JP2021085078A - Method of manufacturing sintered ore - Google Patents

Method of manufacturing sintered ore Download PDF

Info

Publication number
JP2021085078A
JP2021085078A JP2019215380A JP2019215380A JP2021085078A JP 2021085078 A JP2021085078 A JP 2021085078A JP 2019215380 A JP2019215380 A JP 2019215380A JP 2019215380 A JP2019215380 A JP 2019215380A JP 2021085078 A JP2021085078 A JP 2021085078A
Authority
JP
Japan
Prior art keywords
layer
pallet
temperature
width direction
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019215380A
Other languages
Japanese (ja)
Other versions
JP7099433B2 (en
Inventor
寿幸 廣澤
Toshiyuki Hirosawa
寿幸 廣澤
隆英 樋口
Takahide Higuchi
隆英 樋口
山本 哲也
Tetsuya Yamamoto
哲也 山本
義之 佐名木
Yoshiyuki Sanaki
義之 佐名木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019215380A priority Critical patent/JP7099433B2/en
Publication of JP2021085078A publication Critical patent/JP2021085078A/en
Application granted granted Critical
Publication of JP7099433B2 publication Critical patent/JP7099433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method of manufacturing a sintered ore capable of rapidly performing adjustment of a layer thickness of an insert layer for calcining evenly in a width direction of a palette.SOLUTION: The method of manufacturing a sintered ore includes: charging a sintering material in a palette moving with circulation to form a charged layer; igniting an upper surface layer of the charged layer using an ignition furnace, and sintering the sintering material by sucking air from the under to make a sintered cake; and thereafter discharging a sintered cake from an ore-discharging part, where the layer thickness of a charged layer of a region where an average temperature of the upper surface layer is higher than an average temperature of a whole of a palette width direction in regions divided into two or more in a palette direction is formed thicker by measuring a temperature of the upper surface layer came out from the ignition furnace, and the layer thickness of a charged layer of a region where the average temperature of the upper surface layer is lower than the average temperature of the whole of the palette width direction is formed thinner.SELECTED DRAWING: Figure 1

Description

本発明は、高炉用原料である焼結鉱の製造方法に関する。 The present invention relates to a method for producing sinter, which is a raw material for a blast furnace.

高炉用原料である焼結鉱は、一般に、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉などの鉄含有原料と、石灰石及びドロマイトなどの含CaO原料と、粉コークスや無煙炭などの炭材(固体燃料)とを焼結原料として、無端移動型焼結機であるドワイトロイド焼結機(以下、「焼結機」と記載する)を用いて製造される。焼結原料は、焼結機の無端移動式のパレットに装入され、装入層が形成される。装入層の厚さ(高さ)は400〜800mm前後である。その後、装入層の上方に設置された点火炉により、この装入層中の炭材に点火される。パレットの下に配設されている風箱を介して空気を下方に吸引することにより、装入層中の炭材を順次燃焼させる。この燃焼は、パレットの移動につれて次第に下層にかつ前方に進行する。このときに発生する燃焼熱によって、焼結原料が燃焼、溶融し、焼結ケーキが生成される。その後、得られた焼結ケーキは、排鉱部において破砕され、クーラーで冷却され、整粒されて成品焼結鉱となる。 Sintered ore, which is a raw material for blast furnaces, generally includes iron-containing raw materials such as iron ore powder, sinter recovery powder, and sinter sinter powder, CaO-containing raw materials such as limestone and dolomite, and charcoal such as powdered coke and smokeless coal. It is manufactured by using a material (solid fuel) as a sintering raw material and using a dwightroid sintering machine (hereinafter referred to as "sintering machine") which is an endless mobile type sintering machine. The sintering raw material is charged into an endlessly movable pallet of the sintering machine, and a charging layer is formed. The thickness (height) of the charging layer is around 400 to 800 mm. After that, the coal material in the charging layer is ignited by an ignition furnace installed above the charging layer. By sucking air downward through the air box arranged under the pallet, the charcoal material in the charging layer is sequentially burned. This combustion gradually progresses to the lower layer and forward as the pallet moves. The heat of combustion generated at this time burns and melts the sintered raw material to produce a sintered cake. After that, the obtained sintered cake is crushed in the sinter part, cooled by a cooler, and sized to obtain a product sinter.

上述した焼結機では、パレットの幅方向に均一に炭材を燃焼させ、焼結ケーキを破砕する前の排鉱部において、焼結原料がパレットの幅方向に均一に焼成されていることが焼結鉱の強度、歩留り向上の観点から好ましい。パレットの幅方向に均一な焼成を行なう検討は、従来からなされている。例えば、特許文献1には、排鉱部におけるパレットの幅方向に分割された一の領域における赤熱部分の上面高さと、赤熱部分全体の平均上面高さとの差が予め定められた範囲内になるように、パレットの幅方向における分割ゲートの開度を制御して装入層の層厚を調整する焼結鉱の製造方法が開示されている。 In the above-mentioned sintering machine, the carbonaceous material is burned uniformly in the width direction of the pallet, and the sintering raw material is uniformly fired in the width direction of the pallet in the mining portion before crushing the sintered cake. It is preferable from the viewpoint of improving the strength and yield of the sinter. Conventionally, studies have been made on performing uniform firing in the width direction of the pallet. For example, in Patent Document 1, the difference between the height of the upper surface of the reddish portion in one region divided in the width direction of the pallet in the excretion portion and the average upper surface height of the entire reddish portion is within a predetermined range. As described above, a method for producing a sintered ore is disclosed, in which the opening degree of the dividing gate in the width direction of the pallet is controlled to adjust the layer thickness of the charging layer.

特開2017−57481号公報JP-A-2017-57481

特許文献1では、排鉱部の焼結ケーキ破断面に観察される赤熱部分の高さに基づいてパレットの幅方向における分割ゲートの開度を制御して装入層の層厚を調整している。このため、パレットに焼結原料が装入されてから赤熱部分の高さが焼結ケーキ破断面で観察されるまでに、25〜30分程度の時間が必要になり、パレットの幅方向に均一な焼成を行うための装入層の層厚の調整を迅速に実施できないという課題があった。本発明は、このような課題を鑑みてなされたものであり、その目的は、パレットの幅方向に均一な焼成を行うための装入層の層厚の調整を迅速に実施できる焼結鉱の製造方法を提供することである。 In Patent Document 1, the opening degree of the dividing gate in the width direction of the pallet is controlled based on the height of the reddish portion observed in the fracture surface of the sintered cake of the excretion portion to adjust the layer thickness of the charging layer. There is. Therefore, it takes about 25 to 30 minutes from the time when the sintered raw material is charged into the pallet until the height of the reddish portion is observed on the fracture surface of the sintered cake, which is uniform in the width direction of the pallet. There is a problem that it is not possible to quickly adjust the layer thickness of the charging layer for performing calcination. The present invention has been made in view of such a problem, and an object of the present invention is to make a sinter capable of rapidly adjusting the layer thickness of the charging layer for uniform firing in the width direction of the pallet. To provide a manufacturing method.

上記課題を解決するための手段は、以下の通りである。
(1)循環移動するパレットに焼結原料を装入して装入層を形成させ、点火炉を用いて装入層の上表層を点火し、下方から空気を吸引して前記焼結原料を焼結鉱して焼結ケーキとした後、前記焼結ケーキを排鉱部から排出して製造する焼結鉱の製造方法であって、
前記点火炉を出た前記上表層の温度を測定し、前記パレットの幅方向に2以上に分割した領域のうち、前記上表層の平均温度がパレットの幅方向全体の平均温度よりも高い領域の前記装入層の層厚を厚く形成させ、前記上表層の平均温度がパレットの幅方向全体の平均温度よりも低い領域の前記装入層の層厚を薄く形成させる、焼結鉱の製造方法。
(2)前記下方から吸引される空気の温度を測定し、パレットの幅方向に2以上に分割した領域のうち、前記空気の平均温度がパレットの幅方向全体の平均温度よりも高い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より高い領域に一致し、前記空気の平均温度がパレットの幅方向全体の平均温度よりも低い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より低い領域に一致する場合に前記層厚の調整を継続する、(1)に記載の焼結鉱の製造方法。
(3)前記排鉱部で焼結ケーキの破断面に表われる赤熱帯の高さを測定し、パレットの幅方向に2以上に分割した領域のうち、前記赤熱帯の平均高さがパレットの幅方向全体の平均高さよりも低い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より高い領域に一致し、前記赤熱帯の平均高さがパレットの幅方向全体の平均高さより高い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より低い領域に一致する場合に前記層厚の調整を継続する、(1)に記載の焼結鉱の製造方法。
The means for solving the above problems are as follows.
(1) The sintered raw material is charged into a circulating pallet to form a charged layer, the upper surface layer of the charged layer is ignited using an ignition furnace, and air is sucked from below to obtain the sintered raw material. It is a method for producing sintered ore, which is produced by discharging the sintered cake from the sinter part after sintering to obtain a sintered cake.
The temperature of the upper surface layer that has exited the ignition furnace is measured, and among the regions divided into two or more in the width direction of the pallet, the average temperature of the upper surface layer is higher than the average temperature of the entire width direction of the pallet. A method for producing a sintered ore, in which a thicker charge layer is formed and a thinner layer thickness of the charge layer is formed in a region where the average temperature of the upper surface layer is lower than the average temperature of the entire width direction of the pallet. ..
(2) The temperature of the air sucked from below is measured, and among the regions divided into two or more in the width direction of the pallet, the region where the average temperature of the air is higher than the average temperature of the entire width direction of the pallet is said. The region where the average temperature of the upper surface layer is higher than the average temperature of the entire width direction of the pallet, and the region where the average temperature of the air is lower than the average temperature of the entire width direction of the pallet is the region where the average temperature of the upper surface layer is the width of the pallet. The method for producing a sintered ore according to (1), wherein the adjustment of the layer thickness is continued when the temperature corresponds to a region lower than the average temperature in the entire direction.
(3) The height of the red tropics appearing on the fracture surface of the sintered cake was measured at the excretion part, and the average height of the red tropics was the average height of the pallet among the regions divided into two or more in the width direction of the pallet. The region lower than the average height of the entire width direction coincides with the region where the average temperature of the upper surface layer is higher than the average temperature of the entire width direction of the pallet, and the average height of the red tropics is higher than the average height of the entire width direction of the pallet. The method for producing a sintered ore according to (1), wherein the adjustment of the layer thickness is continued when the high region coincides with the region where the average temperature of the upper surface layer is lower than the average temperature of the entire width direction of the pallet.

本発明に係る焼結鉱の製造方法では、パレットに焼結原料が装入されてから4〜5分後に測定される装入層の上表層の温度を用いて装入層の層厚を調整するので、パレットに焼結原料が装入されてから4〜5分ごとに装入層の層厚の調整が実施できる。このように、本発明に係る焼結鉱の製造方法では、パレットの幅方向に均一な焼成を行うための層厚の調整を迅速に実施できるので、これにより、焼結原料のパレットの幅方向に均一な焼成が実現され、返鉱の発生比率を低減させて成品焼結鉱の歩留りを向上できる。 In the method for producing a sinter according to the present invention, the layer thickness of the sinter is adjusted by using the temperature of the upper surface layer of the sinter, which is measured 4 to 5 minutes after the sinter material is charged into the pallet. Therefore, the layer thickness of the charging layer can be adjusted every 4 to 5 minutes after the sintering raw material is charged into the pallet. As described above, in the method for producing a sinter according to the present invention, the layer thickness for uniform firing in the width direction of the pallet can be quickly adjusted, whereby the width direction of the pallet of the sinter raw material can be adjusted. Uniform firing can be realized, the rate of return ore generation can be reduced, and the yield of the finished sinter can be improved.

本実施形態に係る焼結鉱の製造方法に用いる焼結機10の一例を示す側面模式図である。It is a side schematic diagram which shows an example of the sinter 10 used in the manufacturing method of the sinter according to this embodiment. 焼結機10の斜視模式図である。It is a perspective schematic diagram of a sintering machine 10. 点火炉出側の上表層の温度測定結果の一例を示すグラフである。It is a graph which shows an example of the temperature measurement result of the upper surface layer on the exit side of an ignition furnace. 風箱22の温度測定結果の一例を示すグラフである。It is a graph which shows an example of the temperature measurement result of the airbox 22. 赤熱帯38の高さの測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result of the height of the red tropics 38.

以下、本発明を本発明の実施形態を通じて説明する。図1は、本実施形態に係る焼結鉱の製造方法に用いる焼結機10の一例を示す側面模式図である。また、図2は、焼結機10の斜視模式図である。 Hereinafter, the present invention will be described through embodiments of the present invention. FIG. 1 is a side schematic view showing an example of a sinter 10 used in the method for producing a sinter according to the present embodiment. Further, FIG. 2 is a schematic perspective view of the sintering machine 10.

鉄鉱石と炭材とを含む焼結原料は、焼結機10の給鉱部40に設けられたサージホッパー12からロールフィーダー14で切り出されて、循環移動する無端移動式のパレット26に装入され、焼結原料の装入層が形成される。このとき、装入層の厚さは、パレット26の幅方向に複数設置された分割ゲート16の開度を制御することによって調整される。本実施形態において、分割ゲート16は、例えば、図2に示すように8つに分割されており、それぞれの分割ゲート16にはパレット26の幅方向の位置の順に対応付けてゲート番号(1〜8)が割り振られている。 The sintering raw material containing iron ore and carbonaceous material is cut out by a roll feeder 14 from a surge hopper 12 provided in a mining section 40 of the sintering machine 10, and charged into a circularly moving endless movable pallet 26. And the charging layer of the sintered raw material is formed. At this time, the thickness of the charging layer is adjusted by controlling the opening degree of a plurality of divided gates 16 installed in the width direction of the pallet 26. In the present embodiment, the divided gate 16 is divided into eight, for example, as shown in FIG. 2, and each divided gate 16 is associated with the gate number (1 to 1) in the order of the position in the width direction of the pallet 26. 8) is assigned.

装入層は、パレット26とともに焼結機10の下流に向かって移動する。レベル計18は、装入層の装入層を計測し、測定したデータを制御装置32に出力する。レベル計18は、分割ゲート16の分割数と同じ8個設けられ、それぞれの分割ゲート16の下流側に1つ設けられている。それぞれのレベル計18には、ゲート番号と同じ番号が割り振られており、それぞれのレベル計18は、同じ番号が割り振られている分割ゲート16の装入層厚をそれぞれ測定する。本実施形態では、レベル計18として超音波レベル計を用いた。 The charging layer moves toward the downstream of the sintering machine 10 together with the pallet 26. The level meter 18 measures the charging layer of the charging layer and outputs the measured data to the control device 32. Eight level totals 18, which are the same as the number of divisions of the division gate 16, are provided, and one is provided on the downstream side of each division gate 16. Each level total 18 is assigned the same number as the gate number, and each level total 18 measures the charging layer thickness of the divided gate 16 to which the same number is assigned. In this embodiment, an ultrasonic level meter is used as the level meter 18.

給鉱部40の下流側に設置された点火炉20によって、装入層の上表層が点火される。さらに、ブロワー24によって空気が吸引され、パレット26の下方に機長方向に複数設けられた風箱22を通じて装入層内の空気が下方に吸引されるとともに上方から装入層内に空気が導入され、焼結原料に含まれる炭材が燃焼する。サーモグラフィ28は、点火炉20から出た装入層の上表層の温度を測定し、測定したデータを制御装置32に出力する。サーモグラフィ28は、点火炉20から3m以内の上表層の温度を測定することが好ましく、点火炉20から1m以内の上表層の温度を測定することがさらに好ましく、点火炉20から0.5m以内の上表層の温度を測定することがさらに好ましい。このように、点火炉20に近い装入層の上表面の温度を測定することで、給鉱部40で焼結原料がパレット26に装入されてから、短時間で装入層の上表層の温度データを取得できる。 The upper surface layer of the charging layer is ignited by the ignition furnace 20 installed on the downstream side of the mining section 40. Further, air is sucked by the blower 24, air in the charging layer is sucked downward through a plurality of air boxes 22 provided below the pallet 26 in the machine length direction, and air is introduced into the charging layer from above. , The carbonaceous material contained in the sintered raw material burns. The thermography 28 measures the temperature of the upper surface layer of the charging layer emitted from the ignition furnace 20, and outputs the measured data to the control device 32. The thermography 28 preferably measures the temperature of the upper surface layer within 3 m from the ignition furnace 20, more preferably measures the temperature of the upper surface layer within 1 m from the ignition furnace 20, and within 0.5 m from the ignition furnace 20. It is more preferable to measure the temperature of the upper surface layer. By measuring the temperature of the upper surface of the charging layer close to the ignition furnace 20 in this way, the sintered raw material is charged into the pallet 26 in the mining section 40, and then the upper surface layer of the charging layer is shortly charged. Temperature data can be obtained.

また、機長方向に設けられた複数の風箱22のそれぞれの内部には、パレット26の幅方向に複数の温度計29が設けられている。温度計29は、分割ゲート16の分割数と同じ8個設けられ、これらの温度計は、パレット26の幅方向における分割ゲート16の位置と同じ下流側の位置に設けられる。これらの温度計には、機長方向の位置を識別する番号と分割ゲート番号と同じ番号とが識別番号として割り振られており、それぞれの温度計29は、風箱22内の温度を計測し、温度データを識別番号とともに制御装置32に出力する。本実施形態では、温度計29としてシース型熱電対を用いた。 Further, inside each of the plurality of air boxes 22 provided in the machine length direction, a plurality of thermometers 29 are provided in the width direction of the pallet 26. Eight thermometers 29, which are the same as the number of divisions of the division gate 16, are provided, and these thermometers are provided at the same downstream position as the position of the division gate 16 in the width direction of the pallet 26. A number that identifies the position in the captain direction and the same number as the split gate number are assigned to these thermometers as identification numbers, and each thermometer 29 measures the temperature inside the air box 22 and determines the temperature. The data is output to the control device 32 together with the identification number. In this embodiment, a sheathed thermocouple was used as the thermometer 29.

炭材の燃焼による燃焼熱によって焼き固められた焼結原料は、焼結鉱の塊である焼結ケーキとなる。焼結ケーキは、排鉱部42から排出される。排鉱部42から排出される焼結ケーキは、パレット26から落下する直前にパレット26の幅方向に亀裂が生じて破断する。パレット26上に残された焼結ケーキの破断面には、赤熱帯38が表れる。排鉱部カメラ30は、焼結ケーキの破断面に表れた赤熱帯38を撮像して生成した画像データを制御装置32に出力する。その後、焼結ケーキは、排鉱部42から落下し、破砕され、クーラーで冷却されて、整粒され、例えば、粒径5.0mm超えの塊成物からなる成品焼結鉱となる。 The sintered raw material that is baked and hardened by the heat of combustion generated by the combustion of charcoal is a sintered cake that is a mass of sintered ore. The sintered cake is discharged from the mining section 42. The sintered cake discharged from the mining section 42 cracks in the width direction of the pallet 26 and breaks immediately before falling from the pallet 26. Red tropics 38 appear on the fracture surface of the sintered cake left on the pallet 26. The excretion unit camera 30 captures the red tropics 38 appearing on the fracture surface of the sintered cake and outputs the image data generated to the control device 32. After that, the sintered cake falls from the sinter 42, is crushed, cooled by a cooler, and sized to become a product sintered ore composed of, for example, agglomerates having a particle size of more than 5.0 mm.

制御装置32は、制御部36と格納部34とを有する。制御装置32は、例えば、ワークステーションやパソコン等の汎用コンピュータである。制御部36は、例えば、CPU等であって、格納部34に格納されたプログラムやデータを用いて焼結機10の動作を制御する。格納部34は、例えば、更新記録可能はフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体およびその読み書き装置である。格納部34には、本実施形態に係る焼結鉱の製造方法の実施に必要なプログラムや、当該プログラム実行中に使用するデータ等が予め格納されている。 The control device 32 has a control unit 36 and a storage unit 34. The control device 32 is, for example, a general-purpose computer such as a workstation or a personal computer. The control unit 36 is, for example, a CPU or the like, and controls the operation of the sintering machine 10 by using the programs and data stored in the storage unit 34. The storage unit 34 is, for example, an information recording medium such as a flash memory, a hard disk connected by a built-in or data communication terminal, a memory card, and a read / write device thereof that can be updated and recorded. The storage unit 34 stores in advance a program necessary for implementing the method for producing a sinter according to the present embodiment, data used during execution of the program, and the like.

通気性がよい装入層には酸素が効率よく供給されるので炭材が効率よく燃焼し、当該領域の昇温速度が速くなる。このため、点火炉20を出た後において、通気性のよい装入層の上表面の温度は通気性の悪い装入層の上表面の温度よりも高くなる。したがって、点火炉20を出た上表層の温度を測定することで、通気性のよい装入層の領域と、通気性の悪い装入層の領域とを特定できる。 Since oxygen is efficiently supplied to the charged layer having good air permeability, the carbonaceous material burns efficiently, and the rate of temperature rise in the region becomes high. Therefore, after leaving the ignition furnace 20, the temperature of the upper surface of the charge layer having good air permeability becomes higher than the temperature of the upper surface of the charge layer having poor air permeability. Therefore, by measuring the temperature of the upper surface layer exiting the ignition furnace 20, it is possible to identify the region of the charge layer having good air permeability and the region of the charge layer having poor air permeability.

制御部36は、サーモグラフィ28から上表層の温度データを取得すると、温度データを取得した上表層をパレット26の幅方向に2以上に分割し、当該分割した領域における平均温度を算出する。例えば、上表層をパレット26の幅方向に2つに分割する場合においては、幅方向の中央を境界に手前側の領域における平均温度と、奥側の領域の平均温度を算出する。 When the control unit 36 acquires the temperature data of the upper surface layer from the thermography 28, the control unit 36 divides the upper surface layer for which the temperature data has been acquired into two or more in the width direction of the pallet 26, and calculates the average temperature in the divided region. For example, when the upper surface layer is divided into two in the width direction of the pallet 26, the average temperature in the front region and the average temperature in the back region are calculated with the center in the width direction as the boundary.

図3は、点火炉出側の上表層の温度測定結果の一例を示すグラフである。図3において、横軸は幅方向の比率であり、縦軸は上表層の温度(℃)である。図3に示した例において、幅方向の比率0〜0.5の領域は図1、2におけるパレット26の手前側の領域であり、幅方向の比率0.5〜1.0の領域は、図1、2におけるパレット26の奥側の領域である。また、図3では、各領域15点の温度データを示している。 FIG. 3 is a graph showing an example of the temperature measurement result of the upper surface layer on the exit side of the ignition furnace. In FIG. 3, the horizontal axis is the ratio in the width direction, and the vertical axis is the temperature (° C.) of the upper surface layer. In the example shown in FIG. 3, the region having a ratio of 0 to 0.5 in the width direction is the region on the front side of the pallet 26 in FIGS. 1 and 2, and the region having a ratio of 0.5 to 1.0 in the width direction is a region. It is a region on the back side of the pallet 26 in FIGS. 1 and 2. Further, FIG. 3 shows temperature data of 15 points in each region.

制御部36は、さらに温度データを取得した上表層全体の平均温度を算出する。制御部36は、全体の平均温度よりも高い領域の装入層は、他の領域よりも通気性がよい領域であると判断し、当該領域に対応する位置に設けられた分割ゲート16の開度を大きくして装入層厚を厚くする。図3に示した例においては、制御部36は、奥側の領域の装入層は、手前側の装入層よりも通気性がよいと判断し、奥側の領域に対応する位置に設けられた分割ゲート16の開度を大きくする。 The control unit 36 further calculates the average temperature of the entire upper surface layer from which the temperature data has been acquired. The control unit 36 determines that the charging layer in a region higher than the overall average temperature is a region having better air permeability than the other regions, and opens the split gate 16 provided at a position corresponding to the region. Increase the degree to increase the thickness of the charging layer. In the example shown in FIG. 3, the control unit 36 determines that the charging layer in the back region has better air permeability than the charging layer on the front side, and provides the charging layer at a position corresponding to the back region. The opening degree of the divided gate 16 is increased.

一方、制御部36は、平均温度が全体の平均温度よりも低い領域の装入層は、他の領域よりも通気性が悪い領域であると判断し、当該領域に対応する位置に設けられた分割ゲート16の開度を小さくして装入層厚を薄くする。図3に示した例においては、制御部36は、手前側の領域の装入層は、奥側の装入層よりも通気性が悪いと判断し、手前側の領域に対応する位置に設けられた分割ゲート16の開度を小さくする。 On the other hand, the control unit 36 determines that the charging layer in the region where the average temperature is lower than the overall average temperature is a region having poorer air permeability than the other regions, and is provided at a position corresponding to the region. The opening degree of the dividing gate 16 is reduced to reduce the thickness of the charging layer. In the example shown in FIG. 3, the control unit 36 determines that the charging layer in the front side region has lower air permeability than the charging layer on the back side, and provides the charging layer at a position corresponding to the front side region. The opening degree of the divided gate 16 is reduced.

通気性のよい領域の装入層では、酸素が効率的に装入層内に供給されるので焼結原料の焼成速度が速くなる。一方、通気性の悪い領域の装入層では、酸素が装入層内に供給されにくくなるので焼結原料の焼成速度が遅くなる。このため、通気性のよい領域の装入層の層厚を厚くし、通気性の悪い領域の装入層の層厚を薄くすることで、焼結原料のパレット26の幅方向に均一な焼成が実現できる。 In the charging layer in the highly breathable region, oxygen is efficiently supplied into the charging layer, so that the firing rate of the sintered raw material is increased. On the other hand, in the charging layer in the poorly breathable region, oxygen is less likely to be supplied into the charging layer, so that the firing rate of the sintered raw material becomes slow. Therefore, by increasing the layer thickness of the charging layer in the region having good air permeability and reducing the layer thickness of the charging layer in the region having poor air permeability, the pallet 26 of the sintered raw material is fired uniformly in the width direction. Can be realized.

このように、本実施形態に係る焼結鉱の製造方法では、点火炉20を出た装入層の上表層の温度を測定し、パレット26の幅方向に2以上に分割した領域における平均温度がパレット26の幅方向全体の平均温度よりも高い場合に当該領域の装入層の層厚を厚くし、パレット26の幅方向に2以上に分割した領域における平均温度がパレット26の幅方向全体の平均温度よりも低い場合に当該領域の装入層の層厚を薄くする。これにより、パレット26の幅方向に均一な焼成を行うための装入層の層厚の調整を、給鉱部40においてパレット26に焼結原料が装入された後4〜5分という短い時間で迅速に実施できる。この層厚調整を連続して実施することで、点火炉20を出た装入層の上表層の温度の偏差が小さくなり、これにより、焼結原料のパレット26の幅方向に均一な焼成が実現される。これに対し、例えば、排鉱部42の赤熱帯38の高さに基づいた装入層の層厚の調整は、排鉱部42の赤熱帯38を撮像するのに給鉱部40でパレット26に焼結原料が装入された後25〜30分程度の時間を要するので、パレット26の幅方向に均一な焼成を行うための層厚調整を迅速に行うことができない。 As described above, in the method for producing sintered ore according to the present embodiment, the temperature of the upper surface layer of the charging layer exiting the ignition furnace 20 is measured, and the average temperature in the region divided into two or more in the width direction of the pallet 26. Is higher than the average temperature of the entire width direction of the pallet 26, the layer thickness of the charging layer in the region is increased, and the average temperature in the region divided into two or more in the width direction of the pallet 26 is the entire width direction of the pallet 26. When the temperature is lower than the average temperature of the above, the thickness of the charging layer in the region is reduced. As a result, the layer thickness of the charging layer for uniform firing in the width direction of the pallet 26 can be adjusted in a short time of 4 to 5 minutes after the sintering raw material is charged into the pallet 26 in the mining section 40. Can be carried out quickly. By continuously performing this layer thickness adjustment, the deviation in the temperature of the upper surface layer of the charging layer leaving the ignition furnace 20 is reduced, and as a result, uniform firing in the width direction of the pallet 26 of the sintered raw material is performed. It will be realized. On the other hand, for example, the adjustment of the layer thickness of the charging layer based on the height of the red tropics 38 of the scavenging section 42 is performed by the pallet 26 in the scavenging section 40 to image the red tropics 38 of the scavenging section 42. Since it takes about 25 to 30 minutes after the sintering raw material is charged into the pallet 26, it is not possible to quickly adjust the layer thickness for uniform firing in the width direction of the pallet 26.

なお、上記例においては、制御部36は、温度データを取得した上表層全体の温度データを用いて各平均温度を算出する例を示したが、これに限らない。制御部36は、温度データを取得した上表層における機長方向の一部分もしくはパレット26の幅方向の1ラインの温度を用いて、幅方向全体の平均温度と2以上に分割した領域の平均温度とを算出してもよい。 In the above example, the control unit 36 shows an example of calculating each average temperature using the temperature data of the entire upper surface layer from which the temperature data has been acquired, but the present invention is not limited to this. The control unit 36 uses the temperature of a part of the upper surface layer in the machine length direction or one line in the width direction of the pallet 26 from which the temperature data has been acquired to obtain the average temperature of the entire width direction and the average temperature of the region divided into two or more. It may be calculated.

また、全体の平均温度に対する各領域の平均温度の温度差と、装入層の層厚の調整量との関係は、焼結機10の状態や焼結原料の粒度等の条件によりそれぞれ異なる。このため、平均温度の温度差と層厚の調整量との関係は、装入層の層厚を所定量変化させ、この所定量の層厚変化で上表層の温度がどの程度変化したか実験的に測定することで把握してよい。また、層厚の調整量と平均温度の温度差との関係の把握は、所定周期毎に実施するとしてもよい。 Further, the relationship between the temperature difference of the average temperature of each region with respect to the overall average temperature and the adjustment amount of the layer thickness of the charging layer differs depending on the conditions such as the state of the sintering machine 10 and the particle size of the sintering raw material. Therefore, the relationship between the temperature difference of the average temperature and the adjustment amount of the layer thickness is to change the layer thickness of the charging layer by a predetermined amount, and to experiment how much the temperature of the upper surface layer is changed by this predetermined amount of layer thickness change. It may be grasped by measuring the temperature. Further, the relationship between the adjustment amount of the layer thickness and the temperature difference of the average temperature may be grasped at predetermined intervals.

さらに、本実施形態に係る焼結鉱の製造方法は、点火炉20を出た装入層の上表層の温度と、風箱22の温度とに基づいて装入層の通気性を判断してもよい。風箱22の温度は、装入層から吸引される空気の温度に大きく影響を受けるので、風箱22の温度を測定することで、装入層から吸引される空気の温度を測定できる。また、装入層から吸引される空気の温度は、装入層における赤熱帯38の位置に大きく影響を受け、装入層における赤熱帯38の位置が下層に近くなるほど風箱22の温度は高くなり、赤熱帯38の位置が下層から離れるほど風箱22の温度は低くなる。 Further, in the method for producing sinter according to the present embodiment, the air permeability of the charge layer is determined based on the temperature of the upper surface layer of the charge layer exiting the ignition furnace 20 and the temperature of the air box 22. May be good. Since the temperature of the air box 22 is greatly affected by the temperature of the air sucked from the charging layer, the temperature of the air sucked from the charging layer can be measured by measuring the temperature of the wind box 22. Further, the temperature of the air sucked from the charging layer is greatly affected by the position of the red tropics 38 in the charging layer, and the closer the position of the red tropics 38 in the charging layer is to the lower layer, the higher the temperature of the wind box 22. Therefore, the temperature of the wind box 22 decreases as the position of the red tropics 38 moves away from the lower layer.

上述したように、通気性のよい装入層では焼成速度が速く、赤熱帯38の移動速度が速くなるので、通気性のよい装入層における赤熱帯38の位置は、通気性の悪い装入層における赤熱帯38の位置よりも下層に近づく。このため、通気性のよい装入層における風箱温度は、より給鉱部40に近い側から昇温し始め、その後、温度が低下する。このため、風箱22の温度を示した曲線の温度ピークが給鉱部40側に近づくほど装入層の通気性がよく、当該温度ピークが給鉱部40から離れるほど装入層の通気性が悪いといえる。したがって、パレット26の幅方向に2以上に分割された領域の風箱22の温度を測定することによっても、パレット26の幅方向に2以上に分割された領域のうち通気性のよい装入層の領域と、通気性の悪い装入層の領域とを特定できる。 As described above, since the firing rate is high and the moving speed of the red tropics 38 is high in the well-ventilated charging layer, the position of the red tropics 38 in the well-ventilated charging layer is the poorly breathable charging. It is closer to the lower layer than the position of red tropics 38 in the layer. Therefore, the air box temperature in the charged layer having good air permeability starts to rise from the side closer to the mining section 40, and then the temperature decreases. Therefore, the closer the temperature peak of the curve showing the temperature of the air box 22 is to the filling section 40 side, the better the air permeability of the charging layer, and the farther the temperature peak is from the filling section 40, the better the air permeability of the charging layer. Can be said to be bad. Therefore, even by measuring the temperature of the air box 22 in the region divided into two or more in the width direction of the pallet 26, the charging layer having good air permeability in the region divided into two or more in the width direction of the pallet 26. Area and the area of the charging layer with poor ventilation can be identified.

制御部36は、風箱22に設けられた8個の温度計29から温度データを取得すると、パレット26の幅方向に2以上に分割した領域における平均温度を算出する。例えば、パレット26の幅方向に2つに分割する場合においては、幅方向の中央を境界に手前側の領域に含まれる温度センサーにより測定された温度の平均温度と、奥側の領域に含まれる温度センサーにより測定された温度の平均温度とを算出する。 When the control unit 36 acquires the temperature data from the eight thermometers 29 provided in the air box 22, the control unit 36 calculates the average temperature in the region divided into two or more in the width direction of the pallet 26. For example, in the case of dividing the pallet 26 into two in the width direction, the average temperature of the temperature measured by the temperature sensor included in the area on the front side with the center in the width direction as the boundary and the temperature on the back side are included. Calculate the average temperature of the temperature measured by the temperature sensor.

図4は、風箱22の温度測定結果の一例を示すグラフである。図4において、横軸は風箱番号であり、縦軸は温度(℃)である。風箱番号は、焼結機10の機長方向における各風箱の位置を示し、給鉱部40から排鉱部42に向けて番号が大きくなるように各風箱に1つの風箱番号が割り付けられている。また、図4において、破線はパレット26の幅方向の比率が0.5〜1.0(奥側)の領域の風箱22の温度を示す曲線であり、実線はパレット26の幅方向の比率が0〜0.5(手前側)の領域の風箱22の温度を示す曲線である。 FIG. 4 is a graph showing an example of the temperature measurement result of the air box 22. In FIG. 4, the horizontal axis is the wind box number and the vertical axis is the temperature (° C.). The wind box number indicates the position of each wind box in the captain direction of the sintering machine 10, and one wind box number is assigned to each wind box so that the number increases from the mining section 40 to the discharging section 42. Has been done. Further, in FIG. 4, the broken line is a curve showing the temperature of the air box 22 in the region where the ratio in the width direction of the pallet 26 is 0.5 to 1.0 (back side), and the solid line is the ratio in the width direction of the pallet 26. Is a curve showing the temperature of the air box 22 in the region of 0 to 0.5 (front side).

制御部36は、さらに風箱22のパレット26の幅方向全体の平均温度も算出する。制御部36は、風箱22の温度を示した曲線の温度ピークが、全体の平均温度を示す曲線の温度ピークよりも給鉱部40側にある場合に、当該領域の装入層は通気性がよいと判断する。一方、風箱温度を示した曲線の温度ピークが、全体の平均温度を示す曲線の温度ピークよりも排鉱部42側にある場合に、当該領域の装入層は通気性が悪いと判断する。図4に示した例において、制御部36は、手前側の領域の装入層は通気性が悪いと判断し、奥側の領域の装入層は通気性がよいと判断する。 The control unit 36 also calculates the average temperature of the pallet 26 of the air box 22 in the entire width direction. In the control unit 36, when the temperature peak of the curve showing the temperature of the air box 22 is on the side of the mining unit 40 with respect to the temperature peak of the curve showing the overall average temperature, the charging layer in the region is breathable. Judge that is good. On the other hand, when the temperature peak of the curve showing the airbox temperature is closer to the excretion part 42 than the temperature peak of the curve showing the overall average temperature, it is judged that the charge layer in the region has poor air permeability. .. In the example shown in FIG. 4, the control unit 36 determines that the charging layer in the front region has poor air permeability, and determines that the charging layer in the back region has good air permeability.

点火炉20を出た装入層の上表層は、点火炉20の着火不良により他の領域よりも温度が低くなる場合がある。このため、点火炉20を出た上表層の温度では、装入層の通気性を正確に判断できない場合がある。これに対して、風箱22の温度は装入層内の赤熱帯38の位置が大きく影響し、着火不良の影響は小さい。このため、風箱22の温度による装入層の通気性の判断は、上表層の温度による通気性の判断よりも正確である。 The temperature of the upper surface layer of the charging layer leaving the ignition furnace 20 may be lower than that of other regions due to poor ignition of the ignition furnace 20. Therefore, the air permeability of the charging layer may not be accurately determined based on the temperature of the upper surface layer exiting the ignition furnace 20. On the other hand, the temperature of the airbox 22 is greatly affected by the position of the red tropics 38 in the charging layer, and the effect of poor ignition is small. Therefore, the determination of the air permeability of the charging layer based on the temperature of the air box 22 is more accurate than the determination of the air permeability based on the temperature of the upper surface layer.

制御部36は、点火炉20出側の上表層の温度に基づいた装入層の通気性の判断と、風箱22の温度に基づいた装入層の通気性の判断とが一致した場合に、点火炉20での着火不良は起きていないと判断し、上述した装入層の層厚調整を継続するとしてもよい。一方、制御部36は、点火炉20出側の上表層の温度に基づいた装入層の通気性の判断と、風箱22の温度に基づいた装入層の通気性の判断とが一致しない場合には、点火炉20で着火不良が起きていると判断して、上述した装入層の層厚調整を中止する、もしくは、風箱22の温度に基づいて装入層の層厚調整を実施するとしてもよい。これにより、さらに焼結原料のパレット26の幅方向に均一な焼成が実現される。 When the control unit 36 matches the determination of the air permeability of the charge layer based on the temperature of the upper surface layer on the exit side of the ignition furnace 20 and the determination of the air permeability of the charge layer based on the temperature of the air box 22. , It may be determined that the ignition failure in the ignition furnace 20 has not occurred, and the above-mentioned layer thickness adjustment of the charging layer may be continued. On the other hand, the control unit 36 does not match the determination of the air permeability of the charge layer based on the temperature of the upper surface layer on the exit side of the ignition furnace 20 and the determination of the air permeability of the charge layer based on the temperature of the air box 22. In this case, it is determined that ignition failure has occurred in the ignition furnace 20, and the above-mentioned layer thickness adjustment of the charge layer is stopped, or the layer thickness adjustment of the charge layer is adjusted based on the temperature of the air box 22. It may be carried out. As a result, uniform firing in the width direction of the pallet 26 of the sintered raw material is further realized.

図3、4に示した例では、制御部36は、点火炉20出側の上表層の温度から奥側の装入層の通気性がよいと判断し、風箱22の温度からも奥側の装入層の通気性がよいと判断するので、両者が一致する。このため、制御部36は、点火炉20では着火不良が起きていないと判断して、点火炉20を出た装入層の上表面の温度測定結果を用いた装入層の層厚調整を継続する。 In the examples shown in FIGS. 3 and 4, the control unit 36 determines that the air permeability of the charging layer on the back side is good from the temperature of the upper surface layer on the exit side of the ignition furnace 20, and is also on the back side from the temperature of the air box 22. Since it is judged that the air permeability of the charging layer is good, both are in agreement. Therefore, the control unit 36 determines that the ignition failure has not occurred in the ignition furnace 20, and adjusts the layer thickness of the charging layer using the temperature measurement result of the upper surface of the charging layer leaving the ignition furnace 20. continue.

また、本実施形態に係る焼結鉱の製造方法は、点火炉20を出た装入層の上表層の温度と、排鉱部42の赤熱帯38の高さに基づいて装入層の通気性を判断してもよい。上述したように、通気性がよい装入層では赤熱帯38の移動速度は速くなり、通気性が悪い装入層では赤熱帯38の移動速度は遅くなる。このため、排鉱部42の赤熱帯38の高さを測定することで、通気性のよい装入層の領域と、通気性の悪い装入層の領域とを特定できる。 Further, in the method for producing sinter according to the present embodiment, the temperature of the upper surface layer of the charging layer exiting the ignition furnace 20 and the aeration of the charging layer based on the height of the red tropics 38 of the excretion section 42. You may judge the sex. As described above, the moving speed of the red tropics 38 is high in the well-ventilated charging layer, and the moving speed of the red tropics 38 is slow in the poorly breathable charging layer. Therefore, by measuring the height of the red tropics 38 of the excretion section 42, it is possible to identify the region of the charge layer having good air permeability and the region of the charge layer having poor air permeability.

制御部36は、排鉱部カメラ30から焼結ケーキの破断面に表れた赤熱帯38を撮像して生成した画像データを取得すると、画像データにおける赤熱帯38の領域を特定する。格納部34には、赤熱帯38と赤熱帯38ではない領域とを識別できる輝度の閾値と、パレット26の底面の位置を示すデータとが格納されている。制御部36は、格納部34から輝度の閾値を読み出し、画像データにおける当該輝度値よりも輝度値が大きい領域を赤熱帯38と判断する。また、制御部36は、格納部34からパレット26の底面の位置を示すデータを読み出し、当該データを用いてパレット26の底面からの全ての赤熱帯38の中心までの高さを算出する。なお、以後の説明において、赤熱帯38の高さとは、パレット26の底面からの赤熱帯38の中心までの高さを意味する。 When the control unit 36 acquires the image data generated by photographing the red tropics 38 appearing on the fracture surface of the sintered cake from the excretion unit camera 30, the control unit 36 identifies the region of the red tropics 38 in the image data. The storage unit 34 stores a brightness threshold value that can distinguish between the red tropics 38 and a region other than the red tropics 38, and data indicating the position of the bottom surface of the pallet 26. The control unit 36 reads a luminance threshold value from the storage unit 34, and determines that a region in the image data having a luminance value larger than the luminance value is red tropics 38. Further, the control unit 36 reads data indicating the position of the bottom surface of the pallet 26 from the storage unit 34, and calculates the height from the bottom surface of the pallet 26 to the center of all the red tropics 38 using the data. In the following description, the height of the red tropics 38 means the height from the bottom surface of the pallet 26 to the center of the red tropics 38.

制御部36は、パレット26の幅方向全体の赤熱帯38の高さの平均値と、パレット26の幅方向に2以上に分割した各領域における赤熱帯38の高さの平均値を算出する。例えば、パレット26の幅方向に2つに分割する場合においては、幅方向の中央を境界に手前側の領域の赤熱帯38の平均高さと、奥側の領域の赤熱帯38の平均高さとを算出する。 The control unit 36 calculates the average value of the height of the red tropics 38 in the entire width direction of the pallet 26 and the average value of the heights of the red tropics 38 in each region divided into two or more in the width direction of the pallet 26. For example, in the case of dividing the pallet 26 into two in the width direction, the average height of the red tropics 38 in the front region and the average height of the red tropics 38 in the back region are set with the center in the width direction as the boundary. calculate.

図5は、赤熱帯38の高さの測定結果の一例を示すグラフである。図5において、横軸は幅方向の比率であり、縦軸は赤熱帯38の高さ(mm)である。図5に示した例においても、幅方向の比率0〜0.5の領域は図1、2におけるパレット26の手前側の領域であり、幅方向の比率0.5〜1.0の領域は、図1、2におけるパレット26の奥側の領域である。 FIG. 5 is a graph showing an example of the measurement result of the height of the red tropics 38. In FIG. 5, the horizontal axis is the ratio in the width direction, and the vertical axis is the height (mm) of the red tropics 38. Also in the example shown in FIG. 5, the region having a ratio of 0 to 0.5 in the width direction is the region on the front side of the pallet 26 in FIGS. 1 and 2, and the region having a ratio of 0.5 to 1.0 in the width direction is a region. , The area on the inner side of the pallet 26 in FIGS. 1 and 2.

制御部36は、さらに赤熱帯38の全体の平均高さを算出する。制御部36は、赤熱帯38の高さが全体の平均高さよりも低い領域の装入層は他の領域よりも通気性がよいと判断し、赤熱帯38の高さが全体の平均高さよりも高い領域の装入層は他の領域よりも通気性が悪いと判断する。図5に示した例において、制御部36は、手前側の領域の装入層は奥側の領域の装入層よりも通気性が悪いと判断し、奥側の領域の装入層は手前側の領域の装入層よりも通気性がよいと判断する。 The control unit 36 further calculates the overall average height of the red tropics 38. The control unit 36 determines that the charging layer in the region where the height of the red tropics 38 is lower than the overall average height is more breathable than the other regions, and the height of the red tropics 38 is higher than the overall average height. It is judged that the charge layer in the high area has poorer air permeability than the other areas. In the example shown in FIG. 5, the control unit 36 determines that the charging layer in the front region has poorer air permeability than the charging layer in the back region, and the charging layer in the back region is in front. It is judged that the air permeability is better than that of the charging layer in the side area.

制御部36は、点火炉20出側の上表層の温度に基づいた装入層の通気性の判断と、赤熱帯38の高さに基づいた装入層の通気性の判断とが一致した場合に、点火炉20での着火不良は起きていないと判断し、上述した装入層の層厚調整を継続するとしてもよい。一方、制御部36は、点火炉20出側の上表層の温度に基づいた装入層の通気性の判断と、赤熱帯38の高さに基づいた装入層の通気性の判断とが一致しない場合には、点火炉20で着火不良が起きていると判断して、上述した装入層の層厚調整を中止する、もしくは、赤熱帯38の高さに基づいて装入層の層厚調整を実施するとしてもよい。これにより、さらに焼結原料のパレット26の幅方向に均一な焼成が実現される。 When the control unit 36 matches the determination of the air permeability of the charge layer based on the temperature of the upper surface layer on the exit side of the ignition furnace 20 and the determination of the air permeability of the charge layer based on the height of the red tropics 38. In addition, it may be determined that the ignition failure in the ignition furnace 20 has not occurred, and the above-mentioned layer thickness adjustment of the charging layer may be continued. On the other hand, the control unit 36 agrees with the determination of the air permeability of the charge layer based on the temperature of the upper surface layer on the exit side of the ignition furnace 20 and the determination of the air permeability of the charge layer based on the height of the red tropics 38. If not, it is determined that ignition failure has occurred in the ignition furnace 20, and the above-mentioned layer thickness adjustment of the charging layer is stopped, or the layer thickness of the charging layer is based on the height of the red tropics 38. Adjustments may be made. As a result, uniform firing in the width direction of the pallet 26 of the sintered raw material is further realized.

図3、5に示した例において、点火炉20を出た装入層の上表面のうち、温度が高い領域は奥側であり、赤熱帯38の高さが全体の平均高さより高い領域も奥側であり、両者が一致する。このため、制御部36は、点火炉20では着火不良が起きていないと判断して、点火炉20を出た装入層の上表面の温度測定結果を用いた装入層の層厚調整を継続する。 In the examples shown in FIGS. 3 and 5, of the upper surface of the charging layer exiting the ignition furnace 20, the region where the temperature is high is the inner side, and the region where the height of the red tropics 38 is higher than the overall average height is also It is on the back side, and both match. Therefore, the control unit 36 determines that the ignition failure has not occurred in the ignition furnace 20, and adjusts the layer thickness of the charging layer using the temperature measurement result of the upper surface of the charging layer leaving the ignition furnace 20. continue.

なお、上記例では、点火炉20での着火不良を検出するのに風箱22の温度測定、または、赤熱帯38の高さの測定を実施する例を示したが、点火炉20での着火不良を検出するのにこれらの測定は必ずしも必須ではない。例えば、点火炉20を出た装入層の上表層の温度のみを用いた場合であっても、装入層の層厚を変化させたにも関わらず点火炉20を出た装入層の上表層の温度が低いまま変化しない場合は、点火炉20での着火不良が起きていると判断できる。 In the above example, the temperature of the airbox 22 or the height of the red tropics 38 is measured to detect the ignition failure in the ignition furnace 20, but the ignition in the ignition furnace 20 is used. These measurements are not always essential to detect defects. For example, even when only the temperature of the upper surface layer of the charging layer that has exited the ignition furnace 20 is used, the charging layer that has exited the ignition furnace 20 despite the change in the layer thickness of the charging layer. If the temperature of the upper surface layer remains low and does not change, it can be determined that the ignition failure in the ignition furnace 20 has occurred.

以上、説明したように、本実施形態に係る焼結鉱の製造方法では、装入層の上表層の温度を用いて装入層の層厚を調整する。装入層の上表層の温度は、パレット26に焼結原料が装入されてから4〜5分後に測定できるので、当該温度を用いた装入層厚の調整も、パレット26に焼結原料が装入されてから4〜5分後に実施できる。このように、本発明に係る焼結鉱の製造方法では、パレット26の幅方向に均一な焼成を行うための装入層の層厚の調整を迅速に実施できるので、焼結原料のパレット26の幅方向に均一な焼成が実現でき、これにより、返鉱原単位が少なくなり、成品焼結鉱の歩留りが向上する。 As described above, in the method for producing a sinter according to the present embodiment, the layer thickness of the charging layer is adjusted by using the temperature of the upper surface layer of the charging layer. Since the temperature of the upper surface layer of the charging layer can be measured 4 to 5 minutes after the sintering raw material is charged into the pallet 26, the thickness of the charging layer using the temperature can also be adjusted to the sintered raw material on the pallet 26. It can be carried out 4 to 5 minutes after the charging. As described above, in the method for producing a sinter according to the present invention, the layer thickness of the charging layer can be quickly adjusted for uniform firing in the width direction of the pallet 26, so that the sinter raw material pallet 26 can be quickly adjusted. It is possible to realize uniform firing in the width direction of the sinter, which reduces the return ore intensity and improves the yield of the product sinter.

次に、図1、2に示した焼結機10と同じ装置を用いて、焼結鉱を製造した実施例を説明する。本実施例では、パレット26の幅方向に2つに分割した領域で装入層厚の調整を実施した。したがって、点火炉20の出側の上表層温度、風箱22の温度および赤熱帯の高さも、パレット26の幅方向に2つに分割した領域における平均温度や平均高さで評価した。実施例の結果を下記表1に示す。 Next, an example in which sinter is produced using the same equipment as the sinter 10 shown in FIGS. 1 and 2 will be described. In this embodiment, the charging layer thickness was adjusted in the region divided into two in the width direction of the pallet 26. Therefore, the upper surface temperature on the exit side of the ignition furnace 20, the temperature of the air box 22, and the height of the red tropics were also evaluated by the average temperature and the average height in the region divided into two in the width direction of the pallet 26. The results of the examples are shown in Table 1 below.

Figure 2021085078
Figure 2021085078

表1において、装入層厚差とは、手前側の領域の装入層厚と奥側の領域の装入層厚とのの差の絶対値である。点火炉20出側の上表層の平均温度差とは、手前側の領域における上表層の平均温度と、奥側の領域における上表層の平均温度との差の絶対値である。風箱温度ピーク進行方向の差とは、風箱22の温度を示した曲線の温度ピークの進行方向のずれを風箱番号で示した値の絶対値である。赤熱帯38の平均高さの差とは、手前側の領域における赤熱帯38の中心までの平均高さと、奥側の領域における赤熱帯38の中心までの平均高さとの差の絶対値である。 In Table 1, the charging layer thickness difference is an absolute value of the difference between the charging layer thickness in the front region and the charging layer thickness in the back region. The average temperature difference of the upper surface layer on the exit side of the ignition furnace 20 is an absolute value of the difference between the average temperature of the upper surface layer in the front region and the average temperature of the upper surface layer in the back region. The difference in the traveling direction of the temperature peak of the wind box is an absolute value of the value indicated by the wind box number, which is the deviation of the traveling direction of the temperature peak of the curve showing the temperature of the wind box 22. The difference in the average height of the red tropics 38 is the absolute value of the difference between the average height to the center of the red tropics 38 in the front region and the average height to the center of the red tropics 38 in the back region. ..

比較例1は、装入層の層厚が手前側と奥側の領域でなるべく一定になるように装入ゲートの開度を制御して焼結鉱の製造を実施した製造例である。比較例1では、装入層の層厚差は1mmと少なかったものの装入層の通気性に差があり、点火炉20出側における手前側の領域の上表層の平均温度と、奥側の領域の上表層の平均温度との差が80℃あった。また、風箱22の温度ピークの進行方向の差は1.2であり、赤熱帯の平均高さの差は10mmであった。比較例1では、焼結ケーキが排鉱部42で破砕された後、粒径が5mm以下となり成品焼結鉱として用いられない返鉱の原単位が185kg/t−srとなった。 Comparative Example 1 is a production example in which the sinter is produced by controlling the opening degree of the charging gate so that the layer thickness of the charging layer is as constant as possible in the front side and the back side regions. In Comparative Example 1, although the difference in layer thickness of the charging layer was as small as 1 mm, there was a difference in the air permeability of the charging layer, and the average temperature of the upper surface layer in the front side region on the exit side of the ignition furnace 20 and the back side. The difference from the average temperature of the upper surface layer of the region was 80 ° C. The difference in the traveling direction of the temperature peak of the air box 22 was 1.2, and the difference in the average height of the red tropics was 10 mm. In Comparative Example 1, after the sintered cake was crushed in the calcination section 42, the particle size became 5 mm or less, and the basic unit of the returned ore not used as the product sintered ore was 185 kg / t-sr.

発明例1は、点火炉20から3mの範囲におけるパレット26の手前側の領域と奥側の領域の平均温度差が小さくなるように装入層の層厚差を意図的に大きくして焼結鉱の製造を実施した製造例である。発明例1では、比較例1においてパレット26の幅方向全体の平均温度よりも高かった領域の装入層の層厚を厚くし、パレット26の幅方向全体の平均温度よりも低かった領域の装入層の層厚を薄くした。これにより、装入層の層厚差は4mmと大きくなったものの手前側の領域と奥側の領域との平均温度差は20℃と小さくなった。また、風箱22の温度のピークの進行方向のずれも0.20と小さくなり、発明例1は、比較例1よりもパレット26の幅方向により均一な焼成が実現できていることがわかる。 In Invention Example 1, the layer thickness difference of the charging layer is intentionally increased so as to reduce the average temperature difference between the front side region and the back side region of the pallet 26 in the range of the ignition furnace 20 to 3 m for sintering. This is a production example in which the production of ore is carried out. In Invention Example 1, the layer thickness of the charging layer in the region where the temperature was higher than the average temperature in the entire width direction of the pallet 26 in Comparative Example 1 was increased, and the region where the temperature was lower than the average temperature in the entire width direction of the pallet 26 was charged. The layer thickness of the introductory layer was reduced. As a result, the layer thickness difference of the charging layer was as large as 4 mm, but the average temperature difference between the front side region and the back side region was as small as 20 ° C. Further, the deviation of the temperature peak of the air box 22 in the traveling direction is as small as 0.20, and it can be seen that the invention example 1 can realize more uniform firing in the width direction of the pallet 26 than in the comparative example 1.

これらの結果から、点火炉20出側の上表層の温度を測定し、パレット26の幅方向に2以上に分割した領域のうち、上表層の平均温度がパレット26の幅方向全体の平均温度よりも高い領域の装入層厚を厚くし、上表層の平均温度がパレット26の幅方向全体の平均温度よりも低い領域の装入層厚を薄くすることで、パレット26の幅方向に均一な焼結原料の焼成が実現できることがわかる。そして、パレット26の幅方向に均一な焼成が実現できた結果、発明例1の返鉱原単位は155kg/t−srと比較例1よりも少なくなり、成品焼結鉱の歩留りの向上が実現できることが確認された。 From these results, the temperature of the upper surface layer on the exit side of the ignition furnace 20 was measured, and the average temperature of the upper surface layer in the region divided into two or more in the width direction of the pallet 26 was higher than the average temperature of the entire pallet 26 in the width direction. By increasing the thickness of the charge layer in the high region and thinning the charge layer thickness in the region where the average temperature of the upper surface layer is lower than the average temperature of the entire width direction of the pallet 26, it is uniform in the width direction of the pallet 26. It can be seen that firing of the sintered raw material can be realized. As a result of realizing uniform firing in the width direction of the pallet 26, the return ore basic unit of Invention Example 1 is 155 kg / t-sr, which is smaller than that of Comparative Example 1, and the yield of the finished sinter is improved. It was confirmed that it could be done.

発明例2も、点火炉20から3mの範囲におけるパレット26の手前側の領域と奥側の領域の平均温度差が小さくなるように装入層の層厚差を意図的に大きくして焼結鉱の製造を実施した製造例である。発明例2では、比較例1においてパレット26の幅方向全体の平均温度よりも高かった領域の装入層の層厚を厚くし、パレット26の幅方向全体の平均温度よりも低かった領域の装入層の層厚を薄くした。これにより、装入層の層厚差は5mmと大きくなったものの手前側の領域と奥側の領域との平均温度差は25℃と小さくなった。また、風箱22の温度のピークの進行方向のずれも0.25と小さくなり、赤熱帯38の平均高さの差も5mmと小さくなった。これらの結果から、発明例2も比較例1よりもパレット26の幅方向により均一な焼成が実現できていることがわかる。そして、パレット26の幅方向に均一な焼成が実現できた結果、発明例2の返鉱原単位は140kg/t−srと比較例1よりも少なくなり、成品焼結鉱の歩留りの向上が実現できることが確認された。 In Invention Example 2, the layer thickness difference of the charging layer is intentionally increased so as to reduce the average temperature difference between the front side region and the back side region of the pallet 26 in the range of the ignition furnace 20 to 3 m for sintering. This is a production example in which the production of ore is carried out. In Invention Example 2, the layer thickness of the charging layer in the region higher than the average temperature in the entire width direction of the pallet 26 in Comparative Example 1 is increased, and the region in which the temperature is lower than the average temperature in the entire width direction of the pallet 26 is charged. The layer thickness of the introductory layer was reduced. As a result, the layer thickness difference of the charging layer was as large as 5 mm, but the average temperature difference between the front side region and the back side region was as small as 25 ° C. In addition, the deviation of the temperature peak of the air box 22 in the traveling direction was as small as 0.25, and the difference in the average height of the red tropics 38 was also as small as 5 mm. From these results, it can be seen that Invention Example 2 can also be fired more uniformly in the width direction of the pallet 26 than in Comparative Example 1. As a result of realizing uniform firing in the width direction of the pallet 26, the return ore basic unit of Invention Example 2 is 140 kg / t-sr, which is smaller than that of Comparative Example 1, and the yield of the finished sinter is improved. It was confirmed that it could be done.

上述したように、点火炉20出側の上表層の温度は、パレット26に焼結原料が装入されてから4〜5分後に測定できるので、当該温度を用いた装入層厚の調整もパレット26に焼結原料が装入されてから4〜5分後に実施できる。このように、本実施形態に係る焼結の製造方法では、パレット26の幅方向に均一な焼成を行うための層厚の調整を迅速に実施できるので、例えば、焼結原料の成分濃度が変動した場合に、当該変動に迅速に対応して装入層厚を調整でき、パレット26の幅方向に均一な焼成が早期に実現できる。これにより、焼結鉱製造における成品焼結鉱の歩留まりのさらなる向上が実現できる。 As described above, the temperature of the upper surface layer on the exit side of the ignition furnace 20 can be measured 4 to 5 minutes after the sintering raw material is charged into the pallet 26, so that the charging layer thickness can be adjusted using the temperature. This can be carried out 4 to 5 minutes after the sintering raw material is charged into the pallet 26. As described above, in the sintering manufacturing method according to the present embodiment, the layer thickness for uniform firing in the width direction of the pallet 26 can be quickly adjusted, so that, for example, the component concentration of the sintering raw material fluctuates. In this case, the charging layer thickness can be adjusted quickly in response to the fluctuation, and uniform firing in the width direction of the pallet 26 can be realized at an early stage. As a result, the yield of the product sintered ore in the production of the sintered ore can be further improved.

10 焼結機
12 サージホッパー
14 ロールフィーダー
16 分割ゲート
18 レベル計
20 点火炉
22 風箱
24 ブロワー
26 パレット
28 サーモグラフィ
29 温度計
30 排鉱部カメラ
32 制御装置
34 格納部
36 制御部
38 赤熱帯
40 給鉱部
42 排鉱部
10 Sintering machine 12 Surge hopper 14 Roll feeder 16 Split gate 18 Level meter 20 Ignition furnace 22 Wind box 24 Blower 26 Pallet 28 Thermography 29 Thermometer 30 Exhaust unit camera 32 Control device 34 Storage unit 36 Control unit 38 Red tropics 40 Supply Mining Department 42 Exhaust Department

Claims (3)

循環移動するパレットに焼結原料を装入して装入層を形成させ、点火炉を用いて装入層の上表層を点火し、下方から空気を吸引して前記焼結原料を焼結鉱して焼結ケーキとした後、前記焼結ケーキを排鉱部から排出して製造する焼結鉱の製造方法であって、
前記点火炉を出た前記上表層の温度を測定し、前記パレットの幅方向に2以上に分割した領域のうち、前記上表層の平均温度がパレットの幅方向全体の平均温度よりも高い領域の前記装入層の層厚を厚く形成させ、前記上表層の平均温度がパレットの幅方向全体の平均温度よりも低い領域の前記装入層の層厚を薄く形成させる、焼結鉱の製造方法。
A sinter raw material is charged into a circulating pallet to form a charged layer, the upper surface layer of the charged layer is ignited using an ignition furnace, and air is sucked from below to sinter the sintered raw material. This is a method for producing a sintered ore, which is produced by discharging the sintered cake from a sinter part after making a sintered cake.
The temperature of the upper surface layer that has exited the ignition furnace is measured, and among the regions divided into two or more in the width direction of the pallet, the average temperature of the upper surface layer is higher than the average temperature of the entire width direction of the pallet. A method for producing a sintered ore, in which a thicker charge layer is formed and a thinner layer thickness of the charge layer is formed in a region where the average temperature of the upper surface layer is lower than the average temperature of the entire width direction of the pallet. ..
前記下方から吸引される空気の温度を測定し、パレットの幅方向に2以上に分割した領域のうち、前記空気の平均温度がパレットの幅方向全体の平均温度よりも高い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より高い領域に一致し、前記空気の平均温度がパレットの幅方向全体の平均温度よりも低い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より低い領域に一致する場合に前記層厚の調整を継続する、請求項1に記載の焼結鉱の製造方法。 The temperature of the air sucked from below is measured, and among the regions divided into two or more in the width direction of the pallet, the region where the average temperature of the air is higher than the average temperature of the entire width direction of the pallet is the upper surface layer. The region where the average temperature is higher than the average temperature of the entire width direction of the pallet, and the region where the average temperature of the air is lower than the average temperature of the entire width direction of the pallet is the region where the average temperature of the upper surface layer is the entire width direction of the pallet. The method for producing a sintered ore according to claim 1, wherein the adjustment of the layer thickness is continued when the temperature corresponds to a region lower than the average temperature. 前記排鉱部で焼結ケーキの破断面に表われる赤熱帯の高さを測定し、パレットの幅方向に2以上に分割した領域のうち、前記赤熱帯の平均高さがパレットの幅方向全体の平均高さよりも低い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より高い領域に一致し、前記赤熱帯の平均高さがパレットの幅方向全体の平均高さより高い領域が前記上表層の平均温度がパレットの幅方向全体の平均温度より低い領域に一致する場合に前記層厚の調整を継続する、請求項1に記載の焼結鉱の製造方法。 The height of the red tropics appearing on the fracture surface of the sintered cake was measured at the excretion part, and the average height of the red tropics was the entire width direction of the pallet among the regions divided into two or more in the width direction of the pallet. The region lower than the average height of the pallet corresponds to the region where the average temperature of the upper surface layer is higher than the average temperature of the entire width direction of the pallet, and the region where the average height of the red tropics is higher than the average height of the entire width direction of the pallet. The method for producing a sintered ore according to claim 1, wherein the adjustment of the layer thickness is continued when the average temperature of the upper surface layer coincides with a region lower than the average temperature of the entire width direction of the pallet.
JP2019215380A 2019-11-28 2019-11-28 Sintered ore manufacturing method Active JP7099433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215380A JP7099433B2 (en) 2019-11-28 2019-11-28 Sintered ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215380A JP7099433B2 (en) 2019-11-28 2019-11-28 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JP2021085078A true JP2021085078A (en) 2021-06-03
JP7099433B2 JP7099433B2 (en) 2022-07-12

Family

ID=76085801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215380A Active JP7099433B2 (en) 2019-11-28 2019-11-28 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JP7099433B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126935A (en) * 1982-01-26 1983-07-28 Kawasaki Steel Corp Method for reducing irregularity of burning of sintered ore
JPS59179721A (en) * 1983-03-31 1984-10-12 Kawasaki Steel Corp Controlling method of sintering with continuous sintering machine
JPH01191751A (en) * 1988-01-26 1989-08-01 Nkk Corp Operating method of sintering machine
JPH03177787A (en) * 1989-12-05 1991-08-01 Kawasaki Steel Corp Reduction of sintering nonuniformity of sintered ore
JP2014523971A (en) * 2011-07-28 2014-09-18 オウトテック オサケイティオ ユルキネン Method and adjuster for adjusting firing completion point in sintering machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177787B2 (en) 1992-02-27 2001-06-18 横浜ゴム株式会社 Measuring method of raw rubber sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126935A (en) * 1982-01-26 1983-07-28 Kawasaki Steel Corp Method for reducing irregularity of burning of sintered ore
JPS59179721A (en) * 1983-03-31 1984-10-12 Kawasaki Steel Corp Controlling method of sintering with continuous sintering machine
JPH01191751A (en) * 1988-01-26 1989-08-01 Nkk Corp Operating method of sintering machine
JPH03177787A (en) * 1989-12-05 1991-08-01 Kawasaki Steel Corp Reduction of sintering nonuniformity of sintered ore
JP2014523971A (en) * 2011-07-28 2014-09-18 オウトテック オサケイティオ ユルキネン Method and adjuster for adjusting firing completion point in sintering machine

Also Published As

Publication number Publication date
JP7099433B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP5298634B2 (en) Quality control method for sintered ore
KR101475130B1 (en) Method for producing sintered ore
US5009707A (en) Method for manufacturing agglomerates of sintered pellets
JP7099433B2 (en) Sintered ore manufacturing method
JP6179726B2 (en) Method for producing sintered ore
KR101364064B1 (en) Burning temperature control apparatus and method using it
JP6384438B2 (en) Method for producing sintered ore
JP5640876B2 (en) Method for monitoring sinter quality fluctuation in sinter production and method for producing sinter using the monitoring method
KR102074359B1 (en) Apparatus and Method for quality prediction
JP7342911B2 (en) Method for manufacturing sintered ore
JP6107461B2 (en) Sintering raw material sintering method
JP2024029278A (en) Sintered ore production method and sintering machine
JP2023174553A (en) Method for manufacturing sintered ore and sintering machine
JP2010286158A (en) Charge condition measuring device for sintered material and method for manufacturing sintered ore
KR101316911B1 (en) Apparatus for controlling density of sintered ore and method for controlling density of sintered ore using the same
JP7568174B1 (en) Sintered ore manufacturing apparatus, sintered ore manufacturing method, and program
JPS55122833A (en) Sintering machine operating method
JPH0499135A (en) Method for controlling sintering of calcined lump ore
KR102010932B1 (en) Apparatus and mehtod for manufacutring sintered ore
KR20140001555A (en) Apparatus for charging sintering material and method for charging sintering material
JP2024106023A (en) Sintered ore manufacturing method and sintered ore manufacturing equipment
KR20050010264A (en) Method for manufacturing sintered ore using the baking tempature on the wind box
JPS5925746B2 (en) Continuous granulation and sintering method for fly attachment
CN205295168U (en) A sintering device for detecting and controlled temperature
CN117647108A (en) Method and system for determining state of sintered material according to temperature of cross section of tail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7099433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150