automatic guided vehicle 1 is stopped at the working position of the cleaning station 5 and is receiving power from the power feeding device 50 provided in the cleaning station 5.

先ず、測定ステーション4の作業位置では、搬送車本体10の左側壁10cに設けられた第一受電コイルユニット71の受電側通信部71bから送電開始信号が出力されて送電側通信部53に入射する。これにより両者の通信が確立すると、送電コイル51による送電が開始して、上述のように無人搬送車1の蓄電部95に電力が供給される。 First, at the working position of the measurement station 4, a power transmission start signal is output from the power receiving side communication unit 71b of the first power receiving coil unit 71 provided on the left side wall 10c of the transport vehicle main body 10 and is incident on the power transmission side communication unit 53. .. When communication between the two is established, power transmission by the power transmission coil 51 is started, and power is supplied to the power storage unit 95 of the automatic guided vehicle 1 as described above.

無人搬送車1のロボット20が測定ステーション4での作業を終了すると、第一受電コイルユニット71の受電側通信部71bから測定ステーション4の送電側通信部53に送電停止信号が出力されて送電コイル51による送電が停止する。 When the robot 20 of the automatic guided vehicle 1 finishes the work at the measurement station 4, a power transmission stop signal is output from the power receiving side communication unit 71b of the first power receiving coil unit 71 to the power transmission side communication unit 53 of the measurement station 4, and the power transmission coil. Power transmission by 51 is stopped.

そして、無人搬送車1は、予め設定された走行経路に沿って緩やかなS字を描きながら洗浄ステーション5の作業位置まで移動する。 Then, the automatic guided vehicle 1 moves to the working position of the cleaning station 5 while drawing a gentle S-shape along a preset traveling path.

洗浄ステーション5の作業位置では、搬送車本体10の右側壁10dに設けられた第二受電コイルユニット72の受電側通信部72bから送電開始信号が出力されて送電側通信部53に入射する。これにより、両者の通信が確立すると、送電コイル51による送電が開始して、上述のように無人搬送車1の蓄電部95に電力が供給される。 At the working position of the cleaning station 5, a power transmission start signal is output from the power receiving side communication unit 72b of the second power receiving coil unit 72 provided on the right side wall 10d of the transport vehicle main body 10 and is incident on the power transmission side communication unit 53. As a result, when communication between the two is established, power transmission by the power transmission coil 51 is started, and power is supplied to the power storage unit 95 of the automatic guided vehicle 1 as described above.

このように本実施形態の無人搬送車1によれば、図7に示す従来例と比較して無人搬送車1の移動経路を比較的高い自由度でコンパクトに設定することができる。 As described above, according to the automatic guided vehicle 1 of the present embodiment, the movement route of the automatic guided vehicle 1 can be set compactly with a relatively high degree of freedom as compared with the conventional example shown in FIG.

図7に示す従来例では、実施形態の無人搬送車の符号に200を加算した符号を使用している。従来例の無人搬送車201は、搬送車本体210の左側壁210cにしか受電コイルが設けられていない。このため、測定ステーション4の作業位置から洗浄ステーション5の作業位置(つまり受電位置)に向かう際に、搬送車本体210の左側壁210cを洗浄ステーション205に対向させるべく搬送車本体210を右側に旋回させるしかなかった。 In the conventional example shown in FIG. 7, a code obtained by adding 200 to the code of the automatic guided vehicle of the embodiment is used. In the automatic guided vehicle 201 of the conventional example, the power receiving coil is provided only on the left side wall 210c of the automatic guided vehicle main body 210. Therefore, when moving from the working position of the measuring station 4 to the working position of the cleaning station 5 (that is, the power receiving position), the transport vehicle main body 210 is turned to the right so that the left wall 210c of the transport vehicle main body 210 faces the cleaning station 205. I had no choice but to let him.

これに対して本実施形態では、無人搬送車1の受電装置60は、二つの受電コイル71a,72aを備えているので、いずれか一方の受電コイル71a,72aから受電を行えば良く、したがって、無人搬送車1を受電位置に移動させる際の移動経路の自由度(旋回方向や旋回位置等)を増やすことができる。この結果、図6に示すように、無人搬送車1の移動経路が、従来例の移動経路(図7参照)と比べてコンパクトになり、工場内の床面スペースの有効活用を図るとともに周辺装置のレイアウト自由度を高めることができる。 On the other hand, in the present embodiment, since the power receiving device 60 of the automatic guided vehicle 1 includes two power receiving coils 71a and 72a, power may be received from either one of the power receiving coils 71a and 72a. It is possible to increase the degree of freedom (turning direction, turning position, etc.) of the moving path when moving the automatic guided vehicle 1 to the power receiving position. As a result, as shown in FIG. 6, the moving route of the automatic guided vehicle 1 becomes more compact than the moving route of the conventional example (see FIG. 7), and the floor space in the factory is effectively utilized and the peripheral device is used. The degree of freedom in layout can be increased.

また、本実施形態では、無人搬送車1は、前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回可能に構成されている。そうした操舵特性を有する無人搬送車1において、一方の受電コイル72aを、他方の受電コイル71aに対して、搬送車本体10を基準とする左右方向位置が異なる位置に配置することは、搬送車本体10を受電位置に移動させる際の旋回方向の制約を緩和する上で有用である。しかも、本実施形態では、一方の受電コイル71aと、他方の受電コイル72aとを、互いに対向する外壁である左側壁10cと右側壁10dとに取付けるようにしたので、搬送車本体10を受電位置に移動させる際の旋回方向の制約をより一層緩和することができる。 Further, in the present embodiment, the automatic guided vehicle 1 is configured to be able to move linearly in the front-rear direction and to turn in the left-right direction with reference to the front-rear direction. In the automatic guided vehicle 1 having such steering characteristics, arranging one power receiving coil 72a at a position different from that of the other power receiving coil 71a in the left-right direction with respect to the transport vehicle body 10 is a transport vehicle body. This is useful for relaxing the restriction on the turning direction when moving the 10 to the power receiving position. Moreover, in the present embodiment, since one power receiving coil 71a and the other power receiving coil 72a are attached to the left side wall 10c and the right side wall 10d which are opposite outer walls, the transport vehicle main body 10 is placed in the power receiving position. It is possible to further relax the restriction on the turning direction when moving to.

こうして、搬送車本体10が受電位置に移動する際の旋回方向の制約が緩和されることで、無人搬送車1の移動経路の自由度を可及的に高めることができる。 In this way, the restrictions on the turning direction when the automatic guided vehicle body 10 moves to the power receiving position are relaxed, so that the degree of freedom of the moving route of the automatic guided vehicle 1 can be increased as much as possible.

また、本実施形態では、受電装置60は、蓄電部95が一つであり、二つの受電コイル71a,72aのうち受電中の一の受電コイル(図5の例では受電コイル71と蓄電部95とを接続する配電回路部83を有している。 Further, in the present embodiment, the power receiving device 60 has one power receiving coil 95, and one of the two power receiving coils 71a and 72a is receiving power (in the example of FIG. 5, the power receiving coil 71 and the power storage unit 95). It has a power distribution circuit unit 83 for connecting to and.

このように配電回路部83を設けることで、二つの受電コイル71a,72aのうち受電中の受電コイル(図5の例では受電コイル71a)のみが蓄電部95と接続され、この結果、受電中でない他方の受電コイル(図5の例では受電コイル72a)は、一方の受電コイルと電気的に遮断される。よって、二つの受電コイル71a,72aうち一方の受電コイルにて受電した電力の一部が他方の受電コイルに流れて蓄電部95への給電効率が低下するのを防止することができる。 By providing the power distribution circuit unit 83 in this way, of the two power receiving coils 71a and 72a, only the power receiving coil (power receiving coil 71a in the example of FIG. 5) is connected to the power storage unit 95, and as a result, power is being received. The other power receiving coil (power receiving coil 72a in the example of FIG. 5) is electrically cut off from one power receiving coil. Therefore, it is possible to prevent a part of the electric power received by one of the two power receiving coils 71a and 72a from flowing to the other power receiving coil and lowering the power feeding efficiency to the power storage unit 95.

図8は、本実施形態の無人搬送車1の他の使用態様を示す説明用平面図である。この図の例では、無人搬送車1の移動経路(図8の太二点鎖線)と、この移動経路に対する測定ステーション4及び洗浄ステーション5の位置関係が図6と異なっている。 FIG. 8 is an explanatory plan view showing another usage mode of the automatic guided vehicle 1 of the present embodiment. In the example of this figure, the movement path of the automatic guided vehicle 1 (thick two-dot chain line in FIG. 8) and the positional relationship between the measurement station 4 and the cleaning station 5 with respect to this movement path are different from those in FIG.

すなわち、本例では、無人搬送車1の移動経路はL字経路に設定されており、測定ステーション4は、L字経路における進入経路の内側に配置され、洗浄ステーション5はL経路における退出経路の外側に配置されている。このように、測定ステーション4及び洗浄ステーション5が移動経路を挟んで内側と外側とに対向配置されていたとしても、無人搬送車1がL字経路の屈曲部を曲がった後、その向きを反転させたり後退させたりすることなく、洗浄ステーション5の給電装置50からの電力を無人搬送車1の右側の受電コイル72aにて受電することができる。よって、無人搬送車1の移動経路を拡大することなく周辺装置のレイアウト自由度を向上させることができる。 That is, in this example, the moving route of the automatic guided vehicle 1 is set to the L-shaped route, the measurement station 4 is arranged inside the approach route in the L-shaped route, and the cleaning station 5 is the exit route in the L-shaped route. It is located on the outside. In this way, even if the measuring station 4 and the cleaning station 5 are arranged to face each other on the inside and the outside with the moving path in between, the automatic guided vehicle 1 turns the bent portion of the L-shaped path and then reverses its direction. The electric power from the power supply device 50 of the cleaning station 5 can be received by the electric power receiving coil 72a on the right side of the automatic guided vehicle 1 without being moved or retracted. Therefore, the degree of freedom in layout of the peripheral device can be improved without expanding the moving route of the automatic guided vehicle 1.

図9は、本実施形態の無人搬送車1の他の使用態様を示す説明用平面図である。この図の例では、無人搬送車1を直線状に移動させて加工システムを構築している。そして、無人搬送車1の移動経路(図9の太二点鎖線)を挟んで一方側と他方側とに測定ステーション4及び洗浄ステーション5が配置されている。このような場合でも、搬送車本体10の左右両側に設けられた受電コイル71a及び受電コイル72aにより各ステーション4,5の給電装置50から給電を受けることができる。よって、無人搬送車1の移動経路を挟んで一方側と他方側とに装置を配置することができて、装置のレイアウト自由度が高まる。 FIG. 9 is an explanatory plan view showing another usage mode of the automatic guided vehicle 1 of the present embodiment. In the example of this figure, the automatic guided vehicle 1 is moved in a straight line to construct a processing system. The measuring station 4 and the cleaning station 5 are arranged on one side and the other side of the automatic guided vehicle 1 with the moving path (thick two-dot chain line in FIG. 9) in between. Even in such a case, power can be received from the power supply devices 50 of the stations 4 and 5 by the power receiving coils 71a and the power receiving coils 72a provided on the left and right sides of the transport vehicle main body 10. Therefore, the devices can be arranged on one side and the other side across the moving path of the automatic guided vehicle 1, and the degree of freedom in layout of the devices is increased.

(第2の実施形態)
図10は、本発明の第2の実施形態を示している。この実施形態では、搬送車本体10に対する第一受電コイルユニット71及び第二受電コイルユニット72の配置構成が前記第1の実施形態とは異なっている。尚、図1と同じ構成要素には同じ符号を付してその詳細な説明を省略する。
(Second Embodiment)
FIG. 10 shows a second embodiment of the present invention. In this embodiment, the arrangement configuration of the first power receiving coil unit 71 and the second power receiving coil unit 72 with respect to the transport vehicle main body 10 is different from that of the first embodiment. The same components as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

すなわち、本実施形態では、図10に示すように、第一受電コイルユニット71は、搬送車本体10の前側壁10aにおける左右方向の中央部に取付けられ、第二受電コイルユニット72は、搬送車本体10の後側壁10bにおける左右方向の中央部に取付けられている。第一受電コイルユニット71の受電コイル71aと第二受電コイルユニット72の受電コイル72aとは、その設置高さと左右方向位置が同じ設定されていて前後方向の位置のみが異なっている。尚、受電コイル71aと受電コイル72aとを、平面視で対角上に配置する等してもよい。 That is, in the present embodiment, as shown in FIG. 10, the first power receiving coil unit 71 is attached to the central portion in the left-right direction of the front side wall 10a of the transport vehicle main body 10, and the second power receiving coil unit 72 is the transport vehicle. It is attached to the central portion in the left-right direction of the rear side wall 10b of the main body 10. The power receiving coil 71a of the first power receiving coil unit 71 and the power receiving coil 72a of the second power receiving coil unit 72 are set to have the same installation height and horizontal position, but differ only in the front-rear position. The power receiving coil 71a and the power receiving coil 72a may be arranged diagonally in a plan view.

本実施形態の無人搬送車1によれば、搬送車本体10には、二つの受電コイル71a,72aが設けられているおり、各受電コイル71a,72aは、互いに対向する前側壁10a及び後側壁10bに取付けられている。したがって、実施形態1と同様に、無人搬送車1を受電位置に移動させる際の移動経路の自由度が高まる。延いては、周辺装置のレイアウト自由度を可及的に高めることができる。 According to the automatic guided vehicle 1 of the present embodiment, the automatic guided vehicle body 10 is provided with two power receiving coils 71a and 72a, and each of the power receiving coils 71a and 72a has a front side wall 10a and a rear side wall facing each other. It is attached to 10b. Therefore, as in the first embodiment, the degree of freedom of the movement route when moving the automatic guided vehicle 1 to the power receiving position is increased. As a result, the degree of freedom in layout of peripheral devices can be increased as much as possible.

(第3の実施形態)
図11は、本発明の第3の実施形態を示している。この実施形態では、搬送車本体10に対する第一受電コイルユニット71及び第二受電コイルユニット72の配置構成が前記各実施形態とは異なっている。尚、図1と同じ構成要素には同じ符号を付してその詳細な説明を省略する。
(Third Embodiment)
FIG. 11 shows a third embodiment of the present invention. In this embodiment, the arrangement configuration of the first power receiving coil unit 71 and the second power receiving coil unit 72 with respect to the transport vehicle main body 10 is different from each of the above-described embodiments. The same components as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

すなわち、本実施形態では、図11に示すように、第一受電コイルユニット71及び第二受電コイルユニット72は、左右方向及び前後方向の位置が同じで設置高さのみが異なっている。 That is, in the present embodiment, as shown in FIG. 11, the first power receiving coil unit 71 and the second power receiving coil unit 72 have the same positions in the left-right direction and the front-back direction, but differ only in the installation height.

本例では、第一受電コイルユニット71及び第二受電コイルユニット72は、搬送車本体10の左側壁10cに上下方向に間隔を空けて配置されている。 In this example, the first power receiving coil unit 71 and the second power receiving coil unit 72 are arranged on the left side wall 10c of the transport vehicle main body 10 at intervals in the vertical direction.

本実施形態の無人搬送車1によれば、第一受電コイルユニット71の受電コイル71aと、第二受電コイルユニット72の受電コイル72aとは、設置高さが異なることとなるので、受電コイル71a,72aと連携する給電装置50の設置高さにバリエーションを持たせることができる。よって、受電コイルが一つの場合に比べて給電装置50のレイアウト自由度を高めることができる。 According to the automatic guided vehicle 1 of the present embodiment, the power receiving coil 71a of the first power receiving coil unit 71 and the power receiving coil 72a of the second power receiving coil unit 72 have different installation heights, so that the power receiving coil 71a , The installation height of the power supply device 50 linked with 72a can be varied. Therefore, the degree of freedom in layout of the power feeding device 50 can be increased as compared with the case where there is only one power receiving coil.

以上、本発明の実施形態に係る無人搬送車1について説明したが、当該無人搬送車1が採り得る態様はこれまで説明してきた態様に限定されるものではなく、以下の変形例を適用してもよい Although the automatic guided vehicle 1 according to the embodiment of the present invention has been described above, the modes that can be adopted by the automatic guided vehicle 1 are not limited to the modes described so far, and the following modifications are applied. May be good

(変形例1)
図12は、本発明の実施形態の変形例1を示している。この変形例1では、無人搬送車1に搭載される制御装置40の構成が前記第1の実施形態とは異なっている。尚、図12において第1の実施形態における構成と同じ構成(図4参照)については、同じ符号を付してその詳細な説明を省略する。
(Modification example 1)
FIG. 12 shows a modification 1 of the embodiment of the present invention. In this modification 1, the configuration of the control device 40 mounted on the automatic guided vehicle 1 is different from that of the first embodiment. In FIG. 12, the same configurations as those in the first embodiment (see FIG. 4) are designated by the same reference numerals, and detailed description thereof will be omitted.

すなわち、本変形例1に係る制御装置40Aは、第1の実施形態における制御装置40から移動経路記憶部40bを削除し、位置関係取得部40gと移動経路算出部40hとを設けた構成を有している。 That is, the control device 40A according to the first modification has a configuration in which the movement path storage unit 40b is deleted from the control device 40 in the first embodiment, and the positional relationship acquisition unit 40g and the movement route calculation unit 40h are provided. doing.

位置関係取得部40gは、マップ情報記憶部40cに記憶されたマップ情報を基に工場内の給電装置50の位置を特定するとともに、位置認識部40dが認識した無人搬送車1の位置(搬送車本体10の位置)と、給電装置50との位置関係を取得する。 The positional relationship acquisition unit 40g identifies the position of the power feeding device 50 in the factory based on the map information stored in the map information storage unit 40c, and the position of the automatic guided vehicle 1 recognized by the position recognition unit 40d (transport vehicle). The positional relationship between the main body 10) and the power feeding device 50 is acquired.

移動経路算出部40hは、蓄電部95の消費電力が最小になるような条件(所定条件の一例)を満たしつつ、ロボット20による所定作業を実行可能な搬送車本体10の移動経路を算出する。この移動経路の算出は、例えば人工知能、遺伝的アルゴリズム、又はニューラルネットワーク等を用いて行われる。 The movement route calculation unit 40h calculates the movement route of the transport vehicle main body 10 capable of executing the predetermined work by the robot 20 while satisfying the condition (an example of the predetermined condition) that minimizes the power consumption of the power storage unit 95. The calculation of this movement path is performed using, for example, artificial intelligence, a genetic algorithm, a neural network, or the like.

自動運転制御部40eは、移動経路算出部40hが算出した前記移動経路に沿って搬送車本体10が移動するように走行モータ13及び操舵モータ14を制御する。 The automatic driving control unit 40e controls the traveling motor 13 and the steering motor 14 so that the transport vehicle main body 10 moves along the moving route calculated by the moving route calculating unit 40h.

本変形例1によれば、無人搬送車1は、予め設定した移動経路ではなく、移動経路算出部40hが算出した移動経路に沿って移動する。このような無人搬送車1では、移動経路が同じ二点間を結ぶ場合でも移動経路の軌跡は毎回変化し易い。移動経路の軌跡が毎回変化する場合、該移動経路と干渉しないように配置する周辺装置のレイアウト自由度が低下し易い。このような態様を採用した場合において、搬送車本体10に受電コイル71a,受電コイル72aを複数設けて搬送車本体10が受電位置に移動する際の移動経路の自由度を高めることは、周辺装置のレイアウト自由度の低下を回避する上で特に有用である。 According to the first modification, the automatic guided vehicle 1 moves along the movement route calculated by the movement route calculation unit 40h, instead of the movement route set in advance. In such an automatic guided vehicle 1, the locus of the moving route is likely to change every time even when connecting two points having the same moving route. When the locus of the movement path changes every time, the degree of freedom in layout of peripheral devices arranged so as not to interfere with the movement path tends to decrease. In the case of adopting such an embodiment, providing a plurality of power receiving coils 71a and power receiving coils 72a on the transport vehicle main body 10 to increase the degree of freedom of the movement path when the transport vehicle main body 10 moves to the power receiving position is a peripheral device. It is especially useful in avoiding a decrease in the degree of freedom in layout.

(変形例2)
図13は、本発明の実施形態の変形例2を示している。この変形例2では、無人搬送車1に搭載される制御装置40の構成が前記変形例1とは異なっている。尚、図13において変形例1における構成(図12参照)と同じ構成については、同じ符号を付してその詳細な説明を省略する。
(Modification 2)
FIG. 13 shows a modification 2 of the embodiment of the present invention. In the modified example 2, the configuration of the control device 40 mounted on the automatic guided vehicle 1 is different from that of the modified example 1. In FIG. 13, the same configurations as those in the first modification (see FIG. 12) are designated by the same reference numerals, and detailed description thereof will be omitted.

すなわち、本変形例2に係る制御装置40Bは、工場内の所定箇所に設置されていて無人搬送車1を遠隔制御するように構成されている。 That is, the control device 40B according to the second modification is installed at a predetermined position in the factory and is configured to remotely control the automatic guided vehicle 1.

制御装置40Bと無人搬送車1とによって無人搬送システム100が構成されている。 The unmanned transfer system 100 is composed of the control device 40B and the automatic guided vehicle 1.

制御装置40Bは、変形例1の入出力インターフェース40fに代えて通信インターフェース40iを設けた構成を有している。 The control device 40B has a configuration in which a communication interface 40i is provided in place of the input / output interface 40f of the first modification.

無人搬送車1にも通信インターフェース15が設けられており、この通信インターフェース15は、無人搬送車1に設けられた制御回路部16を介して操作盤30、走行モータ13及び操舵モータ14、並びにロボット20に接続されている。 The automatic guided vehicle 1 is also provided with a communication interface 15, which is provided by an operation panel 30, a traveling motor 13, a steering motor 14, and a robot via a control circuit unit 16 provided on the automatic guided vehicle 1. It is connected to 20.

制御装置40Bは、無人搬送車1に設けた通信インターフェース15及び制御回路部16を介して、搬送車本体10の走行モータ13及び操舵モータ14を制御することで、無人搬送車1を、移動経路算出部40hが算出した移動経路に沿って移動させる。 The control device 40B controls the traveling motor 13 and the steering motor 14 of the automatic guided vehicle 10 via the communication interface 15 and the control circuit unit 16 provided on the automatic guided vehicle 1, so that the automatic guided vehicle 1 can be moved. It is moved along the movement path calculated by the calculation unit 40h.

本変形例2によれば、無人搬送車1と無人搬送車1を遠隔制御する制御装置40とを備えた無人搬送システム100において前記変形例1と同様の作用、効果が奏される。 According to the second modification, the same operation and effect as the first modification is exhibited in the automatic guided vehicle 100 including the automatic guided vehicle 1 and the control device 40 for remotely controlling the automatic guided vehicle 1.

(他の変形例)
前記実施形態では、受電コイル71a,72aは二つ設けられているが、これに限ったものではなく、三つ以上であってもよい。
(Other variants)
In the above embodiment, two power receiving coils 71a and 72a are provided, but the present invention is not limited to this, and three or more power receiving coils may be provided.

また、受電コイル71a,72aを、搬送車本体10の下面又は上面10eに取付けてもよい。 Further, the power receiving coils 71a and 72a may be attached to the lower surface or the upper surface 10e of the transport vehicle main body 10.

前記実施形態では、蓄電部95を一つだけ設けるようにしているが、これに限ったものではなく、二つの受電コイル71a,72aのそれぞれに対して蓄電部95を設けるようにしてもよい。この場合、配電ユニット80を廃止して各受電コイル71a,72aをそれぞれ異なる蓄電部95に接続するようにすればよい。 In the above embodiment, only one power storage unit 95 is provided, but the present invention is not limited to this, and the power storage unit 95 may be provided for each of the two power receiving coils 71a and 72a. In this case, the power distribution unit 80 may be abolished and the power receiving coils 71a and 72a may be connected to different power storage units 95.

前記実施形態では、搬送車本体10は、略直方体状に形成されているが、これに限ったものではなく、例えば円筒状又は円錐状に形成されていてもよい。 In the above embodiment, the transport vehicle main body 10 is formed in a substantially rectangular parallelepiped shape, but the present invention is not limited to this, and may be formed in, for example, a cylindrical shape or a conical shape.

前記実施形態では、無人搬送車1は、前後方向を基準として左右方向に旋回可能に構成されているが、これに限ったものではない。例えば、無人搬送車1に四つの車輪を設けて各車輪に操舵モータを備えることで、無人搬送車1を前後左右に十字状に移動可能に構成してもよい。 In the above-described embodiment, the automatic guided vehicle 1 is configured to be able to turn in the left-right direction with reference to the front-rear direction, but the present invention is not limited to this. For example, the automatic guided vehicle 1 may be configured to be movable in a cross shape in the front-rear and left-right directions by providing four wheels on the automatic guided vehicle 1 and equipping each wheel with a steering motor.

前記実施形態では、給電装置50による給電方式として非接触給電方式を採用するようにしているが、これに限ったものではなく、給電用電極と受電用電極とを接触させて給電を行う接触式給電を採用してもよい。 In the above embodiment, the non-contact power feeding method is adopted as the power feeding method by the power feeding device 50, but the present invention is not limited to this, and the contact type in which the power feeding electrode and the power receiving electrode are brought into contact with each other to supply power. Power supply may be adopted.

前記実施形態では、無人搬送車1は、搬送車本体10にロボット20を搭載して構成されている、これに限ったものではなく、例えばロボット20を廃止して搬送車本体10のみで構成されていてもよい。 In the above embodiment, the automatic guided vehicle 1 is not limited to the robot 20 mounted on the automatic guided vehicle body 10, and is not limited to this. For example, the robot 20 is abolished and the automatic guided vehicle 1 is composed only of the vehicle body 10. You may be.

上述の各実施形態及び各変形例の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 The above description of each embodiment and each modification is exemplary in all respects and is not restrictive. Modifications and changes can be made as appropriate for those skilled in the art. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims. Further, the scope of the present invention includes modifications from the embodiment within the scope of the claims and within the scope of the claims.

1 無人搬送車
10 搬送車本体
14 操舵モータ(操舵部)
40 制御装置
40A 制御装置
40B 制御装置
40g 位置関係取得部
40h 移動経路算出部
40e 自動運転制御部(制御部)
50 給電装置
60 受電装置
71a 受電コイル(第一受電部)
72a 受電コイル(第二受電部)
83 配電回路部
95 蓄電部
100 無人搬送システム
1 Automatic guided vehicle 10 Automatic guided vehicle body 14 Steering motor (steering unit)
40 Control device 40A Control device 40B Control device 40g Positional relationship acquisition unit 40h Movement route calculation unit 40e Automatic operation control unit (control unit)
50 Power supply device 60 Power receiving device 71a Power receiving coil (first power receiving unit)
72a Power receiving coil (second power receiving unit)
83 Distribution circuit unit 95 Power storage unit 100 Automatic guided vehicle system

Claims (8)

搬送車本体と、該搬送車本体に取付けられ、所定位置に設けられた給電装置との連携によって該給電装置から受電する受電部及び該受電部から供給される電力を蓄電する蓄電部を有する受電装置と、を備えた無人搬送車であって、
前記受電装置は、前記受電部を複数備えていることを特徴とする無人搬送車。
A power receiving unit having a power receiving unit that receives power from the power supply device and a power storage unit that stores power supplied from the power receiving unit in cooperation with the vehicle body and a power supply device attached to the vehicle body and provided at a predetermined position. An automated guided vehicle equipped with a device
The automatic guided vehicle is characterized in that the power receiving device includes a plurality of the power receiving units.
前記搬送車本体は、所定の一方向である前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回移動可能に構成されており、
前記受電装置は、複数の前記受電部として、少なくとも第一受電部及び第二受電部を含み、前記第二受電部が、前記第一受電部に対して、前記搬送車本体を基準とする左右方向位置が異なる位置に配置されていることを特徴とする請求項1記載の無人搬送車。
The transport vehicle main body is configured to be linearly movable in the front-rear direction, which is a predetermined one direction, and to be able to turn and move in the left-right direction with reference to the front-rear direction.
The power receiving device includes at least a first power receiving unit and a second power receiving unit as a plurality of the power receiving units, and the second power receiving unit is left and right with respect to the first power receiving unit with respect to the transport vehicle main body. The automatic guided vehicle according to claim 1, wherein the automatic guided vehicles are arranged at different positions.
前記搬送車本体は、所定の一方向である前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回移動可能に構成されており、
前記受電装置は、複数の前記受電部として、少なくとも第一受電部及び第二受電部を含み、前記第二受電部が、前記第一受電部に対して、前記搬送車本体を基準とする前後方向位置が異なる位置に配置されていることを特徴とする請求項1記載の無人搬送車。
The transport vehicle main body is configured to be linearly movable in the front-rear direction, which is a predetermined one direction, and to be able to turn and move in the left-right direction with reference to the front-rear direction.
The power receiving device includes at least a first power receiving unit and a second power receiving unit as a plurality of the power receiving units, and the second power receiving unit is before and after the first power receiving unit is referred to the transport vehicle main body. The automatic guided vehicle according to claim 1, wherein the automatic guided vehicles are arranged at different positions.
前記搬送車本体は、所定の一方向である前後方向に直線移動可能であるとともに該前後方向を基準として左右方向に旋回移動可能に構成されており、
前記搬送車本体は、前後方向に対向する一対の外壁と左右方向に対向する一対の外壁とを有していて平面視で矩形状をなしており、
前記受電装置は、前記第一受電部及び第二受電部がそれぞれ、前記搬送車本体における前後左右の外壁のうち異なる二つの外壁に取付けられていることを特徴とする請求項2又は3記載の無人搬送車。
The transport vehicle main body is configured to be linearly movable in the front-rear direction, which is a predetermined one direction, and to be able to turn and move in the left-right direction with reference to the front-rear direction.
The transport vehicle main body has a pair of outer walls facing each other in the front-rear direction and a pair of outer walls facing each other in the left-right direction, and has a rectangular shape in a plan view.
The power receiving device according to claim 2 or 3, wherein the first power receiving unit and the second power receiving unit are attached to two different outer walls of the front, rear, left and right outer walls of the vehicle body, respectively. Automated guided vehicle.
前記受電装置は、前記第一受電部及び第二受電部がそれぞれ、前記搬送車本体における互いに対向する外壁に取付けられていることを特徴とする請求項2乃至4記載のいずれかの無人搬送車。 The automatic guided vehicle according to any one of claims 2 to 4, wherein the power receiving device has the first power receiving unit and the second power receiving unit attached to outer walls facing each other in the main body of the vehicle. .. 前記受電装置は、前記蓄電部が一つであり、複数の前記受電部のうち受電中の一の受電部と前記蓄電部とを接続する配電回路部を備えていることを特徴とする請求項1乃至5記載のいずれかの無人搬送車。 The power receiving device is characterized in that it has one power storage unit and includes a power distribution circuit unit that connects one of the plurality of power receiving units that is receiving power and the power storage unit. An automatic guided vehicle according to any one of 1 to 5. 前記搬送車本体の車輪の操舵角を変更する操舵部と、
前記搬送車本体と前記給電装置との位置関係を取得する位置関係取得部と、
前記位置関係取得部が取得した位置関係を基に、前記搬送車本体における所定条件を満たす移動経路を算出する経路算出部と、
前記経路算出部が算出した前記移動経路に沿って前記搬送車本体が移動するように前記操舵部を制御する制御部とを備えていることを特徴とする請求項1乃至6記載のいずれかの無人搬送車。
A steering unit that changes the steering angle of the wheels of the transport vehicle body,
A positional relationship acquisition unit that acquires the positional relationship between the transport vehicle main body and the power feeding device, and
Based on the positional relationship acquired by the positional relationship acquisition unit, a route calculation unit that calculates a movement route that satisfies a predetermined condition in the transport vehicle main body, and a route calculation unit.
Any of claims 1 to 6, wherein the route calculation unit includes a control unit that controls the steering unit so that the vehicle body moves along the movement path calculated by the route calculation unit. Automated guided vehicle.
請求項1乃至6記載のいずれかの無人搬送車と、前記無人搬送車を遠隔制御する制御装置と、を備えた無人搬送システムであって、
前記搬送車本体は、該搬送車本体の車輪の操舵角を変更する操舵部を有し、
前記制御装置は、
前記搬送車本体と前記給電装置との位置関係を取得する位置関係取得部と、
前記位置関係取得部が取得した位置関係を基に、前記搬送車本体における所定条件を満たす移動経路を算出する経路算出部と、
前記経路算出部が算出した前記移動経路に沿って前記搬送車本体が移動するように前記操舵部を制御する制御部とを備えていることを特徴とする無人搬送システム。
An automatic guided vehicle including any of the automatic guided vehicles according to claims 1 to 6 and a control device for remotely controlling the automatic guided vehicle.
The transport vehicle main body has a steering unit that changes the steering angle of the wheels of the transport vehicle main body.
The control device is
A positional relationship acquisition unit that acquires the positional relationship between the transport vehicle main body and the power feeding device, and
Based on the positional relationship acquired by the positional relationship acquisition unit, a route calculation unit that calculates a movement route that satisfies a predetermined condition in the transport vehicle main body, and a route calculation unit.
An automatic guided vehicle system including a control unit that controls the steering unit so that the vehicle body moves along the movement path calculated by the route calculation unit.
JP2019216465A 2019-11-29 2019-11-29 Unmanned carrier and unmanned transportation system Pending JP2021087328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019216465A JP2021087328A (en) 2019-11-29 2019-11-29 Unmanned carrier and unmanned transportation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216465A JP2021087328A (en) 2019-11-29 2019-11-29 Unmanned carrier and unmanned transportation system

Publications (1)

Publication Number Publication Date
JP2021087328A true JP2021087328A (en) 2021-06-03

Family

ID=76085974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216465A Pending JP2021087328A (en) 2019-11-29 2019-11-29 Unmanned carrier and unmanned transportation system

Country Status (1)

Country Link
JP (1) JP2021087328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185079B1 (en) 2022-02-17 2022-12-06 Dmg森精機株式会社 Self-propelled system, control method and control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984213A (en) * 1995-09-14 1997-03-28 Toyota Autom Loom Works Ltd Automatic charging system and charging device of vehicle
JP2001341085A (en) * 2000-03-28 2001-12-11 Denso Corp Mobile robot
JP2016153145A (en) * 2015-02-20 2016-08-25 長野日本無線株式会社 Workpiece drawing device and carrier line system
JP2017093182A (en) * 2015-11-11 2017-05-25 株式会社ダイヘン Noncontact power transmission system
WO2017208539A1 (en) * 2016-05-31 2017-12-07 日本電産株式会社 Mobile body and mobile body system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984213A (en) * 1995-09-14 1997-03-28 Toyota Autom Loom Works Ltd Automatic charging system and charging device of vehicle
JP2001341085A (en) * 2000-03-28 2001-12-11 Denso Corp Mobile robot
JP2016153145A (en) * 2015-02-20 2016-08-25 長野日本無線株式会社 Workpiece drawing device and carrier line system
JP2017093182A (en) * 2015-11-11 2017-05-25 株式会社ダイヘン Noncontact power transmission system
WO2017208539A1 (en) * 2016-05-31 2017-12-07 日本電産株式会社 Mobile body and mobile body system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185079B1 (en) 2022-02-17 2022-12-06 Dmg森精機株式会社 Self-propelled system, control method and control program
JP2023119632A (en) * 2022-02-17 2023-08-29 Dmg森精機株式会社 Self-traveling system, control method and control program

Similar Documents

Publication Publication Date Title
US11524374B2 (en) Conveying system for simultaneously transporting workpieces and workers
CN103392157B (en) Object tracking methods and Vehicular turn Correction Strategies for materials handling vehicle
CN109606505A (en) A kind of automatic transporting machine people
CN103246286A (en) Arrangement of area wire for unmanned autonomous operating vehicle and control apparatus of the same
CN112977670A (en) Omnidirectional trolley conveying mechanism
CN213322794U (en) AGV intelligent vehicle based on SLAM navigation technology
JP6856070B2 (en) Mobiles and mobile systems
CN108068095A (en) A kind of Intelligent walking robot
JP7382597B2 (en) Robot systems and robot cells
JP2012055103A (en) Running vehicle system
JP2021087328A (en) Unmanned carrier and unmanned transportation system
CN216805043U (en) Automatic handling equipment
CN207901141U (en) A kind of Intelligent walking robot
JP2019219735A (en) Autonomous mobile body and control program for the same
JPWO2017208546A1 (en) Mobile body and mobile body system
US11976743B2 (en) Wireless valve manifold
WO2022264673A1 (en) Travel system
JP7487552B2 (en) Charging method and charging system
CN210554223U (en) Hybrid power supply unmanned conveying vehicle system
CN113784902A (en) Logistics facility management system
WO2024013799A1 (en) Transport system, and operation instruction method for automatic transport device
JP7285354B1 (en) traveling robot system
CN217458699U (en) Coil stock lifting AGV
CN211494309U (en) Steering wheel AGV moving platform
JP2001019120A (en) Noncontact power feeding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200821

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200825

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200904

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200908

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201117

C30 Protocol of an oral hearing

Free format text: JAPANESE INTERMEDIATE CODE: C30

Effective date: 20201215

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210330

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511