JP2021082448A - Manufacturing method for battery - Google Patents

Manufacturing method for battery Download PDF

Info

Publication number
JP2021082448A
JP2021082448A JP2019207869A JP2019207869A JP2021082448A JP 2021082448 A JP2021082448 A JP 2021082448A JP 2019207869 A JP2019207869 A JP 2019207869A JP 2019207869 A JP2019207869 A JP 2019207869A JP 2021082448 A JP2021082448 A JP 2021082448A
Authority
JP
Japan
Prior art keywords
heat
laminated
region
current collecting
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019207869A
Other languages
Japanese (ja)
Other versions
JP7333000B2 (en
Inventor
正剛 藤嶋
Masatake Fujishima
正剛 藤嶋
智史 田原
Tomoji Tahara
智史 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019207869A priority Critical patent/JP7333000B2/en
Publication of JP2021082448A publication Critical patent/JP2021082448A/en
Application granted granted Critical
Publication of JP7333000B2 publication Critical patent/JP7333000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

To provide a technique of manufacturing a battery with improved sealing property.SOLUTION: A manufacturing method for a battery including an electrode body, a laminate outer package, and a current collector terminal that is partially led out from the outer package includes a step of heat sealing an outer periphery of the outer package while disposing the electrode body so that the electrode body is housed in the outer package and disposing the current collector terminal so that at least a part is led out from the outer package. The heat sealing is performed by a heat sealing device that applies a predetermined heat quantity to the periphery while having the outer periphery held from both sides. In the heat sealing, in order to make the heat quantity obtained by drawing heat from the current collector terminal in a direction of the electrode body in the heat quantity applied to a region of the held periphery that faces the current collector terminal and the heat quantity applied to a non-facing region of not facing the current collector terminal substantially the same, the heat quantity applied from the heat sealing device is made different between these regions.SELECTED DRAWING: Figure 4

Description

本発明は、電池の製造方法に関する。詳しくは、ラミネート外装体を備える電池の製造方法に関する。 The present invention relates to a method for manufacturing a battery. More specifically, the present invention relates to a method for manufacturing a battery including a laminated exterior body.

近年では、電池の用途はますます拡大しており、特に、リチウムイオン二次電池、ナトリウムイオン二次電池等の二次電池は、パソコンや携帯端末等のいわゆるポータブル電源用途のみならず、近年は車両駆動用電源として好ましく用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、プラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)等の車両の駆動用高出力電源として好ましく、今後も需要が拡大するものと期待されている。 In recent years, the applications of batteries have been expanding more and more. In particular, secondary batteries such as lithium ion secondary batteries and sodium ion secondary batteries are used not only for so-called portable power sources such as personal computers and mobile terminals, but also in recent years. It is preferably used as a power source for driving a vehicle. In particular, lithium-ion secondary batteries, which are lightweight and have high energy density, are preferable as high-output power sources for driving vehicles such as electric vehicles (EV), plug-in hybrid vehicles (PHV), and hybrid vehicles (HV), and will continue to be used in the future. Demand is expected to grow.

上述したような用途の電池の一般的な構成としては、例えば正極、負極、およびセパレータを含む電極体が、外装体の内部に収容されて密閉された構成が挙げられる。近年では、電池の小型化への要求が高まっており、ラミネートフィルムからなる外装体を備える電池の開発が精力的に行われている。このようなラミネートフィルムは、例えば特許文献1に記載されているような多層構造を有している。例えば、金属層の両面に、樹脂層が積層された三層構造のラミネートフィルムが、電池の外装体として典型的に使用されている。 As a general configuration of a battery for the above-mentioned applications, for example, an electrode body including a positive electrode, a negative electrode, and a separator may be housed inside an exterior body and sealed. In recent years, there has been an increasing demand for miniaturization of batteries, and batteries equipped with an exterior body made of a laminated film are being energetically developed. Such a laminated film has, for example, a multilayer structure as described in Patent Document 1. For example, a three-layered laminated film in which resin layers are laminated on both sides of a metal layer is typically used as an exterior body of a battery.

特開2005−116228号公報Japanese Unexamined Patent Publication No. 2005-116228

ラミネートフィルム製の外装体を有する電池の作製時には、例えば電極体を外装体の内部に収容し、周縁部(開口部)を一対の溶着ヘッドで挟み込んで加熱溶着して外装体を封止する。加熱溶着する周縁部のうち、電極体に接続された集電端子の導出部を含む部分では、加熱溶着時に溶着ヘッドから加えられる熱量が、集電端子を伝わって、例えば電極体に逃げてしまい(いわゆる熱引き)、当該部分に加えられる熱量が結果的に低下し(即ち、熱引き量が大である)、熱溶着が不十分となることがある。当該部分において熱溶着に十分な熱量を確保するため、例えば溶着温度を上げると、同一部分における集電端子導出部以外の領域に加えられる熱量が過剰となり、ラミネートフィルムの樹脂層が必要以上に溶融する虞がある。樹脂層の過剰な溶融は、金属層を露出させる原因となる。樹脂層の過剰な溶融による金属層の露出は集電端子および電極体等と接触して短絡を起こす要因となり得るため、好ましくない。 When producing a battery having an outer body made of a laminated film, for example, an electrode body is housed inside the outer body, a peripheral edge portion (opening) is sandwiched between a pair of welding heads, and heat welding is performed to seal the outer body. In the peripheral portion of the peripheral portion to be heat-welded, the portion including the lead-out portion of the current collecting terminal connected to the electrode body, the amount of heat applied from the welding head at the time of heat welding is transmitted through the current collecting terminal and escapes to, for example, the electrode body. (So-called heat drawing), the amount of heat applied to the portion is reduced as a result (that is, the amount of heat drawing is large), and heat welding may be insufficient. In order to secure a sufficient amount of heat for heat welding in the relevant portion, for example, if the welding temperature is raised, the amount of heat applied to the region other than the current collector terminal lead-out portion in the same portion becomes excessive, and the resin layer of the laminated film melts more than necessary. There is a risk of Excessive melting of the resin layer causes the metal layer to be exposed. Exposure of the metal layer due to excessive melting of the resin layer is not preferable because it may cause a short circuit due to contact with the current collector terminal and the electrode body.

上掲の特許文献1では、熱溶着時における集電端子を介した過剰な熱逃げ(熱引き)を抑制するために、集電端子導出部以外の部分を断熱材で挟み込んだ状態で加熱溶着を行うことが開示されている。特許文献1には、断熱材が配置された部分では、温度が低下するため、当該部分には過剰な熱量が加わらず、樹脂層が溶融しにくくなる旨が記載されている。
しかしながら、断熱材には溶着ヘッドから加えられる熱量が蓄積されることにより、ラミネートフィルムの熱溶着を連続して行うと、断熱材による、樹脂層の熱溶融を防止する効果が低下し得る。また、断熱材には一定の厚みがあるため、例えば断熱材の縁部には、その他の部分と比べて大きな圧力がかかり、ラミネートフィルムに破損を生じさせ、上記のような短絡が発生し得る。
In Patent Document 1 described above, in order to suppress excessive heat escape (heat drawing) via the current collector terminal during heat welding, heat welding is performed with a portion other than the current collector terminal outlet portion sandwiched between heat insulating materials. Is disclosed to do. Patent Document 1 describes that since the temperature is lowered in the portion where the heat insulating material is arranged, an excessive amount of heat is not applied to the portion and the resin layer is less likely to melt.
However, since the amount of heat applied from the welding head is accumulated in the heat insulating material, if the heat welding of the laminated film is continuously performed, the effect of preventing the heat melting of the resin layer by the heat insulating material may be reduced. Further, since the heat insulating material has a certain thickness, for example, a large pressure is applied to the edge of the heat insulating material as compared with other parts, causing damage to the laminated film and causing the above-mentioned short circuit. ..

そこで、本発明はかかる課題を鑑みてなされたものであり、その目的とするところは、ラミネート外装体を封止する際の熱溶着不良の発生が高度に抑制され、密閉性が顕著に向上された電池を作製する技術を提供することである。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to highly suppress the occurrence of heat welding defects when sealing the laminated exterior body, and to remarkably improve the airtightness. It is to provide a technique for manufacturing a battery.

本発明者は、ラミネート外装体の周縁部を封止する際の正負極集電端子の導出部分(即ち、ラミネート外装体の周縁部における正負極集電端子と対向する領域)における熱引きに着目した。
そして、ラミネート外装体の周縁部において、かかる正負極集電端子と対向する領域における該集電端子から電極体方向に熱引きされた後の熱量と、正負極集電端子とは対向していない非対向領域に加えられる熱量とがほぼ同じになるように、熱溶着を行うことによって、ラミネート外装体の熱溶着において生じ得る不具合の発生を高度に抑制できることを見出し、本発明を完成するに至った。
即ち、ここで開示される電池の製造方法は、正極、負極、およびセパレータとして機能する層を有する電極体と、上記電極体を内部に密閉した状態で収容するラミネート外装体と、上記正極および上記負極にそれぞれ接続されている外部接続用の正極集電端子および負極集電端子であって一部が上記ラミネート外装体から外部に導出されている正負極集電端子と、を備える電池の製造方法である。
上記電極体を上記ラミネート外装体の内部に収容した状態となるように配置し、且つ、少なくとも一部が該ラミネート外装体の外部に導出された状態となるように上記正負極集電端子を配置した状態で、該ラミネート外装体の周縁部を熱溶着して封止する工程を包含する。
上記熱溶着は、上記周縁部を両側から挟み込んで該周縁部に所定の熱量を加える加熱封止装置によって行われる。
ここで、上記挟み込んだ周縁部のうちの上記正負極集電端子と対向する領域に加えられた熱量における該集電端子から電極体方向に熱引きされた後の熱量と、上記正負極集電端子と対向しない非対向領域に加えられた熱量とがほぼ同じになるように、上記対向領域と上記非対向領域との間で、上記加熱封止装置から加えられる熱量を異ならせて上記熱溶着を行うことを特徴とする。
The present inventor pays attention to heat drawing in the lead-out portion of the positive and negative electrode current collecting terminals (that is, the region facing the positive and negative electrode current collecting terminals in the peripheral edge of the laminated exterior body) when sealing the peripheral edge portion of the laminated exterior body. did.
Then, in the peripheral portion of the laminated exterior body, the amount of heat after heat is drawn from the current collecting terminal in the region facing the positive and negative electrode current collecting terminals toward the electrode body does not face the positive and negative electrode current collecting terminals. We have found that by performing heat welding so that the amount of heat applied to the non-opposing region is almost the same, it is possible to highly suppress the occurrence of defects that may occur in the heat welding of the laminated exterior body, and have completed the present invention. It was.
That is, the method for manufacturing a battery disclosed here includes an electrode body having a layer that functions as a positive electrode, a negative electrode, and a separator, a laminated exterior body that houses the electrode body in a sealed state, the positive electrode, and the positive electrode and the above. A method for manufacturing a battery including a positive electrode current collecting terminal for external connection and a negative electrode current collecting terminal which are connected to the negative electrode, respectively, and a positive electrode current collecting terminal which is partially led out from the laminated exterior body to the outside. Is.
The positive electrode body is arranged so as to be housed inside the laminated outer body, and the positive and negative electrode current collecting terminals are arranged so that at least a part of the electrode body is led out to the outside of the laminated outer body. This includes a step of heat-welding and sealing the peripheral edge of the laminated outer body in this state.
The heat welding is performed by a heat sealing device that sandwiches the peripheral edge portion from both sides and applies a predetermined amount of heat to the peripheral edge portion.
Here, the amount of heat applied to the region of the sandwiched peripheral edge portion facing the positive / negative electrode current collecting terminal, the amount of heat after being heat-drawn from the current collecting terminal toward the electrode body, and the positive / negative electrode current collection. The heat welding is performed by making the amount of heat applied from the heat sealing device different between the facing region and the non-opposing region so that the amount of heat applied to the non-opposing region not facing the terminal is substantially the same. It is characterized by performing.

かかる構成の製造方法は、ラミネート外装体の熱溶着時において加熱封止装置から上記対向領域に加えられた熱量が、電極体側に逃げることによって生じ得る不具合の発生を顕著に抑制し、良好な密閉性を有する電池を提供することができる。 The manufacturing method having such a configuration remarkably suppresses the occurrence of defects that may occur when the amount of heat applied to the facing region from the heat sealing device during heat welding of the laminated exterior body escapes to the electrode body side, and the sealing is good. It is possible to provide a battery having a property.

一実施形態にかかる電池の製造方法によって製造される電池の構造を模式的に示す平面図である。It is a top view which shows typically the structure of the battery manufactured by the manufacturing method of the battery which concerns on one Embodiment. 図1における電池の構造を示すII−II断面図である。FIG. 2 is a sectional view taken along line II-II showing the structure of the battery in FIG. 一実施形態にかかる電池の製造方法を模式的に示す工程図である。It is a process drawing which shows typically the manufacturing method of the battery which concerns on one Embodiment. 一実施形態にかかる電池の製造方法における、ラミネート外装体の溶着工程を示す模式図である。(A)は、溶着工程を説明する斜視図である。(B)は、溶着工程における溶着部位を示す正面図である。(C)は、図4(B)のC−C断面図である。(D)は、図4(B)のD−D断面図である。(E)は、変形例1における図4(B)のC−C断面図である。It is a schematic diagram which shows the welding process of the laminated exterior body in the manufacturing method of the battery which concerns on one Embodiment. (A) is a perspective view explaining a welding process. (B) is a front view which shows the welding part in a welding process. (C) is a sectional view taken along the line CC of FIG. 4 (B). (D) is a cross-sectional view taken along the line DD of FIG. 4 (B). (E) is a cross-sectional view taken along the line CC of FIG. 4 (B) in the modified example 1. 変形例2における図4(B)のC−C断面図である。It is CC sectional view of FIG. 4 (B) in the modification 2. FIG.

以下、本開示における典型的な実施形態について、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。なお、本明細書において数値範囲A〜Bは、A以上B以下を示している。
以下、本発明の適用対象として、積層型電極体がラミネートフィルム製の外装体に収容された構造のリチウムイオン二次電池(以下、単に「電池」ともいう。)の製造方法を例示しつつ詳細に説明する。ただし、本開示にかかる電池の製造方法を以下の実施形態に記載されたものに限定することを意図したものではない。
Hereinafter, typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art.
In the following drawings, members and parts that perform the same action are described with the same reference numerals. Further, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations. In this specification, the numerical ranges A to B indicate A or more and B or less.
Hereinafter, as an application target of the present invention, details will be given while exemplifying a method for manufacturing a lithium ion secondary battery (hereinafter, also simply referred to as “battery”) having a structure in which a laminated electrode body is housed in an outer body made of a laminated film. Explain to. However, it is not intended to limit the battery manufacturing method according to the present disclosure to those described in the following embodiments.

<電池の全体構成>
まず初めに、ここで開示される電池の製造方法によって製造される電池の構成を、図1を参照しつつ説明する。図1は、一実施形態にかかる電池の製造方法によって製造される電池の構造を模式的に示す平面図である。
図1に示されるように、電池1は、おおまかにいって、例えば電極体20と、外部接続用の正極集電端子42および負極集電端子44と、ラミネート外装体30とを備える。電極体20は周縁部が熱溶着(ヒートシール)された状態のラミネート外装体30の内部に収容されている。正極集電端子42および負極集電端子44は、一部がラミネート外装体30の内部から外部に導出されており、ラミネート外装体30には正極集電端子導出部32および負極集電端子導出部34が形成されている。図1においては、正極集電端子導出部32および負極集電端子導出部34は、それぞれX方向における対向する両端部に形成されている。
<Overall configuration of battery>
First, the configuration of the battery manufactured by the battery manufacturing method disclosed here will be described with reference to FIG. FIG. 1 is a plan view schematically showing a structure of a battery manufactured by the method for manufacturing a battery according to an embodiment.
As shown in FIG. 1, the battery 1 roughly includes, for example, an electrode body 20, a positive electrode current collecting terminal 42 and a negative electrode current collecting terminal 44 for external connection, and a laminated exterior body 30. The electrode body 20 is housed inside the laminated exterior body 30 in a state where the peripheral edge portion is heat-welded (heat-sealed). A part of the positive electrode current collecting terminal 42 and the negative electrode current collecting terminal 44 is led out from the inside of the laminated exterior body 30 to the outside, and the positive electrode current collecting terminal lead-out unit 32 and the negative electrode current collecting terminal lead-out unit are led out to the laminated outer body 30. 34 is formed. In FIG. 1, the positive electrode current collecting terminal lead-out unit 32 and the negative electrode current collector terminal lead-out unit 34 are formed at both end portions facing each other in the X direction.

<電極体>
電極体20は、詳細な図示は省略するが、例えば正極と負極とセパレータとして機能する層とを有する。例えば、電極体20が積層型電極体である場合、正極は、例えば、矩形シート状の正極集電体と、該正極集電体の表面(片面もしくは両面)に塗工された正極合材層とを有する正極シートであり得る。また、負極は、例えば矩形シート状の負極集電体と、該負極集電体の表面(片面もしくは両面)に塗工された負極合材層とを有する負極シートであり得る。正極シートおよび負極シートは、いずれもシート長辺方向(X方向)における一の端部に、合材層が形成されない集電体露出部を有する。電極体20は、正極および負極がセパレータとして機能する層を介在させつつ交互に積層されて形成される。このとき、例えば正極集電体露出部がX方向の一の端部からはみ出し、かつ、負極集電体露出部がX方向の他の端部からはみ出すように電極シートが積層される。電極体20においては、例えばX方向の中央部が、電極合材層が積層されたコア部となり、X方向の両端部が、集電体露出部(集電体)が積層された領域となる。この集電体が積層された領域では、集電体が積層方向に集められ、外部接続用の集電端子接合部が形成される。正極集電端子接合部には正極集電端子42が接合され、負極集電端子接合部には負極集電端子44が接合される。
<Electrode body>
Although detailed illustration is omitted, the electrode body 20 has, for example, a positive electrode, a negative electrode, and a layer that functions as a separator. For example, when the electrode body 20 is a laminated electrode body, the positive electrode is, for example, a rectangular sheet-shaped positive electrode current collector and a positive electrode mixture layer coated on the surface (one side or both sides) of the positive electrode body. It can be a positive electrode sheet having and. Further, the negative electrode may be, for example, a negative electrode sheet having a rectangular sheet-shaped negative electrode current collector and a negative electrode mixture layer coated on the surface (one side or both sides) of the negative electrode current collector. Both the positive electrode sheet and the negative electrode sheet have a current collector exposed portion on which a mixture layer is not formed at one end in the long side direction (X direction) of the sheet. The electrode body 20 is formed by alternately stacking a positive electrode and a negative electrode with a layer that functions as a separator interposed therebetween. At this time, for example, the electrode sheets are laminated so that the exposed portion of the positive electrode current collector protrudes from one end in the X direction and the exposed portion of the negative electrode current collector protrudes from the other end in the X direction. In the electrode body 20, for example, the central portion in the X direction is the core portion in which the electrode mixture layers are laminated, and the both end portions in the X direction are the regions in which the current collector exposed portions (current collectors) are laminated. .. In the region where the current collectors are stacked, the current collectors are collected in the stacking direction to form a current collector terminal joint for external connection. The positive electrode current collecting terminal 42 is joined to the positive electrode current collecting terminal joint, and the negative electrode current collecting terminal 44 is joined to the negative electrode current collecting terminal joint.

上記セパレータとして機能する層は、例えば電池1が電解質として非水電解液を備える、いわゆる非水電解液リチウムイオン二次電池である場合には、多孔質体からなるセパレータであり得る。また、例えば電池1が電解質として粉末状の固体電解質を備える、いわゆる全固体リチウムイオン二次電池である場合には、固体電解質層であり得る。
なお、電極体20の詳細な構造は、上記のように集電端子接合部が形成され、ここに同極の集電端子が接合されているものであれば、特に限定されない。電極体20を構成する部材および材料(例えば集電箔、合材層、および、セパレータもしくは固体電解質層等)としては、この種のリチウムイオン二次電池に典型的に使用されるものを特に制限なく使用することができ、本発明を特徴づけるものではないため、詳細な説明は省略する。
The layer that functions as the separator may be a separator made of a porous body, for example, when the battery 1 is a so-called non-aqueous electrolyte lithium ion secondary battery that includes a non-aqueous electrolyte as an electrolyte. Further, for example, when the battery 1 is a so-called all-solid-state lithium ion secondary battery including a powdery solid electrolyte as an electrolyte, it may be a solid electrolyte layer.
The detailed structure of the electrode body 20 is not particularly limited as long as the current collecting terminal joint is formed as described above and the current collecting terminals of the same electrode are joined there. The members and materials (for example, current collector foil, mixture layer, separator, solid electrolyte layer, etc.) constituting the electrode body 20 are particularly limited to those typically used for this type of lithium ion secondary battery. Since it can be used without any problem and does not characterize the present invention, detailed description thereof will be omitted.

<ラミネート外装体>
ラミネート外装体30は、ラミネートフィルムからなる。ラミネート外装体30を構成するラミネートフィルムは従来公知と同様でよく、特に限定されない。典型的には、ラミネート外装体30は、例えば多層構造を有するラミネートフィルムであってよい。ラミネート外装体30の具体的な構成について、図2を参照しつつ説明する。図2は、図1における電池の構造を示すII−II断面図である。
図2に示されるように、ラミネート外装体30は例えば3層構造であり、電極体20に近い側から、シーラント層36a、ガスバリア層36b、および保護層36cを有し、この順に積層されて構成されている。
<Laminate exterior>
The laminated exterior body 30 is made of a laminated film. The laminate film constituting the laminate exterior body 30 may be the same as that conventionally known, and is not particularly limited. Typically, the laminated exterior body 30 may be, for example, a laminated film having a multilayer structure. The specific configuration of the laminated exterior body 30 will be described with reference to FIG. FIG. 2 is a sectional view taken along line II-II showing the structure of the battery in FIG.
As shown in FIG. 2, the laminated exterior body 30 has, for example, a three-layer structure, and has a sealant layer 36a, a gas barrier layer 36b, and a protective layer 36c from the side closer to the electrode body 20, and is configured by being laminated in this order. Has been done.

−シーラント層−
シーラント層36aは、外装体30の最内層であり、電極体20に最も近い側に位置している。シーラント層36aは、外装体30の熱溶着を可能とするための層であり、例えば熱可塑性樹脂で構成されている。熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ポリエチレンテレフタレート(PET)等のポリエステル;等の結晶性樹脂、ポリスチレン、ポリ塩化ビニル等;の非結晶性樹脂が挙げられる。
-Sealant layer-
The sealant layer 36a is the innermost layer of the exterior body 30, and is located on the side closest to the electrode body 20. The sealant layer 36a is a layer for enabling heat welding of the exterior body 30, and is made of, for example, a thermoplastic resin. Examples of the thermoplastic resin include polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate (PET); crystalline resins such as polystyrene, polyvinyl chloride and the like; and non-crystalline resins. Be done.

−ガスバリア層−
ガスバリア層36bは、電池1内外における気体の移動を遮断する層である。例えば、ガスバリア層36bは、電池1の内部で発生したガスが外部へ流出すること、および、電池1の外部からの空気や湿気等が内部に流入することを抑制することができる。
ガスバリア層36bは、例えば金属材料で構成されている。金属材料としては、例えば、アルミニウム、鉄、ステンレス等が挙げられる。なかでもガスバリア層36bの構成材料としては、例えば、アルミニウム箔およびアルミニウム蒸着層が好ましい。
-Gas barrier layer-
The gas barrier layer 36b is a layer that blocks the movement of gas inside and outside the battery 1. For example, the gas barrier layer 36b can prevent the gas generated inside the battery 1 from flowing out and the air, moisture, and the like from the outside of the battery 1 from flowing into the inside.
The gas barrier layer 36b is made of, for example, a metal material. Examples of the metal material include aluminum, iron, stainless steel and the like. Among them, as the constituent material of the gas barrier layer 36b, for example, an aluminum foil and an aluminum vapor deposition layer are preferable.

−保護層−
保護層36cは、ガスバリア層36bよりも外表面側に位置されており、例えばラミネート外装体30の最外層となってもよい。保護36cは、例えばラミネート外装体30の耐久性を向上させるための層である。その構成材料としては、例えばPET等のポリエステル、ポリアミド等が挙げられる。
-Protective layer-
The protective layer 36c is located on the outer surface side of the gas barrier layer 36b, and may be, for example, the outermost layer of the laminated exterior body 30. The protection 36c is, for example, a layer for improving the durability of the laminated exterior body 30. Examples of the constituent material include polyester such as PET and polyamide.

なお、ラミネート外装体30の層構造は特に限定されず、例えば4層以上(4〜10層)の構成であってもよい。例えば、上記各層の積層方向(Z方向)において、上記のような層と層との間に、これらを接着させるための接着層を形成してもよい。また、最外層として印刷層等を設けてもよい。 The layer structure of the laminated exterior body 30 is not particularly limited, and may be, for example, four or more layers (4 to 10 layers). For example, in the stacking direction (Z direction) of each of the above layers, an adhesive layer for adhering them may be formed between the layers as described above. Further, a print layer or the like may be provided as the outermost layer.

<集電端子>
集電端子は、板状の導電部材である。例えば、正極集電端子42は正極集電体22と接合されており、少なくとも一部がラミネート外装体30の内部から外部に引き出されている(正極集電端子導出部32)。図2において図示は省略しているが、負極集電端子は負極集電体と接合されており、少なくとも一部がラミネート外装体30の内部から外部に引き出されている(負極集電端子導出部)。
<Current collector terminal>
The current collecting terminal is a plate-shaped conductive member. For example, the positive electrode current collector terminal 42 is joined to the positive electrode current collector 22, and at least a part of the positive electrode current collector terminal 42 is drawn out from the inside of the laminated exterior body 30 (positive electrode current collector terminal lead-out unit 32). Although not shown in FIG. 2, the negative electrode current collector terminal is joined to the negative electrode current collector, and at least a part of the negative electrode current collector terminal is drawn out from the inside of the laminated exterior body 30 (negative electrode current collector terminal lead-out unit). ).

<電池の製造>
ついで、ここで開示される電池の製造方法について、図3を参照しつつ説明する。図3は、一実施形態にかかる電池の製造方法を模式的に示す工程図である。
ここで開示される電池の製造方法は、図示されるように、電極体準備工程S10、集電端子取付工程S20、外装体収容工程S30、および封止工程S40を含む。
<電極体準備工程>
電極体準備工程S10は、電池の発電要素としての電極体を構築する工程である。電極体の構築方法は従来と同様でよく、本発明を特徴づけるものではないため、詳細な説明は省略する。
<Battery manufacturing>
Next, the method of manufacturing the battery disclosed here will be described with reference to FIG. FIG. 3 is a process diagram schematically showing a method for manufacturing a battery according to an embodiment.
As shown in the figure, the battery manufacturing method disclosed here includes an electrode body preparation step S10, a current collecting terminal mounting step S20, an exterior body accommodating step S30, and a sealing step S40.
<Electrode body preparation process>
The electrode body preparation step S10 is a step of constructing an electrode body as a power generation element of the battery. Since the method for constructing the electrode body may be the same as the conventional one and does not characterize the present invention, detailed description thereof will be omitted.

<集電端子取付工程>
集電端子取付工程S20では、工程S10で準備された電極体の集電端子接合部に、同極の集電端子を接合する工程である。集電端子接合部への集電端子の接合手段としては、例えば超音波溶接、レーザー溶接、抵抗溶接等の従来公知の接合手段を特に制限なく使用することができる。
<Current collector terminal mounting process>
The current collector terminal mounting step S20 is a step of joining the current collector terminals of the same electrode to the current collector terminal joint portion of the electrode body prepared in step S10. As the means for joining the current collecting terminal to the current collecting terminal joining portion, conventionally known joining means such as ultrasonic welding, laser welding, and resistance welding can be used without particular limitation.

<外装体収容工程>
外装体収容工程S30は、工程S20において集電端子が接合された電極体をラミネート外装体に収容する工程である。工程S30では、電極体とラミネート外装体とを重ね合わせて、電極体をラミネート外装体の内部に収容した状態となるように配置する。このとき、電極体を、集電端子が、その少なくとも一部がラミネート外装体の外部に導出された状態となるように配置する。
電極体とラミネート外装体とは、例えば、ラミネート外装体、電極体、ラミネート外装体、の順に重ね合わされていればよい。例えば、電極体を2枚のラミネートフィルム(外装体)で挟み込んでよく、袋状に成型したラミネート外装体に電極体を挿入してもよい。
<Exterior body storage process>
The exterior body accommodating step S30 is a step of accommodating the electrode body to which the current collecting terminals are bonded in the step S20 in the laminated exterior body. In step S30, the electrode body and the laminated outer body are overlapped and arranged so that the electrode body is housed inside the laminated outer body. At this time, the electrode body is arranged so that the current collecting terminal is in a state where at least a part thereof is led out to the outside of the laminated exterior body.
The electrode body and the laminated outer body may be, for example, superposed in the order of the laminated outer body, the electrode body, and the laminated outer body. For example, the electrode body may be sandwiched between two laminated films (exterior bodies), or the electrode body may be inserted into a bag-shaped laminated outer body.

<封止工程>
封止工程S40は、工程S30において電極体が収容されたラミネート外装体の周縁部を熱溶着して封止する工程である。例えば、上記電極体の挟み込み方向においてラミネート外装体の周縁部を両側から加熱封止装置(「ヒートシーラー」ともいう。)の加熱部で挟み込み、該周縁部に所定の熱量を加えることによって、ラミネート外装体の周縁部を封止する。
以下、本発明における工程S40について、図4を参照しつつ説明する。以下の説明は正極集電端子導出部近傍の溶着を説明するものであるが、負極集電端子導出部近傍の溶着についても同様である。なお、図4は、実施形態にかかる電池の製造方法における、ラミネート外装体の溶着工程を示す模式図である。(A)は、溶着工程を説明する斜視図である。(B)は、溶着工程における溶着部位を示す正面図である。(C)は、図4(B)のC−C断面図である。(D)は、図4(B)のD−D断面図である。(E)は、変形例1における図4(B)のC−C断面図である。
<Sealing process>
The sealing step S40 is a step of heat welding and sealing the peripheral edge of the laminated exterior body in which the electrode body is housed in the step S30. For example, in the sandwiching direction of the electrode body, the peripheral edge portion of the laminated exterior body is sandwiched between the heating portions of the heat sealing device (also referred to as "heat sealer") from both sides, and a predetermined amount of heat is applied to the peripheral edge portion to laminate. Seal the peripheral edge of the exterior body.
Hereinafter, step S40 in the present invention will be described with reference to FIG. The following description describes the welding in the vicinity of the positive electrode current collecting terminal outlet, but the same applies to the welding in the vicinity of the negative electrode current collector terminal outlet. Note that FIG. 4 is a schematic view showing a welding process of the laminated exterior body in the method for manufacturing a battery according to the embodiment. (A) is a perspective view explaining a welding process. (B) is a front view which shows the welding part in a welding process. (C) is a sectional view taken along the line CC of FIG. 4 (B). (D) is a cross-sectional view taken along the line DD of FIG. 4 (B). (E) is a cross-sectional view taken along the line CC of FIG. 4 (B) in the modified example 1.

<加熱封止装置>
ここで開示される電池の製造方法に用いられる加熱封止装置としては、一般的な加熱封止装置を使用することができ、その全体的な構成の説明は省略する。以下では、加熱封止装置において、ラミネート外装体を挟み込んで熱溶着を行う主体となる加熱部のみについて説明する。
例えば、加熱封止装置から加えられる熱量は、ラミネート外装体の周縁部における、集電端子と対向する領域と、対向しない非対向領域との間で異なるよう設定されることが好ましい。上記対向領域において加えられた熱量における集電端子から電極体方向に熱引きされた後の熱量と、上記非対向領域に加えられた熱量とがほぼ同じとなるように構成されることが好ましい。
具体的には、図4(A)および図4(B)に示されるように、例えば加熱部10は、対向領域30aを挟み込む領域R1と、非対向領域30bを挟み込む領域R2とを有する。例えば領域R1から対向領域30aに加えられる熱量と、領域R2から非対向領域30bに加えられる熱量とが相互に異なるように構成されてよい。例えば、非対向領域30bに加えられる熱量は、相対的に小さいことが好ましい。なお、ここでは、対向領域30aは、ラミネート外装体30において、正極集電端子42と対向する領域である。非対向領域30bは、ラミネート外装体30において、正極集電端子42と対向しない領域である。
<Heat sealing device>
As the heat-sealing device used in the battery manufacturing method disclosed herein, a general heat-sealing device can be used, and the description of the overall configuration thereof will be omitted. In the following, only the heating portion, which is the main body for performing heat welding by sandwiching the laminated outer body, will be described in the heat sealing device.
For example, it is preferable that the amount of heat applied from the heat sealing device is set to be different between the region facing the current collecting terminal and the non-opposing region not facing each other in the peripheral edge portion of the laminated exterior body. It is preferable that the amount of heat applied in the opposite region after being heat-drawn from the current collecting terminal toward the electrode body is substantially the same as the amount of heat applied in the non-opposing region.
Specifically, as shown in FIGS. 4A and 4B, for example, the heating unit 10 has a region R1 that sandwiches the facing region 30a and a region R2 that sandwiches the non-facing region 30b. For example, the amount of heat applied from the region R1 to the opposite region 30a and the amount of heat applied from the region R2 to the non-opposite region 30b may be configured to be different from each other. For example, the amount of heat applied to the non-opposing region 30b is preferably relatively small. Here, the facing region 30a is a region facing the positive electrode current collecting terminal 42 in the laminated exterior body 30. The non-opposing region 30b is a region of the laminated exterior body 30 that does not face the positive electrode current collecting terminal 42.

<加熱部の構造>
例えば、領域R2において、溶着時に熱が伝導する断面積を、領域R1における断面積よりも小さくすることが挙げられる。そうすると、領域R2における熱抵抗値が相対的に大きくなるため、領域R2からラミネート外装体30(非対向領域30b)に加えられる熱量は、相対的に小さくなる。これにより、領域R2に挟み込まれるラミネート外装体30(非対向領域30b)の過剰な熱溶融は顕著に抑制され得る。
領域R2における断面積を相対的に小さくする方法としては、例えば図示されるように、領域R2において複数個の孔12を設けることが挙げられる。
孔12の形状は特に限定されないが、例えば、平面形状は正円、楕円等の弧を含む形状、略多角形等であってよい。孔12は、例えば貫通孔であることが好ましく、電池1の幅広面に対して、該幅広面に対する角度が10度未満である、略平行なものであってよい(図4(C))。孔12は、例えば窪みであってもよく、その場合、図4(C)のX方向(即ち、ラミネート外装体30の水平面方向)における深さは特に限定されない。
孔12の個数は特に限定されないが、例えば1,2,3,4,および5個以上であってよく、30,25,20,および10個以下であってよい。
孔12の直径は特に限定されない。
<Structure of heating part>
For example, in the region R2, the cross-sectional area where heat is conducted during welding may be made smaller than the cross-sectional area in the region R1. Then, since the thermal resistance value in the region R2 becomes relatively large, the amount of heat applied from the region R2 to the laminated exterior body 30 (non-opposing region 30b) becomes relatively small. As a result, excessive thermal melting of the laminated exterior body 30 (non-opposing region 30b) sandwiched between the regions R2 can be remarkably suppressed.
As a method of relatively reducing the cross-sectional area in the region R2, for example, as shown in the drawing, providing a plurality of holes 12 in the region R2 can be mentioned.
The shape of the hole 12 is not particularly limited, but for example, the planar shape may be a shape including an arc such as a perfect circle or an ellipse, a substantially polygonal shape, or the like. The hole 12 is preferably a through hole, for example, and may be substantially parallel to the wide surface of the battery 1 so that the angle with respect to the wide surface is less than 10 degrees (FIG. 4 (C)). The hole 12 may be a recess, for example, and in that case, the depth in the X direction (that is, the horizontal plane direction of the laminated exterior body 30) in FIG. 4C is not particularly limited.
The number of holes 12 is not particularly limited, but may be 1, 2, 3, 4, and 5 or more, and may be 30, 25, 20, and 10 or less, for example.
The diameter of the hole 12 is not particularly limited.

領域R1の平面形状および断面形状は、当該領域における断面積が相対的に大きい限りは、特に限定されない。例えば、図4(D)に示されるように、領域R1には上記のような孔12を形成しないことが好ましい。領域R1に孔を形成する場合は、例えば領域R2よりも孔の個数および孔のサイズ等を小さくすることが好ましい。 The planar shape and cross-sectional shape of the region R1 are not particularly limited as long as the cross-sectional area in the region is relatively large. For example, as shown in FIG. 4D, it is preferable not to form the above-mentioned hole 12 in the region R1. When forming holes in the region R1, it is preferable that the number of holes, the size of the holes, and the like are smaller than, for example, the region R2.

<作用効果>
従来のラミネート外装体を備える電池について、ラミネート外装体において上記のような対向領域を熱溶着する際、加熱封止装置からラミネート外装体に加えられる熱量が、集電端子を介して例えば電極体側に逃げることによって、対向領域の熱溶着が不十分となる虞があった。これは、ラミネート外装体の外部から内部への空気の流入、およびラミネート外装体の内部から外部への電解液および電池反応の過程で発生したガスの流出等の要因となり、電池を適切に使用するため早急に解決が要求される課題であった。一方、熱逃げによる溶着不全を抑制するために、加熱部から加えられる熱量を大きくすると、上記非対向領域では、ラミネート外装体の樹脂層がその熱量によって過剰に溶融し、上記のような不具合の発生に加えて、例えばラミネート外装体における金属層(ガスバリア層)が露出し、当該金属層と電極体とが短絡する虞があった。
本発明では、ラミネート外装体の熱溶着に用いられる加熱封止装置において、上記非対向領域における、熱が伝導する断面積を、対向領域における断面積よりも小さくしている。これによって、集電端子から電極体への熱逃げを考慮して熱溶着時の加熱量を大きくしても、非対向領域のラミネート外装体に、加熱封止装置から過剰の熱量が加えられることが抑制され、上記のような不具合の発生を防止することができる。ここで開示される電池の製造方法によって、対向領域においてラミネート外装体の溶着による密閉性が向上され、非対向領域では樹脂層の熱溶融が抑制されることにより、ラミネート外装体の密閉性が顕著に向上された電池を提供することができる。
<Effect>
For a battery provided with a conventional laminated exterior body, when heat welding the facing regions as described above in the laminated outer body, the amount of heat applied to the laminated outer body from the heat sealing device is applied to, for example, the electrode body side via the current collecting terminal. By escaping, there was a risk that the heat welding of the opposite region would be insufficient. This causes the inflow of air from the outside to the inside of the laminated exterior, the outflow of the electrolytic solution from the inside to the outside of the laminated exterior, and the outflow of gas generated in the process of the battery reaction, so that the battery is used properly. Therefore, it was an issue that needed to be resolved immediately. On the other hand, when the amount of heat applied from the heating portion is increased in order to suppress welding failure due to heat escape, the resin layer of the laminated outer body is excessively melted by the amount of heat in the non-opposing region, resulting in the above-mentioned problems. In addition to the occurrence, for example, the metal layer (gas barrier layer) in the laminated outer body may be exposed, and the metal layer and the electrode body may be short-circuited.
In the present invention, in the heat sealing device used for heat welding of a laminated exterior body, the cross-sectional area where heat is conducted in the non-opposing region is made smaller than the cross-sectional area in the facing region. As a result, even if the amount of heat during heat welding is increased in consideration of heat escape from the current collecting terminal to the electrode body, an excessive amount of heat is applied to the laminated outer body in the non-opposing region from the heat sealing device. Is suppressed, and the occurrence of the above-mentioned problems can be prevented. According to the battery manufacturing method disclosed here, the airtightness of the laminated exterior body due to welding is improved in the facing region, and the thermal melting of the resin layer is suppressed in the non-opposing region, so that the airtightness of the laminated exterior body is remarkable. It is possible to provide an improved battery.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
<変形例1>
例えば図4(E)に示されるように、孔12は、電池の幅広面に対して、該幅広面に対する角度が10度以上であるように形成されてもよい。この場合、溶着時に温められた空気が孔12を通ってZ方向(即ち、加熱部10に対するラミネート外装体30の挟み込み方向)におけるU側に流れることによって、領域R2からのラミネート外装体への加熱量を効率よく低下させることができる。
<変形例2>
例えば、領域R2の断面形状を、図5に示されるような形状とすることができる。例えば、X方向(即ち、ラミネート外装体30の水平面方向)において、加熱部10の一部の幅L2を、ラミネート外装体30との当接部の幅L1よりも小さくしてもよい。なお、ラミネート外装体30との当接部の幅L1は、領域R1および領域R2のいずれにおいても同一であることが好ましい。
Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.
<Modification example 1>
For example, as shown in FIG. 4 (E), the hole 12 may be formed so that the angle with respect to the wide surface of the battery is 10 degrees or more. In this case, the air warmed at the time of welding flows to the U side in the Z direction (that is, the sandwiching direction of the laminated outer body 30 with respect to the heating portion 10) through the holes 12, thereby heating the laminated outer body from the region R2. The amount can be reduced efficiently.
<Modification 2>
For example, the cross-sectional shape of the region R2 can be a shape as shown in FIG. For example, in the X direction (that is, in the horizontal plane direction of the laminated exterior body 30), the width L2 of a part of the heating portion 10 may be smaller than the width L1 of the contact portion with the laminated exterior body 30. The width L1 of the contact portion with the laminated exterior body 30 is preferably the same in both the region R1 and the region R2.

<変形例3>
上記実施形態は、本発明を積層型電極体に適用する場合について説明したが、長尺な正極シートと長尺な負極シートとがセパレータを介在させつつ交互に積層されて捲回軸方向に捲回された構成の、捲回電極体に適用してもよい。
<Modification example 3>
In the above embodiment, the case where the present invention is applied to a laminated electrode body has been described, but a long positive electrode sheet and a long negative electrode sheet are alternately laminated with a separator interposed therebetween and wound in the winding axis direction. It may be applied to a wound electrode body having a rotated structure.

<変形例4>
上記実施形態では、正極集電端子導出部32および負極集電端子導出部34は、それぞれX方向における対向する両端部に形成されている(図1参照。)が、正極集電端子導出部32および負極集電端子導出部34は、例えば同一辺に形成されてもよい。この場合、例えば電極体20の短辺方向(Y方向)に、2つの集電端子導出部が重ならないように形成される。
<Modification example 4>
In the above embodiment, the positive electrode current collecting terminal lead-out unit 32 and the negative electrode current collector terminal lead-out unit 34 are formed at both end portions facing each other in the X direction (see FIG. 1), but the positive electrode current collector terminal lead-out unit 32 And the negative electrode current collecting terminal lead-out unit 34 may be formed on the same side, for example. In this case, for example, the two current collecting terminal outlets are formed so as not to overlap in the short side direction (Y direction) of the electrode body 20.

1 電池
10 加熱部
12 孔
20 電極体
22 正極集電体
30 ラミネート外装体
30a 対向領域
30b 非対向領域
32 正極集電端子導出部
34 負極集電端子導出部
36a シーラント層
36b ガスバリア層
36c 保護層
42 正極集電端子
44 負極集電端子
S10 電極体準備工程
S20 集電端子取付工程
S30 外装体収容工程
S40 封止工程
R1 領域
R2 領域
L1,L2 幅
X,Y,Z,U 方向
1 Battery 10 Heating part 12 Hole 20 Electrode body 22 Positive electrode current collector 30 Laminated exterior body 30a Opposing area 30b Non-opposing area 32 Positive current collecting terminal lead-out part 34 Negative-negative current collecting terminal lead-out part 36a Sealant layer 36b Gas barrier layer 36c Protective layer 42 Positive electrode current collecting terminal 44 Negative electrode current collecting terminal S10 Electrode body preparation step S20 Current collecting terminal mounting step S30 Exterior body accommodating step S40 Sealing step R1 region R2 region L1, L2 Width X, Y, Z, U directions

Claims (1)

正極、負極、およびセパレータとして機能する層を有する電極体と、
前記電極体を内部に密閉した状態で収容するラミネート外装体と、
前記正極および前記負極にそれぞれ接続されている外部接続用の正極集電端子および負極集電端子であって一部が前記ラミネート外装体から外部に導出されている正負極集電端子と、
を備える電池の製造方法であって、
前記電極体を前記ラミネート外装体の内部に収容した状態となるように配置し、且つ、少なくとも一部が該ラミネート外装体の外部に導出された状態となるように前記正負極集電端子を配置した状態で、該ラミネート外装体の周縁部を熱溶着して封止する工程を包含し、
前記熱溶着は、前記周縁部を両側から挟み込んで該周縁部に所定の熱量を加える加熱封止装置によって行われ、
ここで、前記挟み込んだ周縁部のうちの前記正負極集電端子と対向する領域に加えられた熱量における該集電端子から電極体方向に熱引きされた後の熱量と、前記正負極集電端子と対向しない非対向領域に加えられた熱量とがほぼ同じになるように、前記対向領域と前記非対向領域との間で、前記加熱封止装置から加えられる熱量を異ならせて前記熱溶着を行うことを特徴とする、製造方法。
An electrode body having a layer that functions as a positive electrode, a negative electrode, and a separator, and
A laminated exterior body that houses the electrode body in a sealed state, and
Positive and negative electrode current collecting terminals for external connection and negative electrode current collecting terminals that are connected to the positive electrode and the negative electrode, respectively, and a part of which is led out from the laminated exterior body to the outside.
Is a method of manufacturing a battery equipped with
The positive electrode body is arranged so as to be housed inside the laminated outer body, and the positive and negative electrode current collecting terminals are arranged so that at least a part of the electrode body is led out to the outside of the laminated outer body. In this state, the step of heat-welding and sealing the peripheral edge of the laminated outer body is included.
The heat welding is performed by a heat sealing device that sandwiches the peripheral edge portion from both sides and applies a predetermined amount of heat to the peripheral edge portion.
Here, the amount of heat applied to the region of the sandwiched peripheral edge portion facing the positive and negative electrode current collecting terminals, the amount of heat after being heat-pulled from the current collecting terminal toward the electrode body, and the positive and negative electrode current collection. The heat welding is performed by making the amount of heat applied from the heat sealing device different between the facing region and the non-opposing region so that the amount of heat applied to the non-opposing region not facing the terminal is substantially the same. A manufacturing method characterized by performing.
JP2019207869A 2019-11-18 2019-11-18 Battery manufacturing method Active JP7333000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019207869A JP7333000B2 (en) 2019-11-18 2019-11-18 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207869A JP7333000B2 (en) 2019-11-18 2019-11-18 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2021082448A true JP2021082448A (en) 2021-05-27
JP7333000B2 JP7333000B2 (en) 2023-08-24

Family

ID=75965858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207869A Active JP7333000B2 (en) 2019-11-18 2019-11-18 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP7333000B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116228A (en) * 2003-10-03 2005-04-28 Nec Lamilion Energy Ltd Heat-fusing method of laminate film, manufacturing method of film coating battery, and heat-fusing device for laminate film
WO2014178238A1 (en) * 2013-05-01 2014-11-06 日産自動車株式会社 Laminate-type secondary battery manufacturing device and manufacturing method
WO2014188774A1 (en) * 2013-05-23 2014-11-27 日産自動車株式会社 Laminated-type secondary battery manufacturing method and manufacturing device
WO2018105096A1 (en) * 2016-12-09 2018-06-14 日産自動車株式会社 Film-covered battery production method and film-covered battery
JP2018156725A (en) * 2017-03-15 2018-10-04 三洋電機株式会社 Manufacturing method of nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116228A (en) * 2003-10-03 2005-04-28 Nec Lamilion Energy Ltd Heat-fusing method of laminate film, manufacturing method of film coating battery, and heat-fusing device for laminate film
WO2014178238A1 (en) * 2013-05-01 2014-11-06 日産自動車株式会社 Laminate-type secondary battery manufacturing device and manufacturing method
WO2014188774A1 (en) * 2013-05-23 2014-11-27 日産自動車株式会社 Laminated-type secondary battery manufacturing method and manufacturing device
WO2018105096A1 (en) * 2016-12-09 2018-06-14 日産自動車株式会社 Film-covered battery production method and film-covered battery
JP2018156725A (en) * 2017-03-15 2018-10-04 三洋電機株式会社 Manufacturing method of nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7333000B2 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
JP5287255B2 (en) Bag separator, electrode separator assembly, and method of manufacturing electrode separator assembly
JP2008021634A (en) Secondary battery with security of sealing part improved
JP2006221938A (en) Film packaged electric storage device
WO2020203101A1 (en) Power storage module
JP5879550B2 (en) Thin secondary battery
JP2000223090A (en) Battery
WO2018016654A1 (en) Electrochemical device
JP5371563B2 (en) Power storage device
JP2005019213A (en) Structure of electric lead, electric device having lead structure, battery and battery pack
JP6997949B2 (en) Manufacturing method of laminated battery module
US20220209377A1 (en) Battery module and method for producing the battery module
JP7333000B2 (en) Battery manufacturing method
JP4887650B2 (en) Single cells and batteries
JP2019194949A (en) Laminate type battery
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP2017228381A (en) Battery and manufacturing method of battery
JP2019003842A (en) Film sheathing battery and manufacturing method therefor
CN113904034A (en) Sealed battery
JP2012175084A (en) Power storage device, manufacturing method of power storage cell and manufacturing method of power storage device
EP4009422B1 (en) Laminated battery
US9786886B2 (en) Nonaqueous battery
JP4391861B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2014002858A (en) Electrode storage separator and power storage device
JP5891947B2 (en) Assembled battery and manufacturing method of assembled battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R151 Written notification of patent or utility model registration

Ref document number: 7333000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151