JP2021083257A - Magnetic pole direction detection device and magnetic pole direction detection method - Google Patents

Magnetic pole direction detection device and magnetic pole direction detection method Download PDF

Info

Publication number
JP2021083257A
JP2021083257A JP2019210687A JP2019210687A JP2021083257A JP 2021083257 A JP2021083257 A JP 2021083257A JP 2019210687 A JP2019210687 A JP 2019210687A JP 2019210687 A JP2019210687 A JP 2019210687A JP 2021083257 A JP2021083257 A JP 2021083257A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole direction
variation
unit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019210687A
Other languages
Japanese (ja)
Other versions
JP7381303B2 (en
Inventor
高志 岡本
Takashi Okamoto
高志 岡本
有紀 森田
Yuki Morita
有紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2019210687A priority Critical patent/JP7381303B2/en
Publication of JP2021083257A publication Critical patent/JP2021083257A/en
Application granted granted Critical
Publication of JP7381303B2 publication Critical patent/JP7381303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a highly accurate magnetic pole direction detecting device for magnetic pole detection of a synchronous motor having a salience.SOLUTION: A magnetic pole direction detection device comprises: a high-frequency voltage application unit 2 that applies a high-frequency voltage to a motor 10; an excitation phase change unit 3 that changes the excitation phase of the motor 10 to an arbitrary phase; a drive current detection unit 4 that detects the drive current value of the motor 10; a magnetic pole direction estimation unit 5 that estimates the magnetic pole direction of the motor 10 on the basis of the excitation phase and the drive current value when the high frequency voltage is applied to the motor 10; a variation calculation unit 6 that calculates the variation of the magnetic pole direction estimation result estimated by the magnetic pole direction estimation unit 5; a determination unit 7 that determines whether the variation is larger than a predetermined threshold value; and a control unit 8 that, on the basis of the determination result of the determination unit 7, outputs the magnetic pole direction estimation result as the magnetic pole direction detection result of a motor 10 when the variation is equal to or less than the predetermined threshold value, and changes the frequency of the high frequency voltage applied by the high-frequency voltage application unit 2 and repeatedly retries the magnetic pole direction detection until the variation becomes the predetermined threshold value or less when the variation is larger than the predetermined threshold value.SELECTED DRAWING: Figure 1

Description

本発明は、磁極方向検出装置に関する。 The present invention relates to a magnetic pole direction detection device.

従来、突極性のある同期モータにおいて、モータが停止した状態のまま磁極検出を行う手法が存在する。特許文献1には、モータの励磁位相を変えながら振幅の小さい高周波電圧をモータに印加したときに、各位相でのフィードバック電流値を測定し、その大きさから磁極方向を推定する技術が開示されている。 Conventionally, in a synchronous motor having a salient polarity, there is a method of detecting magnetic poles while the motor is stopped. Patent Document 1 discloses a technique of measuring the feedback current value in each phase and estimating the magnetic pole direction from the magnitude when a high frequency voltage having a small amplitude is applied to the motor while changing the excitation phase of the motor. ing.

特開2005−130582号公報Japanese Unexamined Patent Publication No. 2005-130582

しかしながら、インダクタンス値のオーダが大きい場合には得られるフィードバック電流値が小さくなり、ノイズの影響を受けやすくなる。そのため、磁極方向の検出結果に誤差が生じやすく、複数回の磁極方向推定を行っても検出結果のばらつきが大きかった。 However, when the order of the inductance value is large, the obtained feedback current value becomes small, and it becomes easily affected by noise. Therefore, an error is likely to occur in the detection result of the magnetic pole direction, and the detection result has a large variation even if the magnetic pole direction is estimated a plurality of times.

本開示の一態様は、突極性を有する同期電動機(例えば、後述の電動機10)の磁極方向を検出する磁極方向検出装置(例えば、後述の磁極方向検出装置1)であって、前記電動機に対して高周波電圧を印加する高周波電圧印加部(例えば、後述の高周波電圧印加部2)と、前記電動機の励磁位相を任意の位相に変化させる励磁位相変化部(例えば、後述の励磁位相変化部3)と、前記電動機の駆動電流値を検出する駆動電流検出部(例えば、後述の駆動電流検出部4)と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定部(例えば、後述の磁極方向推定部5)と、前記磁極方向推定部で推定された前記磁極方向推定結果のばらつきを算出するばらつき算出部(例えば、後述のばらつき算出部6)と、前記ばらつき算出部が算出したばらつきが所定の閾値より大きいか否かを判定する判定部(例えば、後述の判定部7)と、前記判定部の判定結果に基づいて、前記ばらつきが所定の閾値以下である場合には、前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力し、前記ばらつきが所定の閾値より大きい場合には、前記高周波電圧印加部が印加する高周波電圧の周波数を変更して前記磁極方向推定を再試行する制御部(例えば、後述の制御部8)と、を備える磁極方向検出装置を提供する。 One aspect of the present disclosure is a magnetic pole direction detecting device (for example, a magnetic pole direction detecting device 1 described later) for detecting the magnetic pole direction of a synchronous motor having a salient pole (for example, the electric motor 10 described later) with respect to the electric motor. A high-frequency voltage application unit (for example, a high-frequency voltage application unit 2 described later) for applying a high-frequency voltage and an excitation phase change unit (for example, an excitation phase change unit 3 described later) for changing the excitation phase of the motor to an arbitrary phase. And the magnetic pole direction based on the drive current detection unit (for example, the drive current detection unit 4 described later) that detects the drive current value of the motor, the excitation phase, and the drive current value under the application of the high frequency voltage. A magnetic pole direction estimation unit that executes estimation (for example, a magnetic pole direction estimation unit 5 described later) and a variation calculation unit that calculates variations in the magnetic pole direction estimation results estimated by the magnetic pole direction estimation unit (for example, variation calculation described later). The variation is based on the determination result of the determination unit, the unit 6), the determination unit for determining whether or not the variation calculated by the variation calculation unit is larger than a predetermined threshold value (for example, the determination unit 7 described later), and the determination result of the determination unit. Is equal to or less than a predetermined threshold value, the magnetic pole direction estimation result is output as the magnetic pole direction detection result of the motor, and if the variation is larger than the predetermined threshold value, the high frequency voltage applied by the high frequency voltage application unit is applied. Provided is a magnetic pole direction detecting device including a control unit (for example, a control unit 8 described later) that retries the estimation of the magnetic pole direction by changing the frequency of the magnetic pole direction.

また本開示の一態様は、突極性を有する同期電動機の磁極方向を検出する磁極方向検出方法であって、前記電動機に対して高周波電圧を印加する高周波電圧印加工程と、前記電動機の励磁位相を任意の位相に変化させる励磁位相変化工程と、前記電動機の駆動電流値を検出する駆動電流検出工程と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定工程と、前記磁極方向推定部で推定された前記磁極方向推定結果のばらつきを算出するばらつき算出工程と、前記ばらつき算出部が算出したばらつきが所定の閾値より大きいか否かを判定する判定工程と、を備え、前記判定工程の判定結果に基づいて、前記ばらつきが所定の閾値以下である場合には、前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力し、前記ばらつきが所定の閾値より大きいである場合には、前記高周波電圧印加工程で印加する高周波電圧の周波数を変更して、前記高周波電圧印加工程と、前記励磁位相変化工程と、前記駆動電流検出工程と、前記磁極方向推定工程と、前記ばらつき算出工程と、前記判定工程と、を再試行する、前記磁極方向検出方法を提供する。 Further, one aspect of the present disclosure is a magnetic pole direction detection method for detecting the magnetic pole direction of a synchronous electric motor having salient poles, in which a high-frequency voltage application step of applying a high-frequency voltage to the electric motor and an excitation phase of the electric motor are set. The magnetic pole direction is estimated based on the excitation phase change step of changing to an arbitrary phase, the drive current detection step of detecting the drive current value of the electric motor, the excitation phase, and the drive current value under the application of the high frequency voltage. The magnetic pole direction estimation step for executing the above, the variation calculation step for calculating the variation of the magnetic pole direction estimation result estimated by the magnetic pole direction estimation unit, and whether or not the variation calculated by the variation calculation unit is larger than a predetermined threshold value. When the variation is equal to or less than a predetermined threshold value based on the determination result of the determination step, the magnetic pole direction estimation result is output as the magnetic pole direction detection result of the electric motor. When the variation is larger than a predetermined threshold value, the frequency of the high frequency voltage applied in the high frequency voltage application step is changed to change the high frequency voltage application step, the excitation phase change step, and the drive current detection step. The magnetic pole direction detecting method is provided, which retries the magnetic pole direction estimation step, the variation calculation step, and the determination step.

本発明によれば、突極性を有する同期電動機の磁極検出において、高精度な磁極方向検出装置を提供することができる。 According to the present invention, it is possible to provide a highly accurate magnetic pole direction detecting device in magnetic pole detection of a synchronous motor having a salient polarity.

本発明の一実施形態に係る磁極方向検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the magnetic pole direction detection apparatus which concerns on one Embodiment of this invention. 埋込磁石型電動機における磁極方向について説明する説明図である。It is explanatory drawing explaining the magnetic pole direction in the embedded magnet type motor. リラクタンス型電動機における磁極方向について説明する説明図である。It is explanatory drawing explaining the magnetic pole direction in a reluctance type electric motor. 埋込磁石型電動機におけるインダクタンスと電流時間微分値の関係についての説明図である。It is explanatory drawing about the relationship between the inductance and the current-time differential value in an embedded magnet type motor. リラクタンス型電動機におけるインダクタンスと電流時間微分値の関係についての説明図である。It is explanatory drawing about the relationship between the inductance and the current-time differential value in a reluctance type motor. 励磁位相の変化に対する電流値を示す図である。It is a figure which shows the current value with respect to the change of the excitation phase. 高い周波数の高周波電圧印加時の推定磁極方向を示すグラフである。It is a graph which shows the estimated magnetic pole direction at the time of applying a high frequency voltage of a high frequency. 低い周波数の高周波電圧印加時の推定磁極方向を示すグラフである。It is a graph which shows the estimated magnetic pole direction at the time of applying a high frequency voltage of a low frequency. 高い周波数の高周波電圧印加時の電流時間微分値と電流値の関係を示すグラフである。It is a graph which shows the relationship between the current time derivative value and the current value at the time of applying a high frequency voltage of a high frequency. 低い周波数の高周波電圧印加時の電流時間微分値と電流値の関係を示すグラフである。It is a graph which shows the relationship between the current time derivative value and the current value at the time of applying a high frequency voltage of a low frequency. インダクタンスの電流値依存性について説明するグラフである。It is a graph explaining the current value dependence of the inductance. 本発明の一実施形態に係る磁極方向検出方法を説明するフローチャートである。It is a flowchart explaining the magnetic pole direction detection method which concerns on one Embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

図1は、本発明の一実施形態に係る磁極方向検出装置の構成を示すブロック図である。
本実施形態の磁極方向検出装置1は、高周波電圧印加部2と、励磁位相変化部3と、駆動電流検出部4と、磁極方向推定部5と、ばらつき算出部6と、判定部7と、制御部8と、磁極位置検出部9と、を備える。磁極方向検出装置1は、突極性を有する同期式電動機10の磁極方向を高精度に検出可能である。
FIG. 1 is a block diagram showing a configuration of a magnetic pole direction detection device according to an embodiment of the present invention.
The magnetic pole direction detection device 1 of the present embodiment includes a high-frequency voltage application unit 2, an exciting phase change unit 3, a drive current detection unit 4, a magnetic pole direction estimation unit 5, a variation calculation unit 6, and a determination unit 7. A control unit 8 and a magnetic pole position detection unit 9 are provided. The magnetic pole direction detecting device 1 can detect the magnetic pole direction of the synchronous motor 10 having a salient polarity with high accuracy.

磁極方向の検出対象となる同期式電動機10は突極性を有するものであれば特に限定されず、例えば図2Aに示すようなロータ11上に鉄芯12が配置されるとともに内部に永久磁石13が埋め込まれた埋込磁石型の電動機10であってもよいし、図2Bに示すようなロータ21上に鉄芯22のみが配置されたリラクタンス型の電動機20であってもよい。これらの電動機10,20は、ロータ11,21に配置された鉄芯12,22や永久磁石13の非対称性によってロータ11,21の回転軸周りのインダクタンスが異なる。以下では、主として埋込磁石型の電動機10を検出対象とした実施形態について説明し、適宜リラクタンス型の電動機20を検出対象とした場合についても記述する。 The synchronous motor 10 to be detected in the magnetic pole direction is not particularly limited as long as it has a salient pole. For example, the iron core 12 is arranged on the rotor 11 as shown in FIG. 2A, and the permanent magnet 13 is inside. It may be an embedded magnet type electric motor 10 or a reluctance type electric motor 20 in which only the iron core 22 is arranged on the rotor 21 as shown in FIG. 2B. In these motors 10 and 20, the inductance around the rotation axis of the rotors 11 and 21 differs due to the asymmetry of the iron cores 12 and 22 and the permanent magnets 13 arranged in the rotors 11 and 21. Hereinafter, an embodiment in which the embedded magnet type motor 10 is mainly targeted for detection will be described, and a case where the reluctance type motor 20 is appropriately targeted for detection will also be described.

高周波電圧印加部2は、電動機10のロータ11に高周波電圧を印加可能である。励磁位相変化部3は、高周波電圧印加部2が印加される電動機10の励磁位相を変化させる。駆動電流検出部4は、高周波電圧の印加により電動機10に流れる駆動電流を検出する。磁極方向推定部5は、電動機10の励磁位相と、高周波電圧印加下の駆動電流検出部4によって検出した駆動電流の値に基づいて、電動機10の磁極方向を推定する。 The high frequency voltage application unit 2 can apply a high frequency voltage to the rotor 11 of the motor 10. The exciting phase changing unit 3 changes the exciting phase of the motor 10 to which the high frequency voltage applying unit 2 is applied. The drive current detection unit 4 detects the drive current flowing through the motor 10 by applying a high frequency voltage. The magnetic pole direction estimation unit 5 estimates the magnetic pole direction of the motor 10 based on the excitation phase of the motor 10 and the value of the drive current detected by the drive current detection unit 4 under the application of a high frequency voltage.

高周波電圧の印加により電動機10に流れる駆動電流値は、高周波電圧印加時の電動機10の励磁位相によって変化する。励磁位相θを励磁位相変化部3によって0≦θ≦180°で変化させ、駆動電流検出部4によって駆動電流の値を検出することで、その電圧周波数での励磁位相θに対する駆動電流値iの関係を調べることができる。電動機10の励磁位相は、例えばロータ11を回転させることによって変化させることができる。 The drive current value that flows through the motor 10 due to the application of the high frequency voltage changes depending on the excitation phase of the motor 10 when the high frequency voltage is applied. The exciting phase θ is changed by the exciting phase changing unit 3 in 0 ≦ θ ≦ 180 °, and the driving current value is detected by the driving current detecting unit 4, so that the driving current value i with respect to the exciting phase θ at that voltage frequency You can look up the relationship. The excitation phase of the motor 10 can be changed, for example, by rotating the rotor 11.

ここで、本実施形態の磁極方向検出装置1が検出する磁極方向について説明する。図2Aに示すようにロータ11の回転角をθとする。ロータ11に外部から磁石のS極を向けた場合に、回転して当該S極を向くロータ11の角度位置θをロータ11の磁極位置(D相)といい、ロータ11の回転中心と磁極位置を結ぶ直線(D軸)方向が磁極方向である。また、Q軸はロータ11の回転面内でD軸に直交する。
例えば、図2Aに示す埋込磁石型の電動機10のロータ11では、埋め込まれた永久磁石13のN−S極に沿って延びる方向が磁極方向となる。また、図2Bに示すリラクタンス型の電動機20のロータ21では、模式的に長方形で描画された鉄芯12の長辺方向が磁極方向となる。
Here, the magnetic pole direction detected by the magnetic pole direction detecting device 1 of the present embodiment will be described. As shown in FIG. 2A, the rotation angle of the rotor 11 is θ. When the south pole of the magnet is directed to the rotor 11 from the outside, the angular position θ of the rotor 11 that rotates and faces the south pole is called the magnetic pole position (D phase) of the rotor 11, and the rotation center and the magnetic pole position of the rotor 11 The direction of the straight line (D axis) connecting the magnets is the magnetic pole direction. Further, the Q axis is orthogonal to the D axis in the rotation plane of the rotor 11.
For example, in the rotor 11 of the embedded magnet type electric motor 10 shown in FIG. 2A, the direction extending along the NS pole of the embedded permanent magnet 13 is the magnetic pole direction. Further, in the rotor 21 of the reluctance type electric motor 20 shown in FIG. 2B, the long side direction of the iron core 12 schematically drawn as a rectangle is the magnetic pole direction.

上述したように、突極性を有する同期電動機では、D相インダクタンスLdとQ相インダクタンスLqは、ロータ構造の非対称性によって異なる値となっている。インダクタンスは磁束の通りやすさを表す指標であり、埋込磁石型の電動機10のロータ11ではLd<Lqとなり、リラクタンス型の電動機20のロータ21ではLq<Ldとなる。 As described above, in the synchronous motor having salient polarity, the D-phase inductance Ld and the Q-phase inductance Lq have different values depending on the asymmetry of the rotor structure. The inductance is an index showing the ease of passage of magnetic flux, and Ld <Lq in the rotor 11 of the embedded magnet type motor 10 and Lq <Ld in the rotor 21 of the reluctance type motor 20.

本実施形態の磁極方向検出装置1は、電流値iを時間tで微分した電流時間微分値(di/dt)の振幅に基づいて磁極方向を検出する。電流時間微分値は次の式(1)のように表せ、励磁位相θの変化に伴って周期的に変化する。

Figure 2021083257
…(1)
ただし、
=(L+L)/2,
=(L−L)/2
θ(t):時刻tにおける印加電圧の位相
θ:磁極位置
Vsinγt:高周波電圧 The magnetic pole direction detection device 1 of the present embodiment detects the magnetic pole direction based on the amplitude of the current-time derivative value (di / dt) obtained by differentiating the current value i with respect to time t. The current-time differential value can be expressed by the following equation (1), and changes periodically as the excitation phase θ changes.
Figure 2021083257
… (1)
However,
L 0 = (L d + L q ) / 2,
L 2 = (L d −L q ) / 2
θ (t): Phase of applied voltage at time t θ p : Magnetic pole position Vsinγt: High frequency voltage

図3Aおよび図3Bに示すように、インダクタンスの大小は電流時間微分値の振幅の大小と逆相関する。すなわち、例えば埋込磁石型の電動機10の場合、電流時間微分値の振幅が極小値をとるとき、インダクタンスが極大値Lqをとる。また、電流時間微分値の振幅が極大値をとるとき、インダクタンスが極小値Ldをとる(図3A)。リラクタンス型の電動機20の場合、電流時間微分値の振幅が極小値をとるとき、インダクタンスが極大値Ldをとる。また、電流時間微分値の振幅が極大値をとるとき、インダクタンスが極小値Lqをとる(図3B)。 As shown in FIGS. 3A and 3B, the magnitude of the inductance is inversely correlated with the magnitude of the amplitude of the current-time derivative value. That is, for example, in the case of the embedded magnet type motor 10, when the amplitude of the current-time differential value takes the minimum value, the inductance takes the maximum value Lq. Further, when the amplitude of the current-time derivative value takes a maximum value, the inductance takes a minimum value Ld (FIG. 3A). In the case of the reluctance type motor 20, when the amplitude of the current-time differential value takes the minimum value, the inductance takes the maximum value Ld. Further, when the amplitude of the current-time derivative value takes a maximum value, the inductance takes a minimum value Lq (FIG. 3B).

したがって、0°≦θ≦360°で励磁位相θを時刻tとともに変化させながら電流時間微分値の振幅の極小値または極大値を検出し、その時の励磁位相を出力することで、磁極方向を推定することができる。具体的には、上述の埋込磁石型の電動機10の場合、電流時間微分値の振幅が極大値をとるときインダクタンスはLdをとる。その時の励磁位相をθとすると、θ+n×180°(0°≦θ≦180°、nは整数)が磁極方向である。リラクタンス型の電動機20の場合、電流時間微分値の振幅が極小値をとるときインダクタンスはLdをとる。その時の励磁位相をθとすると、θ+n×180°(0°≦θ≦180°、nは整数)が磁極方向である。 Therefore, the magnetic pole direction is estimated by detecting the minimum or maximum value of the amplitude of the current-time differential value while changing the excitation phase θ with time t at 0 ° ≤ θ ≤ 360 ° and outputting the excitation phase at that time. can do. Specifically, in the case of the above-mentioned embedded magnet type motor 10, the inductance takes Ld when the amplitude of the current-time differential value takes the maximum value. Assuming that the excitation phase at that time is θ 1 , θ 1 + n × 180 ° (0 ° ≤ θ 1 ≤ 180 °, n is an integer) is the magnetic pole direction. In the case of the reluctance type motor 20, the inductance takes Ld when the amplitude of the current-time differential value takes a minimum value. Assuming that the excitation phase at that time is θ 2 , θ 2 + n × 180 ° (0 ° ≤ θ 2 ≤ 180 °, n is an integer) is the magnetic pole direction.

図4は、駆動電流値と励磁位相の関係を示すグラフである。一定の高周波電圧印加の下、電流時間微分値と励磁位相θの変化を経時的に観測し、電流時間微分値の振幅が極小値をとるときの励磁位相θに基づいて磁極方向を推定する。 FIG. 4 is a graph showing the relationship between the drive current value and the excitation phase. Under constant high-frequency voltage application, changes in the current-time differential value and the excitation phase θ are observed over time, and the magnetic pole direction is estimated based on the excitation phase θ when the amplitude of the current-time differential value takes the minimum value.

電流時間微分値はθの増加に伴って周期的に変化し、その極大値および極小値は1周につきそれぞれ2回ずつ現れる。したがって、複数の極大値および極小値に係る励磁位相θの値を推定して平均化することで、より高精度に磁極方向を推定することができるため、励磁位相は1周以上変化させて磁極方向を推定することが好ましい。なお、複数の励磁位相θの値の処理は平均化に限定されず、他の方法で処理してもよい。 The current-time derivative value changes periodically as θ increases, and its maximum value and minimum value appear twice each per lap. Therefore, by estimating and averaging the values of the exciting phases θ related to the plurality of maximum and minimum values, the magnetic pole direction can be estimated with higher accuracy. Therefore, the exciting phase can be changed by one or more turns to change the magnetic poles. It is preferable to estimate the direction. The processing of the values of the plurality of excitation phases θ is not limited to averaging, and may be processed by another method.

磁極方向の推定は電流時間微分値の振幅の極大値と極小値のいずれを検出してもよいが、特に極大値を検出して行うことが好ましい。電流時間微分値の振幅は、極大値の方が極小値と比較して急峻に変化するためノイズの影響を受けにくく、検出精度が向上するためである。Ld<Lqである埋込磁石型の電動機10の場合、検出した極大値をとる励磁位相がそのまま磁極方向と推定される。Lq<Ldとなるリラクタンス型の電動機20の場合、検出した極大値をとる励磁位相から90°ずらした位相が磁極方向と推定される。このようにして、例えばロータ11をS周させて2S回現れる極大値について検出し、磁極方向を推定する。 The magnetic pole direction may be estimated by detecting either the maximum value or the minimum value of the amplitude of the current-time differential value, but it is particularly preferable to detect the maximum value. This is because the amplitude of the current-time differential value changes sharply when the maximum value is compared with the minimum value, so that it is not easily affected by noise and the detection accuracy is improved. In the case of the embedded magnet type motor 10 in which Ld <Lq, the excitation phase having the detected maximum value is estimated to be the magnetic pole direction as it is. In the case of the reluctance type motor 20 in which Lq <Ld, the phase shifted by 90 ° from the excitation phase having the detected maximum value is estimated to be the magnetic pole direction. In this way, for example, the rotor 11 is rotated S and the maximum value that appears 2S times is detected, and the magnetic pole direction is estimated.

ばらつき算出部6は、検出した2S個の極大値に係る磁極方向推定結果について、ばらつきを算出する。ばらつき算出結果が予め設定された所定の閾値よりも小さい場合は、その磁極方向推定結果は十分な精度を有するとして、磁極方向検出結果として出力される。ばらつき算出結果が予め設定された所定の閾値よりも小さい場合は、高周波電圧の周波数を変更して、磁極方向推定を再試行する。これを、磁極方向推定結果のばらつきが閾値以下となるまで繰り返す。これにより、高精度に磁極方向を検出することが可能となる。ばらつきの大きさの基準のとり方としては特に限定されず、例えば2S個の値の分散を基準としてもよいし、2S個の位相のうち最大位相と最小位相の差を基準としてもよい。 The variation calculation unit 6 calculates variations from the magnetic pole direction estimation results related to the detected 2S maximum values. When the variation calculation result is smaller than a predetermined threshold value set in advance, the magnetic pole direction estimation result is considered to have sufficient accuracy and is output as the magnetic pole direction detection result. If the variation calculation result is smaller than a predetermined threshold value set in advance, the frequency of the high frequency voltage is changed and the magnetic pole direction estimation is retried. This is repeated until the variation in the magnetic pole direction estimation result becomes equal to or less than the threshold value. This makes it possible to detect the magnetic pole direction with high accuracy. The method of taking the standard of the magnitude of variation is not particularly limited, and for example, the variance of 2S values may be used as a reference, or the difference between the maximum phase and the minimum phase of the 2S phases may be used as a reference.

一方で、電流値が大きくなりすぎると電動機10の発熱が大きくなるなどの弊害が生じるため、電動機10への印加電流として適切な電流値の範囲で印加電圧の周波数を変更することが好ましい。さらに、電動機10がリミッターを有し、過電流防止のために電動機10に流れる電流値の上限値が設定されているような場合には、電流値が大きくなりすぎると継時的変化を正確に測定できず、電流時間微分値の極大値および極小値を高精度に検出できなくなる。したがってこの場合には、電流値が設定された上限値未満となる範囲で印加電圧の周波数を変更することが好ましい。 On the other hand, if the current value becomes too large, there will be an adverse effect such as an increase in heat generation of the motor 10, so it is preferable to change the frequency of the applied voltage within a range of an appropriate current value as the current applied to the motor 10. Further, when the motor 10 has a limiter and an upper limit of the current value flowing through the motor 10 is set to prevent overcurrent, if the current value becomes too large, the change over time will be accurate. It cannot be measured, and the maximum and minimum values of the current-time differential value cannot be detected with high accuracy. Therefore, in this case, it is preferable to change the frequency of the applied voltage within a range in which the current value is less than the set upper limit value.

図5Aおよび図5Bには、高周波電圧の周波数を変えて磁極方向の推定を行った結果を示す。図5Bでは、図5Aよりも低い周波数の高周波電圧を印加した際の結果を示している。図5Bのほうが検出される電流値が大きく、推定磁極方向のばらつきが小さくなっている。 5A and 5B show the results of estimating the magnetic pole direction by changing the frequency of the high frequency voltage. FIG. 5B shows the result when a high frequency voltage having a frequency lower than that of FIG. 5A is applied. In FIG. 5B, the detected current value is larger and the variation in the estimated magnetic pole direction is smaller.

印加する高周波電圧の周波数の変さらに際し、周波数を低くすると電流値は増加するため、磁極方向がより高精度に検出可能となる。これについて、詳しく説明する。図6Aおよび図6Bは電流時間微分値と電流値の継時変化を並べて表記したグラフであり、図6Bでは、図6Aよりも低い周波数の高周波電圧を印加した際の結果を示している。tおよびtは半周期となる時間tを、iおよびiは電流iの振幅を表しており、t<t、i<iである。 When the frequency of the applied high-frequency voltage is further changed and the frequency is lowered, the current value increases, so that the magnetic pole direction can be detected with higher accuracy. This will be described in detail. 6A and 6B are graphs showing the time-dependent differential value and the change over time of the current value side by side, and FIG. 6B shows the result when a high frequency voltage having a frequency lower than that of FIG. 6A is applied. t 1 and t 2 represent the time t which is a half cycle, and i 1 and i 2 represent the amplitude of the current i, and t 1 <t 2 and i 1 <i 2 .

式(1)より、電流時間微分値の振幅はθとインダクタンスのみに依存するから、高周波電圧の周波数を小さくしても一定である。一方で、周波数が低くなると波長は大きくなるため、tはtよりも大きくなる。結果、印加電圧の周波数が低くなると電流時間微分値のグラフの網掛け部分の面積は大きくなる。電流値のグラフを時間で微分したものが電流時間微分値のグラフであるから、電流時間微分値のグラフの網掛け部分の面積は、対応する電流値のグラフの振幅の大きさを表す。したがって、印加する高周波電圧の周波数の変さらに際し、周波数を低くすると電流値は増加する。 From the equation (1), since the amplitude of the current-time differential value depends only on θ and the inductance, it is constant even if the frequency of the high frequency voltage is reduced. On the other hand, as the frequency becomes lower, the wavelength becomes larger, so that t 2 becomes larger than t 1. As a result, as the frequency of the applied voltage becomes lower, the area of the shaded portion of the graph of the current-time differential value becomes larger. Since the current-time derivative graph is obtained by differentiating the current value graph with respect to time, the area of the shaded portion of the current-time derivative graph represents the magnitude of the amplitude of the corresponding current value graph. Therefore, when the frequency of the applied high frequency voltage is further changed and the frequency is lowered, the current value increases.

検出対象の電動機が埋込磁石型の電動機10の場合、磁極位置検出部9によってさらに磁極位置を検出可能であることが好ましい。磁極位置の検出方法としては従来公知の方法を用いることができ、例えば次のような方法で検出可能である。まず、電動機10に、磁極方向検出装置1によって検出された磁極方向に対して平行に、外部磁界を印加する。続いて、前記外部磁界の符号を反転させる。外部磁界の印加方向が永久磁石13によって形成される磁界と同方向である場合には磁気飽和が起こり、逆方向の磁界を印加した時と比較してインダクタンスが低下するため、電流値の変化が大きくなる。この性質を利用して、磁極位置を検出することができる。 When the motor to be detected is an embedded magnet type motor 10, it is preferable that the magnetic pole position can be further detected by the magnetic pole position detecting unit 9. As a method for detecting the magnetic pole position, a conventionally known method can be used, and for example, it can be detected by the following method. First, an external magnetic field is applied to the electric motor 10 in parallel with the magnetic pole direction detected by the magnetic pole direction detecting device 1. Subsequently, the sign of the external magnetic field is inverted. When the application direction of the external magnetic field is the same direction as the magnetic field formed by the permanent magnet 13, magnetic saturation occurs and the inductance decreases as compared with the case where the magnetic field in the opposite direction is applied, so that the change in the current value changes. growing. By utilizing this property, the position of the magnetic pole can be detected.

さらに図7に示すように、インダクタンス値は電流値に依存し、電流値が大きくなるとインダクタンス値は低下する。すなわち、電流時間微分値の振幅が大きい励磁位相ほど電流値が大きくなりインダクタンスが低下するため、電流時間微分値の振幅はさらに大きくなる。結果、電流時間微分値の振幅は極大値において極小値よりも急峻に変化するためノイズの影響を受けにくく、磁極方向を高精度に検出できる。 Further, as shown in FIG. 7, the inductance value depends on the current value, and the inductance value decreases as the current value increases. That is, the larger the amplitude of the current-time differential value is, the larger the current value is and the lower the inductance is, so that the amplitude of the current-time differential value is further increased. As a result, the amplitude of the current-time differential value changes steeper than the minimum value at the maximum value, so that it is not easily affected by noise, and the magnetic pole direction can be detected with high accuracy.

以下に、本実施形態に係る磁極方向検出の一例について、図8のフローチャートを用いて説明する。 Hereinafter, an example of magnetic pole direction detection according to the present embodiment will be described with reference to the flowchart of FIG.

まず、目的の精度に応じて、ばらつき算出結果の閾値を設定する(ステップS1)。次いで、高周波電圧印加工程において、高周波電圧印加部2は電動機10のロータ11に周波数Aの高周波電圧を印加する(ステップS2)。次いで、励磁位相変化工程において電動機10の励磁位相θを励磁位相変化部3によってS周変化させ、駆動電流検出工程において電動機10に流れる駆動電流を駆動電流検出部4によって検出する。次いで、磁極方向検出工程において、駆動電流検出部4によって2S回検出した駆動電流とその時の励磁位相θとに基づいて、磁極方向推定部5は電動機10の磁極方向を推定する。次いで、ばらつき算出工程において、ばらつき算出部6が周波数Aの印加電圧における推定磁極方向のばらつきを算出する(ステップS3)。 First, the threshold value of the variation calculation result is set according to the target accuracy (step S1). Next, in the high-frequency voltage application step, the high-frequency voltage application unit 2 applies a high-frequency voltage of frequency A to the rotor 11 of the motor 10 (step S2). Next, in the exciting phase changing step, the exciting phase θ of the electric motor 10 is changed in S circumference by the exciting phase changing unit 3, and the driving current flowing through the electric motor 10 is detected by the driving current detecting unit 4 in the driving current detecting step. Next, in the magnetic pole direction detection step, the magnetic pole direction estimation unit 5 estimates the magnetic pole direction of the motor 10 based on the drive current detected 2S times by the drive current detection unit 4 and the excitation phase θ at that time. Next, in the variation calculation step, the variation calculation unit 6 calculates the variation in the estimated magnetic pole direction at the applied voltage of the frequency A (step S3).

続いて、判定部7は周波数Aの印加電圧について算出したばらつき結果σ(A)をステップS1で設定した閾値と比較する(ステップS4)。前記ばらつきが所定の閾値以下である場合には、ばらつき結果σ(A)に係る磁極方向推定結果を電動機10の磁極方向検出結果として出力する(ステップS6)。ばらつき結果σ(A)が所定の閾値より大きい場合には、高周波電圧印加工程で印加する高周波電圧の周波数を、周波数Aよりも低い周波数Bに変更して、ステップS2〜ステップS4を再試行する(ステップS5)。 Subsequently, the determination unit 7 compares the variation result σ (A) calculated for the applied voltage of the frequency A with the threshold value set in step S1 (step S4). When the variation is equal to or less than a predetermined threshold value, the magnetic pole direction estimation result related to the variation result σ (A) is output as the magnetic pole direction detection result of the motor 10 (step S6). If the variation result σ (A) is larger than a predetermined threshold value, the frequency of the high frequency voltage applied in the high frequency voltage application step is changed to a frequency B lower than the frequency A, and steps S2 to S4 are retried. (Step S5).

これをばらつきが所定の閾値以下となるまで印加電圧の周波数を低くして繰り返し、前記ばらつきが所定の閾値以下となったところで、前記インダクタンス値に係る磁極方向推定結果を磁極方向検出結果として出力する(ステップS6)。 This is repeated by lowering the frequency of the applied voltage until the variation becomes equal to or less than a predetermined threshold value, and when the variation becomes equal to or less than a predetermined threshold value, the magnetic pole direction estimation result related to the inductance value is output as the magnetic pole direction detection result. (Step S6).

ばらつき結果について、例えば、周波数A,B,Cでの各8個の推定磁極方向が、以下の通りであった。
A(40°,42°,43°,61°,58°,56°,42°,59°) 分散72.4
B(40°,48°,52°,49°,70°,50°,48°,49°) 分散63.7
8個の値の分散を基準に取るならば、ばらつき結果σ(A)=72.4、ばらつき結果σ(B)=63.7である。閾値が分散70を基準に設定されていれば、周波数Aでの磁極方向推定結果はばらつきが閾値を超えているため、より低い周波数Bに変更して磁極方向推定を再試行する。周波数Bでの磁極方向推定結果はばらつきが閾値以下であるため、この磁極方向推定結果を電動機10の磁極方向検出結果として出力する。磁極方向θは8個の値の平均値51°(小数点第一位四捨五入)である。
Regarding the variation results, for example, the estimated magnetic pole directions of each of the eight frequencies A, B, and C were as follows.
A (40 °, 42 °, 43 °, 61 °, 58 °, 56 °, 42 °, 59 °) Variance 72.4
B (40 °, 48 °, 52 °, 49 °, 70 °, 50 °, 48 °, 49 °) Variance 63.7
Taking the variance of eight values as a reference, the variation result σ (A) = 72.4 and the variation result σ (B) = 63.7. If the threshold value is set with reference to the variance 70, the variation in the magnetic pole direction estimation result at the frequency A exceeds the threshold value, so the frequency is changed to a lower frequency B and the magnetic pole direction estimation is retried. Since the variation in the magnetic pole direction estimation result at the frequency B is equal to or less than the threshold value, the magnetic pole direction estimation result is output as the magnetic pole direction detection result of the motor 10. The magnetic pole direction θ B is an average value of eight values of 51 ° (rounded to the first decimal place).

以上により、ばらつきが小さく高精度な磁極方向検出結果が得られる。なお、検出対象の電動機が埋込磁石型の電動機10の場合には、ステップS6の後にさらに磁極位置検出部9によって電動機10に対して磁極方向と平行な双方向に外部磁界を印加することで、さらに磁極位置を検出してもよい。 As a result, a highly accurate magnetic pole direction detection result with little variation can be obtained. When the motor to be detected is an embedded magnet type motor 10, the magnetic pole position detection unit 9 further applies an external magnetic field to the motor 10 in both directions parallel to the magnetic pole direction after step S6. , Further, the magnetic pole position may be detected.

以上、本発明の一態様である磁極方向検出装置1について説明した。本発明によれば、以下のような効果が得られる。 The magnetic pole direction detecting device 1 which is one aspect of the present invention has been described above. According to the present invention, the following effects can be obtained.

本発明の一態様は、突極性を有する同期電動機10の磁極方向を検出する磁極方向検出装置2であって、電動機10に対して高周波電圧を印加する高周波電圧印加部2と、電動機10の励磁位相を任意の位相に変化させる励磁位相変化部3と、電動機10の駆動電流値を検出する駆動電流検出部4と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定部5と、磁極方向推定部5で推定された前記磁極方向推定結果のばらつきを算出するばらつき算出部6と、ばらつき算出部6が算出したばらつきが所定の閾値より大きいか否かを判定する判定部7と、判定部7の判定結果に基づいて、前記ばらつきが所定の閾値以下である場合には、前記磁極方向推定結果を電動機10の磁極方向検出結果として出力し、前記ばらつきが所定の閾値より大きい場合には、高周波電圧印加部2が印加する高周波電圧の周波数を変更して前記磁極方向推定を再試行する制御部8と、を備える磁極方向検出装置1を提供する。これにより、高精度な磁極方向検出が可能である。 One aspect of the present invention is a magnetic pole direction detecting device 2 for detecting the magnetic pole direction of the synchronous electric motor 10 having a salient pole, and the high-frequency voltage applying unit 2 for applying a high-frequency voltage to the electric motor 10 and the excitation of the electric motor 10. Based on the excitation phase change unit 3 that changes the phase to an arbitrary phase, the drive current detection unit 4 that detects the drive current value of the electric motor 10, the excitation phase, and the drive current value under the application of the high frequency voltage. The magnetic pole direction estimation unit 5 that executes the magnetic pole direction estimation, the variation calculation unit 6 that calculates the variation of the magnetic pole direction estimation result estimated by the magnetic pole direction estimation unit 5, and the variation calculated by the variation calculation unit 6 are predetermined. Based on the determination unit 7 for determining whether or not it is larger than the threshold value and the determination result of the determination unit 7, when the variation is equal to or less than a predetermined threshold value, the magnetic pole direction estimation result is the magnetic pole direction detection result of the electric motor 10. When the variation is larger than a predetermined threshold value, the magnetic pole direction detection includes a control unit 8 that changes the frequency of the high frequency voltage applied by the high frequency voltage application unit 2 and retries the estimation of the magnetic pole direction. The device 1 is provided. This enables highly accurate detection of the magnetic pole direction.

磁極方向検出装置1はさらに、電動機10に対して、検出された前記磁極方向に平行な双方向に外部磁界を印加可能な磁極位置検出部9を備える。これにより、高精度に磁極位置を検出できる。 The magnetic pole direction detecting device 1 further includes a magnetic pole position detecting unit 9 capable of applying an external magnetic field to the motor 10 in both directions parallel to the detected magnetic pole direction. As a result, the magnetic pole position can be detected with high accuracy.

磁極方向検出装置1はさらに、励磁位相変化部3が電動機10をS周(Sは1以上の整数)回転させる。これにより、ばらつき算出の精度が向上するため、より高精度に磁極方向検出が可能である。 In the magnetic pole direction detection device 1, the exciting phase changing unit 3 further rotates the electric motor 10 around S (S is an integer of 1 or more). As a result, the accuracy of the variation calculation is improved, so that the magnetic pole direction can be detected with higher accuracy.

磁極方向検出装置1はさらに、磁極方向推定部5が、駆動電流時間微分値が極大となる励磁位相を検出し、Ld<Lqの場合には当該励磁位相を、Lq<Ldの場合には当該励磁位相から90°変化させた位相を、磁極方向として推定する。これにより、電流値検出の精度が向上するため、より高精度に磁極方向検出が可能である。 In the magnetic pole direction detection device 1, the magnetic pole direction estimation unit 5 further detects the exciting phase at which the drive current-time differential value becomes maximum, and when Ld <Lq, the exciting phase is used, and when Lq <Ld, the magnetizing phase is concerned. The phase changed by 90 ° from the exciting phase is estimated as the magnetic pole direction. As a result, the accuracy of current value detection is improved, so that the magnetic pole direction can be detected with higher accuracy.

また本開示の一態様は、突極性を有する同期電動機の磁極方向を検出する磁極方向検出方法であって、前記電動機に対して高周波電圧を印加する高周波電圧印加工程と、前記電動機の励磁位相を任意の位相に変化させる励磁位相変化工程と、前記電動機の駆動電流値を検出する駆動電流検出工程と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定工程と、前記磁極方向推定工程で推定された前記磁極方向推定結果のばらつきを算出するばらつき算出工程と、前記ばらつき算出工程が算出したばらつきが所定の閾値より大きいか否かを判定する判定工程と、を備え、前記判定工程の判定結果に基づいて、前記ばらつきが所定の閾値以下である場合には、前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力し、前記ばらつきが所定の閾値より大きいである場合には、前記ばらつきが所定の閾値以下となるまで、前記高周波電圧印加工程で印加する高周波電圧の周波数を変更して、前記磁極方向推定工程と、前記ばらつき算出工程と、前記判定工程と、を繰り返し再試行する前記磁極方向検出方法を提供する。これにより、高精度な磁極方向検出が可能である。 Further, one aspect of the present disclosure is a magnetic pole direction detection method for detecting the magnetic pole direction of a synchronous motor having salient poles, wherein a high frequency voltage application step of applying a high frequency voltage to the motor and an excitation phase of the motor The magnetic pole direction is estimated based on the excitation phase change step of changing to an arbitrary phase, the drive current detection step of detecting the drive current value of the motor, the excitation phase, and the drive current value under the application of the high frequency voltage. The magnetic pole direction estimation step for executing the above, the variation calculation step for calculating the variation of the magnetic pole direction estimation result estimated in the magnetic pole direction estimation step, and whether or not the variation calculated by the variation calculation step is larger than a predetermined threshold value When the variation is equal to or less than a predetermined threshold value based on the determination result of the determination step, the magnetic pole direction estimation result is output as the magnetic pole direction detection result of the motor. When the variation is larger than a predetermined threshold value, the frequency of the high frequency voltage applied in the high frequency voltage application step is changed until the variation becomes equal to or less than the predetermined threshold value. Provided is the magnetic pole direction detection method in which the variation calculation step and the determination step are repeatedly retried. This enables highly accurate detection of the magnetic pole direction.

1 …磁極方向検出装置
2 …高周波電圧印加部
3 …励磁位相変化部
4 …駆動電流検出部
5 …磁極方向推定部
6 …ばらつき算出部
7 …判定部
8 …制御部
9 …磁極位置検出部
10,20 …電動機
11,21 …ロータ
12,22 …鉄芯
13 …永久磁石
1 ... Magnetic pole direction detection device 2 ... High-frequency voltage application unit 3 ... Excitation phase change unit 4 ... Drive current detection unit 5 ... Magnetic pole direction estimation unit 6 ... Variation calculation unit 7 ... Judgment unit 8 ... Control unit 9 ... Magnetic pole position detection unit 10 , 20 ... Motor 11,21 ... Rotor 12,22 ... Iron core 13 ... Permanent magnet

Claims (5)

突極性を有する同期電動機の磁極方向を検出する磁極方向検出装置であって、
前記電動機に対して高周波電圧を印加する高周波電圧印加部と、
前記電動機の励磁位相を任意の位相に変化させる励磁位相変化部と、
前記電動機の駆動電流値を検出する駆動電流検出部と、
前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定部と、
前記磁極方向推定部で推定された磁極方向推定結果のばらつきを算出するばらつき算出部と、
前記ばらつき算出部が算出したばらつきが所定の閾値より大きいか否かを判定する判定部と、
前記判定部の判定結果に基づいて、前記ばらつきが所定の閾値以下である場合には、前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力し、前記ばらつきが所定の閾値より大きい場合には、前記ばらつきが所定の閾値以下となるまで、前記高周波電圧印加部が印加する高周波電圧の周波数を変更して前記磁極方向推定を繰り返し再試行する制御部と、を備える磁極方向検出装置。
A magnetic pole direction detection device that detects the magnetic pole direction of a synchronous motor having salient polarity.
A high-frequency voltage application unit that applies a high-frequency voltage to the motor,
An exciting phase changing unit that changes the exciting phase of the motor to an arbitrary phase,
A drive current detection unit that detects the drive current value of the motor,
A magnetic pole direction estimation unit that executes magnetic pole direction estimation based on the excitation phase and the drive current value under the application of the high frequency voltage.
A variation calculation unit that calculates the variation of the magnetic pole direction estimation result estimated by the magnetic pole direction estimation unit, and a variation calculation unit.
A determination unit that determines whether or not the variation calculated by the variation calculation unit is larger than a predetermined threshold value.
When the variation is equal to or less than a predetermined threshold value based on the determination result of the determination unit, the magnetic pole direction estimation result is output as the magnetic pole direction detection result of the motor, and when the variation is larger than the predetermined threshold value. Is a magnetic pole direction detecting device including a control unit that changes the frequency of the high frequency voltage applied by the high frequency voltage applying unit and repeatedly retries the estimation of the magnetic pole direction until the variation becomes equal to or less than a predetermined threshold value.
前記磁極方向検出装置はさらに、前記電動機に対して、検出された前記磁極方向に平行な双方向に外部磁界を印加可能な磁極位置検出部を備える、請求項1に記載の磁極方向検出装置。 The magnetic pole direction detecting device according to claim 1, further comprising a magnetic pole position detecting unit capable of applying an external magnetic field in both directions parallel to the detected magnetic pole direction to the motor. 前記励磁位相変化部は、前記励磁位相を360°以上変化させる、請求項1または2に記載の磁極方向検出装置。 The magnetic pole direction detecting device according to claim 1 or 2, wherein the exciting phase changing unit changes the exciting phase by 360 ° or more. 前記磁極方向推定部は、前記駆動電流値の時間微分値が極大となる前記励磁位相を検出し、前記検出した励磁位相から90°変化させた位相を磁極方向として推定する、請求項1から3のいずれかに記載の磁極方向検出装置。 The magnetic pole direction estimation unit detects the exciting phase at which the time differential value of the driving current value becomes maximum, and estimates the phase changed by 90 ° from the detected exciting phase as the magnetic pole direction, according to claims 1 to 3. The magnetic pole direction detection device according to any one of. 突極性を有する同期電動機の磁極方向を検出する磁極方向検出方法であって、
前記電動機に対して高周波電圧を印加する高周波電圧印加工程と、
前記電動機の励磁位相を任意の位相に変化させる励磁位相変化工程と、
前記電動機の駆動電流値を検出する駆動電流検出工程と、
前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定工程と、
前記磁極方向推定部で推定された前記磁極方向推定結果のばらつきを算出するばらつき算出工程と、
前記ばらつき算出部が算出したばらつきが所定の閾値より大きいかどうかを判定する判定工程と、を備え、
前記判定工程の判定結果に基づいて、前記ばらつきが所定の閾値以下である場合には、前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力し、前記ばらつきが所定の閾値より大きい場合には、前記ばらつきが所定の閾値以下となるまで、前記高周波電圧印加工程で印加する高周波電圧の周波数を変更して、前記磁極方向推定工程と、前記ばらつき算出工程と、前記判定工程と、を繰り返し再試行する、前記磁極方向検出方法。
It is a magnetic pole direction detection method for detecting the magnetic pole direction of a synchronous motor having a salient polarity.
A high-frequency voltage application step of applying a high-frequency voltage to the motor, and
The excitation phase change step of changing the excitation phase of the motor to an arbitrary phase,
The drive current detection process for detecting the drive current value of the motor and
A magnetic pole direction estimation step for executing magnetic pole direction estimation based on the excitation phase and the drive current value under the application of the high frequency voltage.
A variation calculation step for calculating the variation of the magnetic pole direction estimation result estimated by the magnetic pole direction estimation unit, and a variation calculation step.
A determination step for determining whether or not the variation calculated by the variation calculation unit is larger than a predetermined threshold value is provided.
When the variation is equal to or less than a predetermined threshold value based on the determination result of the determination step, the magnetic pole direction estimation result is output as the magnetic pole direction detection result of the motor, and when the variation is larger than the predetermined threshold value. Repeats the magnetic pole direction estimation step, the variation calculation step, and the determination step by changing the frequency of the high frequency voltage applied in the high frequency voltage application step until the variation becomes equal to or less than a predetermined threshold value. The magnetic pole direction detection method to be retried.
JP2019210687A 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method Active JP7381303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210687A JP7381303B2 (en) 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210687A JP7381303B2 (en) 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method

Publications (2)

Publication Number Publication Date
JP2021083257A true JP2021083257A (en) 2021-05-27
JP7381303B2 JP7381303B2 (en) 2023-11-15

Family

ID=75963500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210687A Active JP7381303B2 (en) 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method

Country Status (1)

Country Link
JP (1) JP7381303B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805336B2 (en) 2003-10-22 2006-08-02 ファナック株式会社 Magnetic pole position detection apparatus and method
JP2007124836A (en) 2005-10-28 2007-05-17 Denso Corp Method of estimating rotating angle of synchronous machine having saliency

Also Published As

Publication number Publication date
JP7381303B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
KR101506417B1 (en) Permanent-magnet type rotating electrical machine
JP3971741B2 (en) Magnetic pole position detector
CN102647132B (en) Rotor angle when estimation synchronous magnetic resistance motor starts and the method and apparatus of speed
KR102207375B1 (en) Control system for a synchronous machine and method for operating a synchronous machine
JP2013066303A (en) Control device of permanent magnet type synchronous motor
JP2014513911A (en) Method and apparatus for controlling electrical equipment
JP3687603B2 (en) PM motor magnetic pole position estimation method
JP2010041839A (en) Control device for permanent-magnet synchronous motor
JP2018033301A (en) Method for determining orientation of rotor of non-iron pmsm motor in sensor free manner
JP2009171680A (en) Controller for permanent-magnet synchronous motors
JP5757205B2 (en) Control device for permanent magnet type synchronous motor
JP2015180130A (en) Control device of permanent magnet synchronous motor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
JP2005065415A (en) Magnetic pole position detector for permanent-magnet synchronous motor
US7774148B2 (en) Torque estimator for IPM motors
JP2007336708A (en) Temperature detection apparatus for permanent magnet of permanent-magnetic rotating machine
JP2021083257A (en) Magnetic pole direction detection device and magnetic pole direction detection method
Nguyen et al. High-speed sensorless control of a synchronous reluctance motor based on an Extended Kalman Filter
JP2015015830A (en) Controller of synchronous motor
JP7294993B2 (en) Magnetic pole direction detection device and magnetic pole direction detection method
JP2021083256A (en) Magnetic pole direction detection device and magnetic pole direction detection method
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP5619225B1 (en) Control device for synchronous motor
JP2017028806A (en) Magnet temperature estimation system, motor, and magnet temperature estimation method
US11641172B2 (en) Method and device for load-free determining of load-dependent positioning parameters of a synchronous machine without a position sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7381303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150