JP6117126B2 - Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter - Google Patents

Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter Download PDF

Info

Publication number
JP6117126B2
JP6117126B2 JP2014022117A JP2014022117A JP6117126B2 JP 6117126 B2 JP6117126 B2 JP 6117126B2 JP 2014022117 A JP2014022117 A JP 2014022117A JP 2014022117 A JP2014022117 A JP 2014022117A JP 6117126 B2 JP6117126 B2 JP 6117126B2
Authority
JP
Japan
Prior art keywords
superconducting
elements
cooling
current limiter
fault current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014022117A
Other languages
Japanese (ja)
Other versions
JP2014179592A (en
Inventor
智裕 中山
智裕 中山
甫 笠原
甫 笠原
松井 正和
正和 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2014022117A priority Critical patent/JP6117126B2/en
Publication of JP2014179592A publication Critical patent/JP2014179592A/en
Application granted granted Critical
Publication of JP6117126B2 publication Critical patent/JP6117126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

複数の超電導素子を有する超電導限流器及び当該超電導限流器内の超電導素子の冷却方法に関する。   The present invention relates to a superconducting fault current limiter having a plurality of superconducting elements and a method for cooling the superconducting elements in the superconducting fault limiter.

限流器は、電力系統などに導入する機器である。この限流器を導入することで、短絡事故等の事故電流を抑制し、接続された機器の被害低減を図ることが可能となる。
従前の限流器は常電導のリアクトル型のものが一般的だが、近年は、電流経路に超電導素子を介在させ、規定電流の範囲で通電されている時には超電導状態を維持し、超電導素子の臨界電流を超える事故電流の発生時には、常電導状態となってその抵抗により事故電流を抑制する超電導限流器が提案されている。
The current limiter is a device to be introduced into a power system or the like. By introducing this current limiting device, it is possible to suppress an accident current such as a short-circuit accident and to reduce damage to connected devices.
The conventional current limiter is generally a normal conducting reactor type, but in recent years, a superconducting element is interposed in the current path to maintain the superconducting state when energized within the specified current range. A superconducting fault current limiter has been proposed in which, when an accident current exceeding the current occurs, a normal conduction state is established and the accident current is suppressed by its resistance.

限流器に用いられる超電導素子は、極低温状態を維持するために液体ヘリウム、液体窒素等の液体冷媒に浸漬した状態で冷却されているが、事故電流の発生時には、超電導素子が常電導状態となって急激に素子温度が上昇する。
限流器は一般に事故電流の遮断器と併用され、事故電流が発生すると遮断器が作動するまでの間(0.1[s]程度)、限流器が事故電流を低減させなければならない。そして、遮断器が事故電流を遮断した際に、限流器では超電導素子を速やかに冷却しなければ、素子寿命が著しく短くなり、限流器としての寿命も短くなる。
このため、超電導限流器においては、超電導素子の発熱時に速やかに冷却することが求められている。
Superconducting elements used in current limiters are cooled in a liquid refrigerant such as liquid helium or liquid nitrogen in order to maintain a cryogenic state. However, when an accident current occurs, the superconducting element is in a normal conducting state. As a result, the element temperature rises rapidly.
The fault current limiter is generally used in combination with the fault current circuit breaker. When the fault current occurs, the current limiter must reduce the fault current until the circuit breaker is activated (about 0.1 [s]). When the circuit breaker interrupts the fault current, unless the superconducting element is quickly cooled in the current limiter, the element life is significantly shortened, and the life as the current limiter is also shortened.
For this reason, in the superconducting fault current limiter, it is required to cool quickly when the superconducting element generates heat.

例えば、特許文献1には、熱発生源としての半導体素子と液体冷媒とを収容する冷媒容器と、当該冷媒容器の外周に設けられた冷却フィンとを備える冷却装置が開示されている。
この冷却装置では、冷媒容器の内底部に半導体素子を設置し、半導体素子から真上に向かう流路と、その周囲において冷媒が底部に戻る流路とが形成されており、半導体素子により加熱された液体冷媒が中央の流路により上昇し、外側の流路から下降する際に液体冷媒が冷却フィンにより冷却され、循環による冷却効率の向上を図っている。
For example, Patent Document 1 discloses a cooling device including a refrigerant container that contains a semiconductor element as a heat generation source and a liquid refrigerant, and cooling fins provided on the outer periphery of the refrigerant container.
In this cooling device, a semiconductor element is installed on the inner bottom portion of the refrigerant container, and a flow path directed directly upward from the semiconductor element and a flow path in which the refrigerant returns to the bottom are formed and are heated by the semiconductor element. When the liquid refrigerant rises in the central flow path and descends from the outer flow path, the liquid refrigerant is cooled by the cooling fins, thereby improving the cooling efficiency by circulation.

また、特許文献2には、冷却対象としての超電導機器と液体冷媒とを収容する冷媒容器と、当該冷媒容器の内部において超電導機器を囲繞する仕切り板と、仕切り板の内側領域と外側領域とを個別に冷却する熱交換器とを設け、仕切り板の内側領域が外側領域より低温となるよう冷却を行うことにより、仕切り板の内側で下降し、外側で上昇するよう液体冷媒を循環させることで冷却効率の向上を図っている。   Patent Document 2 discloses a refrigerant container that accommodates a superconducting device as a cooling target and a liquid refrigerant, a partition plate that surrounds the superconducting device inside the refrigerant container, and an inner region and an outer region of the partition plate. By providing a heat exchanger that individually cools and by cooling so that the inner region of the partition plate is cooler than the outer region, the liquid refrigerant is circulated so as to descend inside the partition plate and rise outside The cooling efficiency is improved.

特開平04−023457号公報Japanese Patent Laid-Open No. 04-023457 特開昭63−299181号公報JP-A-63-299181

しかしながら、上記特許文献1に記載の冷却装置は、冷却対象が半導体素子であることから、常温程度までの冷却しか想定されておらず、液体冷媒の冷却は冷媒容器の外側に設けられた冷却フィンにゆだねられている。
一方、超電導限流器では、超電導素子を極低温状態に冷却する必要があり、また、事故電流発生時には超電導素子は液体冷媒中で激しい膜沸騰状態を生じることから、上記従来の冷却装置の冷却効率では超電導素子の冷却に対処することは困難であった。
However, since the cooling device described in Patent Document 1 is a semiconductor element to be cooled, only cooling to room temperature is assumed, and cooling of the liquid refrigerant is a cooling fin provided outside the refrigerant container. It is entrusted to.
On the other hand, in the superconducting fault current limiter, it is necessary to cool the superconducting element to an extremely low temperature state, and when an accident current occurs, the superconducting element generates a severe film boiling state in the liquid refrigerant. In terms of efficiency, it has been difficult to cope with cooling of superconducting elements.

また、特許文献2に記載の冷却装置は、超電導機器の冷却を想定しているが、超電導素子の激しい膜沸騰状態に対処し得るものではなかった。即ち、この従来の冷却装置は、超電導機器が配置される仕切り板の内側領域で下降し、外側領域で上昇する循環を行うので、超電導素子の沸騰時には気泡の上昇により逆の流れが発生し、効率的な冷却を行うことが困難であった。   Moreover, although the cooling apparatus described in Patent Document 2 assumes cooling of superconducting equipment, it has not been able to cope with a severe film boiling state of superconducting elements. That is, this conventional cooling device performs circulation that descends in the inner region of the partition plate where the superconducting equipment is arranged and rises in the outer region, so that when the superconducting element boils, a reverse flow occurs due to the rise of bubbles, It was difficult to perform efficient cooling.

本発明は、超電導素子の表面に膜沸騰が発生した場合に効果的な冷却を行う超電導限流器及び超電導限流器内の超電導素子の冷却方法の提供を図ることをその目的とする。   An object of the present invention is to provide a superconducting fault current limiter that performs effective cooling when film boiling occurs on the surface of the superconducting element, and a method for cooling the superconducting element in the superconducting fault current limiter.

本発明は、電流値が一定範囲内の通電時には超電導状態にあり、電流値が前記範囲を超える事故電流の通電時には常電導状態となる超電導素子を備える超電導限流器において、液体冷媒及び複数の前記超電導素子を収容する冷媒容器と、前記冷媒容器内の液体冷媒を冷却する冷却手段とを備え、前記液体冷媒中で、前記複数の超電導素子の内の少なくとも二つを上下に並べて配置し、前記冷媒容器内で前記上下に並べて配置された少なくとも二つの超電導素子を囲繞する上下が開放された素子カバーを備えることを特徴とする。
さらに、超電導限流器又は超電導限流器内の超電導素子の冷却方法の発明において、前記上下に並べて配置された二つの超電導素子の平面視での長手方向について、前記超電導素子の中心から前記素子カバーの内面までの距離をR、前記上下に並べて配置された二つの超電導素子の鉛直上下方向について、前記二つの超電導素子の中心間距離をLとした場合に、次式(1)を具備するように前記二つの超電導素子を配置する。
tan−1(L/R)≦70° …(1)
(但し、R≦α、α:臨界電流を超えたときに生じる気泡の水平方向における超電導素子の中心からの到達距離)
The present invention relates to a superconducting fault current limiter including a superconducting element that is in a superconducting state when a current value is energized within a certain range and is in a normally conducting state when an accident current exceeding the range is energized. A refrigerant container that houses the superconducting element; and a cooling means that cools the liquid refrigerant in the refrigerant container, and in the liquid refrigerant, at least two of the plurality of superconducting elements are arranged one above the other, An element cover having an open top and bottom surrounding at least two superconducting elements arranged side by side in the upper and lower sides in the refrigerant container is provided.
Further, in the invention of a superconducting current limiter or a method of cooling a superconducting element in a superconducting current limiter, the element from the center of the superconducting element in the longitudinal direction in plan view of the two superconducting elements arranged side by side When the distance to the inner surface of the cover is R, and the distance between the centers of the two superconducting elements is L in the vertical vertical direction of the two superconducting elements arranged above and below, the following equation (1) is satisfied. The two superconducting elements are arranged as described above.
tan −1 (L / R) ≦ 70 ° (1)
(However, R ≦ α, α: the distance from the center of the superconducting element in the horizontal direction of bubbles generated when the critical current is exceeded)

また、本発明は、電流値が一定範囲内の通電時には超電導状態にあり、電流値が前記範囲を超える事故電流の通電時には常電導状態となる複数の超電導素子を備える超電導限流器の前記超電導素子を冷却する方法において、冷媒容器内の前記液体冷媒中に設けられ、上下が開放された筒状又は枠状の素子カバーの内側に、前記複数の超電導素子の内の少なくとも二つを上下に並べて配置し、当該複数の超電導素子の内の下側に位置する超電導素子から発生する気泡を当該複数の超電導素子の内の上側に位置する超電導素子へ導くことを特徴とする。
さらに、超電導限流器又は超電導限流器内の超電導素子の冷却方法の発明において、前記上下に並べて配置された二つの超電導素子の平面視での長手方向について、前記超電導素子の中心から前記素子カバーの内面までの距離をR、前記上下に並べて配置された二つの超電導素子の鉛直上下方向について、前記二つの超電導素子の中心間距離をLとした場合に、次式(1)を具備するように前記二つの超電導素子を配置する。
tan−1(L/R)≦70° …(1)
(但し、R≦α、α:臨界電流を超えたときに生じる気泡の水平方向における超電導素子の中心からの到達距離)
上記超電導限流器内の超電導素子の冷却方法において、前記複数の超電導素子の内の上側に位置する超電導素子の表面の液体冷媒が膜沸騰状態であるときに当該超電導素子を冷却しても良い。
Further, the present invention provides the superconducting current limiting device including a plurality of superconducting elements that are in a superconducting state when energized within a certain range and are in a normally conducting state when an accident current exceeding the range is energized. In the method for cooling an element, at least two of the plurality of superconducting elements are vertically arranged inside a cylindrical or frame-shaped element cover provided in the liquid refrigerant in a refrigerant container and opened vertically. It is arranged side by side, and bubbles generated from a superconducting element located on the lower side of the plurality of superconducting elements are guided to a superconducting element located on the upper side of the plurality of superconducting elements.
Further, in the invention of a superconducting current limiter or a method of cooling a superconducting element in a superconducting current limiter, the element from the center of the superconducting element in the longitudinal direction in plan view of the two superconducting elements arranged side by side When the distance to the inner surface of the cover is R, and the distance between the centers of the two superconducting elements is L in the vertical vertical direction of the two superconducting elements arranged above and below, the following equation (1) is satisfied. The two superconducting elements are arranged as described above.
tan −1 (L / R) ≦ 70 ° (1)
(However, R ≦ α, α: the distance from the center of the superconducting element in the horizontal direction of bubbles generated when the critical current is exceeded)
In the method of cooling a superconducting element in the superconducting current limiting device, the superconducting element may be cooled when the liquid refrigerant on the surface of the superconducting element located above the superconducting element is in a film boiling state. .

また、超電導限流器又は超電導限流器内の超電導素子の冷却方法の発明において、前記素子カバーに囲繞された前記上下に並べて配置された少なくとも二つの超電導素子の中で下側に位置する超電導素子の下端部が前記素子カバーの下端部よりも上側となるように配置するものとしても良い。   Further, in the invention of a superconducting current limiter or a method of cooling a superconducting element in a superconducting current limiter, the superconducting located on the lower side of at least two superconducting elements arranged side by side surrounded by the element cover It is good also as what arrange | positions so that the lower end part of an element may become an upper side rather than the lower end part of the said element cover.

なお、素子カバーは、上下に並べて配置された二つの超電導素子以外の超電導素子も囲繞しても良いし、上下に並べて配置された二つの超電導素子が複数組ある場合には組ごとに個別に設けても良い。   The element cover may also surround superconducting elements other than the two superconducting elements arranged side by side. If there are a plurality of sets of two superconducting elements arranged side by side, each element cover individually. It may be provided.

本発明は、冷媒容器内の液体冷媒中で、素子カバーの内側で二つの超電導素子の一方を他方の上側に配置することで、事故電流の発生により急激な温度上昇が生じた各超電導素子は膜沸騰状態となる。これにより、下側の超電導素子の平面から生じる液体冷媒の気化ガスが上方に放出され、上側の超電導素子は、素子カバーに沿って上昇する気化ガスに曝される。
膜沸騰状態にある超電導素子は、その表面において気化ガスが膜状に張り付いた状態で発生することから冷却効率が低減する。このような状態の超電導素子に対して下方から上昇する気化ガスの気泡及び当該気泡による液流に曝されると、その素子表面で発生した気化ガスの剥離を促し、液体冷媒に接するので上側の超電導素子の冷却効率が改善される。
このように、他の何れかの超電導素子の上側に位置する超電導素子を素子カバーによって効率的に冷却し、その寿命を延長することが出来るので、超電導限流器についても長寿命化を実現することが可能となる。
また、素子カバーとこれに対する超電導素子の配置により冷却効率の向上を実現するので、冷却のための特殊構造や特別な構成を不要とし、超電導限流器全体の構成の簡易化、コストの低減を図ることが可能である。
In the present invention, in the liquid refrigerant in the refrigerant container, one of the two superconducting elements is arranged on the upper side of the other inside the element cover. Film boiling occurs. Thereby, the vaporized gas of the liquid refrigerant generated from the plane of the lower superconducting element is released upward, and the upper superconducting element is exposed to the vaporized gas rising along the element cover.
Since the superconducting element in the film boiling state is generated in a state in which the vaporized gas is stuck on the surface of the superconducting element, the cooling efficiency is reduced. When the superconducting element in such a state is exposed to vaporized gas bubbles rising from below and a liquid flow caused by the bubbles, peeling of the vaporized gas generated on the element surface is promoted and comes into contact with the liquid refrigerant. The cooling efficiency of the superconducting element is improved.
In this way, the superconducting element located above any other superconducting element can be efficiently cooled by the element cover and its life can be extended, so that the life of the superconducting fault current limiter is also extended. It becomes possible.
In addition, because the cooling efficiency is improved by the arrangement of the element cover and the superconducting element relative to the element cover, there is no need for a special structure or special structure for cooling, and the entire structure of the superconducting fault current limiter is simplified and the cost is reduced. It is possible to plan.

また、素子カバー内で下側に位置する超電導素子の下端部が素子カバーの下端部よりも上側となるように配置した場合には、下方の超電導素子からの気化ガスの気泡を素子カバーの外側に漏らすことなく上側の超電導素子に向かって導くことが出来るので、上側の超電導素子のさらなる効率的な冷却及びこれにより長寿命化を実現することが可能となる。   In addition, when the lower end of the superconducting element located in the lower side of the element cover is disposed above the lower end of the element cover, the vaporized gas bubbles from the lower superconducting element are removed from the outer side of the element cover. Therefore, the upper superconducting element can be guided to the upper superconducting element without leaking to the upper superconducting element, so that further efficient cooling of the upper superconducting element and a longer life can be realized.

また、素子カバー内での二つの超電導素子について、長手方向の中心から素子カバーの内面までの距離Rと、二つの超電導素子の鉛直上下方向における中心間距離Lとの相対的な関係を式(1)の数値範囲で規定した場合には、素子カバーが冷媒ガスの拡散を低減して
効果的に上側の超電導素子の冷却を行うことが可能となる。
For the two superconducting elements in the element cover, the relative relationship between the distance R from the center in the longitudinal direction to the inner surface of the element cover and the center-to-center distance L in the vertical vertical direction of the two superconducting elements is When defined in the numerical range of 1), the element cover can reduce the diffusion of the refrigerant gas and effectively cool the upper superconducting element.

第一の実施形態に係る超電導限流器の垂直平面に沿った断面図である。It is sectional drawing along the vertical plane of the superconducting fault current limiter concerning a first embodiment. 超電導素子の配置に基づく冷却の原理を示す説明図である。It is explanatory drawing which shows the principle of cooling based on arrangement | positioning of a superconducting element. 素子カバー内の中心線に沿った断面図である。It is sectional drawing along the centerline in an element cover. 素子カバーの平面図である。It is a top view of an element cover. 下方からの気泡の有無と冷却時の温度変化との関係を示す線図である。It is a diagram which shows the relationship between the presence or absence of the bubble from the downward direction, and the temperature change at the time of cooling. 素子カバーを設けた場合と設けていない場合とで超電導素子が加熱状態から冷媒温度に戻るまでの復帰時間の比較を行った結果を示す図である。It is a figure which shows the result of having compared the return time until a superconducting element returns to a refrigerant | coolant temperature from a heating state with the case where it does not provide with the case where an element cover is provided. 素子カバーに対する上下の超電導素子の配置に基づく交差角度を複数の角度に変化させた場合の超電導素子の加熱状態からの復帰時間の一覧を示す図表である。It is a table | surface which shows the list | wrist of the return time from the heating state of a superconducting element at the time of changing the crossing angle based on arrangement | positioning of the upper and lower superconducting elements with respect to an element cover into several angles. 素子間距離と相互インダクタンスの対応関係をシミュレーションに基づいて算出した線図である。It is the diagram which computed the correspondence of element distance and mutual inductance based on simulation. 交差角度45°と80°と素子カバーを設けない場合とで超電導素子の加熱状態からの復帰時間の比較結果を示す図である。It is a figure which shows the comparison result of the return time from the heating state of a superconducting element by the case where an intersection angle is 45 degrees and 80 degrees and an element cover is not provided. 超電導素子ユニットの例を示す平面図である。It is a top view which shows the example of a superconducting element unit. 超電導素子ユニットの他の例を示す平面図である。It is a top view which shows the other example of a superconducting element unit. 素子カバー内に図10の超電導素子ユニットを配置した例を示す断面図である。It is sectional drawing which shows the example which has arrange | positioned the superconducting element unit of FIG. 10 in the element cover. 素子カバー内に図10の超電導素子ユニットを配置した例を示す平面図である。It is a top view which shows the example which has arrange | positioned the superconducting element unit of FIG. 10 in the element cover. 素子カバーの平面視形状を矩形とした例を示す平面図である。It is a top view which shows the example which made the planar view shape of the element cover rectangular. 複数の組からなる超電導素子に対して組ごとに素子カバーを設けた場合を示す説明図である。It is explanatory drawing which shows the case where an element cover is provided for every group with respect to the superconducting element which consists of several groups.

[実施形態の概要]
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
この実施形態では、外部から電源供給が行われる保護対象機器に対し、電源供給経路の途中に設けられ、電源供給側で発生した事故電流を低減するための超電導限流器10及び当該超電導限流器10内の超電導素子71,72の冷却方法について説明する。図1は超電導限流器10の垂直平面に沿った断面図である。
[Outline of Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In this embodiment, a superconducting fault current limiter 10 and a superconducting current limiter that are provided in the middle of a power supply path for a protection target device to which power is supplied from the outside and reduce an accident current generated on the power supply side. A method of cooling the superconducting elements 71 and 72 in the vessel 10 will be described. FIG. 1 is a cross-sectional view of the superconducting fault current limiter 10 along a vertical plane.

この超電導限流器10は、真空断熱された内側容器21と外側容器22とを有し、液体冷媒である液体窒素60と後述する二つの超電導素子71,72とを収容する冷媒容器20と、冷媒容器20の上部開口を閉塞可能な蓋体30と、内側容器21内の液体窒素60を冷却する冷却手段としての冷凍機40と、冷媒容器20の液体窒素60内で二つの超電導素子71,72を囲繞する素子カバー93とを備えている。
そして、この超電導限流器10は、二つの超電導素子71,72に対して超電導素子71,72のどちらの臨界電流も超えない範囲で通電されている時には超電導状態を維持し、どちらか一方でも臨界電流を超える過大な事故電流が通電された時には常電導状態となって電気抵抗を発生することで、保護対象機器への過大な電流の通電を防止する。
以下、超電導限流器10の各部について説明する。
The superconducting fault current limiter 10 includes an inner container 21 and an outer container 22 that are thermally insulated from vacuum, and a refrigerant container 20 that houses liquid nitrogen 60 that is a liquid refrigerant and two superconducting elements 71 and 72 described later. The lid 30 capable of closing the upper opening of the refrigerant container 20, the refrigerator 40 as a cooling means for cooling the liquid nitrogen 60 in the inner container 21, and two superconducting elements 71 in the liquid nitrogen 60 of the refrigerant container 20, And an element cover 93 surrounding 72.
The superconducting fault current limiter 10 maintains the superconducting state when the two superconducting elements 71 and 72 are energized in a range that does not exceed the critical current of either of the superconducting elements 71 and 72. When an excessive accident current exceeding the critical current is energized, it becomes a normal conducting state and generates an electrical resistance, thereby preventing an excessive current from being supplied to the device to be protected.
Hereinafter, each part of the superconducting fault current limiter 10 will be described.

[冷媒容器]
冷媒容器20は、内側容器21と外側容器22とからなり、これら相互間が真空断熱された二重壁面構造の有底容器である。
内側容器21は、上下方向に沿った円筒状であって、下端部が閉塞されて底部をなし、上端部が開放されている。
外側容器22は、内側容器21と同様に上下方向に沿った円筒状であって、下端部が閉塞されて底部をなし、上端部が開放されている。そして、この外側容器22は、内側容器21よりに一回り大きく形成され、内側容器21を内側に格納している。さらに、内側容器21の外周面及び底部下面と外側容器22の内周面及び底部上面とが相互に隙間空間を形成するように、内側容器21と外側容器22の上端部同士が接合されて一体化されている。また、内側容器21と外側容器22の互いの隙間空間は真空引きが行われ、真空断熱されている。
また、内側容器21と外側容器22との隙間空間には、円筒部及び底部の全域に渡って、アルミニウムを蒸着させたポリエステルフィルムが積層されてなるスーパーインシュレーション材23が介在し、外部からの輻射熱の遮断を図っている。
[Refrigerant container]
The refrigerant container 20 is composed of an inner container 21 and an outer container 22, and is a bottomed container having a double wall structure in which the two are vacuum-insulated.
The inner container 21 has a cylindrical shape along the vertical direction, and the lower end portion is closed to form a bottom portion, and the upper end portion is opened.
The outer container 22 has a cylindrical shape along the vertical direction like the inner container 21, and has a lower end closed to form a bottom, and an upper end opened. The outer container 22 is formed to be slightly larger than the inner container 21, and stores the inner container 21 inside. Furthermore, the upper ends of the inner container 21 and the outer container 22 are joined together so that the outer peripheral surface and bottom bottom surface of the inner container 21 and the inner peripheral surface and bottom upper surface of the outer container 22 form a gap space. It has become. In addition, the space between the inner container 21 and the outer container 22 is evacuated and thermally insulated.
Further, in the gap space between the inner container 21 and the outer container 22, there is a super insulation material 23 formed by laminating a polyester film on which aluminum is vapor-deposited over the entire area of the cylindrical portion and the bottom portion. The radiant heat is cut off.

[蓋体]
内側容器21と外側容器22の接合部(冷媒容器20の上端面)は水平に平滑化されており、このリング状の平滑面(上端面)上に円板状の蓋体30が載置装備されている。
この蓋体30は、保守点検による冷媒容器20内へのアクセスができるように、冷媒容器20からの着脱が可能な状態で取り付けられている。例えば、蓋体30と冷媒容器20の相互間の凹凸形状による嵌合構造或いはボルト止め等周知の方法で蓋体30が冷媒容器20に対して固定される。
なお、この蓋体30は、冷凍機40を垂下支持するので、ある程度強度を有する材料から形成されていることが好ましい。具体的には、FRP(Fiber Reinforced Plastics)やステンレス鋼等を蓋体30の材料として用いることができる。
また、この蓋体30も冷媒容器20と同様に中空の内部が真空断熱された二重壁面構造として断熱性を高めても良い。
[Lid]
The joint between the inner container 21 and the outer container 22 (the upper end surface of the refrigerant container 20) is smoothed horizontally, and a disc-shaped lid 30 is placed on the ring-shaped smooth surface (upper end surface). Has been.
The lid 30 is attached in a state where it can be detached from the refrigerant container 20 so that the inside of the refrigerant container 20 can be accessed by maintenance and inspection. For example, the lid 30 is fixed to the refrigerant container 20 by a well-known method such as a fitting structure based on an uneven shape between the lid 30 and the refrigerant container 20 or bolting.
Since the lid 30 supports the refrigerator 40 in a suspended manner, the lid 30 is preferably formed of a material having a certain degree of strength. Specifically, FRP (Fiber Reinforced Plastics), stainless steel, or the like can be used as the material of the lid 30.
Further, the lid 30 may have a double wall surface structure in which the hollow interior is thermally insulated by vacuum, like the refrigerant container 20, and the heat insulation may be enhanced.

[冷凍機]
冷凍機40は、蓄冷式のいわゆるGM冷凍機であり、蓄冷材を内部に保有するディスプレーサ容器を上下に往復させるシリンダ部41と、ディスプレーサ容器に上下の移動動作を付与するモータを駆動源とするクランク機構が格納された駆動部42と、シリンダ部41において最も低温となる低温伝達部43に設けられた熱交換部材としての熱交換器44とを備えている。
また、上記冷凍機40には、図示しないコンプレッサ等が接続され、その内部に対して冷媒ガスである窒素ガスの吸排気が行われるようになっている。
[refrigerator]
The refrigerator 40 is a cold storage type so-called GM refrigerator, and has a cylinder source 41 that reciprocates a displacer container that holds a cold storage material up and down, and a motor that gives a vertical movement operation to the displacer container as a driving source. The drive part 42 in which the crank mechanism was stored, and the heat exchanger 44 as a heat exchange member provided in the low temperature transmission part 43 in which the cylinder part 41 becomes the lowest temperature are provided.
The refrigerator 40 is connected to a compressor (not shown) and the like, and intake and exhaust of nitrogen gas, which is a refrigerant gas, is performed inside the refrigerator.

[超電導素子]
二つの超電導素子71,72は、超電導体を有する短冊状の平板であり、通電方向に沿って直列に接続されている。また、直列接続された二つの超電導素子71,72の両端部は、それぞれ、蓋体30を上下に貫通して保持された電流リード91,92に個別に接続されている。即ち、いずれか一方の電流リード91又は92から二つの超電導素子71,72を介して他方の電流リード92又は91に事故電流が通電されるようになっている。
[Superconducting element]
The two superconducting elements 71 and 72 are strip-shaped flat plates having a superconductor, and are connected in series along the energization direction. Further, both end portions of the two superconducting elements 71 and 72 connected in series are individually connected to current leads 91 and 92 that are held through the lid 30 vertically. That is, an accident current is passed from one current lead 91 or 92 to the other current lead 92 or 91 via the two superconducting elements 71 and 72.

各超電導素子71,72を構成する超電導体には、液体窒素温度以上で超電導状態となるRE系超電導体(RE:希土類元素)を用いることができる。RE系超電導体としては、例えば化学式YBa2Cu37-yで表されるイットリウム系超電導体(以下、Y系超電導体)が代表的である。RE系超電導体の場合には、短冊状の平板以外に、テープ状の金属基板上に中間層を介してRE系超電導体が形成されたテープ状の超電導線を用いてもよい。また、金属マトリクス中に超電導体が形成されているテープ状の超電導線でもよい。超電導体には、ビスマス系超電導体、例えば化学式Bi2Sr2CaCu28+δ(Bi2212), Bi2Sr2Ca2Cu310+δ(Bi2223)を適用できる。なお、化学式中のδは酸素不定比量を示す。 As a superconductor constituting each of the superconducting elements 71 and 72, an RE-based superconductor (RE: rare earth element) that becomes a superconducting state at a liquid nitrogen temperature or higher can be used. A typical example of the RE-based superconductor is an yttrium-based superconductor represented by the chemical formula YBa 2 Cu 3 O 7-y (hereinafter, Y-based superconductor). In the case of the RE-based superconductor, in addition to the strip-shaped flat plate, a tape-shaped superconducting wire in which an RE-based superconductor is formed on a tape-shaped metal substrate via an intermediate layer may be used. Further, it may be a tape-shaped superconducting wire in which a superconductor is formed in a metal matrix. As the superconductor, a bismuth-based superconductor, for example, the chemical formula Bi 2 Sr 2 CaCu 2 O 8 + δ (Bi2212), Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223) can be applied. In the chemical formula, δ represents an oxygen nonstoichiometric amount.

上記二つの超電導素子71,72は、冷媒容器20において液体窒素60の規定液面高さの液面61より低位置において、いずれも長手方向が水平方向に沿った状態で、その平板面が鉛直上下方向に沿うように図示しない枠体により保持されている。
これらの超電導素子71,72は、同一寸法、同一構造であり、一方の超電導素子71が他方の超電導素子72の上側に配置されている。また、図1に示すように、二つの超電導素子71,72は、鉛直上下方向に沿った同一の垂直平面上に配置され、また、平面視で各々の両端部の位置が一致するように配置されている。
The two superconducting elements 71 and 72 are flat in the state in which the longitudinal direction is along the horizontal direction at a position lower than the liquid level 61 at the specified liquid level of the liquid nitrogen 60 in the refrigerant container 20. It is held by a frame (not shown) so as to be along the vertical direction.
These superconducting elements 71 and 72 have the same dimensions and the same structure, and one superconducting element 71 is disposed above the other superconducting element 72. In addition, as shown in FIG. 1, the two superconducting elements 71 and 72 are arranged on the same vertical plane along the vertical vertical direction, and are arranged so that the positions of both ends coincide with each other in plan view. Has been.

超電導素子71,72は、周囲の極低温状態の液体窒素により冷却されているが、事故電流のような臨界電流を大きく超える電流が各超電導素子71,72に流れると、これらの超電導素子71,72は超電導状態から常電導状態に遷移し、電気抵抗が高くなることにより急激に発熱する。その結果、周囲の液体窒素に対して超電導素子71,72は非常に高温となり、液体窒素が核沸騰状態を超えて膜沸騰状態となる。
膜沸騰状態が発生すると、超電導素子71,72の表面が液体窒素よりも冷却効率が低い窒素ガスに覆われるので、超電導素子71,72の冷却に時間を要する状態となる。
Although the superconducting elements 71 and 72 are cooled by the surrounding cryogenic liquid nitrogen, when a current that greatly exceeds a critical current such as an accident current flows to each superconducting element 71 and 72, these superconducting elements 71 and 72 72 transitions from the superconducting state to the normal conducting state, and suddenly generates heat as the electrical resistance increases. As a result, the superconducting elements 71 and 72 are extremely hot relative to the surrounding liquid nitrogen, and the liquid nitrogen exceeds the nucleate boiling state and becomes a film boiling state.
When the film boiling state occurs, the surfaces of the superconducting elements 71 and 72 are covered with nitrogen gas whose cooling efficiency is lower than that of liquid nitrogen, so that it takes time to cool the superconducting elements 71 and 72.

しかし、図2に示すように、冷媒容器20内において、上下に超電導素子71,72を並べて配置した場合には、膜沸騰状態となった下側の超電導素子72の表面から大量の窒素ガスが気泡となって上昇し、上側の超電導素子71は上昇する大量の窒素ガスの気泡とこれに伴う上方への液流とに曝される。
その際、上側の超電導素子71の表面に発生した膜沸騰状態の窒素ガスが下方からの気泡と液流とにより剥離され、上側の超電導素子71の表面を液体窒素と接触する状態に戻すことができ、効率的に冷却することが可能となる。
なお、超電導素子は、一定の高温状態となっている時間の積算値が増えるほどその寿命が短くなる傾向にあることから、事故電流時の高温状態からの冷却が速やかであるほど、素子寿命を延長することが可能である。従って、超電導素子71,72を上述のように上下に配置することにより、少なくとも一方の超電導素子71の長寿命化を図り、超電導限流器10の全体的な長寿命化を図っている。
また、超電導限流器が複数の超電導素子を備える場合、最も臨界電流が小さい超電導素子が最も寿命が短くなり、当該最も寿命が短い超電導素子の寿命が超電導限流器の寿命となる。従って、最も寿命が短い超電導素子を他のいずれかの超電導素子の上側に配置して効率的に冷却することが望ましい。
例えば、上記超電導限流器10の場合には、上側の超電導素子71として、下側の超電導素子72よりも臨界電流が小さく寿命が短いものを選択することが望ましい。これにより、超電導限流器全体の寿命を延長することが可能となる。
However, as shown in FIG. 2, when superconducting elements 71 and 72 are arranged side by side in the refrigerant container 20, a large amount of nitrogen gas is generated from the surface of the lower superconducting element 72 in a film boiling state. Ascending as bubbles, the upper superconducting element 71 is exposed to the rising amount of nitrogen gas bubbles and the upward liquid flow associated therewith.
At that time, the nitrogen gas in the film boiling state generated on the surface of the upper superconducting element 71 is peeled off by the bubbles and the liquid flow from below, and the surface of the upper superconducting element 71 is returned to the state in contact with the liquid nitrogen. Can be efficiently cooled.
Superconducting elements tend to have shorter lifetimes as the integrated value of time in a constant high-temperature state increases. Therefore, the faster the cooling from a high-temperature state during an accident current, the longer the element lifetime. It is possible to extend. Accordingly, by arranging the superconducting elements 71 and 72 vertically as described above, the life of at least one of the superconducting elements 71 is extended, and the overall life of the superconducting fault current limiter 10 is extended.
When the superconducting fault current limiter includes a plurality of superconducting elements, the superconducting element with the smallest critical current has the shortest life, and the life of the superconducting element with the shortest life becomes the life of the superconducting current limiter. Therefore, it is desirable that the superconducting element having the shortest lifetime be arranged on the upper side of any other superconducting element for efficient cooling.
For example, in the case of the superconducting current limiting device 10, it is desirable to select an upper superconducting element 71 having a critical current smaller than that of the lower superconducting element 72 and having a shorter life. Thereby, it becomes possible to extend the lifetime of the whole superconducting fault current limiter.

[素子カバー]
図3は素子カバー93内の中心線に沿った断面図、図4は平面図である。図示のように、素子カバー93は、平面視円形であって、その中心線Cが鉛直上下方向に沿った状態で冷媒容器20の内側に配設された筒状体であり、その上端部と下端部は開放されている。
そして、この素子カバー93の内側に二つの超電導素子71,72を上下に配置している。
前述したように、超電導素子71,72は、一方の超電導素子71を他方の超電導素子72の上方に配置することにより、事故電流の発生時に、下方の超電導素子72の膜沸騰により発生する窒素ガスの気泡及びこれによる液流を利用して、上方の超電導素子71の冷却効率を高めている。このように下方の超電導素子72からの気泡及び液流を利用する場合に、気泡が周囲に拡散してしまうと、上方の超電導素子71の膜沸騰による窒素ガスを剥離する能力が低減し、十分に冷却効率の向上を図ることが出来なくなる。
従って、上記の素子カバー93で各超電導素子71,72を囲繞することで、下方の超電導素子72からの気泡の拡散を防ぎ、気泡及び液流を上側の超電導素子71へ効果的に導くことを可能としている。
[Element cover]
3 is a cross-sectional view taken along the center line in the element cover 93, and FIG. 4 is a plan view. As shown in the figure, the element cover 93 is a circular body in plan view, and is a cylindrical body disposed inside the refrigerant container 20 with its center line C extending in the vertical vertical direction. The lower end is open.
Two superconducting elements 71 and 72 are arranged vertically inside the element cover 93.
As described above, the superconducting elements 71 and 72 are arranged such that one superconducting element 71 is disposed above the other superconducting element 72, so that nitrogen gas generated due to film boiling of the lower superconducting element 72 when an accident current occurs. The cooling efficiency of the upper superconducting element 71 is enhanced by utilizing the bubbles and the liquid flow caused thereby. In this way, when bubbles and liquid flow from the lower superconducting element 72 are used, if the bubbles diffuse to the surroundings, the ability of the upper superconducting element 71 to peel off nitrogen gas due to film boiling is reduced sufficiently. Therefore, it becomes impossible to improve the cooling efficiency.
Therefore, by surrounding each of the superconducting elements 71 and 72 with the element cover 93, it is possible to prevent the bubbles from diffusing from the lower superconducting element 72 and effectively guide the bubbles and the liquid flow to the upper superconducting element 71. It is possible.

上記素子カバー93に対する各超電導素子71,72の配置について以下に説明する。
以下の説明において、各超電導素子71,72の中心gとは、各超電導素子71,72の平面視における長手方向について中間であって、平面視における短手方向についても中間であって、鉛直上下方向についても中間に位置する中間点をいうものとする。なお、この中心gは、各超電導素子71,72が長方形の平板(直方体形状)であって全体が均一の密度である場合にその重心と一致する。
そして、各超電導素子71,72はその中心g,gが、いずれも素子カバー93の中心線Cの線上となるように配置されている。
The arrangement of the superconducting elements 71 and 72 with respect to the element cover 93 will be described below.
In the following description, the center g of each superconducting element 71, 72 is intermediate in the longitudinal direction of each superconducting element 71, 72 in the plan view and intermediate in the short direction in plan view, and is vertically up and down. The intermediate point located in the middle of the direction is also referred to. The center g coincides with the center of gravity when each of the superconducting elements 71 and 72 is a rectangular flat plate (cuboid shape) and has a uniform density as a whole.
The superconducting elements 71 and 72 are arranged such that the centers g and g are on the center line C of the element cover 93.

さらに、二つの超電導素子71,72の鉛直上下方向における中心g,gの距離である中心間距離をL、各超電導素子71,72の中心gから素子カバー93の内面までの超電導素子71,72の長手方向に沿った距離をR、各超電導素子71,72の平面視での長手方向の長さをW、一方の超電導素子71の中心gから当該超電導素子71の長手方向に沿って延ばした直線が素子カバー93の内面と交差する交点をr1、他方の超電導素子72の中心gから当該超電導素子72の長手方向に沿って延ばした直線が素子カバー93の内面と交差する交点をr2、他方の超電導素子72の中心gと交点r1とを結ぶ直線と他方の超電導素子72の中心gと交点r2とを結ぶ直線との交差角度をθとした場合に、次式(1)の関係が成立するように各超電導素子71,72は配置されている。   Furthermore, the distance between the centers, which is the distance between the centers g and g of the two superconducting elements 71 and 72 in the vertical direction, is L, and the superconducting elements 71 and 72 from the center g of each of the superconducting elements 71 and 72 to the inner surface of the element cover 93. The distance along the longitudinal direction of the superconducting element 71 is 72, the length of the superconducting elements 71 and 72 in the longitudinal direction in plan view is W, and the center g of one superconducting element 71 is extended along the longitudinal direction of the superconducting element 71. The intersection point where the straight line intersects the inner surface of the element cover 93 is r1, the intersection point where the straight line extending from the center g of the other superconducting element 72 along the longitudinal direction of the superconducting element 72 intersects the inner surface of the element cover 93 is r2, and the other When the crossing angle between the straight line connecting the center g of the superconducting element 72 and the intersection point r1 and the straight line connecting the center g of the other superconducting element 72 and the intersection point r2 is θ, the relationship of the following equation (1) holds: To make each Conductive elements 71, 72 are arranged.

tan−1(L/R)≦70° …(1) tan −1 (L / R) ≦ 70 ° (1)

上記tan−1(L/R)=θなので上記(1)は θ ≦70° と同義である。
また、各超電導素子71,72の長手方向における両端部と素子カバー93の内面との間は気泡の通過が可能であることが望ましいので、相互間を完全に塞がないように、R>W/2とする。
また、超電導素子71,72は、臨界電流を超えたときに生じる気泡の水平方向における中心gからの到達距離α(図2参照)がおおむね一定の範囲内となり、距離Rはα以下の範囲とすることが望ましい(R≦α)。
さらに、下側の超電導素子72は、その下端部が素子カバー93の下端部よりも上側となるように配置している。これにより、膜沸騰時に発生する気泡を素子カバー93の外側に漏らすことなく効果的に上方に導くことができるようになっている。
Since tan −1 (L / R) = θ, (1) is synonymous with θ ≦ 70 °.
Further, since it is desirable that air bubbles can pass between both end portions in the longitudinal direction of the superconducting elements 71 and 72 and the inner surface of the element cover 93, R> W so as not to completely block each other. / 2.
Further, in the superconducting elements 71 and 72, the arrival distance α (see FIG. 2) from the center g in the horizontal direction of bubbles generated when the critical current is exceeded is generally within a certain range, and the distance R is within a range of α or less. Is desirable (R ≦ α).
Further, the lower superconducting element 72 is arranged such that the lower end thereof is above the lower end of the element cover 93. Thus, bubbles generated during film boiling can be effectively guided upward without leaking outside the element cover 93.

[膜沸騰による気泡を利用した冷却効率の向上]
ここで、膜沸騰による気泡を利用した冷却効率の向上について説明する。図5の実線は室温(303[K])状態の単独の超電導素子71を冷媒容器20内の液体窒素に入れて冷媒温度(77[K])まで冷却するのに要する時間及び温度変化を示している。また、図5の点線は室温(303[K])状態の単独の超電導素子71及び膜沸騰による気泡の発生源となる室温状態の金属製の枠体を冷媒容器20内に配置して、冷媒温度(77[K])まで冷却するのに要する時間及び温度変化を示している。枠体は、超電導素子71の中心gから鉛直下方に下ろした垂線に対して70°傾斜した斜め下方に配置した。
なお、いずれの場合も冷媒容器20内から超電導素子72及び素子カバー93を除去している。
[Improvement of cooling efficiency using bubbles by film boiling]
Here, the improvement of the cooling efficiency using the bubble by film | membrane boiling is demonstrated. The solid line in FIG. 5 shows the time and temperature change required to cool the single superconducting element 71 in the room temperature (303 [K]) state to the refrigerant temperature (77 [K]) by putting it in the liquid nitrogen in the refrigerant container 20. ing. Further, a dotted line in FIG. 5 shows that a single superconducting element 71 in a room temperature (303 [K]) state and a metal frame body in a room temperature state serving as a generation source of bubbles due to film boiling are disposed in the refrigerant container 20, It shows the time and temperature change required for cooling to the temperature (77 [K]). The frame was disposed obliquely downward at an angle of 70 ° with respect to a vertical line extending vertically downward from the center g of the superconducting element 71.
In either case, the superconducting element 72 and the element cover 93 are removed from the refrigerant container 20.

図5のように、超電導素子71を単独で配置した場合(実線)には冷媒温度まで冷却するのに要した時間はおよそ13[s]であり、超電導素子71の斜め下方に枠体を配置した場合(点線)には冷媒温度まで冷却するのに要した時間はおよそ11[s]であった。
これは、枠体を配置した場合には、液体冷媒に対して高温である枠体の表面で膜沸騰が発生し、窒素ガスによる大量の気泡が液流を伴って上昇する。そして、膜沸騰状態にある超電導素子71が枠体からの気泡及び液流に曝されて、冷却効率の低い窒素ガスが表面から剥離され、液体窒素による冷却が行われて超電導素子71の冷却効率が向上するためである。
このように、超電導素子は膜沸騰による気泡発生源を下方に配置することにより、そこから生じる窒素ガスの気泡及び液流により超電導素子の膜沸騰時における冷却効率を改善する。
従って、図1に示す超電導限流器10のように、一方の超電導素子71をもう一方の超電導素子72の上方に配置することにより、臨界電流を超える事故電流の発生時に、下方の超電導素子72が気泡発生源となり、上方の超電導素子71に膜沸騰が生じた場合でも、より迅速に冷却を行うことが可能である。
As shown in FIG. 5, when the superconducting element 71 is disposed alone (solid line), the time required for cooling to the refrigerant temperature is approximately 13 [s], and the frame is disposed obliquely below the superconducting element 71. In this case (dotted line), the time required for cooling to the refrigerant temperature was approximately 11 [s].
This is because, when the frame is arranged, film boiling occurs on the surface of the frame that is high in temperature with respect to the liquid refrigerant, and a large number of bubbles due to nitrogen gas rise with a liquid flow. Then, the superconducting element 71 in a film boiling state is exposed to bubbles and a liquid flow from the frame, nitrogen gas having a low cooling efficiency is peeled off from the surface, and cooling with liquid nitrogen is performed to cool the superconducting element 71. It is for improving.
Thus, the superconducting element improves the cooling efficiency at the time of film boiling of the superconducting element due to the bubble and liquid flow of nitrogen gas generated therefrom by disposing the bubble generating source due to film boiling below.
Accordingly, by disposing one superconducting element 71 above the other superconducting element 72 as in the superconducting current limiter 10 shown in FIG. 1, when an accident current exceeding the critical current occurs, the lower superconducting element 72 Becomes a bubble generation source, and even when film boiling occurs in the upper superconducting element 71, cooling can be performed more rapidly.

[素子カバーによる冷却向上効果]
冷媒容器20内に素子カバー93を設けた場合と設けていない場合とで各超電導素子71,72に通電を行って加熱させてから冷媒温度に戻るまでの復帰時間の比較を行った結果を図6に示す。なお、この図6では、各超電導素子71、72に対し、通電により発熱させた場合の発生熱量と復帰時間の比較を行った。また、各超電導素子71,72の冷媒容器20内の配置はいずれも図3に示す配置において交差角度θを30°とした。
[Cooling improvement effect by element cover]
The results of comparing the return times from when the superconducting elements 71 and 72 are energized and heated to when the element cover 93 is provided in the refrigerant container 20 until the temperature returns to the refrigerant temperature are shown in FIG. It is shown in FIG. In FIG. 6, the amount of heat generated when the superconducting elements 71 and 72 are heated by energization and the return time are compared. Further, in each of the superconducting elements 71 and 72 in the refrigerant container 20, the crossing angle θ is 30 ° in the arrangement shown in FIG.

図6において「◆」は素子カバー無し、「□」は素子カバーありを示す。素子カバー93を設けない場合に比べて素子カバー93を設けた場合には復帰時間が短縮され、発生熱量が高くなるほど復帰時間の差が大きくなっている。例えば、充電電圧1000[V]において、素子カバー93を設けない場合の復帰時間は3.7[sec]だが、素子カバー93を設けた場合には復帰時間が3.1[sec]となり、およそ20パーセント短縮した。
これにより、発生熱量が高くなるほど、下方の超電導素子72からの窒素ガスの気泡の発生量が増えることになるが、素子カバー93が気泡を上方の超電導素子71に効果的に導いて冷却効率を高めていることが分かる。
In FIG. 6, “♦” indicates no element cover, and “□” indicates that an element cover is present. When the element cover 93 is provided compared to the case where the element cover 93 is not provided, the return time is shortened, and the difference in the return time increases as the amount of generated heat increases. For example, at a charging voltage of 1000 [V], the return time when the element cover 93 is not provided is 3.7 [sec], but when the element cover 93 is provided, the return time is 3.1 [sec], which is approximately 20% shorter. .
As a result, as the amount of generated heat increases, the amount of nitrogen gas bubbles generated from the lower superconducting element 72 increases. However, the element cover 93 effectively guides the bubbles to the upper superconducting element 71 to improve the cooling efficiency. You can see that it is increasing.

[素子カバーに対する上下の超電導素子の配置よる冷却向上効果]
素子カバー無しの場合及び素子カバー93に対する上下の超電導素子71,72の配置における交差角度θをそれぞれ20,25,30,45,60,70,75,80°とした場合の超電導素子71の加熱状態からの復帰時間の一覧を図7に示す。なお、この図7の比較試験では、超電導素子の中心から素子カバーまでの距離Rを一定にして二つの超電導素子71,72の中心間距離Lのみを変更することで交差角度θを変化させており、その他の配置については図3の例と同一である。また、各超電導素子71,72に対して発生熱量を400[J]とした場合で比較を行った。
[Cooling improvement effect by arrangement of upper and lower superconducting elements to element cover]
Heating of the superconducting element 71 when the element cover is not provided and when the crossing angle θ in the arrangement of the upper and lower superconducting elements 71 and 72 with respect to the element cover 93 is 20, 25, 30, 45, 60, 70, 75, and 80 °, respectively. A list of return times from the state is shown in FIG. In the comparative test of FIG. 7, the intersection angle θ is changed by changing only the distance L between the centers of the two superconducting elements 71 and 72 while keeping the distance R from the center of the superconducting element to the element cover constant. Other arrangements are the same as in the example of FIG. In addition, a comparison was made when the amount of generated heat was 400 [J] for each of the superconducting elements 71 and 72.

上記比較の結果、交差角度θが75°以上の範囲では素子カバー93を設けない場合の復帰時間と大差がなく、交差角度θ≦70°の範囲で復帰時間が顕著に短縮するという結果が得られた。
即ち、tan−1(L/R)≦70°とすることが効果的であり、70°を超えると冷却効率が低下することが分かる。
As a result of the above comparison, there is no significant difference from the return time when the element cover 93 is not provided when the crossing angle θ is 75 ° or more, and the return time is remarkably shortened within the crossing angle θ ≦ 70 °. It was.
In other words, it is effective to set tan −1 (L / R) ≦ 70 °, and when it exceeds 70 °, the cooling efficiency decreases.

[超電導素子の素子間距離と相互インダクタンスの影響]
次に、超電導素子の素子間距離と相互インダクタンスの影響について説明する。図8は素子間距離と相互インダクタンスの対応関係をシミュレーションに基づいて算出した線図であり、実線は各超電導素子71,72の平板面を鉛直上下方向に沿わせた状態(図3の配置)であり、点線は各超電導素子71,72の平板面をいずれも水平状態とした場合を示す。なお、ここでの素子間距離は、下側の超電導素子72の上端面から上側の超電導素子71の下端面までの距離を示す。
図示のように、相互インダクタンスは、超電導素子71,72のサイズを210×30×1(図3の状態での水平方向幅×鉛直上下方向幅×紙面厚さ方向幅、単位は全て[mm])とした場合、超電導素子71,72の素子間距離がおよそ20[mm]を下回ると急に大きくなるという結果が得られた。従って、各超電導素子71,72の素子間距離は20[mm]以上とすることが望ましい。
[Effect of inter-element distance and mutual inductance of superconducting elements]
Next, the influence of the distance between elements of the superconducting element and the mutual inductance will be described. FIG. 8 is a diagram in which the correspondence between the inter-element distance and the mutual inductance is calculated based on simulation, and the solid line indicates a state in which the flat surfaces of the superconducting elements 71 and 72 are vertically aligned (arrangement of FIG. 3). The dotted lines indicate the case where the flat surfaces of the superconducting elements 71 and 72 are both horizontal. Here, the inter-element distance indicates the distance from the upper end surface of the lower superconducting element 72 to the lower end surface of the upper superconducting element 71.
As shown in the figure, the mutual inductance is the size of the superconducting elements 71 and 72: 210 × 30 × 1 (horizontal width × vertical vertical width × width in the thickness direction in the state of FIG. 3, all units are [mm]. When the distance between the superconducting elements 71 and 72 is less than about 20 [mm], the result is abruptly increased. Therefore, the distance between the elements of the superconducting elements 71 and 72 is preferably 20 [mm] or more.

二つの超電導素子71,72いずれも平板面を鉛直上下方向に沿わせた状態とした場合(図3の向き及び配置である場合)、二つの超電導素子71,72の中心間距離Lは、上述した相互インダクタンスを考慮した素子間距離(20[mm])+素子の鉛直上下方向幅(30[mm])となるので、L≧50[mm]とすることが望ましい。
さらに、超電導素子71,72の一端部を素子カバー93の内面に近接配置する前提とした場合、各超電導素子71,72の中心gから素子カバー93の内面までの距離R=210/2=105[mm]となる。
式(1)のtan−1(L/R)に上記L,Rの数値を入力すると、
tan−1(L/R)=tan−1(50/105)=tan−1(0.48)≒25°となり、相互インダクタンスの悪化を回避するためには、tan−1(L/R)≧25°(θ≧25°)とすることが望ましい。
このように、θ(=tan−1(L/R))の下限値は、超電導素子71,72の素子間の相互インダクタンスの悪化を回避可能な範囲から定めることが望ましい。例えば、上述のように、相互インダクタンスの変化率が顕著となる素子間距離からθ(=tan−1(L/R))の下限値を定めても良いし、相互インダクタンスの数値の上限値を定め、これに基づいてθ(=tan−1(L/R))の下限値を定めても良い。
When both the two superconducting elements 71 and 72 are in a state in which the flat plate surface is vertically aligned (in the direction and arrangement of FIG. 3), the distance L between the centers of the two superconducting elements 71 and 72 is as described above. Therefore, it is desirable that L ≧ 50 [mm] because the distance between the elements considering the mutual inductance (20 [mm]) + the vertical vertical width of the element (30 [mm]).
Further, when it is assumed that one end of the superconducting elements 71 and 72 is disposed close to the inner surface of the element cover 93, the distance R = 210/2 = 105 from the center g of each superconducting element 71 and 72 to the inner surface of the element cover 93. [mm].
When the numerical values of L and R are input to tan −1 (L / R) in the formula (1),
tan −1 (L / R) = tan −1 (50/105) = tan −1 (0.48) ≈25 °, and in order to avoid deterioration of mutual inductance, tan −1 (L / R) ≧ 25 It is desirable that the angle is θ (θ ≧ 25 °).
Thus, it is desirable to determine the lower limit value of θ (= tan −1 (L / R)) from a range in which deterioration of the mutual inductance between the superconducting elements 71 and 72 can be avoided. For example, as described above, the lower limit value of θ (= tan −1 (L / R)) may be determined from the inter-element distance at which the rate of change of the mutual inductance becomes significant, and the upper limit value of the mutual inductance value may be set. The lower limit value of θ (= tan −1 (L / R)) may be determined based on this.

[発生熱量が異なる場合の素子カバー内の上下の超電導素子の配置よる冷却向上効果]
また、図7の比較により適正範囲内とされる交差角度45°の場合と適正範囲外とされる交差角度80°の場合と素子カバー93を設けない場合とで、超電導素子71に対する通電による発生熱量を0〜480[J]の範囲で変化させた時の復帰時間の比較結果を図9に示す。
図9において「◆」は素子カバー無し、「□」は交差角度45°(素子カバーあり)、「△」(図9では模様付き)は交差角度80°(素子カバーあり)を示す。
この比較から、交差角度45°の場合には、発生熱量が大きくなるにつれて素子カバー93を設けない場合に比べて復帰時間の短縮が顕著となることが分かり、交差角度80°の場合には、充電電圧が変化しても素子カバー93を設けない場合の復帰時間と大差ないことが分かる。
[Cooling improvement effect due to the arrangement of upper and lower superconducting elements in the element cover when the amount of generated heat is different]
Further, when the crossing angle is 45 ° within the proper range, the crossing angle is 80 ° outside the proper range, and the case where the element cover 93 is not provided according to the comparison of FIG. FIG. 9 shows a comparison result of the recovery time when the heat quantity is changed in the range of 0 to 480 [J].
In FIG. 9, “♦” indicates no element cover, “□” indicates an intersection angle of 45 ° (with an element cover), and “Δ” (with a pattern in FIG. 9) indicates an intersection angle of 80 ° (with an element cover).
From this comparison, it can be seen that when the crossing angle is 45 °, the recovery time is significantly shortened as the amount of generated heat increases as compared to the case where the element cover 93 is not provided. It can be seen that even if the charging voltage changes, it does not differ greatly from the return time when the element cover 93 is not provided.

[発明の実施形態における技術的効果]
以上のように、超電導限流器10は、冷媒容器20内の液体窒素60中で、一方の超電導素子71を他方の超電導素子72の上方に配置することで、事故電流の発生時に下方の超電導素子72から発生する窒素ガスの気泡及び液流を利用して、膜沸騰状態にある上方の超電導素子71を効率的に冷却することを可能としている。かかる超電導素子71,72の上下配置による冷却効率の向上は図5による膜沸騰による窒素ガス発生源を伴う場合の冷却効率の向上の結果からも裏付けられている。
[Technical effects in the embodiment of the invention]
As described above, the superconducting fault current limiter 10 disposes one superconducting element 71 above the other superconducting element 72 in the liquid nitrogen 60 in the refrigerant container 20, thereby lowering the superconductivity below the occurrence of an accident current. It is possible to efficiently cool the upper superconducting element 71 in the film boiling state by utilizing the bubbles and the liquid flow of nitrogen gas generated from the element 72. The improvement of the cooling efficiency due to the vertical arrangement of the superconducting elements 71 and 72 is supported by the result of the improvement of the cooling efficiency when accompanied by the nitrogen gas generation source by the film boiling shown in FIG.

さらに、超電導限流器10は、二つの超電導素子71,72を囲繞する素子カバー93を備え、これにより、下方の超電導素子72から発生する気泡を上方の超電導素子71に効率良く導くことにより冷却効率の向上を実現している。かかる素子カバー93による冷却効率の向上は図6による素子カバー93の有無による冷却温度への復帰時間の比較試験の結果からも裏付けられている。   Furthermore, the superconducting fault current limiter 10 includes an element cover 93 that surrounds the two superconducting elements 71 and 72, thereby cooling air by efficiently guiding bubbles generated from the lower superconducting element 72 to the upper superconducting element 71. Increases efficiency. The improvement of the cooling efficiency by the element cover 93 is supported by the result of the comparison test of the return time to the cooling temperature with and without the element cover 93 shown in FIG.

また、素子カバー内での二つの超電導素子71,72の配置が、中心g,gから素子カバー93の内面までの距離R及び二つの超電導素子71,72の中心間距離Lに規定されるtan−1(L/R)≦70°を満たすことにより、上方の超電導素子71の冷却効率の向上を実現することが可能である。かかる素子配置による冷却効率の向上は図7及び図9によるL、Rに基づく交差角度θを変化させた場合の比較試験の結果からも裏付けられている。 In addition, the arrangement of the two superconducting elements 71 and 72 in the element cover is determined by the distance R from the center g, g to the inner surface of the element cover 93 and the distance L between the centers of the two superconducting elements 71, 72. By satisfying −1 (L / R) ≦ 70 °, it is possible to improve the cooling efficiency of the upper superconducting element 71. The improvement in cooling efficiency due to such element arrangement is supported by the result of a comparative test in which the crossing angle θ based on L and R is changed according to FIGS. 7 and 9.

さらに、前述した図8に示すように、各超電導素子71,72の素子間距離は20[mm]以上とすることにより、各超電導素子71,72の相互インダクタンスの影響を低減することが可能である。この条件を満たすためにも、各超電導素子71,72の配置に基づく交差角度θは25°以上の範囲とすることが望ましい。
即ち、25°≦tan−1(L/R)≦70°とすることにより、各超電導素子71,72の相互インダクタンスの影響を抑制しつつ、冷却効率の向上を図ることが可能である。
Further, as shown in FIG. 8 described above, by setting the distance between the superconducting elements 71 and 72 to 20 [mm] or more, it is possible to reduce the influence of the mutual inductance of each superconducting element 71 and 72. is there. In order to satisfy this condition, it is desirable that the crossing angle θ based on the arrangement of the superconducting elements 71 and 72 is in a range of 25 ° or more.
That is, by setting 25 ° ≦ tan −1 (L / R) ≦ 70 °, it is possible to improve the cooling efficiency while suppressing the influence of the mutual inductance of each superconducting element 71, 72.

また、素子カバー93内で下側に位置する超電導素子72の下端部が素子カバー93の下端部よりも上側となるように配置することで、事故電流の発生時に当該超電導素子72からの窒素ガスの気泡を素子カバー93の外側に漏らすことなく超電導素子71に向かって導くことが出来るので、超電導素子71のさらなる効率的な冷却が可能となる。   Further, by arranging the lower end portion of the superconducting element 72 located below in the element cover 93 to be higher than the lower end portion of the element cover 93, nitrogen gas from the superconducting element 72 is generated when an accident current occurs. Can be guided toward the superconducting element 71 without leaking to the outside of the element cover 93, so that the superconducting element 71 can be further efficiently cooled.

このように、超電導限流器10で冷媒容器20内に素子カバー93を設け、素子カバー93に対して超電導素子71,72が上述した各種の配置条件を満たすように配置することにより、上方の超電導素子71を効率的に冷却し、その寿命を延長することが出来るので、超電導限流器10についても長寿命化を実現することが可能となる。
また、素子カバー93とこれに対する超電導素子71,72の配置により冷却効率の向上を実現するので、冷却のための特殊構造や特別な構成を冷媒容器20に付加する必要がなく、超電導限流器10全体の構成の簡易化、コストの低減を図ることが可能である。
Thus, by providing the element cover 93 in the refrigerant container 20 with the superconducting fault current limiter 10 and arranging the superconducting elements 71 and 72 so as to satisfy the various arrangement conditions described above with respect to the element cover 93, Since the superconducting element 71 can be efficiently cooled and its life can be extended, the life of the superconducting fault current limiter 10 can be extended.
Further, since the cooling efficiency is improved by the arrangement of the element cover 93 and the superconducting elements 71 and 72 corresponding thereto, there is no need to add a special structure or a special structure for cooling to the refrigerant container 20, and the superconducting current limiting device It is possible to simplify the configuration of the entire 10 and reduce the cost.

[その他]
超電導素子は短冊状ではなく、容易に変形させることが可能なワイヤ状としても良い。その場合には、超電導素子により任意の形状を形成しても良い。例えば、図10に示す、支持プレート110の上面に沿って、超電導素子101〜106を渦を巻くようにコイル状に取り付けた超電導素子ユニット100を、二つ以上用意してそれらを上下に重ねて配置しても良い。なお、支持プレート110の上面において、超電導素子101〜106がコイル状に配置される部分111は、網状或いは無数のスリットや小孔が形成されており、表裏に気泡が通過可能となっている。
なお、超電導素子ユニットの個体数は、二以上であれば任意であり、一つの超電導素子ユニット100に設けられる超電導素子の個体数は一以上であれば任意である。
[Others]
The superconducting element is not limited to a strip shape but may be a wire shape that can be easily deformed. In that case, you may form arbitrary shapes with a superconducting element. For example, two or more superconducting element units 100 in which the superconducting elements 101 to 106 are coiled so as to vortex are prepared along the upper surface of the support plate 110 shown in FIG. It may be arranged. In addition, on the upper surface of the support plate 110, a portion 111 where the superconducting elements 101 to 106 are arranged in a coil shape is formed with a net-like or innumerable slits and small holes, and air bubbles can pass through the front and back.
The number of superconducting element units is arbitrary as long as it is two or more, and the number of superconducting elements provided in one superconducting element unit 100 is arbitrary as long as it is one or more.

また、超電導素子ユニット100の超電導素子の形状としては、図11に示すような無誘導巻きの形状としても良い。即ち、その中央部で折り返したワイヤ状の超電導素子101をコイル状に巻くことにより、その一端部から他端部にかけて通電すると、中央部の折り返し部分を境界として隣接するワイヤ状の超電導素子に互いに逆向きに電流が流れることになる。これにより素子群のインダクタンスが減少し、超電導限流器10を定格通電させたときの発生電圧を抑制することができる。
また、このように無誘導巻きの形状とした場合にも図10のように複数のワイヤ状の超電導素子をコイル状に巻いてもよい。
Further, the shape of the superconducting element of the superconducting element unit 100 may be a non-inductive winding shape as shown in FIG. That is, by winding the wire-shaped superconducting element 101 folded in the central portion in a coil shape and energizing from one end portion to the other end portion, the adjacent wire-shaped superconducting elements are mutually connected with the folded portion in the central portion as a boundary. A current flows in the opposite direction. As a result, the inductance of the element group is reduced, and the generated voltage when the superconducting fault current limiter 10 is rated to be energized can be suppressed.
Further, even in the case of the non-inductive winding shape, a plurality of wire-like superconducting elements may be wound in a coil shape as shown in FIG.

そして、図12及び図13に示すように、上記超電導素子ユニット100を複数用意し、素子カバー93の内側に上下に並べて配置する。この場合、各超電導素子ユニット100はいずれも水平に沿った状態とすることが望ましい。
また、少なくとも、上下に複数配置される超電導素子ユニット100に取り付けられた全ての超電導素子の中で、臨界電流の値が最も小さい超電導素子が取り付けられた超電導素子ユニット100の下側に一つ以上の他の超電導素子ユニット100が配置されていることが望ましく、臨界電流の値が最も小さい超電導素子が取り付けられた超電導素子ユニット100が最も上側に配置されればより望ましい。
これにより、最も臨界電流が小さい超電導素子の素子寿命を延長することができ、装置全体の長寿命化を図ることが可能である。
なお、超電導素子ユニットの個体数は、二以上であれば任意であり、一つの超電導素子ユニット100に設けられる超電導素子の個体数は一以上であれば任意である。
Then, as shown in FIGS. 12 and 13, a plurality of the superconducting element units 100 are prepared and arranged side by side inside the element cover 93. In this case, it is desirable that each superconducting element unit 100 is in a horizontal state.
At least one of the superconducting elements attached to the superconducting element unit 100 arranged in the upper and lower sides is at least one below the superconducting element unit 100 to which the superconducting element having the smallest critical current value is attached. It is desirable that another superconducting element unit 100 is disposed, and it is more desirable that the superconducting element unit 100 to which the superconducting element having the smallest critical current value is attached is disposed on the uppermost side.
Thereby, the element life of the superconducting element having the smallest critical current can be extended, and the life of the entire apparatus can be extended.
The number of superconducting element units is arbitrary as long as it is two or more, and the number of superconducting elements provided in one superconducting element unit 100 is arbitrary as long as it is one or more.

また、上述した素子カバー93は円筒形状に限定されるものではなく、上下の端部が開放された筒状体又は枠体であれば任意の平面視形状とすることが出来る。例えば、図14に示すように、平面視形状が四角形の枠体からなる素子カバー93Aを使用しても良い。また、その他の多角形や楕円、長円等にしても良い。但し、上下方向の全長に渡って一様の断面形状で全長に渡って貫通していることが望ましい。
なお、このように素子カバー93Aが四角形の枠体である場合にも、各超電導素子71,72の長手方向についてtan−1(L/R)≦70°を満たすように配置することが望ましい。さらに相互インダクタンスの影響を考慮すると25°≦tan−1(L/R)≦70°とすることがより好ましい。
また、上下が開放して窒素ガスの気泡の拡散を押さえることが可能であれば、筒状又は枠状以外の形状のカバーにより超電導素子71,72を囲繞しても良い。
Further, the element cover 93 described above is not limited to a cylindrical shape, and may be an arbitrary plan view shape as long as it is a cylindrical body or a frame body in which upper and lower ends are opened. For example, as shown in FIG. 14, an element cover 93A made of a frame having a quadrangular shape in plan view may be used. Also, other polygons, ellipses, ellipses, etc. may be used. However, it is desirable to penetrate through the entire length with a uniform cross-sectional shape over the entire length in the vertical direction.
Even when the element cover 93 </ b> A is a rectangular frame as described above, it is desirable that the superconducting elements 71 and 72 are arranged so as to satisfy tan −1 (L / R) ≦ 70 ° in the longitudinal direction. Further, considering the influence of mutual inductance, it is more preferable that 25 ° ≦ tan −1 (L / R) ≦ 70 °.
Further, the superconducting elements 71 and 72 may be surrounded by a cover having a shape other than a cylindrical shape or a frame shape as long as the upper and lower sides are opened to suppress the diffusion of nitrogen gas bubbles.

また、超電導素子が短冊状である場合を例示したが、これに限らず、例えば、棒状、ワイヤー状、シート状、その他の任意の形状としても良い。また、超電導素子の形状によっては、平面視の形状に長手方向が存在しない場合もあり得るが(例えば、平面視で円形などの場合)、その場合には、いずれか任意の方向を長手方向と仮定し、当該仮定の長手方向で超電導素子の中心から素子カバーの内面までの距離Rを定義し、式(1)が成立するように各超電導素子を配置しても良い。   Moreover, although the case where the superconducting element was strip-shaped was illustrated, it is not restricted to this, For example, it is good also as rod shape, wire shape, sheet shape, and other arbitrary shapes. In addition, depending on the shape of the superconducting element, there may be a case where the longitudinal direction does not exist in the shape in plan view (for example, in the case of a circle in plan view). In that case, any direction is defined as the longitudinal direction. Assuming that the distance R from the center of the superconducting element to the inner surface of the element cover is defined in the assumed longitudinal direction, each superconducting element may be arranged so that the formula (1) is satisfied.

また、前述した超電導素子71,72は、その姿勢や向きを変更することが可能である。
例えば、各超電導素子71,72の長手方向が水平方向に沿うように配置した場合を例示したが、これらの長手方向が鉛直上下方向に沿うように配置しても良い。
また、各超電導素子71,72の平板面が鉛直方向に沿うように配置した場合を例示したが、平板面が水平となるように配置しても良い。
さらに、超電導素子は二枚に限らず、より多くの超電導素子を使用しても良い。その場合には、全ての超電導素子を直列に接続しても良いが、直列接続と並列接続とを組み合わせて各超電導素子を接続しても良い。また、より多くの超電導素子を使用する場合には、上下二段の配置ではなく、多段に配置しても良い。その場合、少なくとも上下に隣接する二つの超電導素子について式(1)が成立するように配置することが望ましく、上下に隣接する全ての超電導素子の組み合わせについて式(1)が成立するように配置することがより望ましい。
The superconducting elements 71 and 72 described above can be changed in posture and orientation.
For example, although the case where it arranged so that the longitudinal direction of each superconducting element 71 and 72 followed a horizontal direction was illustrated, you may arrange | position so that these longitudinal directions may follow a vertical up-down direction.
Moreover, although the case where it arrange | positioned so that the flat plate surface of each superconducting element 71 and 72 followed a perpendicular direction was illustrated, you may arrange | position so that a flat plate surface may become horizontal.
Furthermore, the number of superconducting elements is not limited to two, and more superconducting elements may be used. In that case, all the superconducting elements may be connected in series, or each superconducting element may be connected by combining series connection and parallel connection. When more superconducting elements are used, they may be arranged in multiple stages instead of in two upper and lower stages. In that case, it is desirable to arrange so that at least two superconducting elements adjacent in the vertical direction satisfy the formula (1), and arrange so that the formula (1) holds for all combinations of the superconducting elements adjacent in the vertical direction It is more desirable.

また、図15に示すように、超電導限流器が、上下に配置された超電導素子からなる組73,74を複数有する場合には、超電導素子の組73,74ごとに素子カバー93,93を用意して、個別に内部に配置しても良い。また、上下に配置された超電導素子からなる組73,74を複数有する場合に、これらを一つの素子カバー内に配置しても良い。   Further, as shown in FIG. 15, when the superconducting fault current limiter has a plurality of sets 73 and 74 composed of superconducting elements arranged above and below, element covers 93 and 93 are provided for each of the superconducting element sets 73 and 74, respectively. It may be prepared and placed individually inside. In addition, when a plurality of sets 73 and 74 composed of superconducting elements arranged above and below are provided, these may be arranged in one element cover.

また、上下に隣接する二つの超電導素子が、その超電導状態を維持することが可能な臨界電流の値にバラつきがあるものが使用される場合には、臨界電流の値が小さいものの方が寿命が短くなる傾向にあるので、当該臨界電流の値が小さい超電導素子を臨界電流の値がより大きい超電導素子の上側に配置することが望ましい。寿命の短い方の超電導素子の冷却効率を高めて長寿命化を図ることにより、より効果的に超電導限流器の長寿命化を実現することが可能となる。   In addition, when two superconducting elements adjacent to each other in the upper and lower sides are used in which the value of the critical current that can maintain the superconducting state is varied, the one with the smaller critical current value has a longer life. Since it tends to be shorter, it is desirable to dispose the superconducting element having a small critical current value above the superconducting element having a larger critical current value. By increasing the cooling efficiency of the superconducting element having a shorter lifetime and extending the lifetime, it is possible to more effectively realize the longer lifetime of the superconducting fault current limiter.

また、超電導素子の長手方向の両端部がいずれも素子カバーの内面に対して等しい距離であれば(中心gが中心線C上に位置する状態)、前述した式(1)は超電導素子の長手方向の両側でいずれも成立する配置とすることが望ましい。
また、超電導素子の長手方向の両端部が素子カバーの内面に対して等しい距離ではない場合には、いずれかの素子カバーの内面に近接する方の端部側で、前述した式(1)が成立する配置とすることが望ましい。
Further, if both ends in the longitudinal direction of the superconducting element are equal to the inner surface of the element cover (a state where the center g is located on the center line C), the above-described equation (1) is the length of the superconducting element. It is desirable that the arrangement be established on both sides of the direction.
In addition, when both ends in the longitudinal direction of the superconducting element are not equal in distance to the inner surface of the element cover, the above-described formula (1) is expressed on the end side closer to the inner surface of any element cover. It is desirable that the arrangement is established.

10 超電導限流器
20 冷媒容器
30 蓋体
40 冷凍機(冷却手段)
60 液体窒素(液体冷媒)
71,72 超電導素子
93,93A 素子カバー
10 Superconducting Current Limiter 20 Refrigerant Container 30 Lid 40 Refrigerator (Cooling Means)
60 Liquid nitrogen (liquid refrigerant)
71, 72 Superconducting elements 93, 93A Element cover

Claims (5)

電流値が一定範囲内の通電時には超電導状態にあり、電流値が前記範囲を超える事故電流の通電時には常電導状態となる超電導素子を備える超電導限流器において、
液体冷媒及び複数の前記超電導素子を収容する冷媒容器と、
前記冷媒容器内の液体冷媒を冷却する冷却手段とを備え、
前記液体冷媒中で、前記複数の超電導素子の内の少なくとも二つを上下に並べて配置し、
前記冷媒容器内で前記上下に並べて配置された少なくとも二つの超電導素子を囲繞する上下が開放された素子カバーを備え、
前記上下に並べて配置された二つの超電導素子の平面視での長手方向について、前記超電導素子の中心から前記素子カバーの内面までの距離をR、
前記上下に並べて配置された二つの超電導素子の鉛直上下方向について、前記二つの超電導素子の中心間距離をLとした場合に、
次式(1)を具備するように前記二つの超電導素子が配置されていることを特徴とする
超電導限流器。
tan−1(L/R)≦70° …(1)
(但し、R≦α、α:臨界電流を超えたときに生じる気泡の水平方向における超電導素子の中心からの到達距離)
In a superconducting fault current limiter including a superconducting element that is in a superconducting state when energized within a certain range of current value and is in a normally conducting state when energizing an accident current exceeding the range,
A refrigerant container containing a liquid refrigerant and a plurality of the superconducting elements;
Cooling means for cooling the liquid refrigerant in the refrigerant container,
In the liquid refrigerant, at least two of the plurality of superconducting elements are arranged one above the other,
An upper and lower element cover surrounding at least two superconducting elements arranged above and below the refrigerant container;
Regarding the longitudinal direction of the two superconducting elements arranged side by side in the plan view, the distance from the center of the superconducting element to the inner surface of the element cover is R,
When the distance between the centers of the two superconducting elements is L in the vertical vertical direction of the two superconducting elements arranged side by side,
A superconducting fault current limiter, wherein the two superconducting elements are arranged so as to satisfy the following formula (1).
tan −1 (L / R) ≦ 70 ° (1)
(However, R ≦ α, α: the distance from the center of the superconducting element in the horizontal direction of bubbles generated when the critical current is exceeded)
前記素子カバーに囲繞された前記上下に並べて配置された少なくとも二つの超電導素子の中で下側に位置する超電導素子の下端部が前記素子カバーの下端部よりも上側となるように配置されていることを特徴とする請求項1記載の超電導限流器。   Of the at least two superconducting elements arranged side by side above and below the element cover, the lower end part of the superconducting element located on the lower side is arranged above the lower end part of the element cover. The superconducting fault current limiter according to claim 1. 電流値が一定範囲内の通電時には超電導状態にあり、電流値が前記範囲を超える事故電流の通電時には常電導状態となる複数の超電導素子を備える超電導限流器の前記超電導素子を冷却する方法において、
冷媒容器内の液体冷媒中に設けられ、上下が開放された素子カバーの内側に、前記複数の超電導素子の内の少なくとも二つを上下に並べて配置し、当該複数の超電導素子の内の下側に位置する超電導素子から発生する気泡を当該複数の超電導素子の内の上側に位置する超電導素子へ導くと共に、
前記上下に並べて配置された二つの超電導素子の平面視での長手方向について、前記超電導素子の中心から前記素子カバーの内面までの距離をR、
前記上下に並べて配置された二つの超電導素子の鉛直上下方向について、前記二つの超電導素子の中心間距離をLとした場合に、
次式(1)を具備するように前記二つの超電導素子を配置することを特徴とする超電導限流器内の超電導素子の冷却方法。
tan−1(L/R)≦70° …(1)
(但し、R≦α、α:臨界電流を超えたときに生じる気泡の水平方向における超電導素子の中心からの到達距離)
In a method for cooling the superconducting element of a superconducting fault current limiter having a plurality of superconducting elements that are in a superconducting state when energized within a certain range and are in a normally conducting state when an energizing current exceeds the range. ,
At least two of the plurality of superconducting elements are arranged side by side inside the element cover that is provided in the liquid refrigerant in the refrigerant container and is open at the top and bottom, and the lower side of the plurality of superconducting elements Introducing bubbles generated from the superconducting element located in the superconducting element located on the upper side of the plurality of superconducting elements,
Regarding the longitudinal direction of the two superconducting elements arranged side by side in the plan view, the distance from the center of the superconducting element to the inner surface of the element cover is R,
When the distance between the centers of the two superconducting elements is L in the vertical vertical direction of the two superconducting elements arranged side by side,
A method of cooling a superconducting element in a superconducting fault current limiter, wherein the two superconducting elements are arranged so as to satisfy the following formula (1):
tan −1 (L / R) ≦ 70 ° (1)
(However, R ≦ α, α: the distance from the center of the superconducting element in the horizontal direction of bubbles generated when the critical current is exceeded)
前記複数の超電導素子の内の上側に位置する超電導素子の表面の液体冷媒が膜沸騰状態であるときに当該超電導素子を冷却することを特徴とする請求項3に記載の超電導限流器内の超電導素子の冷却方法。   4. The superconducting fault current limiter according to claim 3, wherein the superconducting element is cooled when the liquid refrigerant on the surface of the superconducting element located on the upper side of the plurality of superconducting elements is in a film boiling state. 5. Cooling method for superconducting element. 前記素子カバーの内側に前記上下に並べて配置する少なくとも二つの超電導素子の中で下側に位置する超電導素子の下端部が前記素子カバーの下端部よりも上側となるように配置することを特徴とする請求項3又は4に記載の超電導限流器内の超電導素子の冷却方法。   Of the at least two superconducting elements arranged side by side above the element cover, the lower end part of the superconducting element located on the lower side is arranged above the lower end part of the element cover. The cooling method of the superconducting element in the superconducting fault current limiter according to claim 3 or 4.
JP2014022117A 2013-02-13 2014-02-07 Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter Expired - Fee Related JP6117126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022117A JP6117126B2 (en) 2013-02-13 2014-02-07 Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013025069 2013-02-13
JP2013025069 2013-02-13
JP2014022117A JP6117126B2 (en) 2013-02-13 2014-02-07 Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter

Publications (2)

Publication Number Publication Date
JP2014179592A JP2014179592A (en) 2014-09-25
JP6117126B2 true JP6117126B2 (en) 2017-04-19

Family

ID=51699206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022117A Expired - Fee Related JP6117126B2 (en) 2013-02-13 2014-02-07 Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter

Country Status (1)

Country Link
JP (1) JP6117126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121860B1 (en) * 2015-07-21 2020-11-25 Nexans System for limiting energy in a power supply network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159927A (en) * 1988-12-14 1990-06-20 Toshiba Corp High temperature superconducting current limiter
JP3442923B2 (en) * 1996-03-14 2003-09-02 東京電力株式会社 Superconducting device
KR100505054B1 (en) * 2003-09-30 2005-08-02 엘에스산전 주식회사 Resistive type superconducting fault current limiter
ATE435504T1 (en) * 2006-03-02 2009-07-15 Theva Duennschichttechnik Gmbh RESISTIVE CURRENT LIMITER

Also Published As

Publication number Publication date
JP2014179592A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US9508477B2 (en) Superconducting magnet system
WO2014126006A1 (en) Superconducting fault current limiter and cooling method for superconducting element within superconducting fault current limiter
KR101936972B1 (en) Fault current limiter
JP5972368B2 (en) Cooling container
JP2010016026A (en) Superconductive device
JP6117126B2 (en) Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter
JP6860517B2 (en) Superconducting magnet device
US20160141866A1 (en) Fins And Foams Heat Exchangers With Phase Change For Cryogenic Thermal Energy Storage And Fault Current Limiters
Yeom et al. An experimental study of the conduction cooling system for the 600 kJ HTS SMES
CN111223631B (en) Superconducting magnet cooling apparatus and magnetic resonance imaging apparatus
JP4799757B2 (en) Superconducting magnet
US7073340B2 (en) Cryogenic compressor enclosure device and method
JP5950951B2 (en) Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter
JP2005201604A (en) Low temperature cooling system, and heat storage device
JP2016211748A (en) Superconductor cooling apparatus and cooling method
JPH07131079A (en) High-temperature superconductor current lead
JPH0713923B2 (en) Superconducting magnet
JP7348410B1 (en) Superconducting magnet system for cyclotron and cyclotron with it
Chang et al. Performance of heat exchanger for subcooling liquid nitrogen with a GM cryocooler
Iwai et al. Concept of a cryogenic system for a cryogen-free 25 T superconducting magnet
JP7426217B2 (en) superconducting equipment
JP2009283583A (en) Static superconducting device
JP2000197262A (en) Current-limiting system
JPS6025202A (en) Superconductive electromagnet apparatus
JPH06163249A (en) Superconducting coil bobbin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R151 Written notification of patent or utility model registration

Ref document number: 6117126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees