JP2021081475A - Domain wall moving type spatial light modulator inspection device and initialization magnetic field derivation device of domain wall moving type spatial light modulator - Google Patents

Domain wall moving type spatial light modulator inspection device and initialization magnetic field derivation device of domain wall moving type spatial light modulator Download PDF

Info

Publication number
JP2021081475A
JP2021081475A JP2019206424A JP2019206424A JP2021081475A JP 2021081475 A JP2021081475 A JP 2021081475A JP 2019206424 A JP2019206424 A JP 2019206424A JP 2019206424 A JP2019206424 A JP 2019206424A JP 2021081475 A JP2021081475 A JP 2021081475A
Authority
JP
Japan
Prior art keywords
ferromagnetic
domain wall
magnetic field
wall moving
exchange coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019206424A
Other languages
Japanese (ja)
Other versions
JP7345361B2 (en
Inventor
諒 東田
Ryo Higashida
諒 東田
信彦 船橋
Nobuhiko Funabashi
信彦 船橋
賢一 青島
Kenichi Aoshima
賢一 青島
町田 賢司
Kenji Machida
賢司 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2019206424A priority Critical patent/JP7345361B2/en
Publication of JP2021081475A publication Critical patent/JP2021081475A/en
Application granted granted Critical
Publication of JP7345361B2 publication Critical patent/JP7345361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Hall/Mr Elements (AREA)

Abstract

To reduce a time for inspecting an element in a domain wall moving type modulation element and to derive an external magnetic field large enough for a reverse parallelization of an element magnetization direction.SOLUTION: There is provided an inspection device 4 of a domain wall moving type spatial light modulator 100 formed of a domain wall moving type light modulation element including: a light modulation unit for emitting an incident light while changing the direction of the polarization of the light; and a first ferromagnetic exchange coupling unit and a second ferromagnetic exchange coupling unit located in both ends of the light modulation unit, having magnetism holding forces different from each other. The first ferromagnetic exchange coupling unit and the second ferromagnetic exchange coupling unit each have a first ferromagnetic layer made of a ferromagnetic material and a second ferromagnetic layer formed on the first ferromagnetic layer made of a ferromagnetic material, and ferromagnetic exchange-coupled with the first ferromagnetic layers. The inspection device also includes: an external magnetic field application device 40 for applying an external magnetic field to the domain wall moving type spatial light modulator; a magnetic optical microscope 5 capable of observing the magnetization direction of the domain wall moving type spatial light modulator on which the external magnetic field is applied; and an image processing unit 6 for processing a taken image by the magnetic optical microscope 5.SELECTED DRAWING: Figure 4

Description

本発明は、磁壁移動型空間光変調器検査装置及び磁壁移動型空間光変調器の初期化磁界導出装置に関する。 The present invention relates to a domain wall mobile spatial light modulator inspection device and an initialization magnetic field derivation device for a domain wall mobile spatial light modulator.

電流誘起磁壁移動による磁化反転技術を用いた磁壁移動型光変調素子や磁気抵抗効果素子は、素子の高密度化や低電流駆動が期待できるため、研究開発が進められている。例えば特許文献1は、広視域の動画ホログラフィの実現には、画素ピッチ1ミクロン以下の空間光変調器が必要となるため、上述の磁壁移動型光変調素子の特徴を用いて解決しようとしている。特許文献2では、上述の特徴に加え、書き込み電流経路と読み出し電流経路を別とすることが出来るため、より信頼性が高い磁気ランダムアクセスメモリ(MRAM)への応用を提案している。 Research and development are underway for magnetic wall-moving light modulation devices and magnetoresistive-effect devices that use the magnetization reversal technology by current-induced domain wall movement because they can be expected to have higher density and lower current drive. For example, Patent Document 1 attempts to solve the problem by using the above-mentioned characteristics of the domain wall moving light modulation element because a spatial light modulator having a pixel pitch of 1 micron or less is required to realize moving image holography in a wide field of view. .. Patent Document 2 proposes an application to a more reliable magnetic random access memory (MRAM) because the write current path and the read current path can be separated in addition to the above-mentioned features.

電流誘起磁壁移動を用いた磁壁移動型光変調素子や磁気抵抗効果素子では、磁化固定層の磁化の向きをそれぞれ上向きと下向きとする反平行磁化配置を実現する必要がある。反平行磁化配置は、2つの磁化固定層の保磁力(図2中のHc1及びHc2)に差を設計することで実現可能である(詳しくは後述する。)。 In a magnetic domain wall-moving light modulation element or a magnetoresistive sensor using current-induced domain wall movement, it is necessary to realize antiparallel magnetization arrangements in which the magnetization directions of the magnetization fixed layer are upward and downward, respectively. The antiparallel magnetization arrangement can be realized by designing the difference in the coercive force (Hc1 and Hc2 in FIG. 2) of the two magnetization fixed layers (details will be described later).

特開2018−206900号公報JP-A-2018-206900 国際公開2011/078018号公報International Publication 2011/078018

一般に、素子を複数個作製した場合、Hc1及びHc2は素子間でバラツキが存在する。したがって、磁化固定層の磁気特性が不良な素子では、上述の反平行磁化形成時に、反転させない磁化固定層が反転したり、反転させる磁化固定層が反転しなかったりして、反平行磁化配置が正しく実現されず、素子は正常に動作しない。磁気特性が不良な素子を測定するには、各素子の光変調層のヒステリシスループを測定する必要があり、作製する素子が増えるにつれて測定時間は増加する。 In general, when a plurality of elements are manufactured, Hc1 and Hc2 have variations among the elements. Therefore, in an element having poor magnetic properties of the magnetization fixed layer, the non-inverted magnetization fixed layer may be inverted or the inverted magnetization fixed layer may not be inverted during the formation of the above-mentioned antiparallel magnetization, resulting in an antiparallel magnetization arrangement. It is not realized correctly and the element does not operate normally. In order to measure an element having poor magnetic characteristics, it is necessary to measure the hysteresis loop of the optical modulation layer of each element, and the measurement time increases as the number of elements to be manufactured increases.

そこで本発明は、複数の磁壁移動型光変調素子の磁気特性を一度に検査することで、不良素子の検出時間を削減することを目的とする。 Therefore, an object of the present invention is to reduce the detection time of defective elements by inspecting the magnetic characteristics of a plurality of domain wall-moving light modulation elements at once.

(1) 本発明は、入射した光の偏光の向きを変化させて出射する光変調部(例えば、後述の光変調部3)と、前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部(例えば、後述の第1強磁性交換結合部1)及び第2強磁性交換結合部(例えば、後述の第2強磁性交換結合部2)と、を有し、前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、強磁性材料からなる第1強磁性層(例えば、後述の第1磁化固定層11及び後述の第2磁化固定層21)と、前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層(例えば、後述の光変調層30)と、を有する磁壁移動型光変調素子(例えば、後述の磁壁移動型光変調素子10)からなる磁壁移動型空間光変調器(例えば、後述の磁壁移動型空間光変調器100)の検査装置(例えば、後述の検査装置4)であって、前記検査装置は、前記磁壁移動型空間光変調器に外部磁界を印加する外部磁界印加装置(例えば、後述の外部磁界印加装置40)と、前記外部磁界が印加された磁壁移動型光変調素子の磁化方向を観察可能な磁気光学顕微鏡(例えば、後述の磁気光学顕微鏡5)と、前記磁気光学顕微鏡による撮影画像を処理する画像処理部(例えば、後述の画像処理部6)と、を有する、磁壁移動型空間光変調器の検査装置を提供する。 (1) In the present invention, an optical modulation unit (for example, an optical modulation unit 3 described later) that changes the direction of polarization of incident light and emits the light, and an optical modulation unit (for example, a light modulation unit 3 described later) are arranged at both ends of the optical modulation unit and have different coermagnetic forces. It has a first ferromagnetic exchange coupling portion (for example, a first ferromagnetic exchange coupling portion 1 described later) and a second ferromagnetic exchange coupling portion (for example, a second ferromagnetic exchange coupling portion 2 described later). Both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion are a first ferromagnetic layer made of a ferromagnetic material (for example, a first magnetization fixing layer 11 described later and a second magnetization fixing layer described later). 21) and a second ferromagnetic layer (for example, a photomodulation layer 30 described later) that is formed on the first ferromagnetic layer and is ferromagnetically exchange-coupled with the first ferromagnetic layer by being made of a ferromagnetic material. An inspection device (for example, a magnetic wall moving space optical modulator 100 described later) of a magnetic wall moving spatial optical modulator (for example, a magnetic wall moving spatial optical modulator 100 described later) composed of a magnetic wall moving optical modulator (for example, a magnetic wall moving optical modulator 10 described later). The inspection device 4), which will be described later, includes an external magnetic field applying device (for example, an external magnetic field applying device 40 described later) that applies an external magnetic field to the magnetic wall moving space optical modulator, and the external magnetic field. A magnetic optical microscope (for example, a magnetic optical microscope 5 described later) capable of observing the magnetization direction of the magnetic wall moving type optical modulation element to which is applied, and an image processing unit (for example, described later) for processing an image captured by the magnetic optical microscope. Provided is an inspection device for a magnetic wall moving type spatial optical modulator having an image processing unit 6).

(2) (1)の発明において、また前記検査装置は、前記画像処理部による処理結果に基づいて、前記磁壁移動型空間光変調器に印加する初期化磁界の大きさを制御する制御部(例えば、後述の制御部7)をさらに有する、請求項1に記載の磁壁移動型空間光変調器の検査装置を提供する。 (2) In the invention of (1), the inspection device is a control unit (1) that controls the magnitude of the initialization magnetic field applied to the domain wall moving spatial light modulator based on the processing result by the image processing unit. For example, the inspection apparatus for the domain wall moving type spatial light modulator according to claim 1, further comprising a control unit 7) described later, is provided.

(3) また本発明は、入射した光の偏光の向きを変化させて出射する光変調部と、前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、を有し、前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、強磁性材料からなる第1強磁性層と、前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有する磁壁移動型光変調素子からなる磁壁移動型空間光変調器の初期化磁界導出装置(例えば、後述の初期化磁界導出装置50)であって、前記初期化磁界導出装置は、前記磁壁移動型空間光変調器に外部磁界を印加する外部磁界印加装置と、前記外部磁界が印加された磁壁移動型光変調素子の磁化方向を観察可能な磁気光学顕微鏡と、前記磁気光学顕微鏡による撮影画像を処理する画像処理部と、を有し、前記初期化磁界導出装置は、前記画像処理部による処理結果に基づいて、前記磁壁移動型空間光変調器に印加する初期化磁界の大きさを制御する制御部を有する、初期化磁界導出装置を提供する。 (3) Further, the present invention includes an optical modulation unit that changes the direction of polarization of incident light and emits it, and a first ferromagnetic exchange coupling unit that is arranged at both ends of the optical modulation unit and has different coercive magnetic forces. It has a second ferromagnetic exchange coupling portion, and both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion have a first ferromagnetic layer made of a ferromagnetic material and the first strong A magnetic wall moving space optical modulator composed of a magnetic wall moving optical modulation element having a second ferromagnetic layer formed on a magnetic layer and optically exchange-coupled with the first ferromagnetic layer by being made of a ferromagnetic material. The initialization magnetic field derivation device (for example, the initialization magnetic field derivation device 50 described later) of the above, wherein the initialization magnetic field derivation device includes an external magnetic field application device that applies an external magnetic field to the magnetic wall moving space optical modulator. The initialization magnetic field derivation device includes a magnetic optical microscope capable of observing the magnetization direction of the magnetic wall moving optical modulation element to which the external magnetic field is applied, and an image processing unit for processing an image captured by the magnetic optical microscope. Provides an initialization magnetic field derivation device having a control unit that controls the magnitude of the initialization magnetic field applied to the magnetic wall moving space optical modulator based on the processing result by the image processing unit.

(4) また本発明は、入射した光の偏光の向きを変化させて出射する光変調部と、前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、を有し、前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、強磁性材料からなる第1強磁性層と、前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有する磁壁移動型光変調素子からなる磁壁移動型空間光変調器の検査方法であって、前記磁壁移動型空間光変調器を磁気光学顕微鏡で撮影し、前記磁気光学顕微鏡の撮影画角内での前記磁壁移動型空間光変調素子の位置を判定する位置判定工程と、前記磁壁移動型空間光変調器に外部から初期化磁界を印加する初期化磁界印加工程と、前記初期化磁界を印加した前記磁壁移動型空間光変調器にさらに外部磁界を印加して磁化方向を反転させる磁化方向反転工程と、前記磁壁移動型光変調素子の磁化方向が反転したかどうかを前記磁気光学顕微鏡及び画像処理部によって判定する磁化反転判定工程と、磁化方向が反転していない前記磁壁移動型光変調素子の位置を出力する位置出力工程と、を有する、磁壁移動型空間光変調器の検査方法を提供する。 (4) Further, the present invention includes an optical modulation section that changes the direction of polarization of incident light and emits it, and a first ferromagnetic exchange coupling section that is arranged at both ends of the light modulation section and has different coercive forces. It has a second ferromagnetic exchange coupling portion, and both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion have a first ferromagnetic layer made of a ferromagnetic material and the first strength. A magnetic wall moving space optical modulator composed of a magnetic wall moving optical modulation element having a second ferromagnetic layer formed on a magnetic layer and optically exchange-coupled with the first ferromagnetic layer by being made of a ferromagnetic material. In the inspection method of the above, a position determination step of photographing the magnetic wall moving space light modulator with a magnetic optical microscope and determining the position of the magnetic wall moving space light modulation element within the photographing angle of the magnetic optical microscope. An initialization magnetic field application step of applying an initialization magnetic field from the outside to the magnetic wall moving space light modulator, and further applying an external magnetic field to the magnetic wall moving space light modulator to which the initialization magnetic field is applied to magnetize. The magnetization direction reversal step of reversing the direction, the magnetization reversal determination step of determining whether or not the magnetization direction of the magnetic wall moving type optical modulation element is reversed by the magnetic optical microscope and the image processing unit, and the magnetization direction are not reversed. Provided is a method for inspecting a magnetic wall moving spatial optical modulator, which comprises a position output step for outputting the position of the magnetic wall moving optical modulator.

本発明によって、一度に画角内の素子を検査可能となるため、素子の磁気特性の歩留まり測定時間を大幅に短縮できる。また、素子初期化に適切な外部磁界を導出可能となる。 According to the present invention, the elements within the angle of view can be inspected at one time, so that the yield measurement time of the magnetic characteristics of the elements can be significantly shortened. In addition, an external magnetic field suitable for device initialization can be derived.

特許文献1に記載の磁壁移動型光変調素子の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetic domain wall movable type light modulation element described in Patent Document 1. FIG. 特許文献1に記載の磁壁移動型光変調素子の構成を示す側面図である。It is a side view which shows the structure of the domain wall moving type light modulation element described in Patent Document 1. FIG. 特許文献1に記載の磁壁移動型光変調素子の動作を示す図である。It is a figure which shows the operation of the domain wall moving type light modulation element described in Patent Document 1. FIG. 本発明の磁壁移動型光変調器検査装置の構成を示す図である。It is a figure which shows the structure of the magnetic wall movable type light modulator inspection apparatus of this invention. 磁壁移動型光変調素子の磁化固定層が反平行磁化配置の場合の光変調層のヒステリシスループを示す図である。It is a figure which shows the hysteresis loop of the light modulation layer when the magnetization fixed layer of the domain wall moving type light modulation element is antiparallel magnetization arrangement. 磁壁移動型光変調素子の磁化固定層が平行磁化配置の場合の光変調層のヒステリシスループを示す図である。It is a figure which shows the hysteresis loop of the light modulation layer when the magnetization fixed layer of the domain wall moving type light modulation element is a parallel magnetization arrangement. 磁壁移動型光変調素子の磁化固定層と光変調層の位置合わせ不良時の光変調層のヒステリシスループを示す図である。It is a figure which shows the hysteresis loop of the light modulation layer at the time of misalignment of the magnetization fixed layer and the light modulation layer of the domain wall moving type light modulation element. 磁壁移動型空間光変調器検査装置の検査フローチャートである。It is an inspection flowchart of the domain wall moving type spatial light modulator inspection apparatus. 磁壁移動型空間光変調器検査装置における、撮影画像内の各素子位置判定を示す模式図である。It is a schematic diagram which shows the position determination of each element in a photographed image in the domain wall moving type spatial light modulator inspection apparatus. 磁壁移動型空間光変調器検査装置における、外部磁界印加による素子の初期化を示す模式図である。It is a schematic diagram which shows the initialization of the element by applying an external magnetic field in the domain wall moving type spatial light modulator inspection apparatus. 磁壁移動型空間光変調器検査装置における、正方向の外部磁界印加による不良画素の判定を示す模式図である。It is a schematic diagram which shows the determination of the defective pixel by the application of the external magnetic field in the positive direction in the domain wall moving type spatial light modulator inspection apparatus. 磁壁移動型空間光変調器検査装置における、負方向の外部磁界印加による不良画素の判定を示す模式図である。It is a schematic diagram which shows the determination of a defective pixel by applying an external magnetic field in a negative direction in a domain wall moving type spatial light modulator inspection apparatus. 初期化された磁壁移動型空間光変調器の磁気光学顕微鏡写真である。It is a magneto-optical micrograph of an initialized domain wall moving spatial light modulator. 初期化後に負方向の外部磁界を印加された磁壁移動型空間光変調器の磁気光学顕微鏡写真である。It is a magneto-optical micrograph of a magnetic wall moving type spatial light modulator to which an external magnetic field in a negative direction is applied after initialization.

以下、本発明の一実施形態について、図面を参照して詳細に説明する。なお、共通する構成については同一の符号を付している。また、説明の便宜上、図中の上下左右を磁壁移動型光変調素子の上下左右として説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The same reference numerals are given to the common configurations. Further, for convenience of explanation, the top, bottom, left, and right in the drawing will be described as the top, bottom, left, and right of the domain wall movable light modulation element.

図1は、特許文献1に記載の磁壁移動型光変調素子の構成を示す斜視図である。図2は、特許文献1に記載の磁壁移動型光変調素子の構成を示す側面図である。図3は、特許文献1に記載の磁壁移動型光変調素子の動作を示す図である。図1及び図3中の矢印は、磁化方向の向きを示している。 FIG. 1 is a perspective view showing the configuration of the domain wall movable light modulation element described in Patent Document 1. FIG. 2 is a side view showing the configuration of the domain wall movable light modulation element described in Patent Document 1. FIG. 3 is a diagram showing the operation of the domain wall movable light modulation element described in Patent Document 1. The arrows in FIGS. 1 and 3 indicate the direction of the magnetization direction.

これら図1〜図3に示すように、特許文献1に記載の磁壁移動型空間光変調器90は、磁壁移動を利用した磁壁移動型光変調素子91を備える。本発明の一実施形態に係る磁壁移動型空間光変調器100の基本構成は、特許文献1に記載の磁壁移動型空間光変調器90の構成と同様であるため、以下、その基本構成について詳しく説明する。 As shown in FIGS. 1 to 3, the domain wall moving type spatial light modulator 90 described in Patent Document 1 includes a domain wall moving type light modulation element 91 utilizing the domain wall movement. Since the basic configuration of the domain wall moving spatial light modulator 100 according to the embodiment of the present invention is the same as the configuration of the domain wall moving spatial light modulator 90 described in Patent Document 1, the basic configuration will be described in detail below. explain.

図1に示すように、磁壁移動型光変調素子91は、第1強磁性交換結合部1と、第2強磁性交換結合部2と、光変調部3と、を有し、Si等で構成される基板8上に形成される。
第1強磁性交換結合部1と第2強磁性交換結合部2は、それぞれ図示しないCu、Al、Au、Ag、Ru、Ta、Cr等の金属やその合金のような一般的な金属電極材料で形成される下部電極を最下層に有し、この下部電極にパルス電流源9が接続されることでパルス電流を印加可能となっている。
As shown in FIG. 1, the magnetic domain wall moving type light modulation element 91 has a first ferromagnetic exchange coupling portion 1, a second ferromagnetic exchange coupling portion 2, and an optical modulation portion 3, and is composed of Si or the like. It is formed on the substrate 8 to be formed.
The first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 are general metal electrode materials such as metals such as Cu, Al, Au, Ag, Ru, Ta, and Cr and their alloys, which are not shown, respectively. The lower electrode formed by the above is provided in the lowermost layer, and the pulse current can be applied by connecting the pulse current source 9 to the lower electrode.

磁壁移動型光変調素子91の形状については特に限定されないが、例えば図1に示すように、光変調部3が所定方向に延びる平板状に形成され、その両端に第1強磁性交換結合部1及び第2強磁性交換結合部2が配置された形状が挙げられる。光変調部3と第1強磁性交換結合部1及び第2強磁性交換結合部2の上面は連続して面一とされ、第1強磁性交換結合部1及び第2強磁性交換結合部2の厚みは光変調部3の厚みよりも厚くなっている。 The shape of the magnetic wall moving type light modulation element 91 is not particularly limited, but as shown in FIG. 1, for example, the light modulation section 3 is formed in a flat plate shape extending in a predetermined direction, and the first ferromagnetic exchange coupling section 1 is formed at both ends thereof. And the shape in which the second ferromagnetic exchange coupling portion 2 is arranged can be mentioned. The upper surfaces of the optical modulation section 3, the first ferromagnetic exchange coupling section 1 and the second ferromagnetic exchange coupling section 2 are continuously flush with each other, and the first ferromagnetic exchange coupling section 1 and the second ferromagnetic exchange coupling section 2 are flush with each other. Is thicker than the thickness of the optical modulation unit 3.

図2に示すように、第1強磁性交換結合部1は、第1磁化固定層11と、非磁性金属層12及びバッファ層13と、光変調層30と、がこの順に積層されて構成される。 As shown in FIG. 2, the first ferromagnetic exchange coupling portion 1 is configured by laminating the first magnetization fixing layer 11, the non-magnetic metal layer 12, the buffer layer 13, and the optical modulation layer 30 in this order. To.

第1磁化固定層11は、強磁性材料からなり、第1強磁性層に相当する。第1磁化固定層11は、磁化方向が一方向に固定された層であり、大きな保磁力を有する。第1磁化固定層11は、後述する光変調層30と同一方向の磁気異方性を有し、光変調層30に垂直磁気異方性を有する強磁性材料を用いた場合には、第1磁化固定層11も垂直磁気異方性を有する強磁性材料を用いる。好ましくは、第1磁化固定層11及び光変調層30ともに、垂直磁気異方性を有する強磁性材料で構成される。 The first magnetization fixed layer 11 is made of a ferromagnetic material and corresponds to the first ferromagnetic layer. The first magnetization fixed layer 11 is a layer in which the magnetization direction is fixed in one direction, and has a large coercive force. The first magnetization fixed layer 11 has magnetic anisotropy in the same direction as the optical modulation layer 30 described later, and when a ferromagnetic material having vertical magnetic anisotropy is used for the optical modulation layer 30, the first magnetization is fixed. The magnetization fixing layer 11 also uses a ferromagnetic material having vertical magnetic anisotropy. Preferably, both the first magnetization fixing layer 11 and the photomodulation layer 30 are made of a ferromagnetic material having vertical magnetic anisotropy.

第1磁化固定層11は、磁化が垂直方向に固定された磁化固定層と磁化の方向が反転可能な磁化自由層で非磁性層を挟持する構造の垂直磁気異方性を有するCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子やTMR素子等の磁化固定層として公知の強磁性材料で構成可能である。具体的には、Fe、Co、Niのような遷移金属及びそれらを含む合金、例えばTbFe系、TbFeCo系、CoCr系、CoPt系、CoPd系、FePt系の合金を用いることができる。これにより、第1磁化固定層11の保磁力を大きくすることができ、第1磁化固定層11の磁化方向が外部磁界によって容易に変化しないように固定することが可能となる。 The first magnetization-fixed layer 11 is a CPP-GMR (CPP-GMR) having a structure in which a non-magnetic layer is sandwiched between a magnetized fixed layer in which the magnetization is fixed in the vertical direction and a magnetized free layer in which the magnetization direction can be reversed. Current Perpendicular to the Plane Giant MagnetoResistance: It can be constructed of a ferromagnetic material known as a magnetization fixing layer such as a vertically energized giant magnetoresistive element or a TMR element. Specifically, transition metals such as Fe, Co, and Ni and alloys containing them, for example, TbFe-based, TbFeCo-based, CoCr-based, CoPt-based, CoPd-based, and FePt-based alloys can be used. As a result, the coercive force of the first magnetization fixing layer 11 can be increased, and the magnetization direction of the first magnetization fixing layer 11 can be fixed so as not to be easily changed by the external magnetic field.

また、第1磁化固定層11は、これらの遷移金属の層と非磁性金属の層とを交互に積層した多層の積層体で構成してもよく、Co/Pt、Fe/Pt、Co/Pd等の多層膜を用いることができる。これらの強磁性材料を用いることにより、強い垂直磁気異方性を有するとともに、大きな保磁力を有する第1磁化固定層11が得られる。 Further, the first magnetization fixing layer 11 may be composed of a multi-layered laminate in which these transition metal layers and non-magnetic metal layers are alternately laminated, and may be composed of Co / Pt, Fe / Pt, Co / Pd. And other multilayer films can be used. By using these ferromagnetic materials, a first magnetization fixed layer 11 having a strong perpendicular magnetic anisotropy and a large coercive force can be obtained.

ここで、上述の多層膜は、熱処理することにより保磁力が増大する特性を有する。そのため、上述の多層膜からなる第1磁化固定層11を熱処理してその保磁力を増大させると、光変調層30と結合した後の強磁性交換結合部の保磁力もより大きくなり、光変調部3との保磁力差をより大きくすることができる。 Here, the above-mentioned multilayer film has a property that the coercive force is increased by heat treatment. Therefore, when the first magnetization fixed layer 11 made of the above-mentioned multilayer film is heat-treated to increase its coercive force, the coercive force of the ferromagnetic exchange coupling portion after coupling with the photomodulation layer 30 also becomes larger, and photomodulation The difference in coercive force with the part 3 can be made larger.

非磁性金属層12及びバッファ層13は、第1磁化固定層11と光変調層30との間に配置され、第1磁化固定層11と光変調層30の間の磁気的結合を保つようにすることができる。 The non-magnetic metal layer 12 and the buffer layer 13 are arranged between the first magnetization fixing layer 11 and the optical modulation layer 30 so as to maintain a magnetic bond between the first magnetization fixing layer 11 and the optical modulation layer 30. can do.

非磁性金属層12は、上述の第1磁化固定層11上に積層されて形成される。この非磁性金属層12は、後述する製造工程において、第1磁化固定層11にエッチングのダメージが及ばないようにするために設けられる。非磁性金属層12は、非磁性の各種金属の薄膜層を用いることができる。例えば、非磁性金属層12として、Ta、Mo、Ruを用いることができ、中でも、Taからなるものが好ましく用いられる。 The non-magnetic metal layer 12 is formed by being laminated on the first magnetization fixing layer 11 described above. The non-magnetic metal layer 12 is provided in order to prevent etching damage from reaching the first magnetization fixing layer 11 in the manufacturing process described later. As the non-magnetic metal layer 12, thin film layers of various non-magnetic metals can be used. For example, Ta, Mo, and Ru can be used as the non-magnetic metal layer 12, and among them, those made of Ta are preferably used.

バッファ層13は、上述の非磁性金属層12上に積層されて形成される。バッファ層13は、磁壁移動を利用した光変調素子でもTMR素子でも電流を流せることが必要であるため、薄膜化したときに抵抗が大き過ぎず、適度な導電性を有するものである。また、バッファ層13は、後述する製造工程におけるエッチングのレートが遅く、且つSIMS(Secondary Ion Mass Spectrometry)の検出感度が高い元素を含み、SIMS式エンドポイントモニターで見える材料であることが望ましい。これにより、エッチングをバッファ層13で確実に止めることが可能となり、第1磁化固定層11にダメージが及ぶのを回避できる。 The buffer layer 13 is formed by being laminated on the above-mentioned non-magnetic metal layer 12. Since the buffer layer 13 needs to be able to pass a current in both the light modulation element and the TMR element using the domain wall movement, the resistance is not too large when the thin film is formed, and the buffer layer 13 has appropriate conductivity. Further, it is desirable that the buffer layer 13 is a material that contains an element having a slow etching rate in a manufacturing process described later and a high detection sensitivity of SIMS (Secondary Ion Mass Spectrometry) and can be seen by a SIMS type endpoint monitor. As a result, the etching can be reliably stopped by the buffer layer 13, and damage to the first magnetization fixing layer 11 can be avoided.

バッファ層13は、酸化物又は窒化物からなるもので構成される。より具体的には、バッファ層13は、MgO、Al、MgAl、TiO、ZnO又はRuOから構成されることが好ましい。中でも、バッファ層13としては、MgOからなるものが好ましく用いられる。このMgOからなるMgO層によれば、適度な導電性を有し、エッチングのレートが遅いうえSIMS感度が高いバッファ層13を形成できる。 The buffer layer 13 is made of an oxide or a nitride. More specifically, the buffer layer 13 is preferably composed of MgO, Al 2 O 3 , Mg Al 2 O 4 , TiO 2 , ZnO or RuO 2 . Among them, as the buffer layer 13, one made of MgO is preferably used. According to the MgO layer made of MgO, it is possible to form the buffer layer 13 which has appropriate conductivity, has a slow etching rate, and has high SIMS sensitivity.

光変調層30は、上述のバッファ層13上に積層されて形成される。この光変調層30は、強磁性材料からなり、第2強磁性層に相当する。光変調層30は、公知の強磁性材料を適用でき、好ましくは磁気光学効果(カー効果)の大きな材料を適用する。磁気光学効果を大きくするためには、垂直磁気異方性を有する磁性層を用いることが好ましく、具体的には、Co/Pd多層膜のような遷移金属とPd、Pt、Cuとを繰り返し積層した多層膜、又はTbFeCo、GdFe等の希土類金属と遷移金属との合金(RE−TM合金)が挙げられる。中でも、光変調層30としては、GdFeからなるGdFe層が好ましく用いられる。 The optical modulation layer 30 is formed by being laminated on the buffer layer 13 described above. The optical modulation layer 30 is made of a ferromagnetic material and corresponds to a second ferromagnetic layer. A known ferromagnetic material can be applied to the photomodulation layer 30, and a material having a large magneto-optical effect (Kerr effect) is preferably applied. In order to increase the magnetic optical effect, it is preferable to use a magnetic layer having vertical magnetic anisotropy. Specifically, a transition metal such as a Co / Pd multilayer film and Pd, Pt, and Cu are repeatedly laminated. Examples thereof include a multilayer film made of copper, or an alloy of a rare earth metal such as TbFeCo or GdFe and a transition metal (RE-TM alloy). Among them, as the light modulation layer 30, a GdFe layer made of GdFe is preferably used.

なお、光変調層30は、後述する第2強磁性交換結合部2における第2強磁性層を構成するとともに、光変調部3を構成する。すなわち、第1強磁性交換結合部1における第2強磁性層、第2強磁性交換結合部2における第2強磁性層及び光変調部3は、いずれも光変調層30から構成され、外部からの磁界により磁化の方向が異なったものである。 The optical modulation layer 30 constitutes the second ferromagnetic layer in the second ferromagnetic exchange coupling portion 2 described later, and also constitutes the optical modulation section 3. That is, the second ferromagnetic layer in the first ferromagnetic exchange coupling portion 1, the second ferromagnetic layer in the second ferromagnetic exchange coupling portion 2, and the optical modulation portion 3 are all composed of the optical modulation layer 30, and are composed of the optical modulation layer 30 from the outside. The direction of magnetization differs depending on the magnetic field of.

上述の構成からなる第1強磁性交換結合部1では、第1磁化固定層11と光変調層30は、非磁性金属層12及びバッファ層13を介して強磁性交換結合されている。この強磁性交換結合により、第1磁化固定層11の磁化方向と第1強磁性交換結合部1における光変調層30の磁化方向は同時反転する。 In the first ferromagnetic exchange coupling portion 1 having the above-described configuration, the first magnetization fixing layer 11 and the optical modulation layer 30 are ferromagnetically exchange-coupled via the non-magnetic metal layer 12 and the buffer layer 13. Due to this ferromagnetic exchange coupling, the magnetization direction of the first magnetization fixed layer 11 and the magnetization direction of the optical modulation layer 30 in the first ferromagnetic exchange coupling portion 1 are simultaneously reversed.

第2強磁性交換結合部2は、第2磁化固定層21と、非磁性金属層22及びバッファ層23と、光変調層30と、がこの順に積層されて構成される。 The second ferromagnetic exchange coupling portion 2 is configured by laminating the second magnetization fixing layer 21, the non-magnetic metal layer 22, the buffer layer 23, and the optical modulation layer 30 in this order.

また、第2強磁性交換結合部2では、第1強磁性交換結合部1と同様に、第2磁化固定層21と光変調層30は、非磁性金属層22及びバッファ層23を介して強磁性交換結合されている。この強磁性交換結合により、第2磁化固定層21の磁化方向と第2強磁性交換結合部2における光変調層30の磁化方向は同時反転する。 Further, in the second ferromagnetic exchange coupling portion 2, similarly to the first ferromagnetic exchange coupling portion 1, the second magnetization fixed layer 21 and the optical modulation layer 30 are strongly strengthened via the non-magnetic metal layer 22 and the buffer layer 23. It is magnetically exchanged. Due to this ferromagnetic exchange coupling, the magnetization direction of the second magnetization fixed layer 21 and the magnetization direction of the optical modulation layer 30 in the second ferromagnetic exchange coupling portion 2 are simultaneously reversed.

第2磁化固定層21は、第1磁化固定層11で使用可能な材料の中から選択され、同様に、非磁性金属層22及びバッファ層23も、それぞれ非磁性金属層12及びバッファ層13で使用可能な材料の中から選択される。 The second magnetization fixing layer 21 is selected from the materials that can be used in the first magnetization fixing layer 11, and similarly, the non-magnetic metal layer 22 and the buffer layer 23 are also formed by the non-magnetic metal layer 12 and the buffer layer 13, respectively. Selected from available materials.

ここで、第1強磁性交換結合部1と第2強磁性交換結合部2は、後段で詳述するように磁壁33及び光変調領域300を形成するために、互いの保磁力が異なるように設計される。これにより、第1磁化固定層1と第2磁化固定層2の保磁力差により、光変調制御に必須となる光変調層30両端の互いに反平行な初期磁化方向を外部磁界により実現することが可能となっている。これについては、後段で詳述する。 Here, the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 have different coercive forces so as to form the domain wall 33 and the optical modulation region 300 as described in detail later. Designed. As a result, due to the difference in coercive force between the first magnetization-fixed layer 1 and the second magnetization-fixed layer 2, the initial magnetization directions opposite to each other at both ends of the optical modulation layer 30, which are indispensable for optical modulation control, can be realized by an external magnetic field. It is possible. This will be described in detail later.

上述したように、光変調層30は、光変調部3を構成する。この光変調層30からなる光変調部3には、磁壁33と、磁区31,32が形成されている。これについては、後段で詳述する。 As described above, the optical modulation layer 30 constitutes the optical modulation section 3. A magnetic domain wall 33 and magnetic domains 31 and 32 are formed in the optical modulation section 3 composed of the optical modulation layer 30. This will be described in detail later.

なお、各磁化固定層(以下、第1磁化固定層11及び第2磁化固定層21を単に磁化固定層とも言う。)、各非磁性金属層、各バッファ層、及び光変調層30の各層間、又は下部電極との界面に、機能層を適宜設けてもよい。例えば、微細加工プロセス中に光変調層30が受けるダメージを防ぐために、光変調層30上に、Ta、Ru又はSiNを含む、あるいはTa、Ru又はSiNからなるキャップ層を設けてもよい。このキャップ層は、光変調層30の形成に用いられて酸化し易いGdFeやTbFeCoが、素子完成後に大気中で酸化するのを防止する機能を有する。 Each of the magnetization fixing layers (hereinafter, the first magnetization fixing layer 11 and the second magnetization fixing layer 21 are also simply referred to as a magnetization fixing layer), each non-magnetic metal layer, each buffer layer, and each layer of the optical modulation layer 30. , Or a functional layer may be appropriately provided at the interface with the lower electrode. For example, in order to prevent damage to the optical modulation layer 30 during the microfabrication process, a cap layer containing Ta, Ru or SiN, or made of Ta, Ru or SiN may be provided on the optical modulation layer 30. This cap layer has a function of preventing GdFe and TbFeCo, which are used for forming the photomodulation layer 30 and are easily oxidized, from being oxidized in the atmosphere after the device is completed.

次に、本実施形態に係る磁壁移動型光変調素子10の磁気特性について、詳しく説明する。
上述した通り、第1強磁性交換結合部1は、光変調層30と強磁性交換結合する第1磁化固定層11を有し、第2強磁性交換結合部2は、同じく光変調層30と強磁性交換結合する第2磁化固定層21を有する。すなわち、これら第1強磁性交換結合部1及び第2強磁性交換結合部2は、それぞれ内部に強磁性交換結合を有し、それぞれの磁化方向は同時に反転する。そして、図1及び図3に示すように、第1強磁性交換結合部1の磁化方向は下向きに設計されている一方で、第2強磁性交換結合部2の磁化方向は上向きに設計されている。
Next, the magnetic characteristics of the domain wall-moving light modulation element 10 according to the present embodiment will be described in detail.
As described above, the first ferromagnetic exchange coupling portion 1 has a first magnetization fixed layer 11 that ferromagnetically exchanges and couples with the optical modulation layer 30, and the second ferromagnetic exchange coupling portion 2 also has the optical modulation layer 30. It has a second magnetization fixed layer 21 that is ferromagnetically exchange-coupled. That is, the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 each have a ferromagnetic exchange coupling inside, and their respective magnetization directions are reversed at the same time. Then, as shown in FIGS. 1 and 3, the magnetization direction of the first ferromagnetic exchange coupling portion 1 is designed to be downward, while the magnetization direction of the second ferromagnetic exchange coupling portion 2 is designed to be upward. There is.

光変調部3には、前記両強磁性交換結合部に垂直な方向に対して直交する面上に延びる磁壁33が形成されている。すなわち、磁壁33の両側に形成される磁区31,32の磁化方向は互いに逆方向となっている。例えば図1及び図3に示すように、磁壁33よりも第1強磁性交換結合部1側の磁区31の磁化方向は上向きであり、磁壁33よりも第2強磁性交換結合部2側の磁区32の磁化方向は下向きとなっている。 The optical modulation section 3 is formed with a domain wall 33 extending on a plane orthogonal to the direction perpendicular to the biferromagnetic exchange coupling section. That is, the magnetization directions of the magnetic domains 31 and 32 formed on both sides of the domain wall 33 are opposite to each other. For example, as shown in FIGS. 1 and 3, the magnetization direction of the magnetic domain 31 on the first ferromagnetic exchange coupling portion 1 side with respect to the domain wall 33 is upward, and the magnetic domain on the second ferromagnetic exchange coupling portion 2 side with respect to the domain wall 33. The magnetization direction of 32 is downward.

このように、磁壁33を介して磁化方向の向きが異なる磁区31,32を光変調部3に形成することにより、磁壁移動型光変調素子10を光変調素子として機能させることができる。より詳しくは、例えば磁壁移動型光変調素子10を反射型の光変調素子として構成した場合には、磁壁移動型光変調素子10の上方から光変調部3の上面に対して偏光の揃った光を入射すると、磁化方向の向きに応じて反射光の偏光面の回転角度が異なったものとなる。そのため、これら異なる偏光面の回転角度に応じた各反射光を、偏光フィルタを介してそれぞれ光の明暗に割り当てることにより、光の変調が可能となる。ただし、基板を、ガラスやサファイア等の透光性の材料で構成することにより、磁壁移動型光変調素子10を透過型の光変調素子として機能させることも可能である。 By forming the magnetic domains 31 and 32 having different directions of magnetization in the optical modulation unit 3 via the domain wall 33 in this way, the domain wall moving type light modulation element 10 can function as the light modulation element. More specifically, for example, when the magnetic wall moving type light modulation element 10 is configured as a reflection type light modulation element, light having polarized light with respect to the upper surface of the light modulation unit 3 from above the magnetic wall moving light modulation element 10 When the light is incident on the light, the rotation angle of the plane of polarization of the reflected light differs depending on the direction of the magnetization direction. Therefore, the light can be modulated by assigning each reflected light according to the rotation angle of these different polarizing surfaces to the light and darkness of the light through the polarizing filter. However, by forming the substrate from a translucent material such as glass or sapphire, it is possible to make the domain wall moving type light modulation element 10 function as a transmission type light modulation element.

ここで、図2及び図3を参照して、磁壁33の生成メカニズムについて説明する。
先ず、光変調部3に磁壁33を形成するためには、光変調層30と強磁性交換結合する第1磁化固定層11の保磁力と、同じく光変調層30と強磁性交換結合する第2磁化固定層21の保磁力とを、互いに異なるものとすることが必要である。
Here, the generation mechanism of the domain wall 33 will be described with reference to FIGS. 2 and 3.
First, in order to form the domain wall 33 in the optical modulation unit 3, the coercive force of the first magnetization fixed layer 11 which is ferromagnetically exchange-coupled with the optical modulation layer 30 and the second magnetic exchange coupling with the optical modulation layer 30 are also carried out. It is necessary that the coercive force of the magnetization fixing layer 21 is different from each other.

特許文献1では、第1磁化固定層11の保磁力と第2磁化固定層21の保磁力を互いに異なるものとする手法として、第1磁化固定層11と第2磁化固定層21とで、互いに形状を異なるもの(例えば、第1磁化固定層11の幅を広くすると保磁力は小さくなる)とするか、一方のみ熱処理するか、あるいは互いの層構成を異なるものとするか、のいずれかが選択される。これにより、第1磁化固定層11の保磁力と第2磁化固定層21の保磁力を互いに異なるものとすることで、第1強磁性交換結合部1の保磁力と第2強磁性交換結合部2の保磁力を異なるものとすることができる。 In Patent Document 1, as a method of making the coercive force of the first magnetized fixed layer 11 and the coercive force of the second magnetized fixed layer 21 different from each other, the first magnetized fixed layer 11 and the second magnetized fixed layer 21 are mutually different. Either the shape is different (for example, the coercive force becomes smaller when the width of the first magnetization fixed layer 11 is widened), only one of them is heat-treated, or the layer structures of the first magnetization fixed layers 11 are different from each other. Be selected. As a result, the coercive force of the first magnetization fixed layer 11 and the coercive force of the second magnetization fixed layer 21 are made different from each other, so that the coercive force of the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion are different from each other. The coercive force of 2 can be different.

本実施形態において、第1磁化固定層11の保磁力と第2磁化固定層21の保磁力を互いに異なるものとする手法としては特に限定されるものではなく、例えば特許文献1と同様に、第1磁化固定層11と第2磁化固定層21とで、互いに形状を異なるもの(例えば、第1磁化固定層11の幅を広くすると保磁力は小さくなる)とするか、一方のみ熱処理するか、あるいは互いの層構成を異なるものとするか、のいずれかが選択される。これにより、第1磁化固定層11の保磁力と第2磁化固定層21の保磁力を互いに異なるものとすることで、第1強磁性交換結合部1の保磁力と第2強磁性交換結合部2の保磁力を異なるものとすることができる。 In the present embodiment, the method of making the coercive force of the first magnetization fixed layer 11 and the coercive force of the second magnetization fixed layer 21 different from each other is not particularly limited, and for example, as in Patent Document 1, the first Either the 1-magnetized fixed layer 11 and the 2nd magnetized fixed layer 21 have different shapes (for example, the coercive force becomes smaller when the width of the 1st magnetized fixed layer 11 is widened), or only one of them is heat-treated. Alternatively, one of different layer configurations is selected. As a result, the coercive force of the first magnetization fixed layer 11 and the coercive force of the second magnetization fixed layer 21 are made different from each other, so that the coercive force of the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion are different from each other. The coercive force of 2 can be different.

例えば、上記の構成により、第1磁化固定層11の保磁力を第2磁化固定層21の保磁力よりも小さく設計することができる。この場合、図2に示すように第1強磁性交換結合部1の保磁力をHc1とし、第2強磁性交換結合部2の保磁力をHc2とし、光変調部3の保磁力をHc_mとすると、Hc2>Hc1>Hc_mの関係が成立する。 For example, with the above configuration, the coercive force of the first magnetization fixing layer 11 can be designed to be smaller than the coercive force of the second magnetization fixing layer 21. In this case, as shown in FIG. 2, assuming that the coercive force of the first ferromagnetic exchange coupling portion 1 is Hc1, the coercive force of the second ferromagnetic exchange coupling portion 2 is Hc2, and the coercive force of the optical modulation unit 3 is Hc_m. , Hc2> Hc1> Hc_m.

そして、上述のような保磁力の関係が成立する構造の素子に対して、磁界の強さHが、H>Hc2である磁界を、素子に対して上向きに印加する。すると、第1強磁性交換結合部1、第2強磁性交換結合部2及び光変調部3のいずれにおいても、磁化方向の向きは上向きとなる。 Then, a magnetic field having a magnetic field strength H of H> Hc2 is applied upward to the element having a structure in which the coercive force relationship as described above is established. Then, in any of the first ferromagnetic exchange coupling section 1, the second ferromagnetic exchange coupling section 2, and the optical modulation section 3, the direction of the magnetization direction is upward.

次いで、磁界の強さH’が、Hc2>H’>Hc1である磁界を、素子に対して下向きに印加する。すると、第2強磁性交換結合部2の磁化方向の向きは上向きのままであるのに対して、第1強磁性交換結合部1及び光変調部3の磁化方向の向きは、いずれも下向きに変化する。 Next, a magnetic field in which the strength of the magnetic field H'is Hc2> H'> Hc1 is applied downward to the device. Then, the direction of the magnetization direction of the second ferromagnetic exchange coupling portion 2 remains upward, while the direction of the magnetization direction of the first ferromagnetic exchange coupling portion 1 and the optical modulation portion 3 is downward. Change.

このとき、図3に示すように光変調部3の両端には、初期磁区31a,32aが生成する。より詳しくは、光変調部3の第1強磁性交換結合部1側の端部には、第1強磁性交換結合部1からの漏れ磁界(図3中の破線矢印参照)により、第1強磁性交換結合部1の下向きの磁化とは反平行な上向きの磁化方向の初期磁区31aが生成する。また、光変調部3の第2強磁性交換結合部2側の端部には、第2強磁性交換結合部2からの漏れ磁界(図3中の破線矢印参照)により、第2強磁性交換結合部2の上向きの磁化とは反平行な下向きの磁化方向の初期磁区32aが生成する。 At this time, as shown in FIG. 3, initial magnetic domains 31a and 32a are generated at both ends of the optical modulation unit 3. More specifically, at the end of the optical modulation unit 3 on the first ferromagnetic exchange coupling portion 1 side, a first strong force is provided by a magnetic domain leaking from the first ferromagnetic exchange coupling portion 1 (see the broken arrow in FIG. 3). An initial magnetic domain 31a in the upward magnetization direction, which is antiparallel to the downward magnetization of the magnetic exchange coupling portion 1, is generated. Further, at the end of the optical modulation unit 3 on the second ferromagnetic exchange coupling portion 2 side, a second ferromagnetic exchange is performed by a leakage magnetic field from the second ferromagnetic exchange coupling portion 2 (see the broken arrow in FIG. 3). An initial magnetic domain 32a in the downward magnetization direction, which is antiparallel to the upward magnetization of the coupling portion 2, is generated.

次いでこの状態で、パルス電流源9からパルス電流を印加し、第1強磁性交換結合部1から第2強磁性交換結合部2、又は第2強磁性交換結合部2から第1強磁性交換結合部1に向けてパルス電流を流す。すると、初期磁区31a,32aの生成により形成される磁壁33を、パルス電流の向きと逆向き(電子の流れと同じ向き)に移動させることができる。これにより、図3に示すように、光変調部3の両端を除く光変調領域300の磁化の向きを反転(図3の例では、光変調領域300の磁化の向きを上向きに反転)させることが可能となっている。 Next, in this state, a pulse current is applied from the pulse current source 9, and the first ferromagnetic exchange coupling portion 1 to the second ferromagnetic exchange coupling portion 2 or the second ferromagnetic exchange coupling portion 2 to the first ferromagnetic exchange coupling portion 2 A pulse current is passed toward the part 1. Then, the domain wall 33 formed by the generation of the initial magnetic domains 31a and 32a can be moved in the direction opposite to the direction of the pulse current (the same direction as the electron flow). As a result, as shown in FIG. 3, the direction of magnetization of the optical modulation region 300 excluding both ends of the optical modulation unit 3 is reversed (in the example of FIG. 3, the direction of magnetization of the optical modulation region 300 is inverted upward). Is possible.

磁壁移動型光変調素子10の形成方法については、例えば、Siバックプレーン等の上に形成された絶縁部材層に対して、従来公知のリソグラフィ等を用いて第1磁化固定層及び第2磁化固定層等を形成し、必要に応じて熱処理等を施した後、従来公知のイオンビームスパッタ等により光変調層等を形成することにより製造可能である。より詳しくは、例えば、特許文献1に記載の製造方法により製造可能である。 Regarding the method of forming the domain wall moving light modulation element 10, for example, the first magnetization fixing layer and the second magnetization fixing layer are formed on the insulating member layer formed on the Si back plane or the like by using conventionally known lithography or the like. It can be manufactured by forming a layer or the like, performing heat treatment or the like as necessary, and then forming a light modulation layer or the like by conventionally known ion beam sputtering or the like. More specifically, for example, it can be produced by the production method described in Patent Document 1.

図4は、本発明の実施形態に係る検査装置4の基本的な構成を示す図である。
検査装置4は、磁気光学顕微鏡5と、画像処理部6と、制御部7と、外部磁界印加装置40から構成される。磁気光学顕微鏡5は、偏光子51と、イメージセンサ52と、検光子53と、ビームスプリッタ54と、対物レンズ55と、ステージ56と、電磁石57と、を備える。磁気光学顕微鏡5は、素子10の磁化方向によって反射光の偏光面が回転する磁気光学カー効果を利用した顕微鏡であり、反射光を検光子53に通して取得することで、強度変調された光として観測できる。素子10の磁化方向によって、顕微鏡で撮影した画像の輝度値が変化するため、その情報を利用し、画像処理部6で不良素子の判定を行う。制御部7は、画像処理部6での処理結果に基づいて、外部磁界印加装置40が素子10及び磁壁移動型空間光変調器100に印加する外部磁界の大きさを制御する。
FIG. 4 is a diagram showing a basic configuration of the inspection device 4 according to the embodiment of the present invention.
The inspection device 4 includes a magneto-optical microscope 5, an image processing unit 6, a control unit 7, and an external magnetic field application device 40. The magnetic optical microscope 5 includes a polarizer 51, an image sensor 52, an analyzer 53, a beam splitter 54, an objective lens 55, a stage 56, and an electromagnet 57. The magneto-optical microscope 5 is a microscope that utilizes the magneto-optical Kerr effect in which the plane of polarization of the reflected light rotates depending on the magnetization direction of the element 10, and the reflected light is acquired through the analyzer 53 to obtain intensity-modulated light. Can be observed as. Since the brightness value of the image taken by the microscope changes depending on the magnetization direction of the element 10, the image processing unit 6 determines the defective element by using the information. The control unit 7 controls the magnitude of the external magnetic field applied to the element 10 and the domain wall moving spatial light modulator 100 by the external magnetic field application device 40 based on the processing result of the image processing unit 6.

不良素子の判定に利用する磁壁移動型光変調素子10の性質を説明する。磁化固定層の磁化状態による光変調層30のヒステリシスループを図5〜7に示す。図5は、磁化固定層が正常に反平行磁化配置となっている状態であり、ヒステリシスループの磁界方向の幅が狭くなっている。すなわち、磁化を反転させるために必要な磁界の大きさは小さく、光変調層30の磁化方向は磁界印加によって反転しやすくなっている。 The properties of the domain wall movable light modulation element 10 used for determining the defective element will be described. The hysteresis loop of the optical modulation layer 30 depending on the magnetization state of the magnetization fixed layer is shown in FIGS. 5 to 7. FIG. 5 shows a state in which the magnetization fixed layer is normally in an antiparallel magnetization arrangement, and the width of the hysteresis loop in the magnetic field direction is narrowed. That is, the magnitude of the magnetic field required to reverse the magnetization is small, and the magnetization direction of the photomodulation layer 30 is easily reversed by applying the magnetic field.

図6は、磁化固定層の磁気特性が不良で平行磁化配置となっている状態であり、ヒステリシスループの反転磁界が正と負で非対称となる。すなわち、印加する磁界の正負によって磁化反転する磁界の大きさが異なる。この非対称性は、磁化固定層の磁化方向が両方上向きか下向きかによって反転する。 FIG. 6 shows a state in which the magnetic characteristics of the magnetization fixed layer are poor and the magnetization is arranged in parallel, and the reversal magnetic field of the hysteresis loop is positive and negative and asymmetric. That is, the magnitude of the magnetic field whose magnetization is inverted differs depending on the positive or negative of the applied magnetic field. This asymmetry is reversed depending on whether the magnetization directions of the magnetization fixed layer are both upward or downward.

図7は、作製時の光変調層30と磁化固定層の位置合わせ不良によって、光変調層30が磁化固定層の上に正しく配置出来なかった場合の状態であり、ヒステリシスループの磁界方向の幅が広くなっている。すなわち、磁化を反転させるために必要な磁界の大きさは大きく、光変調層30の磁化方向は磁界印加によって反転し難くなる。 FIG. 7 shows a state in which the light modulation layer 30 cannot be correctly arranged on the magnetization fixing layer due to improper alignment between the light modulation layer 30 and the magnetization fixing layer at the time of fabrication, and the width of the hysteresis loop in the magnetic field direction. Is widening. That is, the magnitude of the magnetic field required to reverse the magnetization is large, and the magnetization direction of the photomodulation layer 30 is difficult to reverse due to the application of the magnetic field.

この性質を利用し、磁気光学顕微鏡5及び画像処理部6を用いて不良素子を判定することができる。以下に、その判定検査の手順を示す。本発明の磁壁移動型空間光変調器検査装置4による検査のフローチャートを図8に、素子の状態や不良素子判定の様子を表す模式図を図9〜12に示す。 Utilizing this property, a defective element can be determined by using the magnetic optical microscope 5 and the image processing unit 6. The procedure of the judgment inspection is shown below. FIG. 8 shows a flowchart of inspection by the domain wall movable spatial light modulator inspection device 4 of the present invention, and FIGS. 9 to 12 show schematic views showing a state of an element and a state of determining a defective element.

本発明の磁壁移動型空間光変調器検査装置4による検査方法は、磁壁移動型空間光変調器100を磁気光学顕微鏡5で撮影し、磁気光学顕微鏡5の撮影画角内での磁壁移動型光変調素子10の位置を判定する位置判定工程と、磁壁移動型空間光変調器100に外部から初期化磁界を印加する初期化磁界印加工程と、初期化磁界を印加した磁壁移動型空間光変調器100にさらに外部磁界を印加して磁化方向を反転させる磁化方向反転工程と、磁壁移動型光変調素子10の磁化方向が反転したかどうかを磁気光学顕微鏡5及び画像処理部6によって判定する磁化反転判定工程と、磁化方向が反転していない磁壁移動型光変調素子10の位置を出力する位置出力工程と、を有する。 In the inspection method by the domain wall moving space light modulator inspection device 4 of the present invention, the domain wall moving space light modulator 100 is photographed by the magnetic optical microscope 5, and the magnetic wall moving light within the photographing angle of the magnetic optical microscope 5. A position determination step for determining the position of the modulation element 10, an initialization magnetic field application step of applying an initialization magnetic field to the domain wall moving space optical modulator 100 from the outside, and a domain wall moving space optical modulator to which an initialization magnetic field is applied. A magnetization direction reversal step in which an external magnetic field is further applied to 100 to invert the magnetization direction, and a magnetization reversal in which the domain wall moving optical modulation element 10 determines whether or not the magnetization direction is reversed by the magnetic optical microscope 5 and the image processing unit 6. It includes a determination step and a position output step of outputting the position of the domain wall moving type optical modulation element 10 whose magnetization direction is not reversed.

はじめに、位置判定工程では、顕微鏡で撮影した画像における各素子の位置を決定する。磁気光学顕微鏡5のステージ56上に、磁壁移動型空間光変調器100をセットする(ステップS1)。次いで、撮影画角内における素子10の位置を決定する(ステップS2)。この処理は、例えばテンプレートマッチングのような一般的なパターン検出処理によって実現可能である。また、全ての素子が顕微鏡の画角内に収まらない場合は、撮影している素子が基板上のどの素子であるかを判定するため、ステージを移動させて複数枚の画像を撮影し、最終的に画像を結合することで、撮影画像における素子の位置を特定する。素子の位置がうまく判定できないときは、撮影条件を変更して、再度位置判定を行う(ステップS3)。 First, in the position determination step, the position of each element in the image taken with a microscope is determined. The domain wall moving spatial light modulator 100 is set on the stage 56 of the magnetic optical microscope 5 (step S1). Next, the position of the element 10 within the shooting angle of view is determined (step S2). This process can be realized by a general pattern detection process such as template matching. If all the elements do not fit within the angle of view of the microscope, the stage is moved to take multiple images in order to determine which element is on the substrate, and the final image is taken. By combining the images, the position of the element in the captured image is specified. If the position of the element cannot be determined well, the shooting conditions are changed and the position is determined again (step S3).

次に、初期化磁界印加工程では、磁化固定層が反平行磁化配置になるように、外部磁界の印加によって素子を初期化する(ステップS4)。この工程では例えば、上述したように、第1強磁性交換結合部1の保磁力をHc1とし、第2強磁性交換結合部2の保磁力をHc2とし、光変調部3の保磁力をHc_mとすると、H>Hc2>Hc1>Hc_mであるような外部磁界Hを素子10に対して上向きに印加する。すると、第1強磁性交換結合部1及び第2強磁性交換結合部2のいずれにおいても、磁化方向の向きは上向きとなる。 Next, in the initialization magnetic field application step, the element is initialized by applying an external magnetic field so that the magnetization fixing layer has an antiparallel magnetization arrangement (step S4). In this step, for example, as described above, the coercive force of the first ferromagnetic exchange coupling portion 1 is Hc1, the coercive force of the second ferromagnetic exchange coupling portion 2 is Hc2, and the coercive force of the optical modulation unit 3 is Hc_m. Then, an external magnetic field H such that H> Hc2> Hc1> Hc_m is applied upward to the element 10. Then, in both the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2, the direction of the magnetization direction is upward.

次いで、磁界の強さH’が、Hc2>H’>Hc1>Hc_mである磁界を、素子10に対して下向きに印加する。すると、第2強磁性交換結合部2の磁化方向の向きは上向きのままであるのに対して、第1強磁性交換結合部1及び光変調部3の磁化方向の向きは、いずれも下向きに変化する。これにより、第1強磁性交換結合部1と第2強磁性交換結合部2の間でそれぞれの磁化方向は反平行となる。なお、磁化方向は反平行配置であればよく、最初に印加するHが下向き、H’が上向きであってもよい。 Next, a magnetic field in which the strength of the magnetic field H'is Hc2> H'> Hc1> Hc_m is applied downward to the element 10. Then, the direction of the magnetization direction of the second ferromagnetic exchange coupling portion 2 remains upward, while the direction of the magnetization direction of the first ferromagnetic exchange coupling portion 1 and the optical modulation portion 3 is downward. Change. As a result, the magnetization directions of the first ferromagnetic exchange coupling portion 1 and the second ferromagnetic exchange coupling portion 2 become antiparallel. The magnetization direction may be antiparallel, and H to be applied first may be downward and H'may be upward.

続いて、磁化方向反転工程では、正しく反平行磁化配置が形成できている素子のみが反転するような外部磁界を正方向に印加する(ステップS5)。正常に反平行磁化配置が形成できている素子10は、印加された外部磁界により、磁化方向が反転する。外部磁界を印加された各素子を、磁気光学顕微鏡5によって撮影する。なお、印加する磁界の向きは光変調部3の向きを反転させる方向である。 Subsequently, in the magnetization direction inversion step, an external magnetic field is applied in the positive direction so that only the elements in which the antiparallel magnetization arrangement is correctly formed are inverted (step S5). The magnetization direction of the element 10 in which the antiparallel magnetization arrangement is normally formed is reversed by the applied external magnetic field. Each element to which an external magnetic field is applied is photographed by a magneto-optical microscope 5. The direction of the applied magnetic field is the direction in which the direction of the optical modulation unit 3 is reversed.

磁化反転判定工程では、反転しなかった素子を画像処理によって検出する(ステップS6)。磁気光学顕微鏡5で撮影した画像において、反転しなかった素子は輝度値が正常な素子と異なるため、フィルタ処理等の一般的な不良検出アルゴリズムで検出可能である。上記の手順によって、複数の素子のうち、磁気特性が不良な素子を顕微鏡の画角内で一度に検出することができる。 In the magnetization reversal determination step, the element that has not been reversed is detected by image processing (step S6). In the image taken by the magnetic-optical microscope 5, the element that has not been inverted has a different brightness value from that of the normal element, and therefore can be detected by a general defect detection algorithm such as filtering. By the above procedure, among a plurality of elements, an element having poor magnetic characteristics can be detected at once within the angle of view of the microscope.

次いで、正しく反平行磁化配置が形成できている素子のみが反転するような外部磁界を負方向に印加する(ステップS7)。印加された各素子を、磁気光学顕微鏡5によって撮影し、反転しなかった素子を画像処理によって検出する(ステップS8)。このように正負双方向に磁化方向を反転させて検査を行うことで、図6に示すような平行磁化配置であるために磁界の正負によって磁化反転する磁界の大きさが異なる素子についても、確実に検出することができ、より高精度に不良素子を検出できる。 Next, an external magnetic field is applied in the negative direction so that only the elements for which the antiparallel magnetization arrangement is correctly formed are inverted (step S7). Each applied element is photographed by a magnetic optical microscope 5, and the element that has not been inverted is detected by image processing (step S8). By performing the inspection by reversing the magnetization directions in both positive and negative directions in this way, it is possible to ensure that the magnitude of the magnetic field that reverses the magnetization differs depending on the positive and negative of the magnetic field due to the parallel magnetization arrangement as shown in FIG. It is possible to detect defective elements with higher accuracy.

この初期化外部磁界H’の大きさの導出は、不良素子の検査以外の用途に適用してもよい。すなわち、上述した磁気光学顕微鏡5と、画像処理部6と、制御部7と、外部磁界印加装置40と、を備える初期化磁界導出装置50として使用してもよい。その構成は、図4に示す本発明の検査装置4と同様である。 The derivation of the magnitude of the initialized external magnetic field H'may be applied to applications other than the inspection of defective elements. That is, it may be used as an initialization magnetic field derivation device 50 including the above-mentioned magnetic optical microscope 5, an image processing unit 6, a control unit 7, and an external magnetic field applying device 40. Its configuration is the same as the inspection device 4 of the present invention shown in FIG.

最後に、位置出力工程では、不良素子の位置を出力することで、基板上のどの素子の磁気特性が不良であるかが一度の検査で得られる(ステップS9)。検出した不良素子について、顕微鏡の画角内の位置情報を出力することで、多数の素子中の不良素子を一挙に特定することができる。これにより、素子の検査時間を大幅に短縮可能である。 Finally, in the position output step, by outputting the position of the defective element, it is possible to determine which element on the substrate has a defective magnetic characteristic in a single inspection (step S9). By outputting the position information within the angle of view of the microscope for the detected defective element, the defective element among a large number of elements can be identified at once. As a result, the inspection time of the element can be significantly shortened.

反平行磁化配置を形成するための初期化外部磁界H’の大きさが適切でなかった場合、反転させない磁化固定層が反転したり、反転させる磁化固定層が反転しなかったりして、正常な素子であっても反平行状態を形成できずに、不良素子として検出されうる。すなわち、H’≧Hc2の場合にはいずれの磁化固定層も反転し、反平行磁化配置とならない。またHc1≧H’の場合にはいずれの磁化固定層も反転せず、反平行磁化配置とならない。 If the magnitude of the initialization external magnetic field H'to form the antiparallel magnetization arrangement is not appropriate, the non-reversing magnetization fixing layer may be inverted or the reversing magnetization fixation layer may not be inverted, which is normal. Even an element cannot form an antiparallel state and can be detected as a defective element. That is, when H'≧ Hc2, none of the magnetization fixing layers is inverted, and the antiparallel magnetization arrangement is not formed. Further, when Hc1 ≧ H', none of the magnetization fixing layers is inverted, and the antiparallel magnetization arrangement is not formed.

上述したように素子を複数作製した場合には磁化固定層の保持力(Hc1、Hc2)には多少のバラツキが生じるため、初期化外部磁界H’の大きさの設定によっては正常な素子であっても不良素子として検出されることがある。すなわち、例えばH’がHc1に近い値に設定されるとき、バラツキによってHc1が大きい素子があれば、その素子ではHc1≧H’となりいずれの磁化固定層も反転せず、反平行磁化配置とならない場合等が考えられる。 As described above, when a plurality of elements are manufactured, the holding force (Hc1, Hc2) of the magnetization fixing layer varies slightly, so that the element is normal depending on the setting of the magnitude of the initialized external magnetic field H'. However, it may be detected as a defective element. That is, for example, when H'is set to a value close to Hc1, if there is an element having a large Hc1 due to variation, Hc1 ≧ H'in that element, neither of the magnetization fixing layers is inverted, and the antiparallel magnetization arrangement is not formed. There may be cases.

これに対し、初期化外部磁界H’の大きさを変えて繰り返し検査を行うことで、検出した不良素子の数が最小となるように適切な初期化外部磁界H’の大きさを導出できる。すなわち、制御部7が画像処理結果に基づいて、外部磁界印加装置印加する外部磁界の大きさを制御することで、初期化に適切な初期化外部磁界が得られるとともに、検査精度を向上させ、不良素子の数を最小化できる(ステップS10)。 On the other hand, by repeating the inspection by changing the magnitude of the initialized external magnetic field H', an appropriate magnitude of the initialized external magnetic field H'can be derived so that the number of detected defective elements is minimized. That is, by controlling the magnitude of the external magnetic field applied by the external magnetic field applying device based on the image processing result, the control unit 7 can obtain an initialized external magnetic field suitable for initialization and improve the inspection accuracy. The number of defective elements can be minimized (step S10).

磁気光学顕微鏡による不良素子の判別の例について、図13及び図14に示す。図13は、初期化磁界を印加した磁壁移動型空間光変調器100を磁気光学顕微鏡5で撮影した画像である。図14は、初期化磁界の印加後、さらに負方向の外部磁界を印加して正常な磁壁移動型光変調素子10の磁化方向を反転させた磁壁移動型空間光変調器100を磁気光学顕微鏡5で撮影した画像である。 Examples of discrimination of defective elements by a magnetic optical microscope are shown in FIGS. 13 and 14. FIG. 13 is an image of a domain wall moving spatial light modulator 100 to which an initialization magnetic field is applied, taken by a magnetic optical microscope 5. FIG. 14 shows a magnetic domain wall moving spatial light modulator 100 in which the magnetization direction of the normal domain wall moving light modulation element 10 is reversed by applying an external magnetic field in a negative direction after applying the initialization magnetic field. It is an image taken in.

図13及び図14には、磁壁移動型光変調素子10が2方向に整列した様子が示されている。図14に示す黒い斑点部分は、外部磁界を加えても磁化反転せず、周囲の素子と輝度が異なる不良素子である。
初期化された状態では、正常に反平行磁化配置が形成された素子と、反平行磁化配置が形成されなかった不良素子との違いは画像の輝度からは判断しにくい。初期化後さらに外部磁界を加えた状態では、正常に反平行磁化配置が形成され磁化反転した素子と、反平行磁化配置が形成されず磁化反転しなかった不良素子は輝度が異なるため、不良素子の位置の検出が可能である(ステップS11)。
13 and 14 show how the domain wall-moving light modulation elements 10 are aligned in two directions. The black spots shown in FIG. 14 are defective elements whose magnetization does not reverse even when an external magnetic field is applied and whose brightness is different from that of surrounding elements.
In the initialized state, it is difficult to judge from the brightness of the image the difference between the element in which the antiparallel magnetization arrangement is normally formed and the defective element in which the antiparallel magnetization arrangement is not formed. In a state where an external magnetic field is further applied after initialization, the brightness of the element in which the antiparallel magnetization arrangement is normally formed and the magnetization is inverted is different from the brightness of the defective element in which the antiparallel magnetization arrangement is not formed and the magnetization is not inverted. Position can be detected (step S11).

以上、本実施形態の検査装置及び初期化磁界導出装置について説明した。なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。 The inspection device and the initialization magnetic field derivation device of the present embodiment have been described above. The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.

1 第1強磁性交換結合部
2 第2強磁性交換結合部
3 光変調部
4 検査装置
5 磁気光学顕微鏡
51 偏光子
52 イメージセンサ
53 検光子
54 ビームスプリッタ
55 対物レンズ
56 ステージ
57 電磁石
6 画像処理部
7 制御部
8 基板
9 パルス電流源
10 磁壁移動型光変調素子
11 第1磁化固定層(第1強磁性層)
12,22 非磁性金属層
13,23 バッファ層
21 第2磁化固定層(第1強磁性層)
30 光変調層(第2強磁性層)
31,32 磁区
31a,32a 初期磁区
33 磁壁
40 外部磁界印加装置
50 外部磁界導出装置
100 磁壁移動型空間光変調器
300 光変調領域
1 1st Ferromagnetic Exchange Coupler 2 2nd Ferromagnetic Exchange Coupler 3 Optical Modulator 4 Inspection Device 5 Magnetic Optical Microscope 51 Polarizer 52 Image Sensor 53 Detector 54 Beam Splitter 55 Objective Lens 56 Stage 57 Electromagnet 6 Image Processing Unit 7 Control unit 8 Substrate 9 Pulse current source 10 Magnetic wall moving optical modulation element 11 1st magnetization fixed layer (1st ferromagnetic layer)
12, 22 Non-magnetic metal layer 13, 23 Buffer layer 21 Second magnetization fixed layer (first ferromagnetic layer)
30 Optical modulation layer (second ferromagnetic layer)
31, 32 Magnetic domain 31a, 32a Initial domain wall 33 Domain wall 40 External magnetic field application device 50 External magnetic field derivation device 100 Domain wall mobile spatial light modulator 300 Optical modulation region

Claims (4)

入射した光の偏光の向きを変化させて出射する光変調部と、
前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、を有し、
前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、
強磁性材料からなる第1強磁性層と、
前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有する磁壁移動型光変調素子
からなる磁壁移動型空間光変調器の検査装置であって、
前記検査装置は、
前記磁壁移動型空間光変調器に外部磁界を印加する外部磁界印加装置と、
前記外部磁界が印加された磁壁移動型光変調素子の磁化方向を観察可能な磁気光学顕微鏡と、
前記磁気光学顕微鏡による撮影画像を処理する画像処理部と、を有する、磁壁移動型空間光変調器の検査装置。
An optical modulator that changes the direction of polarized light of incident light and emits it,
It has a first ferromagnetic exchange coupling portion and a second ferromagnetic exchange coupling portion that are arranged at both ends of the optical modulation section and have different coercive forces.
Both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion
The first ferromagnetic layer made of ferromagnetic material and
A domain wall moving type composed of a magnetic wall moving type optical modulation element having a second ferromagnetic layer formed on the first ferromagnetic layer and made of a ferromagnetic material and ferromagnetically exchange-coupled with the first ferromagnetic layer. It is an inspection device for spatial optical modulators.
The inspection device is
An external magnetic field applying device that applies an external magnetic field to the domain wall moving spatial light modulator,
A magnetic optical microscope capable of observing the magnetization direction of the domain wall moving light modulation element to which the external magnetic field is applied, and
An inspection device for a domain wall moving spatial light modulator having an image processing unit for processing an image captured by the magnetic optical microscope.
前記検査装置は、前記画像処理部による処理結果に基づいて、前記磁壁移動型空間光変調器に印加する初期化磁界の大きさを制御する制御部をさらに有する、請求項1に記載の磁壁移動型空間光変調器の検査装置。 The domain wall movement according to claim 1, further comprising a control unit that controls the magnitude of the initialization magnetic field applied to the domain wall movement type spatial light modulator based on the processing result by the image processing unit. Inspection device for type spatial light modulators. 入射した光の偏光の向きを変化させて出射する光変調部と、
前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、を有し、
前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、
強磁性材料からなる第1強磁性層と、
前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有する磁壁移動型光変調素子
からなる磁壁移動型空間光変調器の初期化磁界導出装置であって、
前記初期化磁界導出装置は、
前記磁壁移動型空間光変調器に外部磁界を印加する外部磁界印加装置と、
前記外部磁界が印加された磁壁移動型光変調素子の磁化方向を観察可能な磁気光学顕微鏡と、
前記磁気光学顕微鏡による撮影画像を処理する画像処理部と、を有し、
前記初期化磁界導出装置は、前記画像処理部による処理結果に基づいて、前記磁壁移動型空間光変調器に印加する初期化磁界の大きさを制御する制御部を有する、初期化磁界導出装置。
An optical modulator that changes the direction of polarized light of incident light and emits it,
It has a first ferromagnetic exchange coupling portion and a second ferromagnetic exchange coupling portion that are arranged at both ends of the optical modulation section and have different coercive forces.
Both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion
The first ferromagnetic layer made of ferromagnetic material and
A domain wall moving type composed of a magnetic wall moving type optical modulation element having a second ferromagnetic layer formed on the first ferromagnetic layer and made of a ferromagnetic material and ferromagnetically exchange-coupled with the first ferromagnetic layer. It is an initialization magnetic field derivation device for spatial optical modulators.
The initialization magnetic field derivation device is
An external magnetic field applying device that applies an external magnetic field to the domain wall moving spatial light modulator,
A magnetic optical microscope capable of observing the magnetization direction of the domain wall moving light modulation element to which the external magnetic field is applied, and
It has an image processing unit for processing an image captured by the magnetic optical microscope, and has an image processing unit.
The initialization magnetic field derivation device is an initialization magnetic field derivation device having a control unit that controls the magnitude of the initialization magnetic field applied to the domain wall moving type spatial light modulator based on the processing result by the image processing unit.
入射した光の偏光の向きを変化させて出射する光変調部と、
前記光変調部の両端に配置され、互いに異なる保磁力を有する第1強磁性交換結合部及び第2強磁性交換結合部と、を有し、
前記第1強磁性交換結合部及び前記第2強磁性交換結合部はいずれも、
強磁性材料からなる第1強磁性層と、
前記第1強磁性層上に形成され、強磁性材料からなることで前記第1強磁性層と強磁性交換結合する第2強磁性層と、を有する磁壁移動型光変調素子
からなる磁壁移動型空間光変調器の検査方法であって、
前記磁壁移動型空間光変調器を磁気光学顕微鏡で撮影し、前記磁気光学顕微鏡の撮影画角内での前記磁壁移動型光変調素子の位置を判定する位置判定工程と、
前記磁壁移動型空間光変調器に外部から初期化磁界を印加する初期化磁界印加工程と、
前記初期化磁界を印加した前記磁壁移動型空間光変調器にさらに外部磁界を印加して磁化方向を反転させる磁化方向反転工程と、
前記磁壁移動型光変調素子の磁化方向が反転したかどうかを前記磁気光学顕微鏡及び画像処理部によって判定する磁化反転判定工程と、
磁化方向が反転していない前記磁壁移動型光変調素子の位置を出力する位置出力工程と、を有する、磁壁移動型空間光変調器の検査方法。
An optical modulator that changes the direction of polarized light of incident light and emits it,
It has a first ferromagnetic exchange coupling portion and a second ferromagnetic exchange coupling portion that are arranged at both ends of the optical modulation section and have different coercive forces.
Both the first ferromagnetic exchange coupling portion and the second ferromagnetic exchange coupling portion
The first ferromagnetic layer made of ferromagnetic material and
A domain wall moving type composed of a magnetic wall moving type optical modulation element having a second ferromagnetic layer formed on the first ferromagnetic layer and made of a ferromagnetic material and ferromagnetically exchange-coupled with the first ferromagnetic layer. It is an inspection method for spatial optical modulators.
A position determination step of photographing the domain wall moving spatial light modulator with a magnetic optical microscope and determining the position of the domain wall moving light modulation element within the imaging angle of the magnetic optical microscope.
An initialization magnetic field application step of applying an initialization magnetic field from the outside to the domain wall moving spatial light modulator,
A magnetization direction reversal step in which an external magnetic field is further applied to the domain wall moving spatial light modulator to which the initialization magnetic field is applied to invert the magnetization direction.
A magnetization reversal determination step of determining whether or not the magnetization direction of the domain wall moving light modulation element is inverted by the magnetic optical microscope and the image processing unit, and
A method for inspecting a domain wall moving spatial light modulator, comprising a position output step of outputting the position of the domain wall moving light modulation element whose magnetization direction is not reversed.
JP2019206424A 2019-11-14 2019-11-14 Domain wall displacement type spatial light modulator inspection device and domain wall displacement type spatial light modulator initialization magnetic field derivation device Active JP7345361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206424A JP7345361B2 (en) 2019-11-14 2019-11-14 Domain wall displacement type spatial light modulator inspection device and domain wall displacement type spatial light modulator initialization magnetic field derivation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206424A JP7345361B2 (en) 2019-11-14 2019-11-14 Domain wall displacement type spatial light modulator inspection device and domain wall displacement type spatial light modulator initialization magnetic field derivation device

Publications (2)

Publication Number Publication Date
JP2021081475A true JP2021081475A (en) 2021-05-27
JP7345361B2 JP7345361B2 (en) 2023-09-15

Family

ID=75964864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206424A Active JP7345361B2 (en) 2019-11-14 2019-11-14 Domain wall displacement type spatial light modulator inspection device and domain wall displacement type spatial light modulator initialization magnetic field derivation device

Country Status (1)

Country Link
JP (1) JP7345361B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240579A (en) * 1988-07-30 1990-02-09 Sony Corp Observing apparatus of domain
JP2001215263A (en) * 1999-11-29 2001-08-10 Korea Advanced Inst Of Sci Technol Magneto-optical microscope magnetometer
US20040218249A1 (en) * 2003-02-10 2004-11-04 Lake Shore Cryotronics, Inc. Magnetic field and electrical current visualization system
JP2012128396A (en) * 2010-11-25 2012-07-05 Nippon Hoso Kyokai <Nhk> Spatial light modulator and pixel drive method thereof
JP2018206900A (en) * 2017-06-01 2018-12-27 日本放送協会 Ferromagnetic exchange coupling element and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240579A (en) * 1988-07-30 1990-02-09 Sony Corp Observing apparatus of domain
JP2001215263A (en) * 1999-11-29 2001-08-10 Korea Advanced Inst Of Sci Technol Magneto-optical microscope magnetometer
US20040218249A1 (en) * 2003-02-10 2004-11-04 Lake Shore Cryotronics, Inc. Magnetic field and electrical current visualization system
JP2012128396A (en) * 2010-11-25 2012-07-05 Nippon Hoso Kyokai <Nhk> Spatial light modulator and pixel drive method thereof
JP2018206900A (en) * 2017-06-01 2018-12-27 日本放送協会 Ferromagnetic exchange coupling element and manufacturing method thereof

Also Published As

Publication number Publication date
JP7345361B2 (en) 2023-09-15

Similar Documents

Publication Publication Date Title
JP5417683B2 (en) Magneto-optic element
JP2011060918A (en) Spin injection magnetization reversal element, magnetic random access memory, optical modulator, display apparatus, holography apparatus, hologram recording apparatus, and method of manufacturing optical modulator
JP5782334B2 (en) Spatial light modulator and pixel driving method thereof
Ghidini et al. XPEEM and MFM imaging of ferroic materials
JP7345361B2 (en) Domain wall displacement type spatial light modulator inspection device and domain wall displacement type spatial light modulator initialization magnetic field derivation device
JP7149055B2 (en) Ferromagnetic exchange-coupled device and manufacturing method thereof
Hermosa et al. Magnetic textures and singularities in ferri/ferromagnetic multilayers
JP4939502B2 (en) Magneto-optical spatial light modulator and magneto-optical imaging device
JP2019220544A (en) Domain wall displacement type spatial light modulator
JP4939477B2 (en) Multi-element spatial light modulator
JP2021110787A (en) Domain wall displacement type spatial light modulator
JP5550141B2 (en) Magneto-optical defect detection method
EP1505404B1 (en) Magnetic sensor
JP2011180355A (en) Optical modulation element and spatial light modulator
JP2012141402A (en) Spatial light modulator
JP5281522B2 (en) Spatial light modulator
Pollmann et al. Magnetic imaging of a buried SmCo layer in a spring magnet
JP7168359B2 (en) Aperture improvement structure of domain wall motion type spatial light modulator
KR20060069469A (en) Tunnel junction element
JP5238616B2 (en) Light modulation element
JP5054640B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP2023136628A (en) Domain wall movement type spatial light modulator
JP6329384B2 (en) Spin injection magnetization reversal element
JP2019066652A (en) Domain wall displacement type spatial optical modulator
JP2024114046A (en) Semiconductor manufacturing equipment and semiconductor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7345361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150