JP2021086975A - Superconducting apparatus - Google Patents

Superconducting apparatus Download PDF

Info

Publication number
JP2021086975A
JP2021086975A JP2019216481A JP2019216481A JP2021086975A JP 2021086975 A JP2021086975 A JP 2021086975A JP 2019216481 A JP2019216481 A JP 2019216481A JP 2019216481 A JP2019216481 A JP 2019216481A JP 2021086975 A JP2021086975 A JP 2021086975A
Authority
JP
Japan
Prior art keywords
heat transfer
regions
superconducting
region
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019216481A
Other languages
Japanese (ja)
Other versions
JP7426217B2 (en
Inventor
正充 池内
Masamitsu Ikeuchi
正充 池内
隆介 大野
Ryusuke Ono
隆介 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2019216481A priority Critical patent/JP7426217B2/en
Publication of JP2021086975A publication Critical patent/JP2021086975A/en
Application granted granted Critical
Publication of JP7426217B2 publication Critical patent/JP7426217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

To suppress a decrease in the cooling effect by making it possible to reliably suppress film boiling by low-cost means.SOLUTION: A superconducting apparatus according to an embodiment includes a heat transfer surface cooled by a liquid refrigerant, and a coating layer that is provided to cover at least a part of the heat transfer surface and has a lower thermal conductivity than the heat transfer surface, the heat transfer surface has a plurality of heat transfer regions and a plurality of heat transfer suppression regions alternately arranged with the plurality of heat transfer regions, and (a) the coating layer is provided so as to selectively cover the heat transfer suppression region of the heat transfer surface, or (b) the thickness of the coating layer in each of the heat transfer suppression regions is larger than that of each of the heat transfer regions.SELECTED DRAWING: Figure 1

Description

本開示は、超電導機器に関する。 The present disclosure relates to superconducting equipment.

近年、宇宙工学、医学、超電導技術等の低温分野において、低温液冷媒を用いた沸騰冷却を促進する冷却技術が必要とされている。液冷媒の沸騰状態は、一般的に沸騰曲線で表されるように、液冷媒と対象被冷却体との温度差が拡大するにつれ、核沸騰から遷移沸騰、さらには膜沸騰へと転移する。核沸騰では微細な気泡が被冷却体の表面から離れるときに対流を促進するため、伝熱量が最も大きくなる。液体窒素のような極低温の液冷媒中に置かれた被冷却体を沸騰冷却する場合、温度差が大きいため、被冷却体の表面が蒸気膜に覆われた膜沸騰状態に陥りやすい。膜沸騰状態では、液冷媒と被冷却体の表面との間にできる蒸気層を介して熱移動が行われるが、蒸気層の熱伝導率が極めて悪いため、被冷却体から液冷媒への熱伝達が極端に低下し、冷却効率が低下する。 In recent years, in low-temperature fields such as space engineering, medicine, and superconducting technology, cooling technology that promotes boiling cooling using a low-temperature liquid refrigerant is required. The boiling state of the liquid refrigerant shifts from nucleate boiling to transition boiling and then to film boiling as the temperature difference between the liquid refrigerant and the target object to be cooled increases, as generally represented by a boiling curve. In nucleate boiling, convection is promoted when fine bubbles separate from the surface of the object to be cooled, so that the amount of heat transfer is the largest. When a body to be cooled placed in an extremely low temperature liquid refrigerant such as liquid nitrogen is boiled and cooled, the surface of the body to be cooled is likely to fall into a boiling state in which the surface of the body to be cooled is covered with a vapor film because the temperature difference is large. In the boiling state of the film, heat is transferred through the steam layer formed between the liquid refrigerant and the surface of the object to be cooled. However, since the thermal conductivity of the steam layer is extremely poor, heat from the object to be cooled to the liquid refrigerant is generated. Transmission is extremely reduced and cooling efficiency is reduced.

そのため、従来、被冷却体の表面をPTFEなどの熱伝導率が小さい物質で覆って表面温度を低下させ、核沸騰に留まらせることによって膜沸騰に至らないようにした研究成果が報告されている。しかし、この方法では、非沸騰領域での熱伝達が悪化することは避けられない。また、銅球の表面を熱伝導率が小さい霜で覆い、核沸騰状態を保つことで、熱伝達が向上することが報告されている。この場合、霜層の微細な氷柱の存在により表面積が増大することで、非沸騰領域での熱伝達も良くなることが期待できるが、工業的な実施は今後の課題である。 Therefore, conventionally, research results have been reported in which the surface of the object to be cooled is covered with a substance having a low thermal conductivity such as PTFE to lower the surface temperature and stay in nucleate boiling to prevent film boiling. .. However, with this method, it is inevitable that the heat transfer in the non-boiling region will deteriorate. It has also been reported that heat transfer is improved by covering the surface of the copper sphere with frost having a low thermal conductivity and maintaining the nucleate boiling state. In this case, it can be expected that heat transfer in the non-boiling region will be improved by increasing the surface area due to the presence of fine icicles in the frost layer, but industrial implementation is a future task.

特許文献1には、超電導体を利用して限流動作を行う限流器において、超電導部材の表面に熱伝導率が大きいフィンを設けることで、冷却媒体の沸騰状態が核沸騰状態から膜沸騰状態に遷移することを抑制する手段が提案されている。膜沸騰を抑制できる理由として、特許文献1の段落[0055]には、「試験発熱体3においては充分な数のフィンが形成されているため、その表面形状が複雑になっており、蒸気膜が形成され難くなっている結果、完全な膜沸騰状態にならないためであると考えられる。」と記載されている。 According to Patent Document 1, in a current limiting device that performs a current limiting operation using a superconductor, the boiling state of the cooling medium is changed from the nucleate boiling state to the film boiling by providing fins having high thermal conductivity on the surface of the superconducting member. Means for suppressing the transition to the state have been proposed. As a reason why the film boiling can be suppressed, the paragraph [0055] of Patent Document 1 states, "Since a sufficient number of fins are formed in the test heating element 3, the surface shape thereof is complicated, and the steam film. It is considered that this is because the film is not completely boiled as a result of the formation of the film. "

特許第5800018号公報Japanese Patent No. 5800018

特許文献1に開示された手段は、冷却される伝熱面にフィンなどの放熱部材を設けて伝熱面の形状を複雑化する必要があるため、製造コストが増加し、かつ放熱部材を設けるためのスペースが必要となる。また、製造コストが増加する割には、放熱部材の形状によっては所期の冷却効果が得られるかどうか不明である。 In the means disclosed in Patent Document 1, it is necessary to provide a heat radiating member such as a fin on the heat transfer surface to be cooled to complicate the shape of the heat transfer surface, so that the manufacturing cost increases and the heat radiating member is provided. Space is needed. Further, it is unclear whether the desired cooling effect can be obtained depending on the shape of the heat radiating member in spite of the increase in manufacturing cost.

本開示は、上述する問題点に鑑みてなされたもので、低コストな手段で膜沸騰を確実に抑制可能にすることで、冷却効果の低下を抑制することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to suppress a decrease in the cooling effect by reliably suppressing film boiling by a low-cost means.

上記目的を達成するため、本開示に係る超電導機器は、液冷媒によって冷却される伝熱面と、前記伝熱面を少なくとも部分的に覆うように設けられ、前記伝熱面よりも低い熱伝導率を有する被覆層と、を備え、前記伝熱面は、複数の伝熱領域と、前記複数の伝熱領域と交互に配置された複数の伝熱抑制領域と、を含み、(a)前記被覆層が、前記伝熱面のうち前記伝熱抑制領域を選択的に覆うように設けられ、または、(b)前記被覆層の厚さが、各々の前記伝熱領域よりも各々の前記伝熱抑制領域のほうが大きい。 In order to achieve the above object, the superconducting device according to the present disclosure is provided so as to at least partially cover the heat transfer surface cooled by the liquid refrigerant and the heat transfer surface, and has lower heat transfer than the heat transfer surface. The heat transfer surface comprises a coating layer having a ratio, and the heat transfer surface includes a plurality of heat transfer regions and a plurality of heat transfer suppression regions alternately arranged with the plurality of heat transfer regions. The coating layer is provided so as to selectively cover the heat transfer suppressing region of the heat transfer surface, or (b) the thickness of the coating layer is larger than that of each of the heat transfer regions. The heat suppression region is larger.

本開示に係る超電導機器によれば、伝熱面よりも低い熱伝導率を有する被覆層を用いて、複数の伝熱領域と複数の伝熱抑制領域とを交互に配置することで、膜沸騰の形成を抑制して核沸騰状態を維持でき、これによって、冷却効果を高く維持できる。 According to the superconducting device according to the present disclosure, a coating layer having a thermal conductivity lower than that of the heat transfer surface is used, and a plurality of heat transfer regions and a plurality of heat transfer suppression regions are alternately arranged to boil the film. The formation of heat can be suppressed to maintain the nucleate boiling state, whereby the cooling effect can be maintained high.

一実施形態に係る超電導機器の一部を示す断面図である。It is sectional drawing which shows a part of the superconducting apparatus which concerns on one Embodiment. 一実施形態に係る超電導機器の一部を示す断面図である。It is sectional drawing which shows a part of the superconducting apparatus which concerns on one Embodiment. 一実施形態に係る超電導機器の透視斜視図である。It is a perspective view of the superconducting apparatus which concerns on one Embodiment. 図3中のA―A線に沿う断面図である。It is sectional drawing which follows the AA line in FIG. 一実施形態に係る超電導機器の斜視図である。It is a perspective view of the superconducting apparatus which concerns on one Embodiment. 図5中のB―B線に沿う断面図である。It is sectional drawing which follows the line BB in FIG.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, and are merely explanatory examples.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.

図1及び図2は、幾つかの実施形態に係る超電導機器10(10A、10B)の一部の構成を示す断面図である。これらの超電導機器10は、超電導部材(不図示)を内蔵すると共に、例えば液体窒素などの液冷媒rと接し液冷媒rによって冷却される伝熱面12を有する。該超電導部材は伝熱面12を介して極低温に冷却されることで電気抵抗がほぼ零の状態を保つことができる。伝熱面12は、被覆層14によって少なくとも部分的に覆われ、被覆層14は、伝熱面12を構成する材料よりも低い熱伝導率を有する材料で構成されている。こうして、伝熱面12は、複数の伝熱領域Raと、複数の伝熱領域Raと交互に配置された複数の伝熱抑制領域Rbと、を含むように構成されている。従って、同一の液冷媒rによる冷却条件下で、伝熱抑制領域Rbの単位表面積当たりの伝熱量(熱流束)は伝熱領域Raより小さくなる。 1 and 2 are cross-sectional views showing a partial configuration of superconducting devices 10 (10A, 10B) according to some embodiments. These superconducting devices 10 have a built-in superconducting member (not shown) and have a heat transfer surface 12 that is in contact with a liquid refrigerant r such as liquid nitrogen and is cooled by the liquid refrigerant r. The superconducting member is cooled to an extremely low temperature via the heat transfer surface 12, so that the electric resistance can be maintained at almost zero. The heat transfer surface 12 is at least partially covered by the coating layer 14, and the coating layer 14 is made of a material having a lower thermal conductivity than the material constituting the heat transfer surface 12. In this way, the heat transfer surface 12 is configured to include a plurality of heat transfer regions Ra and a plurality of heat transfer suppression regions Rb alternately arranged with the plurality of heat transfer regions Ra. Therefore, under the cooling conditions of the same liquid refrigerant r, the heat transfer amount (heat flux) per unit surface area of the heat transfer suppression region Rb is smaller than that of the heat transfer region Ra.

図1に示す超電導機器10(10A)では、伝熱面12は、被覆層14によって覆われていない伝熱領域Raと、被覆層14によって選択的に覆われた伝熱抑制領域Rbとに区画されている。図2に示す超電導機器10(10B)では、伝熱領域Ra及び伝熱抑制領域Rbの伝熱面12は共に被覆層14で覆われ、伝熱抑制領域Rbにおける被覆層14の厚さが伝熱領域Raにおける被覆層14の厚さより大きくなっている。 In the superconducting device 10 (10A) shown in FIG. 1, the heat transfer surface 12 is divided into a heat transfer region Ra not covered by the coating layer 14 and a heat transfer suppression region Rb selectively covered by the coating layer 14. Has been done. In the superconducting device 10 (10B) shown in FIG. 2, both the heat transfer surface 12 of the heat transfer region Ra and the heat transfer suppression region Rb are covered with the coating layer 14, and the thickness of the coating layer 14 in the heat transfer suppression region Rb is transferred. It is larger than the thickness of the coating layer 14 in the thermal region Ra.

これらの実施形態において、伝熱抑制領域Rbでは伝熱面12と液冷媒rとの熱伝達が抑制されるため、膜沸騰の形成が抑制され、核沸騰状態となる。また、伝熱抑制領域Rbが伝熱領域Raと交互に配置されるため、伝熱領域Raで局所的に膜沸騰が形成されたとしても、膜沸騰の伝搬が伝熱抑制領域Rbで阻止されるため、伝熱面12全体への膜沸騰の拡大が抑制され、核沸騰状態の領域が維持される。これによって、伝熱面12が全面膜沸騰状態に移行したときに比べ熱流束を大きく改善でき、超電導部材の冷却効果を高いまま維持することが可能となる。 In these embodiments, the heat transfer between the heat transfer surface 12 and the liquid refrigerant r is suppressed in the heat transfer suppression region Rb, so that the formation of film boiling is suppressed and the nucleate boiling state is reached. Further, since the heat transfer suppression region Rb is alternately arranged with the heat transfer region Ra, even if the film boiling is locally formed in the heat transfer region Ra, the propagation of the film boiling is blocked by the heat transfer suppression region Rb. Therefore, the expansion of the film boiling over the entire heat transfer surface 12 is suppressed, and the region in the nucleate boiling state is maintained. As a result, the heat flux can be greatly improved as compared with the case where the heat transfer surface 12 shifts to the boiling state of the entire surface, and the cooling effect of the superconducting member can be maintained at a high level.

被覆層14は、例えば、PTFEなどの熱伝導率が小さいフッ素樹脂で構成される。フッ素樹脂は超電導部材を極低温状態で冷却する環境下でも安定した物性を維持して冷却効果を発揮できる。 The coating layer 14 is made of a fluororesin having a low thermal conductivity, such as PTFE. Fluororesin can maintain stable physical properties and exert a cooling effect even in an environment where the superconducting member is cooled at an extremely low temperature.

一実施形態では、図1に示すように、被覆層14が伝熱抑制領域Rbに選択的に設けられ、被覆層14は伝熱面12から突出した突起部18を形成している。伝熱面12が液冷媒rと伝熱面12との温度差の増大で膜沸騰に移行しても、伝熱抑制領域Rbでの表面温度の上昇が抑制されるため、膜沸騰の抑制効果を維持できる。これによって、伝熱面12での温度降下は大きくなり、伝熱面がある温度を越えて降下すれば膜沸騰に復帰できず、その場所では核沸騰が起こり、蒸気膜は分断される。伝熱面12を覆っていた蒸気膜は部分的に核沸騰領域で不安定となる。このように遷移沸騰が始まり、やがてそれぞれの気泡が分離される核沸騰に転移する。 In one embodiment, as shown in FIG. 1, a coating layer 14 is selectively provided in the heat transfer suppressing region Rb, and the coating layer 14 forms a protrusion 18 protruding from the heat transfer surface 12. Even if the heat transfer surface 12 shifts to film boiling due to an increase in the temperature difference between the liquid refrigerant r and the heat transfer surface 12, the surface temperature rise in the heat transfer suppression region Rb is suppressed, so that the effect of suppressing film boiling is suppressed. Can be maintained. As a result, the temperature drop on the heat transfer surface 12 becomes large, and if the heat transfer surface drops beyond a certain temperature, the film cannot return to boiling, nucleate boiling occurs at that location, and the vapor film is divided. The vapor film covering the heat transfer surface 12 becomes partially unstable in the nucleate boiling region. In this way, transition boiling begins, and eventually the transition to nucleate boiling, in which each bubble is separated.

なお、本実施形態によれば、伝熱抑制領域Rbに突起部18を形成しているため、伝熱抑制領域Rbの表面積を増加できる。そのため、伝熱抑制領域Rbの形成によって生じる伝熱面12の非沸騰時の全体的な伝熱量の低下を、突起部18のフィン効率を考慮する必要があるが、伝熱抑制領域Rbの表面積の増加で補うことができる。 According to the present embodiment, since the protrusion 18 is formed in the heat transfer suppression region Rb, the surface area of the heat transfer suppression region Rb can be increased. Therefore, it is necessary to consider the fin efficiency of the protrusion 18 to reduce the overall heat transfer amount of the heat transfer surface 12 when not boiling, which is caused by the formation of the heat transfer suppression region Rb, but the surface area of the heat transfer suppression region Rb. Can be compensated for by the increase in.

突起部18は、伝熱抑制領域Rbに1個又は複数形成される。突起部18の形状は、例えば、柱状、壁状(直線状又は曲線状の壁を含む。)等でもよく、特に特定の形状に限定されない。また、複数形成された突起部18の配列は、例えば、並列、交差状等でもよく、特に特定の配列に限定されない。 One or a plurality of protrusions 18 are formed in the heat transfer suppression region Rb. The shape of the protrusion 18 may be, for example, a columnar shape, a wall shape (including a linear or curved wall), and the like, and is not particularly limited to a specific shape. Further, the arrangement of the plurality of formed protrusions 18 may be, for example, parallel, crossed, or the like, and is not particularly limited to a specific arrangement.

図1に示す超電導機器10(10A)は、被覆層14が伝熱抑制領域Rbのみに設けられ、伝熱領域Raには設けられていない。この実施形態によれば、伝熱領域Ra及び伝熱抑制領域Rbの液冷媒rとの伝熱量を被覆層14の有無によって差別化しているため、両者の伝熱量を容易に差別化できる。
図2に示す超電導機器10(10B)は、被覆層14が伝熱領域Ra及び伝熱抑制領域Rbに形成され、伝熱面12は液冷媒と接する被覆層14が形成された伝熱領域Raの表面となる。伝熱領域Ra及び伝熱抑制領域Rbの熱伝導の差を被覆層14の膜厚で差別化しているため、両者の微妙な伝熱量の差を被覆層14の膜厚で正確に差別化できる。
In the superconducting device 10 (10A) shown in FIG. 1, the coating layer 14 is provided only in the heat transfer suppressing region Rb, and is not provided in the heat transfer region Ra. According to this embodiment, since the amount of heat transfer between the heat transfer region Ra and the heat transfer suppression region Rb with the liquid refrigerant r is differentiated by the presence or absence of the coating layer 14, the heat transfer amounts between the two can be easily differentiated.
In the superconducting device 10 (10B) shown in FIG. 2, the coating layer 14 is formed in the heat transfer region Ra and the heat transfer suppression region Rb, and the heat transfer surface 12 is the heat transfer region Ra in which the coating layer 14 in contact with the liquid refrigerant is formed. Becomes the surface of. Since the difference in heat conduction between the heat transfer region Ra and the heat transfer suppression region Rb is differentiated by the film thickness of the coating layer 14, the slight difference in the amount of heat transfer between the two can be accurately differentiated by the film thickness of the coating layer 14. ..

図1及び図2に示す超電導機器10(10A、10B)では、突起部18の全体を被覆層14で構成しているが、突起部18の表面のみを被覆層14で形成し、突起部18の内側部分を別な材料で構成してもよい。例えば、超電導機器10(10A)では、突起部18の内側部分を伝熱面12を形成する材料と同じ材料で構成してもよい。 In the superconducting devices 10 (10A, 10B) shown in FIGS. 1 and 2, the entire protrusion 18 is composed of the coating layer 14, but only the surface of the protrusion 18 is formed by the coating layer 14, and the protrusion 18 is formed. The inner part of the may be made of another material. For example, in the superconducting device 10 (10A), the inner portion of the protrusion 18 may be made of the same material as the material forming the heat transfer surface 12.

伝熱面12と液冷媒rとの温度差が増大し、伝熱面12に膜沸騰が形成される場合、図1に示すように、伝熱面12に接して形成された膜沸騰領域Rの気液境界GLの外側に液相領域Rが形成される。例えば、条件により異なるが、膜沸騰領域Rの厚さは通常数十μm〜0.1mm程度である。一実施形態では、伝熱抑制領域Rbに形成された突起部18の少なくとも先端部が伝熱面12から0.1mm以上で気液境界GLより液相領域Rの高さに達するように構成されている。これによって、図1に示すように、突起部18の先端部が液相領域Rまで達することができるため、突起部18周辺では表面温度の上昇が抑制され、膜沸騰の抑制効果を維持できる。伝熱面12を覆っていた蒸気膜は部分的に核沸騰領域となり不安定となる。このように遷移沸騰が始まり、やがてそれぞれの気泡が分離される核沸騰に転移する。このように良好な熱伝達を保持する核沸騰領域が拡大され、この液相による冷却により伝熱面12の表面での膜沸騰領域Rの形成を抑制できるため、超電導部材の冷却効果を高く維持できる。 When the temperature difference between the heat transfer surface 12 and the liquid refrigerant r increases and film boiling is formed on the heat transfer surface 12, as shown in FIG. 1, the film boiling region R formed in contact with the heat transfer surface 12 liquid phase region R 2 is formed on the outside of one of the gas-liquid boundary GL. For example, although it depends on the conditions, the thickness of the film boiling region R 1 is usually about several tens of μm to 0.1 mm. In one embodiment, configured so that at least the tip portion of the projecting portion 18 formed on the heat transfer suppressing region Rb reaches the height of the liquid phase region R 2 from the gas-liquid boundary GL at least 0.1mm from the heat transfer surface 12 Has been done. As a result, as shown in FIG. 1, since the tip of the protrusion 18 can reach the liquid phase region R 2 , the rise in surface temperature is suppressed around the protrusion 18, and the effect of suppressing film boiling can be maintained. .. The steam film covering the heat transfer surface 12 partially becomes a nucleate boiling region and becomes unstable. In this way, transition boiling begins, and eventually the transition to nucleate boiling, in which each bubble is separated. Thus good is expanded nucleate boiling region for holding the heat transfer, the cooling by the liquid phase can be suppressed the formation of the film boiling region R 1 on the surface of the heat transfer surface 12, a high cooling effect of the superconducting member Can be maintained.

なお、一実施形態では、図2に示す突起部18に代えて、伝熱領域Raを形成する突起部18’で置き換えてもよい。置き換え後の突起部18’は、被覆層14よりも高い熱伝導率を有する金属等で構成され、伝熱面12に接触して配置される。この実施形態では、被覆層14より突起部18’の温度が高くなり、突起部18’の表面に膜沸騰が形成されても、被覆層14で表面温度の上昇が抑制されるため、膜沸騰の抑制効果を維持することが期待できる。 In one embodiment, the protrusion 18'shown in FIG. 2 may be replaced with the protrusion 18'forming the heat transfer region Ra. The protrusion 18'after replacement is made of a metal or the like having a higher thermal conductivity than the coating layer 14, and is arranged in contact with the heat transfer surface 12. In this embodiment, the temperature of the protrusion 18'is higher than that of the coating layer 14, and even if film boiling is formed on the surface of the protrusion 18', the temperature rise of the surface temperature is suppressed by the coating layer 14, so that the film boiling is suppressed. It can be expected to maintain the inhibitory effect of.

図3は、一実施形態に係る超電導機器10(10C)を示す透視斜視図であり、図4は図3中のA−A線に沿う断面図である。超電導機器10(10C)は、断熱性を有する貯槽20に極低温の液冷媒r(例えば、液体窒素など)が貯留され、貯槽20の内部で液冷媒rに超電導限流器22が浸漬されている。超電導限流器22が内蔵する超電導部材は、例えば、超電導マグネットで構成され、液冷媒rで極低温に保持されている。超電導限流器22は通常は電気抵抗がほぼ零となる超電導状態を呈しており、許容値以上の電流が流れて短絡すると、超電導状態が破れて常電導状態に転移(クエンチ)する。常電導状態に転移すると、電気抵抗を発生し、この抵抗を利用して短絡電流を抑制する。超電導限流器22の表面は液冷媒rに接した伝熱面12を構成している。 FIG. 3 is a perspective perspective view showing the superconducting device 10 (10C) according to the embodiment, and FIG. 4 is a cross-sectional view taken along the line AA in FIG. In the superconducting device 10 (10C), a cryogenic liquid refrigerant r (for example, liquid nitrogen) is stored in a heat insulating storage tank 20, and the superconducting current limiter 22 is immersed in the liquid refrigerant r inside the storage tank 20. There is. The superconducting member incorporated in the superconducting current limiter 22 is composed of, for example, a superconducting magnet, and is held at an extremely low temperature by the liquid refrigerant r. The superconducting current limiter 22 usually exhibits a superconducting state in which the electric resistance becomes almost zero, and when a current exceeding a permissible value flows and a short circuit occurs, the superconducting state is broken and the state is transferred (quenched) to the normal conducting state. When transitioning to the normal conduction state, electrical resistance is generated, and this resistance is used to suppress the short-circuit current. The surface of the superconducting current limiter 22 constitutes a heat transfer surface 12 in contact with the liquid refrigerant r.

伝熱面12は、伝熱面12を構成する材料よりも低い熱伝導率を有する材料で構成された被覆層14(18)によって少なくとも部分的に覆われ、複数の伝熱領域Raと、複数の伝熱領域Raと交互に配置された伝熱領域Raより熱伝導率が小さい複数の伝熱抑制領域Rbと、を含んでいる。例えば、図1及び図2に示す超電導機器10(10A、10B)のいずれかの構成を有している。超電導限流器22は、待機中は液冷媒rによって効率良く冷却されるため、常時はほとんど損失がない超電導状態を保持できる。 The heat transfer surface 12 is at least partially covered with a coating layer 14 (18) made of a material having a lower thermal conductivity than the material constituting the heat transfer surface 12, and has a plurality of heat transfer regions Ra and a plurality of heat transfer regions Ra. It includes a plurality of heat transfer suppressing regions Rb having a thermal conductivity smaller than that of the heat transfer regions Ra arranged alternately with the heat transfer regions Ra of the above. For example, it has any of the configurations of the superconducting devices 10 (10A, 10B) shown in FIGS. 1 and 2. Since the superconducting current limiter 22 is efficiently cooled by the liquid refrigerant r during standby, it is possible to maintain a superconducting state with almost no loss at all times.

限流動作時、超電導限流器22は急激な常電導転位(クエンチ)による急激な発熱のため大きく温度が上昇し、周囲の液冷媒rは急速に気化する。限流動作終了後(電流遮断後)、再冷却のため液冷媒rが速やかに貯槽20に供給される。この時、超電導限流器22の表面は、被覆層14によって膜沸騰が抑制され速やかに冷却されて超電導状態に復帰し、次の限流器動作に備えることが可能となる。 During the current limiting operation, the temperature of the superconducting current limiter 22 rises significantly due to the sudden heat generation due to the sudden normal conduction transition (quenching), and the surrounding liquid refrigerant r is rapidly vaporized. After the current limiting operation is completed (after the current is cut off), the liquid refrigerant r is promptly supplied to the storage tank 20 for recooling. At this time, the surface of the superconducting current limiter 22 is suppressed from boiling by the coating layer 14 and is rapidly cooled to return to the superconducting state, so that it is possible to prepare for the next current limiting device operation.

一実施形態では、貯槽20の隔壁は二重壁で構成され、これら二重壁の外側壁と内側壁との間に真空空間が形成されている。これによって、貯槽20は高い断熱性を得ることができる。 In one embodiment, the partition wall of the storage tank 20 is composed of double walls, and a vacuum space is formed between the outer wall surface and the inner wall surface of these double walls. As a result, the storage tank 20 can obtain high heat insulating properties.

図5は、一実施形態に係る超電導機器10(10D)を示す斜視図であり、図6は図5中のB―B線に沿う断面図である。超電導機器10(10D)は、超電導線材(不図示)を内蔵するケーブルコア32と、ケーブルコア32を内蔵し、ケーブルコア32と内側壁との間に液冷媒rが充填された空間が形成された断熱性を有する配管30とを備えている。ケーブルコア32の外周面は伝熱面12を有する。伝熱面12は、伝熱面12を構成する材料よりも低い熱伝導率を有する材料で構成された被覆層14(18)によって少なくとも部分的に覆われ、複数の伝熱領域Raと、複数の伝熱領域Raと交互に配置された伝熱領域Raより熱伝導率が小さい複数の伝熱抑制領域Rbと、を含んでいる。例えば、図1及び図2に示す超電導機器10(10A、10B)のいずれかの構成を有している。ケーブルコア32に内蔵された超電導部材は、伝熱面12を介し液冷媒rによって効率良く冷却されるため、常時はほとんど損失がない超電導状態を保持できる。 FIG. 5 is a perspective view showing the superconducting device 10 (10D) according to the embodiment, and FIG. 6 is a cross-sectional view taken along the line BB in FIG. The superconducting device 10 (10D) has a cable core 32 incorporating a superconducting wire (not shown) and a cable core 32, and a space filled with a liquid refrigerant r is formed between the cable core 32 and the inner side wall. It is provided with a pipe 30 having a heat insulating property. The outer peripheral surface of the cable core 32 has a heat transfer surface 12. The heat transfer surface 12 is at least partially covered with a coating layer 14 (18) made of a material having a lower thermal conductivity than the material constituting the heat transfer surface 12, and has a plurality of heat transfer regions Ra and a plurality of heat transfer regions Ra. It includes a plurality of heat transfer suppressing regions Rb having a thermal conductivity smaller than that of the heat transfer regions Ra arranged alternately with the heat transfer regions Ra of the above. For example, it has any of the configurations of the superconducting devices 10 (10A, 10B) shown in FIGS. 1 and 2. Since the superconducting member built in the cable core 32 is efficiently cooled by the liquid refrigerant r via the heat transfer surface 12, it is possible to maintain a superconducting state with almost no loss at all times.

超電導機器10(10D)が過電流などで超電導状態が破壊され常電導状態に転位(クエンチ)すると、ケーブルコア32は急激な温度上昇を起こし、周囲の液冷媒rは激しく蒸発する。この時、ケーブルコア32への通電は遮断される。超電導機器10(10D)に異常がなければ、再度、液冷媒rを供給し、超電導状態への復帰と再通電を目指す。この再冷却時、被覆層14により膜沸騰状態が抑制されることで冷却時間が大幅に短縮され、再通電を速やかに再開することが可能である。 When the superconducting device 10 (10D) is destroyed in the superconducting state due to an overcurrent or the like and dislocated (quenched) to the normal conducting state, the temperature of the cable core 32 rises sharply and the surrounding liquid refrigerant r evaporates violently. At this time, the energization of the cable core 32 is cut off. If there is no abnormality in the superconducting device 10 (10D), the liquid refrigerant r is supplied again, aiming to return to the superconducting state and re-energize. At the time of this recooling, the coating layer 14 suppresses the boiling state of the film, so that the cooling time is significantly shortened and the re-energization can be restarted promptly.

一実施形態では、配管30の隔壁は二重壁で構成され、これら二重壁の外側壁と内側壁との間に真空空間が形成されている。これによって、配管30は高い断熱性を得ることができる。 In one embodiment, the partition wall of the pipe 30 is composed of double walls, and a vacuum space is formed between the outer wall surface and the inner side wall of these double walls. As a result, the pipe 30 can obtain high heat insulating properties.

一実施形態では、図3〜図6に示すように、伝熱抑制領域Rbは格子状に形成され、伝熱抑制領域Rbの間に各々の伝熱領域Raが離散的に形成されている。これによって、格子状に形成された伝熱抑制領域Rbにおいて核沸騰領域を形成することで、伝熱抑制領域Rbの間に離散的に形成された伝熱領域Raにおいても局所的に膜沸騰が形成されても、伝熱抑制領域Rbでは表面温度の上昇が抑制されるため、膜沸騰の抑制効果を維持できる。伝熱面を覆っていた蒸気膜は部分的に核沸騰領域で不安定となる。このように遷移沸騰が始まり、やがてそれぞれの気泡が分離される核沸騰に転移するため、膜沸騰領域の広がりを抑制かつ解消できる。 In one embodiment, as shown in FIGS. 3 to 6, the heat transfer suppression regions Rb are formed in a grid pattern, and the heat transfer regions Ra are discretely formed between the heat transfer suppression regions Rb. As a result, the nucleate boiling region is formed in the heat transfer suppression region Rb formed in a grid pattern, so that the film boiling is locally generated even in the heat transfer region Ra discretely formed between the heat transfer suppression regions Rb. Even if it is formed, the increase in surface temperature is suppressed in the heat transfer suppressing region Rb, so that the effect of suppressing film boiling can be maintained. The vapor film covering the heat transfer surface becomes partially unstable in the nucleate boiling region. Since the transition boiling starts in this way and eventually shifts to nucleate boiling in which each bubble is separated, the expansion of the membrane boiling region can be suppressed and eliminated.

一実施形態では、図3〜図6に示す実施形態とは逆に、伝熱領域Raが格子状に形成され、伝熱領域Raの間に各々の伝熱抑制領域Rbが離散的に形成されている。これによって、格子状に形成された伝熱領域Raの間に膜沸騰を抑制可能な伝熱抑制領域Rbが離散的に形成されるため、伝熱領域Raで局所的に膜沸騰が形成されても、伝熱抑制領域Rbでは表面温度の上昇が抑制されるため、膜沸騰の抑制効果を維持でき、膜沸騰領域の広がりを抑制かつ解消できる。 In one embodiment, contrary to the embodiments shown in FIGS. 3 to 6, the heat transfer regions Ra are formed in a grid pattern, and the heat transfer suppression regions Rb are discretely formed between the heat transfer regions Ra. ing. As a result, the heat transfer suppressing region Rb capable of suppressing the film boiling is discretely formed between the heat transfer regions Ra formed in a grid pattern, so that the film boiling is locally formed in the heat transfer region Ra. However, since the rise in surface temperature is suppressed in the heat transfer suppression region Rb, the effect of suppressing film boiling can be maintained, and the expansion of the film boiling region can be suppressed and eliminated.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.

(1)一つの態様に係る超電導機器は、液冷媒によって冷却される伝熱面と、前記伝熱面を少なくとも部分的に覆うように設けられ、前記伝熱面よりも低い熱伝導率を有する被覆層(例えば、図1及び図2に示す被覆層14)と、を備え、前記伝熱面は、複数の伝熱領域(例えば、図1及び図2に示す伝熱領域Ra)と、前記複数の伝熱領域と交互に配置された複数の伝熱抑制領域(例えば、図1及び図2に示す伝熱抑制領域Rb)と、を含み、(a)前記被覆層が、前記伝熱面のうち前記伝熱抑制領域を選択的に覆うように設けられ(例えば、図1に示す実施形態)、または、(b)前記被覆層の厚さが、各々の前記伝熱領域よりも各々の前記伝熱抑制領域のほうが大きい(例えば、図2に示す実施形態)。 (1) The superconducting device according to one embodiment is provided so as to cover at least a part of the heat transfer surface cooled by the liquid refrigerant and the heat transfer surface, and has a lower heat conductivity than the heat transfer surface. A coating layer (for example, the coating layer 14 shown in FIGS. 1 and 2) is provided, and the heat transfer surface has a plurality of heat transfer regions (for example, the heat transfer region Ra shown in FIGS. 1 and 2) and the heat transfer region. It includes a plurality of heat transfer regions and a plurality of heat transfer suppression regions (for example, heat transfer suppression regions Rb shown in FIGS. 1 and 2) alternately arranged, and (a) the coating layer is the heat transfer surface. Of these, the heat transfer suppressing region is provided so as to selectively cover (for example, the embodiment shown in FIG. 1), or (b) the thickness of the coating layer is higher than that of each of the heat transfer regions. The heat transfer suppression region is larger (for example, the embodiment shown in FIG. 2).

このような構成によれば、伝熱面のうち伝熱抑制領域では熱伝導が抑制され伝熱面の表面温度上昇が抑制されるため、膜沸騰の形成を抑制でき、核沸騰状態を維持できる。また、複数の伝熱領域と複数の伝熱抑制領域とが交互に配置されるので、各伝熱領域で局部的に膜沸騰が形成されたとしても、膜沸騰が伝熱面全体に広がるのを各伝熱抑制領域で阻止できる。これによって、膜沸騰の発生を局部的なものに抑えることができ、伝熱面全体で主として核沸騰状態を維持できるため、超電導部材の冷却効果の低下を抑制かつ解消できる。 According to such a configuration, heat conduction is suppressed in the heat transfer suppressing region of the heat transfer surface and the surface temperature rise of the heat transfer surface is suppressed, so that the formation of film boiling can be suppressed and the nucleate boiling state can be maintained. .. Further, since a plurality of heat transfer regions and a plurality of heat transfer suppression regions are alternately arranged, even if film boiling is locally formed in each heat transfer region, the film boiling spreads over the entire heat transfer surface. Can be blocked in each heat transfer suppression region. As a result, the occurrence of film boiling can be suppressed locally, and the nucleate boiling state can be maintained mainly on the entire heat transfer surface, so that a decrease in the cooling effect of the superconducting member can be suppressed and eliminated.

(2)一実施形態では、(1)に記載の超電導機器であって、前記伝熱抑制領域に選択的に設けられた前記被覆層により前記伝熱面から突出した突起部(例えば、図1及び図2に示す突起部18)が形成されている。 (2) In one embodiment, in the superconducting device according to (1), a protrusion (for example, FIG. 1) protruding from the heat transfer surface by the coating layer selectively provided in the heat transfer suppression region. And the protrusion 18) shown in FIG. 2 is formed.

このような構成によれば、伝熱抑制領域に突起部を形成することで、伝熱抑制領域の表面積を増加できる。これによって、突起部によるフィン効率を考慮する必要があるが、伝熱抑制領域の形成による伝熱量の低下を抑制できる。 According to such a configuration, the surface area of the heat transfer suppressing region can be increased by forming the protrusions in the heat transfer suppressing region. As a result, it is necessary to consider the fin efficiency due to the protrusions, but it is possible to suppress a decrease in the amount of heat transfer due to the formation of the heat transfer suppressing region.

(3)一実施形態では、(2)に記載の超電導機器であって、前記突起部の少なくとも先端部が前記伝熱面から0.1mm以上で気液境界より液相領域(例えば、図1に示す液相領域R)の高さに達するように構成されている。 (3) In one embodiment, in the superconducting device according to (2), at least the tip of the protrusion is 0.1 mm or more from the heat transfer surface and a liquid phase region from the gas-liquid boundary (for example, FIG. 1). It is configured to reach the height of the liquid phase region R 2) shown in.

伝熱面と液冷媒の温度差が増加して伝熱面に膜沸騰が形成される場合、膜沸騰領域(例えば、図1に示す膜沸騰領域R)の外側に液相領域が形成される。上記構成によれば、突起部の少なくとも先端部が伝熱面から0.1mm以上で気液境界(例えば、図1に示す気液境界GL)より液相領域の高さに達するように構成されるため、突起部の先端部の表面温度の上昇が抑制されるため、膜沸騰の抑制効果を維持できる。伝熱面を覆っていた蒸気膜は部分的に核沸騰領域で不安定となり、遷移沸騰が始まり、やがてそれぞれの気泡が分離される核沸騰に転移する。このように核沸騰状態を維持することができる。これによって、核沸騰領域における良好な熱伝達域を突起部を介して伝熱面にまで延長できる。そのため、膜沸騰の拡大を阻止かつ解消できる。 When the temperature difference between the heat transfer surface and the liquid refrigerant increases and film boiling is formed on the heat transfer surface, a liquid phase region is formed outside the film boiling region (for example, the membrane boiling region R1 shown in FIG. 1). To. According to the above configuration, at least the tip of the protrusion is configured to reach the height of the liquid phase region from the gas-liquid boundary (for example, the gas-liquid boundary GL shown in FIG. 1) at 0.1 mm or more from the heat transfer surface. Therefore, since the rise in the surface temperature of the tip of the protrusion is suppressed, the effect of suppressing the film boiling can be maintained. The vapor film covering the heat transfer surface partially becomes unstable in the nucleate boiling region, transition boiling begins, and then the transition to nucleate boiling in which each bubble is separated. In this way, the nucleate boiling state can be maintained. As a result, the good heat transfer region in the nucleate boiling region can be extended to the heat transfer surface via the protrusions. Therefore, the expansion of film boiling can be prevented and eliminated.

(4)一実施形態では、(1)乃至(3)の何れかに記載の超電導機器であって、前記伝熱抑制領域(例えば、図4又は図6に示す伝熱抑制領域Rb)は格子状に形成され、前記伝熱抑制領域の間に各々の前記伝熱領域(例えば、図4又は図6に示す伝熱領域Ra)が離散的に形成されている。 (4) In one embodiment, in the superconducting device according to any one of (1) to (3), the heat transfer suppression region (for example, the heat transfer suppression region Rb shown in FIG. 4 or FIG. 6) is a lattice. Each of the heat transfer regions (for example, the heat transfer region Ra shown in FIG. 4 or FIG. 6) is discretely formed between the heat transfer suppression regions.

このような構成によれば、格子状に形成された伝熱抑制領域において核沸騰を形成することで、伝熱抑制領域の間に離散的に形成された伝熱領域において局所的に膜沸騰が形成されても、伝熱抑制領域に形成された核沸騰が膜沸騰領域の広がりを抑制かつ解消できる。 According to such a configuration, nucleate boiling is formed in the heat transfer suppression region formed in a grid pattern, so that the film boiling is locally generated in the heat transfer region formed discretely between the heat transfer suppression regions. Even if it is formed, the nucleate boiling formed in the heat transfer suppressing region can suppress and eliminate the expansion of the membrane boiling region.

(5)一実施形態では、(1)乃至(3)の何れかに記載の超電導機器であって、前記伝熱領域は格子状に形成され、前記伝熱領域の間に各々の前記伝熱抑制領域が離散的に形成されている。 (5) In one embodiment, in the superconducting device according to any one of (1) to (3), the heat transfer regions are formed in a grid pattern, and each of the heat transfer regions is formed between the heat transfer regions. The suppression regions are formed discretely.

このような構成によれば、格子状に形成された伝熱領域の間に膜沸騰を抑制可能な伝熱抑制領域が離散的に形成されるので、格子状に形成された伝熱領域で局所的に膜沸騰が形成されても、伝熱抑制領域に形成された核沸騰が膜沸騰領域の広がりを抑制かつ解消できる。 According to such a configuration, heat transfer suppressing regions capable of suppressing film boiling are discretely formed between the heat transfer regions formed in a grid pattern, so that the heat transfer regions formed in a grid pattern are locally formed. Even if the film boiling is formed, the nucleate boiling formed in the heat transfer suppression region can suppress and eliminate the expansion of the membrane boiling region.

(6)一実施形態では、(1)乃至(5)の何れかに記載の超電導機器(例えば、図3に示す超電導機器10(10C))であって、前記液冷媒が貯留された断熱壁を有する貯槽と、前記液冷媒に浸漬された超電導限流器(例えば、図3に示す超電導限流器22)と、
を含み、前記超電導限流器は前記液冷媒に接する前記伝熱面を有する。
(6) In one embodiment, the superconducting device according to any one of (1) to (5) (for example, the superconducting device 10 (10C) shown in FIG. 3) is a heat insulating wall in which the liquid refrigerant is stored. And a superconducting current limiter (for example, the superconducting current limiter 22 shown in FIG. 3) immersed in the liquid refrigerant.
The superconducting current limiter has the heat transfer surface in contact with the liquid refrigerant.

このような構成によれば、上記構成の超電導限流器は、伝熱面を介し液冷媒によって効率良く冷却され、伝熱面の表面で膜沸騰が形成されるのを抑制できるため、超電導部材は限流動作後あるいはクエンチ後に速やかに超電導状態に復帰できる。 According to such a configuration, the superconducting current limiter having the above configuration is efficiently cooled by the liquid refrigerant through the heat transfer surface and can suppress the formation of film boiling on the surface of the heat transfer surface. Therefore, the superconducting member Can quickly return to the superconducting state after current limiting operation or quenching.

(7)一実施形態では、(1)乃至(5)の何れかに記載の超電導機器(例えば、図5に示す超電導機器10(10D))であって、超電導線材を含むケーブルコア(例えば、図5に示すケーブルコア32)と、前記ケーブルコアを内蔵し、該ケーブルコアと内面との間に液冷媒が充填された空間が形成された断熱壁を有する配管と、を含み、前記ケーブルコアの外周面は前記伝熱面を有する。 (7) In one embodiment, the superconducting device according to any one of (1) to (5) (for example, the superconducting device 10 (10D) shown in FIG. 5) and a cable core (for example, a cable core including a superconducting wire). The cable core 32) shown in FIG. 5 and a pipe having a heat insulating wall having a built-in cable core and a space filled with a liquid refrigerant between the cable core and the inner surface thereof are included. The outer peripheral surface of the above has the heat transfer surface.

このような構成によれば、上記構成の超電導機器は、伝熱面を介し液冷媒によって効率良く冷却され、伝熱面の表面で膜沸騰が形成されるのを抑制できるため、超電導部材はほとんど損失がない超電導状態を保持できる。 According to such a configuration, the superconducting device having the above configuration is efficiently cooled by the liquid refrigerant through the heat transfer surface and can suppress the formation of film boiling on the surface of the heat transfer surface, so that most of the superconducting members are present. It can maintain a superconducting state without loss.

10(10A、10B、10C、10D) 超電導機器
12 伝熱面
14 被覆層
18 突起部
20 貯槽
22 超電導限流器
30 配管
32 ケーブルコア
膜沸騰領域
液相領域
Ra 伝熱領域
Rb 伝熱抑制領域
r 液冷媒
GL 気液境界
10 (10A, 10B, 10C, 10D) Superconducting equipment 12 Heat transfer surface 14 Coating layer 18 Protrusions 20 Storage tank 22 Superconducting current limiter 30 Piping 32 Cable core R 1 Film boiling region R 2 Liquid phase region Ra Heat transfer region Rb Heat transfer region r Liquid refrigerant GL Gas-liquid boundary

Claims (7)

液冷媒によって冷却される伝熱面と、
前記伝熱面を少なくとも部分的に覆うように設けられ、前記伝熱面よりも低い熱伝導率を有する被覆層と、
を備え、
前記伝熱面は、
複数の伝熱領域と、
前記複数の伝熱領域と交互に配置された複数の伝熱抑制領域と、
を含み、
(a)前記被覆層が、前記伝熱面のうち前記伝熱抑制領域を選択的に覆うように設けられ、
または、
(b)前記被覆層の厚さが、各々の前記伝熱領域よりも各々の前記伝熱抑制領域のほうが大きい超電導機器。
The heat transfer surface cooled by the liquid refrigerant and
A coating layer provided so as to cover at least a part of the heat transfer surface and having a lower thermal conductivity than the heat transfer surface.
With
The heat transfer surface is
With multiple heat transfer areas
A plurality of heat transfer suppression regions alternately arranged with the plurality of heat transfer regions,
Including
(A) The coating layer is provided so as to selectively cover the heat transfer suppressing region in the heat transfer surface.
Or
(B) A superconducting device in which the thickness of the coating layer is larger in each of the heat transfer suppressing regions than in each of the heat transfer regions.
前記伝熱抑制領域に選択的に設けられた前記被覆層により前記伝熱面から突出した突起部が形成されている請求項1に記載の超電導機器。 The superconducting device according to claim 1, wherein a protrusion protruding from the heat transfer surface is formed by the coating layer selectively provided in the heat transfer suppression region. 前記突起部の少なくとも先端部が前記伝熱面から0.1mm以上で気液境界より液相領域の高さに達するように構成されている請求項2に記載の超電導機器。 The superconducting device according to claim 2, wherein at least the tip of the protrusion is configured to reach the height of the liquid phase region from the gas-liquid boundary at 0.1 mm or more from the heat transfer surface. 前記伝熱抑制領域は格子状に形成され、前記伝熱抑制領域の間に各々の前記伝熱領域が離散的に形成されている請求項1乃至3の何れか一項に記載の超電導機器。 The superconducting device according to any one of claims 1 to 3, wherein the heat transfer suppressing regions are formed in a grid pattern, and each of the heat transfer regions is discretely formed between the heat transfer suppressing regions. 前記伝熱領域は格子状に形成され、前記伝熱領域の間に各々の前記伝熱抑制領域が離散的に形成されている請求項1乃至3の何れか一項に記載の超電導機器。 The superconducting device according to any one of claims 1 to 3, wherein the heat transfer regions are formed in a grid pattern, and the heat transfer suppression regions are discretely formed between the heat transfer regions. 前記液冷媒が貯留された断熱壁を有する貯槽と、
前記液冷媒に浸漬された超電導限流器と、
を含み、
前記超電導限流器は前記液冷媒に接する前記伝熱面を有する請求項1乃至5の何れか一項に記載の超電導機器。
A storage tank having a heat insulating wall in which the liquid refrigerant is stored, and
A superconducting current limiter immersed in the liquid refrigerant and
Including
The superconducting device according to any one of claims 1 to 5, wherein the superconducting current limiting device has the heat transfer surface in contact with the liquid refrigerant.
超電導線材を含むケーブルコアと、
前記ケーブルコアを内蔵し、該ケーブルコアと内面との間に前記液冷媒が充填された空間が形成された断熱壁を有する配管と、
を含み、
前記ケーブルコアの外周面は前記伝熱面を有する請求項1乃至5の何れか一項に記載の超電導機器。
With a cable core containing superconducting wire,
A pipe having a built-in cable core and a heat insulating wall in which a space filled with the liquid refrigerant is formed between the cable core and the inner surface.
Including
The superconducting device according to any one of claims 1 to 5, wherein the outer peripheral surface of the cable core has the heat transfer surface.
JP2019216481A 2019-11-29 2019-11-29 superconducting equipment Active JP7426217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019216481A JP7426217B2 (en) 2019-11-29 2019-11-29 superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019216481A JP7426217B2 (en) 2019-11-29 2019-11-29 superconducting equipment

Publications (2)

Publication Number Publication Date
JP2021086975A true JP2021086975A (en) 2021-06-03
JP7426217B2 JP7426217B2 (en) 2024-02-01

Family

ID=76088417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019216481A Active JP7426217B2 (en) 2019-11-29 2019-11-29 superconducting equipment

Country Status (1)

Country Link
JP (1) JP7426217B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030930A (en) 1998-07-15 2000-01-28 Toshiba Corp Superconducting coil and its manufacture
JP4880229B2 (en) 2005-01-31 2012-02-22 株式会社ワイ・ワイ・エル Superconducting power transmission cable and power transmission system
KR101936972B1 (en) 2011-05-18 2019-01-09 스미토모덴키고교가부시키가이샤 Fault current limiter
JP2016105382A (en) 2014-12-01 2016-06-09 住友電気工業株式会社 Superconducting cable, refrigerant pipe and superconducting cable line
JP6889634B2 (en) 2017-08-10 2021-06-18 株式会社前川製作所 Superconducting cable and liquefied natural gas transportation system
JP2019117868A (en) 2017-12-27 2019-07-18 株式会社前川製作所 Cooling device for superconducting cable and temperature rising method

Also Published As

Publication number Publication date
JP7426217B2 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP5618419B2 (en) Boiling cooling system
JP5757086B2 (en) COOLING STRUCTURE, ELECTRONIC DEVICE, AND COOLING METHOD
US20210022265A1 (en) Cooling device and cooling system using cooling device
CN113133271B (en) Immersed cooling device
WO2013080986A1 (en) Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device
WO2013018667A1 (en) Cooling device and electronic device using same
KR101936972B1 (en) Fault current limiter
JP2021086975A (en) Superconducting apparatus
JP2018204882A (en) Ebullition cooler
JP6719601B2 (en) Circuit breaker
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP2021025667A (en) Boiling heat transfer member, cooler comprising boiling heat transfer member, and cooling device comprising boiling heat transfer member
JP7444703B2 (en) Heat transfer member and cooling device having heat transfer member
US11740035B2 (en) Cooling device and manufacturing method for cooling devices
WO2023157717A1 (en) Cooling device
JP6117126B2 (en) Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter
KR101045719B1 (en) Cooling device for non-power system of a distributing board
CN219644468U (en) VC soaking plate
JPH09139453A (en) Semiconductor cooler
JPH0289353A (en) Boiling cooling device
US20220046824A1 (en) Cooling device and cooling system using cooling device
JP2001326310A (en) Electronic equipment cooling device
US3537049A (en) Electrical induction apparatus
CN115985636A (en) Intermediate frequency transformer based on heat pipe heat dissipation
JP2024046477A (en) Equipment and information processing systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7426217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150