JP5784536B2 - Superconducting coil cooling system - Google Patents

Superconducting coil cooling system Download PDF

Info

Publication number
JP5784536B2
JP5784536B2 JP2012073055A JP2012073055A JP5784536B2 JP 5784536 B2 JP5784536 B2 JP 5784536B2 JP 2012073055 A JP2012073055 A JP 2012073055A JP 2012073055 A JP2012073055 A JP 2012073055A JP 5784536 B2 JP5784536 B2 JP 5784536B2
Authority
JP
Japan
Prior art keywords
superconducting coil
heat transfer
radiation shielding
shielding layer
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012073055A
Other languages
Japanese (ja)
Other versions
JP2013207018A (en
Inventor
高橋 政彦
政彦 高橋
泰造 戸坂
泰造 戸坂
賢司 田崎
賢司 田崎
寛史 宮崎
寛史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012073055A priority Critical patent/JP5784536B2/en
Publication of JP2013207018A publication Critical patent/JP2013207018A/en
Application granted granted Critical
Publication of JP5784536B2 publication Critical patent/JP5784536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、真空容器に収納した超電導コイルを極低温冷凍機により伝導冷却する超電導コイル冷却システムに関する。   The present invention relates to a superconducting coil cooling system for conducting and cooling a superconducting coil housed in a vacuum vessel with a cryogenic refrigerator.

一般に、超電導コイルは極低温に冷却する必要があり、液体ヘリウムなどの寒剤や極低温冷凍機で冷却されている。そのため、冷却コストが高く、適用機器が限定される要因の一つになっている。   In general, the superconducting coil needs to be cooled to a cryogenic temperature, and is cooled by a cryogen such as liquid helium or a cryogenic refrigerator. Therefore, the cooling cost is high, and this is one of the factors that limit the applied equipment.

近年、従来の金属系超電導材よりも高い温度で超電導になる高温超電導材が注目されている。高温超電導材では冷却温度が高いため、冷却コストが安くなるメリットがある。この高温超電導材を用いた高温超電導コイルでは冷却温度が20〜40K程度で利用されるが、この温度域で適当な寒剤が無いため、伝導冷却が主流である。   In recent years, high-temperature superconducting materials that become superconducting at a higher temperature than conventional metal-based superconducting materials have attracted attention. The high temperature superconducting material has a merit that the cooling cost is low because the cooling temperature is high. The high-temperature superconducting coil using this high-temperature superconducting material is used at a cooling temperature of about 20 to 40 K. However, since there is no suitable cryogen in this temperature range, conduction cooling is the mainstream.

伝導冷却では液体ヘリウム容器等が不要であるため、冷却系の構成が簡素化できるというメリットがある。また、構成の簡素化により低コストになるというメリットもある。特に、第二世代のRE系超電導コイルでは冷却温度が30K以上でも実用的な利用が可能である。そのため、超電導コイル冷却システムにおいて、極低温冷凍機として2段冷凍機を用いた構成から1段冷凍機を用いた構成にすることで、さらに簡素化が可能となる(例えば特許文献1参照)。   Since conduction cooling does not require a liquid helium container, there is an advantage that the configuration of the cooling system can be simplified. In addition, there is an advantage that the cost is reduced due to the simplification of the configuration. In particular, the second generation RE-based superconducting coil can be practically used even at a cooling temperature of 30K or higher. For this reason, in the superconducting coil cooling system, it is possible to further simplify by changing the configuration using the two-stage refrigerator as the cryogenic refrigerator to the configuration using the first-stage refrigerator (see, for example, Patent Document 1).

図5は、従来の超電導コイル冷却システムとして、特許文献1に記載された超電導コイル冷却システムの構成を示す立面図である。   FIG. 5 is an elevation view showing a configuration of a superconducting coil cooling system described in Patent Document 1 as a conventional superconducting coil cooling system.

従来の超電導コイル冷却システムは、超電導コイル1と、極低温冷凍機2と、超電導コイル1と極低温冷凍機2とを熱的に接続するコイル用伝熱部材109と、超電導コイル1の周囲を覆う樹脂層3と、樹脂層3の周囲を覆う輻射遮蔽層4と、これらを収容する真空容器7と、真空容器7内で輻射遮蔽層4を支持する支持部材6と、電流を供給するための電流導入端子8Aと、超電導コイル1と電流導入端子8Aとを電気的に接続する電流リード8Bとを具備している。   A conventional superconducting coil cooling system includes a superconducting coil 1, a cryogenic refrigerator 2, a coil heat transfer member 109 that thermally connects the superconducting coil 1 and the cryogenic refrigerator 2, and the periphery of the superconducting coil 1. To supply the current, the resin layer 3 to be covered, the radiation shielding layer 4 that covers the periphery of the resin layer 3, the vacuum container 7 that houses them, the support member 6 that supports the radiation shielding layer 4 in the vacuum container 7, and Current introducing terminal 8A, and a current lead 8B for electrically connecting the superconducting coil 1 and the current introducing terminal 8A.

極低温冷凍機2は電流リード8Bを冷却する。さらに、極低温冷凍機2は、コイル用伝熱部材109を介して超電導コイル1を冷却することにより、超電導コイル1と極低温冷凍機2との温度差を小さくする。   The cryogenic refrigerator 2 cools the current lead 8B. Furthermore, the cryogenic refrigerator 2 cools the superconducting coil 1 via the coil heat transfer member 109, thereby reducing the temperature difference between the superconducting coil 1 and the cryogenic refrigerator 2.

特開2011−23702号公報JP 2011-23702 A

従来の超電導コイル冷却システムでは、超電導コイル1と極低温冷凍機2とがコイル用伝熱部材109により熱的に接続されているため、何らかの不具合で極低温冷凍機2が停止した場合に超電導コイル1の温度が上昇し、超電導コイル1がクエンチする問題があった。ここで、極低温冷凍機2が停止した場合には超電導コイル1が冷却されない上に、極低温冷凍機2からの大きな熱侵入が付加され、コイル温度が急激に上昇し、超電導コイル1が短時間でクエンチする。超電導コイル1がクエンチした場合、超電導コイル1の温度が大幅に上昇し、再冷却に時間がかかる上に、最悪の場合には超電導コイル1が焼損する可能性もある。   In the conventional superconducting coil cooling system, since the superconducting coil 1 and the cryogenic refrigerator 2 are thermally connected by the coil heat transfer member 109, when the cryogenic refrigerator 2 stops due to some trouble, the superconducting coil There was a problem that the temperature of 1 increased and the superconducting coil 1 was quenched. Here, when the cryogenic refrigerator 2 is stopped, the superconducting coil 1 is not cooled, and a large heat intrusion from the cryogenic refrigerator 2 is added, the coil temperature rapidly increases, and the superconducting coil 1 becomes short. Quench with time. When the superconducting coil 1 is quenched, the temperature of the superconducting coil 1 is significantly increased, and it takes time to recool. In the worst case, the superconducting coil 1 may be burned out.

ところで、極低温冷凍機2が停止しても一定時間の余裕があれば、超電導コイル1の通電電流を下げることにより、超電導コイル1のクエンチを回避できる。そのため、超電導コイル1の温度上昇を遅くし、極低温冷凍機2の停止後も一定時間だけでも超電導コイル1の温度を運転可能温度以下に保持できる機構が望まれる。   By the way, if there is a certain amount of time even if the cryogenic refrigerator 2 is stopped, quenching of the superconducting coil 1 can be avoided by reducing the energization current of the superconducting coil 1. Therefore, a mechanism is desired that slows the temperature rise of the superconducting coil 1 and can keep the temperature of the superconducting coil 1 below the operable temperature even after a certain period of time after the cryogenic refrigerator 2 is stopped.

また、一定時間の余裕があれば、これを利用して超電導コイル1の運用を続けることで、メリットがある場合もある。   In addition, if there is a certain amount of time, there may be a merit by using this to continue the operation of the superconducting coil 1.

極低温冷凍機2の停止後も超電導コイル1の温度を運転可能温度以下に保持する方法としては、超電導コイル1の熱容量を増やすことが考えられる。しかし、この場合には、超電導コイル1の初期冷却時間が長くなる問題や、超電導コイル1が重くなるといった問題がある。   As a method of keeping the temperature of the superconducting coil 1 below the operable temperature even after the cryogenic refrigerator 2 is stopped, increasing the heat capacity of the superconducting coil 1 can be considered. However, in this case, there is a problem that the initial cooling time of the superconducting coil 1 becomes long and the superconducting coil 1 becomes heavy.

本発明が解決しようとする課題は、何らかの不具合で極低温冷凍機が停止した場合に一定時間だけでも超電導コイルの温度を運転可能温度以下に保持することにある。   The problem to be solved by the present invention is to maintain the temperature of the superconducting coil below the operable temperature even for a fixed time when the cryogenic refrigerator is stopped due to some trouble.

本発明に係る超電導コイル冷却システムは、真空容器に収納した超電導コイルを冷凍機により伝導冷却する超電導コイル冷却システムにおいて、前記超電導コイルの周囲を覆う樹脂層と、前記樹脂層の周囲を覆う輻射遮蔽層と、前記輻射遮蔽層と前記冷凍機とを熱的に接続する輻射遮蔽層用伝熱手段と、を具備し、前記超電導コイルと前記冷凍機とを直接接続する伝熱経路が設けられていないことを特徴とする。また、本発明の他の態様の超電導コイル冷却システムは、真空容器に収納した超電導コイルを冷凍機により伝導冷却する超電導コイル冷却システムにおいて、前記超電導コイルの周囲を覆う樹脂層と、前記樹脂層の周囲を覆う輻射遮蔽層と、前記輻射遮蔽層と前記冷凍機とを熱的に接続する輻射遮蔽層用伝熱手段と、前記超電導コイルと前記冷凍機とを熱的に接続するコイル用伝熱手段と、を具備し、当該コイル用伝熱手段の断面積を前記輻射遮蔽層用伝熱手段の断面積よりも小さくして、当該コイル用伝熱手段の熱抵抗を前記輻射遮蔽層用伝熱手段の熱抵抗より大きくすることを特徴とする。 A superconducting coil cooling system according to the present invention is a superconducting coil cooling system in which a superconducting coil housed in a vacuum vessel is conductively cooled by a refrigerator, and a resin layer covering the periphery of the superconducting coil and a radiation shielding covering the periphery of the resin layer. A heat transfer path for connecting the superconducting coil and the refrigerator directly, and a heat transfer means for the radiation shield layer that thermally connects the radiation shield layer and the refrigerator. It is characterized by not. Further, a superconducting coil cooling system according to another aspect of the present invention is a superconducting coil cooling system in which a superconducting coil housed in a vacuum vessel is conductively cooled by a refrigerator, and a resin layer covering the periphery of the superconducting coil; and A radiation shielding layer covering the surroundings, a radiation shielding layer heat transfer means for thermally connecting the radiation shield layer and the refrigerator, and a coil heat transfer for thermally connecting the superconducting coil and the refrigerator And a cross-sectional area of the heat transfer means for the coil is made smaller than a cross-sectional area of the heat transfer means for the radiation shielding layer, and the thermal resistance of the heat transfer means for the coil is reduced. It is characterized by being larger than the thermal resistance of the heating means .

本発明によれば、何らかの不具合で極低温冷凍機が停止した場合に一定時間だけでも超電導コイルの温度を運転可能温度以下に保持することができる。   According to the present invention, when the cryogenic refrigerator is stopped due to some trouble, the temperature of the superconducting coil can be kept below the operable temperature even for a fixed time.

本発明の第1実施形態に係る超電導コイル冷却システムの構成を示す立面図である。It is an elevational view showing the configuration of the superconducting coil cooling system according to the first embodiment of the present invention. 本発明の第2実施形態に係る超電導コイル冷却システムの構成を示す立面図である。It is an elevation view which shows the structure of the superconducting coil cooling system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る超電導コイル冷却システムの構成を示す立面図である。It is an elevation view which shows the structure of the superconducting coil cooling system which concerns on 3rd Embodiment of this invention. 図1〜図3の樹脂層3の構成を示す傾視図である。It is a perspective view which shows the structure of the resin layer 3 of FIGS. 従来の超電導コイル冷却システムの構成を示す立面図である。It is an elevation which shows the structure of the conventional superconducting coil cooling system.

以下、本発明に係る超電導コイル冷却システムの実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a superconducting coil cooling system according to the present invention will be described with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態に係る超電導コイル冷却システムの構成を示す立面図である。
[First Embodiment]
FIG. 1 is an elevation view showing the configuration of the superconducting coil cooling system according to the first embodiment of the present invention.

第1実施形態に係る超電導コイル冷却システムは、超電導コイル1と、極低温冷凍機2と、樹脂層3と、輻射遮蔽層4と、輻射遮蔽層用伝熱部材5と、支持部材6と、真空容器7と、電流導入端子8Aと、電流リード8Bとを具備している。   The superconducting coil cooling system according to the first embodiment includes a superconducting coil 1, a cryogenic refrigerator 2, a resin layer 3, a radiation shielding layer 4, a radiation shielding layer heat transfer member 5, and a support member 6. A vacuum vessel 7, a current introduction terminal 8A, and a current lead 8B are provided.

真空容器7は、内部が真空の状態に保たれ、超電導コイル1、極低温冷凍機2、樹脂層3、輻射遮蔽層4、輻射遮蔽層用伝熱部材5、支持部材6および電流リード8Bを収容する容器である。電流導入端子8Aは真空容器7外に設けられている。   The vacuum container 7 is maintained in a vacuum state, and includes a superconducting coil 1, a cryogenic refrigerator 2, a resin layer 3, a radiation shielding layer 4, a radiation shielding layer heat transfer member 5, a support member 6, and a current lead 8B. A container to be accommodated. The current introduction terminal 8 </ b> A is provided outside the vacuum container 7.

超電導コイル1の形状は円筒形状であり、図1に示した超電導コイル1は、その断面部分を示している。   The shape of the superconducting coil 1 is a cylindrical shape, and the superconducting coil 1 shown in FIG.

電流リード8Bは、その一端が超電導コイル1に接続され、その他端が電流導入端子8Aに接続されている。これにより、電流リード8Bは、超電導コイル1と電流導入端子8Aとを電気的に接続する。電流導入端子8Aから電流が導入され、その電流は電流リード8Bを介して超電導コイル1に供給される。   The current lead 8B has one end connected to the superconducting coil 1 and the other end connected to the current introduction terminal 8A. Thereby, the current lead 8B electrically connects the superconducting coil 1 and the current introduction terminal 8A. A current is introduced from the current introduction terminal 8A, and the current is supplied to the superconducting coil 1 through the current lead 8B.

樹脂層3は、超電導コイル1の周囲を覆うように設けられている。樹脂層3は、超電導コイル1を機械的に支持する機能と、一定以上の大きな熱抵抗を有する断熱材としての機能とを兼ね備えている。樹脂層3としては、樹脂または繊維強化プラスチック(たとえばエポキシ樹脂)を含む材料により構成されていることが望ましい。   The resin layer 3 is provided so as to cover the periphery of the superconducting coil 1. The resin layer 3 has a function of mechanically supporting the superconducting coil 1 and a function as a heat insulating material having a large thermal resistance of a certain level or more. The resin layer 3 is preferably made of a material containing resin or fiber reinforced plastic (for example, epoxy resin).

輻射遮蔽層4は、樹脂層3の周囲を覆うように設けられている。輻射遮蔽層4は、真空容器7内における超電導コイル1への輻射を遮蔽する。輻射遮蔽層4としては、アルミニウム、または、アルミニウムと繊維強化プラスチックとを厚さ方向に複合した材料により構成され、そのアルミニウム材料が高純度(純度が99%以上)のものであることが望ましい。   The radiation shielding layer 4 is provided so as to cover the periphery of the resin layer 3. The radiation shielding layer 4 shields radiation to the superconducting coil 1 in the vacuum vessel 7. The radiation shielding layer 4 is preferably made of aluminum or a material in which aluminum and fiber reinforced plastic are combined in the thickness direction, and the aluminum material is preferably of high purity (purity is 99% or more).

支持部材6は、その一端が真空容器7に取り付けられ、その他端が輻射遮蔽層4に取り付けられる。これにより、支持部材6は、真空容器7内で輻射遮蔽層4を支持する。   One end of the support member 6 is attached to the vacuum vessel 7, and the other end is attached to the radiation shielding layer 4. Thereby, the support member 6 supports the radiation shielding layer 4 in the vacuum vessel 7.

輻射遮蔽層用伝熱部材5は、その一端が輻射遮蔽層4に接続され、その他端が極低温冷凍機2に接続されている。これにより、輻射遮蔽層用伝熱部材5は、輻射遮蔽層4と極低温冷凍機2とを熱的に接続する。輻射遮蔽層用伝熱部材5としては、アルミニウム材料が熱伝導の方向に対して直交する方向に積層された伝熱部材であり、そのアルミニウム材料が高純度(純度が99%以上)のものであることが望ましい。   One end of the heat transfer member 5 for the radiation shielding layer is connected to the radiation shielding layer 4, and the other end is connected to the cryogenic refrigerator 2. As a result, the radiation shielding layer heat transfer member 5 thermally connects the radiation shielding layer 4 and the cryogenic refrigerator 2. The heat transfer member 5 for the radiation shielding layer is a heat transfer member in which an aluminum material is laminated in a direction perpendicular to the direction of heat conduction, and the aluminum material has a high purity (purity is 99% or more). It is desirable to be.

極低温冷凍機2は、極低温の寒冷を生成する冷凍機である。極低温冷凍機2は電流リード8Bを直接冷却する。さらに、極低温冷凍機2は、輻射遮蔽層用伝熱部材5から輻射遮蔽層4および樹脂層3を介して超電導コイル1を冷却する。   The cryogenic refrigerator 2 is a refrigerator that generates cryogenic cold. The cryogenic refrigerator 2 directly cools the current lead 8B. Furthermore, the cryogenic refrigerator 2 cools the superconducting coil 1 from the radiation shielding layer heat transfer member 5 through the radiation shielding layer 4 and the resin layer 3.

第1実施形態に係る超電導コイル冷却システムの作用について説明する。   The operation of the superconducting coil cooling system according to the first embodiment will be described.

まず、極低温冷凍機2が動作している場合について説明する。   First, the case where the cryogenic refrigerator 2 is operating will be described.

真空容器7内から超電導コイル1への輻射熱侵入、および、支持部材6から超電導コイル1への熱伝導については、輻射遮蔽層4により遮断される。また、電流リード8Bから超電導コイル1への熱侵入については、極低温冷凍機2が電流リード8Bを直接冷却することにより遮断される。   The radiation heat penetration from the inside of the vacuum vessel 7 into the superconducting coil 1 and the heat conduction from the support member 6 to the superconducting coil 1 are blocked by the radiation shielding layer 4. Further, heat penetration from the current lead 8B into the superconducting coil 1 is blocked by the cryogenic refrigerator 2 directly cooling the current lead 8B.

このように、超電導コイル1の熱負荷は超電導コイル1自身の微小な発熱のみである。このため、極低温冷凍機2が輻射遮蔽層用伝熱部材5から輻射遮蔽層4および樹脂層3を介して超電導コイル1を冷却することにより、超電導コイル1の温度を運転可能温度以下に保持することができる。   Thus, the heat load of the superconducting coil 1 is only minute heat generation of the superconducting coil 1 itself. For this reason, the cryogenic refrigerator 2 cools the superconducting coil 1 from the heat transfer member 5 for the radiation shielding layer through the radiation shielding layer 4 and the resin layer 3, thereby keeping the temperature of the superconducting coil 1 below the operable temperature. can do.

次に、何らかの不具合で極低温冷凍機2が停止した場合について説明する。   Next, a case where the cryogenic refrigerator 2 is stopped due to some trouble will be described.

極低温冷凍機2が停止した場合、極低温冷凍機2から輻射遮蔽層4に対して高熱が侵入することにより、輻射遮蔽層4の温度が上昇する。このとき、輻射遮蔽層4と超電導コイル1との間には樹脂層3が設けられているため、直ちに超電導コイル1に高熱が侵入しない。しかし、輻射遮蔽層4の温度がある程度上昇したとき、極低温冷凍機2から輻射遮蔽層4および樹脂層3を介して超電導コイル1に高熱が侵入する。   When the cryogenic refrigerator 2 is stopped, high temperature enters the radiation shielding layer 4 from the cryogenic refrigerator 2, thereby increasing the temperature of the radiation shielding layer 4. At this time, since the resin layer 3 is provided between the radiation shielding layer 4 and the superconducting coil 1, high heat does not immediately enter the superconducting coil 1. However, when the temperature of the radiation shielding layer 4 rises to some extent, high heat enters the superconducting coil 1 from the cryogenic refrigerator 2 through the radiation shielding layer 4 and the resin layer 3.

ここで、従来の超電導コイル冷却システムでは、超電導コイル1と極低温冷凍機2とを熱的に接続する伝熱経路(図5のコイル用伝熱部材109参照)があるため、極低温冷凍機2が停止した場合に直ちに極低温冷凍機2から超電導コイル1に高熱が侵入する。   Here, in the conventional superconducting coil cooling system, since there is a heat transfer path (see the coil heat transfer member 109 in FIG. 5) that thermally connects the superconducting coil 1 and the cryogenic refrigerator 2, the cryogenic refrigerator. When 2 stops, high heat enters the superconducting coil 1 from the cryogenic refrigerator 2 immediately.

一方、第1実施形態に係る超電導コイル冷却システムでは、超電導コイル1と極低温冷凍機2とを直接接続する伝熱経路を設けていないため、極低温冷凍機2が停止した場合に直ちに極低温冷凍機2から超電導コイル1に高熱が侵入しない。これにより、一定時間だけでも超電導コイル1の温度を運転可能温度以下に保持することができる。   On the other hand, in the superconducting coil cooling system according to the first embodiment, since a heat transfer path that directly connects the superconducting coil 1 and the cryogenic refrigerator 2 is not provided, the cryogenic refrigerator 2 immediately stops when the cryogenic refrigerator 2 stops. High heat does not enter the superconducting coil 1 from the refrigerator 2. Thereby, the temperature of the superconducting coil 1 can be kept below the operable temperature only for a certain time.

その一定時間としては、熱負荷、各伝熱経路の熱抵抗、各部の熱容量により、たとえば1時間程度に設定してもよい。これは、超電導コイル1の電流を下げるのに十分な時間であり、運用メリットも大きい。   The fixed time may be set to about 1 hour, for example, depending on the heat load, the thermal resistance of each heat transfer path, and the heat capacity of each part. This is a sufficient time to reduce the current of the superconducting coil 1, and the operational merit is great.

以上の説明により、第1実施形態に係る超電導コイル冷却システムによれば、何らかの不具合で極低温冷凍機2が停止した場合に一定時間だけでも超電導コイル1の温度を運転可能温度以下に保持することができる。   As described above, according to the superconducting coil cooling system according to the first embodiment, when the cryogenic refrigerator 2 is stopped due to some trouble, the temperature of the superconducting coil 1 is kept below the operable temperature even for a fixed time. Can do.

なお、第1実施形態に係る超電導コイル冷却システムでは、輻射遮蔽層4と極低温冷凍機2とを熱的に接続する輻射遮蔽層用伝熱部材5として、アルミニウム材料が積層された伝熱部材を用いているが、冷却ガス循環系の伝熱部材、具体的には、極低温冷凍機2の冷却ガスをヒートパイプなどで輻射遮蔽層4に循環させる方式でも良い。   In the superconducting coil cooling system according to the first embodiment, a heat transfer member in which an aluminum material is laminated as the heat transfer member 5 for the radiation shield layer that thermally connects the radiation shield layer 4 and the cryogenic refrigerator 2. However, a cooling gas circulation system heat transfer member, specifically, a cooling gas of the cryogenic refrigerator 2 may be circulated to the radiation shielding layer 4 by a heat pipe or the like.

[第2実施形態]
第2実施形態に係る超電導コイル冷却システムについて、第1実施形態からの変更点のみ説明する。図1と同一部分には同一符号を付し、特に記載していない部分は第1実施形態と同様である。
[Second Embodiment]
Only the changes from the first embodiment will be described for the superconducting coil cooling system according to the second embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the parts not particularly described are the same as those in the first embodiment.

図2は、本発明の第2実施形態に係る超電導コイル冷却システムの構成を示す立面図である。   FIG. 2 is an elevation view showing the configuration of the superconducting coil cooling system according to the second embodiment of the present invention.

第2実施形態に係る超電導コイル冷却システムは、第1実施形態の構成に対して、コイル用伝熱部材9をさらに具備している。   The superconducting coil cooling system according to the second embodiment further includes a coil heat transfer member 9 with respect to the configuration of the first embodiment.

コイル用伝熱部材9は、その一端が超電導コイル1に接続され、その他端が極低温冷凍機2に接続されている。これにより、コイル用伝熱部材9は、超電導コイル1と極低温冷凍機2とを熱的に接続する。ここで、コイル用伝熱部材9の熱抵抗は輻射遮蔽層用伝熱部材5の熱抵抗より大きい。   The coil heat transfer member 9 has one end connected to the superconducting coil 1 and the other end connected to the cryogenic refrigerator 2. Accordingly, the coil heat transfer member 9 thermally connects the superconducting coil 1 and the cryogenic refrigerator 2. Here, the heat resistance of the heat transfer member 9 for coil is larger than the heat resistance of the heat transfer member 5 for radiation shielding layer.

第2実施形態に係る超電導コイル冷却システムの作用について説明する。   The operation of the superconducting coil cooling system according to the second embodiment will be described.

第1実施形態に係る超電導コイル冷却システムでは、樹脂層3と超電導コイル1との間の貼り付け構成に割れが発生した場合、超電導コイル1の冷却が充分にできなくなる可能性がある。この場合、超電導コイル1の温度が上昇してクエンチする可能性がある。   In the superconducting coil cooling system according to the first embodiment, there is a possibility that the superconducting coil 1 cannot be sufficiently cooled when a crack occurs in the bonding configuration between the resin layer 3 and the superconducting coil 1. In this case, the temperature of the superconducting coil 1 may rise and quench.

そこで、第2実施形態に係る超電導コイル冷却システムでは、超電導コイル1と極低温冷凍機2とを熱的に接続するコイル用伝熱部材9を設け、そのコイル用伝熱部材9の断面積を輻射遮蔽層用伝熱部材5の断面積よりも小さくしている。すなわち、コイル用伝熱部材9の熱抵抗を輻射遮蔽層用伝熱部材5の熱抵抗より大きくしている。   Therefore, in the superconducting coil cooling system according to the second embodiment, a coil heat transfer member 9 for thermally connecting the superconducting coil 1 and the cryogenic refrigerator 2 is provided, and the cross-sectional area of the coil heat transfer member 9 is determined. It is smaller than the cross-sectional area of the heat transfer member 5 for the radiation shielding layer. That is, the heat resistance of the coil heat transfer member 9 is made larger than the heat resistance of the radiation shielding layer heat transfer member 5.

これにより、極低温冷凍機2が停止した後の超電導コイル1への熱侵入については、コイル用伝熱部材9の熱抵抗を輻射遮蔽層用伝熱部材5の熱抵抗と同じにした場合に比べて、格段に少ない。   Thereby, about the heat penetration | invasion to the superconducting coil 1 after the cryogenic refrigerator 2 stops, when the thermal resistance of the heat-transfer member 9 for coils is made the same as the heat resistance of the heat-transfer member 5 for radiation shielding layers It is much less than that.

また、樹脂層3と超電導コイル1の間の貼り付け構成に割れが発生しても、超電導コイル1への最低限の伝熱経路は確保されるため、ただちに超電導コイル1がクエンチする温度まで上昇しない。   Further, even if a crack occurs in the bonding structure between the resin layer 3 and the superconducting coil 1, a minimum heat transfer path to the superconducting coil 1 is secured, so that the temperature immediately rises to a temperature at which the superconducting coil 1 quenches. do not do.

[第3実施形態]
第3実施形態に係る超電導コイル冷却システムについて、第1実施形態からの変更点のみ説明する。図1と同一部分には同一符号を付し、特に記載していない部分は第1実施形態と同様である。
[Third Embodiment]
Only the changes from the first embodiment will be described for the superconducting coil cooling system according to the third embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the parts not particularly described are the same as those in the first embodiment.

図3は、本発明の第3実施形態に係る超電導コイル冷却システムの構成を示す立面図である。   FIG. 3 is an elevation view showing the configuration of the superconducting coil cooling system according to the third embodiment of the present invention.

第3実施形態に係る超電導コイル冷却システムは、第1実施形態の構成に対して、熱スイッチ10をさらに具備している。   The superconducting coil cooling system according to the third embodiment further includes a thermal switch 10 with respect to the configuration of the first embodiment.

熱スイッチ10は、第1接点部10Aと、第2接点部10Bと、操作部材10Cとを備えている。操作部材10Cは、その一端が第1接点部10Aに接続され、その他端が真空容器7外に設けられている。操作部材10Cの少なくとも他端部分は、第1接点部10Aと熱的に接続されない部分であり、作業者により操作される。   The thermal switch 10 includes a first contact portion 10A, a second contact portion 10B, and an operation member 10C. One end of the operation member 10 </ b> C is connected to the first contact portion 10 </ b> A, and the other end is provided outside the vacuum container 7. At least the other end portion of the operation member 10C is a portion that is not thermally connected to the first contact portion 10A and is operated by an operator.

本実施形態において、輻射遮蔽層用伝熱部材5は、第1輻射遮蔽層用伝熱部材5Aと第2輻射遮蔽層用伝熱部材5Bとに分離される。   In the present embodiment, the radiation shielding layer heat transfer member 5 is separated into a first radiation shielding layer heat transfer member 5A and a second radiation shielding layer heat transfer member 5B.

第1輻射遮蔽層用伝熱部材5Aは、その一端が第1接点部10Aに接続され、その他端が極低温冷凍機2に接続されている。これにより、第1輻射遮蔽層用伝熱部材5Aは、第1接点部10Aと極低温冷凍機2とを熱的に接続する。   The first radiation shielding layer heat transfer member 5 </ b> A has one end connected to the first contact portion 10 </ b> A and the other end connected to the cryogenic refrigerator 2. Thus, the first radiation shielding layer heat transfer member 5A thermally connects the first contact portion 10A and the cryogenic refrigerator 2.

第2輻射遮蔽層用伝熱部材5Bは、その一端が輻射遮蔽層4に接続され、その他端が第2接点部10Bに接続されている。これにより、第2輻射遮蔽層用伝熱部材5Bは、輻射遮蔽層4と第2接点部10Bとを熱的に接続する。   The second radiation shielding layer heat transfer member 5B has one end connected to the radiation shielding layer 4 and the other end connected to the second contact portion 10B. Thereby, the 2nd radiation shielding layer heat-transfer member 5B thermally connects the radiation shielding layer 4 and the 2nd contact part 10B.

作業者の操作により熱スイッチ10をオンにする場合、すなわち、熱スイッチ10の第1接点部10Aと第2接点部10Bとを互いに接触させる場合、熱スイッチ10は、第1接点部10Aから第1輻射遮蔽層用伝熱部材5Aを介して極低温冷凍機2と、第2接点部10Bから第2輻射遮蔽層用伝熱部材5Bを介して輻射遮蔽層4とを熱的に接続する。   When the thermal switch 10 is turned on by the operator's operation, that is, when the first contact portion 10A and the second contact portion 10B of the thermal switch 10 are brought into contact with each other, the thermal switch 10 is changed from the first contact portion 10A to the first contact portion 10A. The cryogenic refrigerator 2 and the radiation shielding layer 4 are thermally connected from the second contact portion 10B via the second radiation shielding layer heat transfer member 5B via the first radiation shielding layer heat transfer member 5A.

第3実施形態に係る超電導コイル冷却システムの作用について説明する。   The operation of the superconducting coil cooling system according to the third embodiment will be described.

第3実施形態に係る超電導コイル冷却システムでは、極低温冷凍機2の停止時に熱スイッチ10をオフにすることで、すなわち、熱スイッチ10の第1接点部10Aと第2接点部10Bとを接触させない状態にすることで、極低温冷凍機2から超電導コイル1への熱侵入を遮断でき、超電導コイル1の温度上昇をさらに遅らせることができる。   In the superconducting coil cooling system according to the third embodiment, the thermal switch 10 is turned off when the cryogenic refrigerator 2 is stopped, that is, the first contact portion 10A and the second contact portion 10B of the thermal switch 10 are brought into contact with each other. By making it into the state which is not made, the heat | fever penetration | invasion from the cryogenic refrigerator 2 to the superconducting coil 1 can be interrupted | blocked, and the temperature rise of the superconducting coil 1 can be further delayed.

なお、第3実施形態に係る超電導コイル冷却システムでは、その応用例として、第2実施形態の構成に対して熱スイッチ10をさらに具備しても、上述と同様の効果が得られる。   Note that, in the superconducting coil cooling system according to the third embodiment, as an application example, the same effect as described above can be obtained even if the thermal switch 10 is further provided in the configuration of the second embodiment.

この場合、輻射遮蔽層用伝熱部材5およびコイル用伝熱部材9に対してそれぞれ熱スイッチ10として第1および第2熱スイッチ(図示しない)が取り付けられる。輻射遮蔽層用伝熱部材5に第1熱スイッチが取り付けられる場合については、輻射遮蔽層用伝熱部材5に熱スイッチ10が取り付けられる場合についての説明と同様である。コイル用伝熱部材9に第2熱スイッチが取り付けられる場合、コイル用伝熱部材9は、第1コイル用伝熱部材(図示しない)と第2コイル用伝熱部材(図示しない)とに分離される。   In this case, first and second heat switches (not shown) are attached as heat switches 10 to the heat transfer member 5 for the radiation shielding layer and the heat transfer member 9 for the coil, respectively. The case where the first heat switch is attached to the radiation shielding layer heat transfer member 5 is the same as the case where the heat switch 10 is attached to the radiation shielding layer heat transfer member 5. When the second heat switch is attached to the coil heat transfer member 9, the coil heat transfer member 9 is separated into a first coil heat transfer member (not shown) and a second coil heat transfer member (not shown). Is done.

第1コイル用伝熱部材は、その一端が第2熱スイッチの第1接点部10Aに接続され、その他端が極低温冷凍機2に接続されていることにより、第2熱スイッチの第1接点部10Aと極低温冷凍機2とを熱的に接続する。第2コイル用伝熱部材は、その一端が超電導コイル1に接続され、その他端が第2熱スイッチの第2接点部10Bに接続されていることにより、超電導コイル1と第2熱スイッチの第2接点部10Bとを熱的に接続する。   The first coil heat transfer member has one end connected to the first contact portion 10A of the second heat switch and the other end connected to the cryogenic refrigerator 2 so that the first contact of the second heat switch. The unit 10A and the cryogenic refrigerator 2 are thermally connected. One end of the second coil heat transfer member is connected to the superconducting coil 1 and the other end is connected to the second contact portion 10B of the second thermal switch. The two contact portions 10B are thermally connected.

作業者の操作により第2熱スイッチをオンにする場合、すなわち、第2熱スイッチの第1接点部10Aと第2接点部10Bとを互いに接触させる場合、第2熱スイッチは、第2熱スイッチの第1接点部10Aから第1コイル用伝熱部材を介して極低温冷凍機2と、第2熱スイッチの第2接点部10Bから第2コイル用伝熱部材を介して超電導コイル1とを熱的に接続する。   When the second thermal switch is turned on by the operator's operation, that is, when the first contact portion 10A and the second contact portion 10B of the second thermal switch are brought into contact with each other, the second thermal switch is the second thermal switch. The cryogenic refrigerator 2 from the first contact portion 10A via the first coil heat transfer member and the superconducting coil 1 from the second contact portion 10B of the second heat switch via the second coil heat transfer member. Connect thermally.

第3実施形態に係る超電導コイル冷却システムの応用例では、極低温冷凍機2の停止時に第1および第2熱スイッチをオフにすることで、すなわち、第1および第2熱スイッチの第1接点部10Aと第2接点部10Bとを接触させない状態にすることで、極低温冷凍機2から超電導コイル1への熱侵入を遮断でき、超電導コイル1の温度上昇をさらに遅らせることができる。   In the application example of the superconducting coil cooling system according to the third embodiment, when the cryogenic refrigerator 2 is stopped, the first and second thermal switches are turned off, that is, the first contacts of the first and second thermal switches. By making the part 10A and the second contact part 10B not contact each other, the heat intrusion from the cryogenic refrigerator 2 to the superconducting coil 1 can be cut off, and the temperature rise of the superconducting coil 1 can be further delayed.

[第4実施形態]
第4実施形態に係る超電導コイル冷却システムについて、第1〜第3実施形態からの変更点のみ説明する。特に記載していない部分は第1〜第3実施形態と同様である。
[Fourth Embodiment]
Only the changes from the first to third embodiments will be described for the superconducting coil cooling system according to the fourth embodiment. Portions not particularly described are the same as those in the first to third embodiments.

図4は、図1〜図3の樹脂層3の構成を示す傾視図である。   FIG. 4 is a perspective view showing the configuration of the resin layer 3 in FIGS. 1 to 3.

樹脂層3は中空構造である。具体的には、断熱層3は、アラミド繊維のハニカム部材11に端板12を貼り付けてパネル構成にしている。アラミド繊維は強度が強く、また両面に板を貼り付けることで、強度が更に強くなる。   The resin layer 3 has a hollow structure. Specifically, the heat insulating layer 3 has a panel configuration in which an end plate 12 is attached to a honeycomb member 11 of aramid fibers. Aramid fibers have high strength, and the strength is further increased by attaching plates on both sides.

第4実施形態に係る超電導コイル冷却システムでは、断熱層3に対して荷重をほぼ均一に与えることができるので、超電導コイル1に局所的な応力がかからないという効果がある。   In the superconducting coil cooling system according to the fourth embodiment, since a load can be applied almost uniformly to the heat insulating layer 3, there is an effect that local stress is not applied to the superconducting coil 1.

[他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、また各実施形態の特徴を組み合わせることができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other Embodiments]
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, modifications, and features of the embodiments can be combined without departing from the spirit of the invention. . These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 … 超電導コイル
2 … 極低温冷凍機
3 … 樹脂層
4 … 輻射遮蔽層
5 … 輻射遮蔽層用伝熱部材
5A … 第1輻射遮蔽層用伝熱部材
5B … 第2輻射遮蔽層用伝熱部材
6 … 支持部材
7 … 真空容器
8A … 電流導入端子
8B … 電流リード
9 … コイル用伝熱部材
10 … 熱スイッチ
10A … 第1接点部
10B … 第2接点部
10C … 操作部材
11 … ハニカム部材
12 … 端板
109 … コイル用伝熱部材
DESCRIPTION OF SYMBOLS 1 ... Superconducting coil 2 ... Cryogenic refrigerator 3 ... Resin layer 4 ... Radiation shielding layer 5 ... Radiation shielding layer heat transfer member 5A ... First radiation shielding layer heat transfer member 5B ... Second radiation shielding layer heat transfer member DESCRIPTION OF SYMBOLS 6 ... Support member 7 ... Vacuum container 8A ... Current introduction terminal 8B ... Current lead 9 ... Coil heat transfer member 10 ... Thermal switch 10A ... First contact part 10B ... Second contact part 10C ... Operation member 11 ... Honeycomb member 12 ... End plate 109 ... Heat transfer member for coil

Claims (8)

真空容器に収納した超電導コイルを冷凍機により伝導冷却する超電導コイル冷却システムにおいて、
前記超電導コイルの周囲を覆う樹脂層と、
前記樹脂層の周囲を覆う輻射遮蔽層と、
前記輻射遮蔽層と前記冷凍機とを熱的に接続する輻射遮蔽層用伝熱手段と、
を具備し、
前記超電導コイルと前記冷凍機とを直接接続する伝熱経路が設けられていないことを特徴とする超電導コイル冷却システム。
In a superconducting coil cooling system that conducts and cools a superconducting coil stored in a vacuum vessel with a refrigerator,
A resin layer covering the periphery of the superconducting coil;
A radiation shielding layer covering the periphery of the resin layer;
A heat transfer means for a radiation shielding layer for thermally connecting the radiation shielding layer and the refrigerator;
Equipped with,
A superconducting coil cooling system , wherein a heat transfer path for directly connecting the superconducting coil and the refrigerator is not provided .
真空容器に収納した超電導コイルを冷凍機により伝導冷却する超電導コイル冷却システムにおいて、
前記超電導コイルの周囲を覆う樹脂層と、
前記樹脂層の周囲を覆う輻射遮蔽層と、
前記輻射遮蔽層と前記冷凍機とを熱的に接続する輻射遮蔽層用伝熱手段と、
前記超電導コイルと前記冷凍機とを熱的に接続するコイル用伝熱手段と、
を具備し、
当該コイル用伝熱手段の断面積を前記輻射遮蔽層用伝熱手段の断面積よりも小さくして、当該コイル用伝熱手段の熱抵抗を前記輻射遮蔽層用伝熱手段の熱抵抗より大きくすることを特徴とする超電導コイル冷却システム。
In a superconducting coil cooling system that conducts and cools a superconducting coil stored in a vacuum vessel with a refrigerator,
A resin layer covering the periphery of the superconducting coil;
A radiation shielding layer covering the periphery of the resin layer;
A heat transfer means for a radiation shielding layer for thermally connecting the radiation shielding layer and the refrigerator;
A coil heat transfer means for thermally connecting the superconducting coil and the refrigerator ;
Comprising
The cross-sectional area of the coil heat transfer means is made smaller than the cross-sectional area of the radiation shield layer heat transfer means, and the thermal resistance of the coil heat transfer means is larger than the heat resistance of the radiation shield layer heat transfer means. A superconducting coil cooling system.
前記輻射遮蔽層用伝熱手段は、
前記輻射遮蔽層と前記冷凍機とを熱的に接続可能な輻射遮蔽層用伝熱部材と、
オフ時に前記輻射遮蔽層用伝熱部材を分離する熱スイッチと、
を具備することを特徴とする請求項1または請求項2に記載の超電導コイル冷却システム。
The heat transfer means for the radiation shielding layer is:
A heat transfer member for a radiation shielding layer capable of thermally connecting the radiation shielding layer and the refrigerator;
A heat switch for separating the heat transfer member for the radiation shielding layer when turned off;
The superconducting coil cooling system according to claim 1, wherein the superconducting coil cooling system is provided.
前記コイル用伝熱手段は、
前記超電導コイルと前記冷凍機とを熱的に接続可能なコイル用伝熱部材と、
オフ時に前記コイル用伝熱部材を分離する熱スイッチと、
を具備することを特徴とする請求項2に記載の超電導コイル冷却システム。
The coil heat transfer means includes:
A heat transfer member for a coil capable of thermally connecting the superconducting coil and the refrigerator;
A thermal switch for separating the coil heat transfer member when turned off;
The superconducting coil cooling system according to claim 2, comprising:
前記樹脂層は中空構造であることを特徴とする請求項1ないし請求項4のいずれか一項に記載の超電導コイル冷却システム。   The superconducting coil cooling system according to any one of claims 1 to 4, wherein the resin layer has a hollow structure. 前記樹脂層はハニカム部材を備えていることを特徴とする請求項5に記載の超電導コイル冷却システム。   The superconducting coil cooling system according to claim 5, wherein the resin layer includes a honeycomb member. 前記輻射遮蔽層用伝熱手段は、アルミニウム材料が熱伝導の方向に対して直交する方向に積層された伝熱部材であることを特徴とする請求項3に記載の超電導コイル冷却システム。   The superconducting coil cooling system according to claim 3, wherein the heat transfer means for the radiation shielding layer is a heat transfer member in which an aluminum material is laminated in a direction perpendicular to the direction of heat conduction. 前記輻射遮蔽層用伝熱手段は前記冷凍機の冷却ガスを前記輻射遮蔽層に循環させる方式であることを特徴とする請求項1ないし請求項6のいずれか一項に記載の超電導コイル冷却システム。   The superconducting coil cooling system according to any one of claims 1 to 6, wherein the radiation shielding layer heat transfer means circulates a cooling gas of the refrigerator through the radiation shielding layer. .
JP2012073055A 2012-03-28 2012-03-28 Superconducting coil cooling system Expired - Fee Related JP5784536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073055A JP5784536B2 (en) 2012-03-28 2012-03-28 Superconducting coil cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073055A JP5784536B2 (en) 2012-03-28 2012-03-28 Superconducting coil cooling system

Publications (2)

Publication Number Publication Date
JP2013207018A JP2013207018A (en) 2013-10-07
JP5784536B2 true JP5784536B2 (en) 2015-09-24

Family

ID=49525827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073055A Expired - Fee Related JP5784536B2 (en) 2012-03-28 2012-03-28 Superconducting coil cooling system

Country Status (1)

Country Link
JP (1) JP5784536B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062905A (en) * 2013-12-18 2016-10-26 维多利亚联结有限公司 A cryostat for superconducting devices
JP6266391B2 (en) * 2014-03-14 2018-01-24 株式会社東芝 Superconducting coil device
JP6173955B2 (en) * 2014-03-20 2017-08-02 株式会社東芝 Superconducting magnet device
JP6275602B2 (en) * 2014-09-11 2018-02-07 住友重機械工業株式会社 Superconducting system and current leads
GB2586821B (en) * 2019-09-04 2022-04-13 Siemens Healthcare Ltd Current leads for superconducting magnets
CN117378298A (en) * 2021-05-28 2024-01-09 株式会社有泽制作所 Heat insulation container and spine magnetometer using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605937B2 (en) * 1990-08-27 1997-04-30 三菱電機株式会社 Cryogenic equipment
US5461873A (en) * 1993-09-23 1995-10-31 Apd Cryogenics Inc. Means and apparatus for convectively cooling a superconducting magnet
JPH07142242A (en) * 1993-11-19 1995-06-02 Toshiba Corp Superconducting magnet device
JPH09312210A (en) * 1996-03-18 1997-12-02 Toshiba Corp Cooling device and cooling method
JP3421837B2 (en) * 1998-10-08 2003-06-30 住友重機械工業株式会社 Refrigerator-cooled superconducting magnet device for single crystal pulling device
JP2003236953A (en) * 2002-02-21 2003-08-26 Jamco Corp Manufacturing method for heat insulating panel, and heat insulating panel
JP2006078070A (en) * 2004-09-08 2006-03-23 Sumitomo Heavy Ind Ltd Cooling device
JP2006090423A (en) * 2004-09-24 2006-04-06 Showa Aircraft Ind Co Ltd Vacuum heat insulating panel
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
JP5175892B2 (en) * 2009-06-15 2013-04-03 株式会社東芝 Superconducting magnet device

Also Published As

Publication number Publication date
JP2013207018A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5784536B2 (en) Superconducting coil cooling system
JP5175892B2 (en) Superconducting magnet device
US9508477B2 (en) Superconducting magnet system
WO2010140398A1 (en) Refrigerator cooling-type superconducting magnet
US10586638B2 (en) Quench protection apparatus for superconducting magnet system
GB2436233A (en) Current leads for cryogenically cooled equipment
US8269587B2 (en) Conduction cooling superconducting magnet device
JP6353674B2 (en) High temperature superconducting magnet device and high temperature superconducting magnet demagnetizing method
WO2014126006A1 (en) Superconducting fault current limiter and cooling method for superconducting element within superconducting fault current limiter
JP2006352150A (en) Superconducting magnet
JP6644889B2 (en) Magnetic resonance imaging (MRI) device and cryostat for MRI device
JP2015176990A (en) Superconducting coil device
JPH07131079A (en) High-temperature superconductor current lead
JP2015179791A (en) Superconducting magnet device
KR102050867B1 (en) Cryostat using 1K Sub Cooler for sample mounting on the external side
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP4117593B2 (en) Conduction-cooled superconducting magnet device with yoke
KR102050868B1 (en) Cryostat using 1K Sub Cooler for sample mounting on the external side
KR20190121669A (en) Cryostat using bellows for vibration reduction of sample holder
JP2010258376A (en) Superconducting magnet device
JP2005129609A (en) Conduction cooling type super-conductive magnet
JP5950951B2 (en) Superconducting fault current limiter and method for cooling superconducting element in superconducting fault current limiter
JP3631339B2 (en) Cold container and cooler
JPH10247532A (en) Current lead for superconductive device
US11551841B2 (en) Thermal buses for cryogenic applications

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150722

R151 Written notification of patent or utility model registration

Ref document number: 5784536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees