JP2012141402A - Spatial light modulator - Google Patents

Spatial light modulator Download PDF

Info

Publication number
JP2012141402A
JP2012141402A JP2010293081A JP2010293081A JP2012141402A JP 2012141402 A JP2012141402 A JP 2012141402A JP 2010293081 A JP2010293081 A JP 2010293081A JP 2010293081 A JP2010293081 A JP 2010293081A JP 2012141402 A JP2012141402 A JP 2012141402A
Authority
JP
Japan
Prior art keywords
magnetic
wire
pixel
spatial light
light modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010293081A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Miyamoto
泰敬 宮本
Masahiko Kishida
雅彦 岸田
Mitsunobu Okuda
光伸 奥田
Naoto Hayashi
直人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2010293081A priority Critical patent/JP2012141402A/en
Publication of JP2012141402A publication Critical patent/JP2012141402A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetooptical type spatial light modulator which is improved in selectivity with respect to pixels.SOLUTION: A spatial light modulator 10 is configured such that a plurality of pixels 4 arrayed on a substrate 7 each includes a magnetic thin line 1 formed by forming a magnetooptical material in a thin-line shape, and a magnetic transfer film 5 is provided on the substrate 7 while being in contact with an undersurface of the magnetic thin line 1; a magnetic wall DW between two magnetic domains D0, D1 moves in a thin-line direction with currents supplied by a pair of electrodes 2, 3 connected to both ends of the magnetic thin line 1, and one of the magnetic domains D0, D1 is selectively made to reach an incidence region 1r of light, thereby inverting a magnetization direction of the incidence region 1r. The magnetization direction of the magnetic thin line 1 is transferred to the magnetic transfer film 5, so the magnetic transfer film 5 right below the incidence region 1r is inverted in magnetization direction together with the magnetic thin line 1. Light which is transmitted through the substrate 7 to be made incident optically rotates large through Faraday effect when transmitted through the magnetic transfer film 5, is reflected by the magnetic thin line 1, and optically rotates to exit when transmitted through the magnetic transfer film 5 again.

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器に関する。   The present invention relates to a spatial light modulator that emits incident light by spatially modulating the phase and amplitude of the light by a magneto-optic effect.

空間光変調器は、画素として光学素子(光変調素子)を用い、これをマトリクス状に2次元配列して光の位相や振幅等を空間的に変調するものであって、ディスプレイ技術や記録技術等の分野で広く利用されている。空間光変調器として、従来より液晶が用いられているが、近年では、高速処理かつ画素の1μm以下の微細化の可能性が期待される磁気光学材料を用いた磁気光学式空間光変調器の開発が進められている。   A spatial light modulator uses an optical element (light modulation element) as a pixel and arranges it two-dimensionally in a matrix to spatially modulate the phase and amplitude of light. Display technology and recording technology Widely used in such fields. Liquid crystal is conventionally used as a spatial light modulator, but in recent years, a magneto-optical spatial light modulator using a magneto-optical material, which is expected to be capable of high-speed processing and pixel miniaturization of 1 μm or less. Development is underway.

磁気光学式空間光変調器(以下、空間光変調器)においては、磁性体に入射した光が透過または反射する際にその偏光の向きを変化(旋光)させて出射するファラデー効果(反射の場合はカー効果)を利用し、磁性体の中でも特に効果の大きい磁気光学材料を使用している。すなわち、選択された画素(選択画素)における光変調素子の磁化方向とそれ以外の画素(非選択画素)における光変調素子の磁化方向を異なるものとして、選択画素から出射した光と非選択画素から出射した光で、その偏光の回転角(旋光角)に差を生じさせる。このような光変調素子の磁化方向を変化させる方法として、光変調素子に磁界を印加する磁界印加方式の他に、近年では光変調素子に電流を供給することでスピンを注入するスピン注入方式(例えば、特許文献1)がある。しかし、スピン注入により磁化方向を変化させる光変調素子(スピン注入光変調素子)は、さらなる画素の微細化を可能とする一方、当該スピン注入光変調素子における磁化方向の変化する層(磁化自由層)は、その膜厚が数〜10数nm程度である。このような薄い磁性体では、光を大きく旋光させること、すなわち光変調度を大きくすることは困難である。   In a magneto-optic spatial light modulator (hereinafter referred to as a spatial light modulator), when light incident on a magnetic material is transmitted or reflected, the direction of polarization is changed (rotation) and emitted (in the case of reflection) Uses the Kerr effect) and uses a magneto-optic material that is particularly effective among magnetic materials. That is, assuming that the magnetization direction of the light modulation element in the selected pixel (selected pixel) is different from the magnetization direction of the light modulation element in the other pixel (non-selected pixel), the light emitted from the selected pixel and the non-selected pixel The emitted light causes a difference in the rotation angle (rotation angle) of the polarized light. As a method of changing the magnetization direction of such a light modulation element, in addition to a magnetic field application method in which a magnetic field is applied to the light modulation element, in recent years, a spin injection method in which spin is injected by supplying a current to the light modulation element ( For example, there is Patent Document 1). However, a light modulation element (spin injection light modulation element) that changes the magnetization direction by spin injection enables further pixel miniaturization, while a layer (magnetization free layer) in which the magnetization direction in the spin injection light modulation element changes. ) Has a film thickness of about several to several tens of nanometers. With such a thin magnetic material, it is difficult to rotate light greatly, that is, to increase the degree of light modulation.

そこで、本発明者らは、細線加工された磁性体(磁性細線)においては、2以上の磁区が細線方向に区切られて形成され易く、これらの磁区を区切る磁壁は当該磁性細線に電流を供給することにより移動するという磁性細線における磁壁移動を利用して、磁性細線を光変調素子とする空間光変調器を開発している(特許文献2)。詳しくは、図11に示すように、磁性細線1の両端に接続した一対の電極102,103にて細線方向に電流を供給すると、電流の向きとは反対方向へ磁壁DWが移動して、光の入射領域1rにおける磁化方向が反転する。磁性細線は、細線方向長さが幅および厚さに対して十分に長ければよいので、光を透過する厚さを十分なものとしてファラデー効果により光を大きく旋光させることができる。   Accordingly, the inventors of the present invention have made it easy to form two or more magnetic domains in a thin wire direction in a magnetic material (magnetic thin wire) processed into fine wires, and the domain walls that delimit these magnetic domains supply current to the magnetic wires. The spatial light modulator which uses a magnetic wire as a light modulation element is developed using the magnetic domain wall movement in the magnetic wire which moves by doing (patent document 2). Specifically, as shown in FIG. 11, when a current is supplied in the direction of the thin line by a pair of electrodes 102 and 103 connected to both ends of the magnetic thin line 1, the domain wall DW moves in the direction opposite to the direction of the current, The magnetization direction in the incident region 1r is reversed. Since the magnetic fine wire only needs to have a sufficiently long length in the fine wire direction with respect to the width and thickness, the light can be rotated greatly by the Faraday effect with a sufficient thickness to transmit light.

特開2008−83686号公報JP 2008-83686 A 特開2010−20114号公報JP 2010-20114 A

特許文献2のような磁性細線を光変調素子とする空間光変調器を反射型の空間光変調器とすると、その旋光角は磁性細線のカー効果によるカー回転角であって、磁性体材料に依存する。例えば比較的大きなカー回転角が得られるCo/Pd多層膜であっても0.25°程度であり、十分な光変調度を得るためにはさらに改良する余地がある。   When a spatial light modulator having a magnetic wire as a light modulation element as in Patent Document 2 is a reflective spatial light modulator, the optical rotation angle is a Kerr rotation angle due to the Kerr effect of the magnetic wire, and the magnetic material is Dependent. For example, even a Co / Pd multilayer film capable of obtaining a relatively large Kerr rotation angle is about 0.25 °, and there is room for further improvement in order to obtain a sufficient degree of light modulation.

本発明は前記課題に鑑み創案されたもので、光変調度をいっそう向上させた反射型の空間光変調器を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a reflective spatial light modulator having a further improved degree of light modulation.

前記課題を解決するために、本発明者らは、ファラデー効果の大きい磁気転写膜を磁性細線に重ね合わせてこれに光を透過させることで、光を大きく旋光させることに想到した。   In order to solve the above-mentioned problems, the present inventors have conceived that light is greatly rotated by superimposing a magnetic transfer film having a large Faraday effect on a magnetic wire and transmitting light therethrough.

本発明に係る空間光変調器は、光を透過させる基板と、この基板上にマトリクス状に配列された複数の画素と、前記複数の画素から1以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備え、前記基板を透過して前記画素選択手段が選択した画素に入射した光の偏光の向きを特定の方向に変化させて反射して出射するものである。そして、前記画素は、磁気光学材料を細線状に形成して細線方向に連続して2以上の磁区が形成された磁性細線と、この磁性細線の両端近傍に接続された一対の電極とを備え、前記磁性細線は、前記光を入射させるための細線方向に区切られた領域である入射領域が予め指定された位置に設けられ、前記電流が前記一対の電極を介して細線方向に供給されることにより、隣り合う2つの磁区の間に生成している磁壁が細線方向に移動して、前記入射領域に前記2つの磁区のいずれか1つが到達するものである。空間光変調器は、さらに、前記基板と前記複数の画素との間に、磁気転写膜を前記磁性細線の前記基板側の面に接触させて備えることを特徴とする。   A spatial light modulator according to the present invention includes a substrate that transmits light, a plurality of pixels arranged in a matrix on the substrate, a pixel selection unit that selects one or more pixels from the plurality of pixels, Current supply means for supplying a predetermined current to the pixel selected by the pixel selection means, and changes the polarization direction of the light incident on the pixel selected by the pixel selection means through the substrate. The light is reflected and emitted. The pixel includes a magnetic thin line formed of a magneto-optical material in a thin line shape and two or more magnetic domains formed continuously in the thin line direction, and a pair of electrodes connected in the vicinity of both ends of the magnetic thin line. The magnetic thin wire is provided with an incident region, which is a region partitioned in the thin wire direction for allowing the light to enter, at a predetermined position, and the current is supplied in the thin wire direction through the pair of electrodes. As a result, the domain wall generated between the two adjacent magnetic domains moves in the direction of the thin line, and one of the two magnetic domains reaches the incident region. The spatial light modulator further includes a magnetic transfer film between the substrate and the plurality of pixels in contact with the surface of the magnetic wire on the substrate side.

かかる構成により、空間光変調器は、ファラデー効果の大きい磁気転写膜を、磁性細線の光の入射側に接触させて備えるため、磁性細線で反射した光が磁気転写膜を透過することにより、入射した光を大きく旋光させて出射する。   With this configuration, the spatial light modulator is provided with a magnetic transfer film having a large Faraday effect in contact with the light incident side of the magnetic wire, so that the light reflected by the magnetic wire passes through the magnetic transfer film and is incident. The emitted light is greatly rotated and emitted.

さらに、本発明に係る空間光変調器は、前記磁性細線が、前記入射領域の外で局所的に括れた形状に形成されていることが好ましい。あるいは、前記磁性細線が、前記入射領域の外で屈曲した細線形状に形成されていることが好ましい。   Furthermore, in the spatial light modulator according to the present invention, it is preferable that the magnetic wire is formed in a shape that is locally confined outside the incident region. Or it is preferable that the said magnetic fine wire is formed in the fine wire shape bent outside the said incident area | region.

かかる構成により、電流の供給を停止した時に磁性細線の括れた箇所または屈曲した箇所に磁壁が到達して停止するため、光の入射領域に磁壁がないことでその全体に1つの磁区が占める状態となり、1画素から出射する光を安定して同じ角度で旋光したものとすることができる。   With such a configuration, when the current supply is stopped, the magnetic domain wall reaches the constricted or bent portion of the magnetic thin wire and stops, so that there is no magnetic domain wall in the light incident area, so that one magnetic domain occupies the entire area. Thus, the light emitted from one pixel can be stably rotated at the same angle.

さらに、本発明に係る空間光変調器は、前記一対の電極が前記磁性細線の上に接続され、前記複数の画素において、同じ行に配列された画素の前記一対の電極の一方が1つの配線に接続され、同じ列に配列された画素の前記一対の電極の他方が前記配線上に絶縁層を介して配設された1つの配線に接続されることが好ましい。   Furthermore, in the spatial light modulator according to the present invention, the pair of electrodes are connected on the magnetic wire, and one of the pair of electrodes of the pixels arranged in the same row is one wiring in the plurality of pixels. The other of the pair of electrodes of the pixels arranged in the same column is preferably connected to one wiring disposed on the wiring via an insulating layer.

かかる構成により、マトリクス状に2次元配列された複数の画素のそれぞれに、格子状の配線で電流を供給することができる。また、すべての電極および配線が光の入出射面と反対側に配置されるため、これらの配線等で光が遮られることがないため、画素における入射領域の面積率(開口率)を大きくすることができる。   With this configuration, a current can be supplied to each of a plurality of pixels that are two-dimensionally arranged in a matrix form using a grid-like wiring. In addition, since all the electrodes and wirings are arranged on the opposite side of the light incident / exit surface, the light is not blocked by these wirings, etc., so that the area ratio (aperture ratio) of the incident region in the pixel is increased. be able to.

本発明に係る空間光変調器によれば、光変調度の大きな反射型の空間光変調器とすることができる。   The spatial light modulator according to the present invention can be a reflective spatial light modulator having a large degree of light modulation.

第1実施形態に係る空間光変調器の構成を模式的に示す底面図である。It is a bottom view showing typically the composition of the spatial light modulator concerning a 1st embodiment. 第1実施形態に係る空間光変調器を用いた表示装置の構成および画素選択の状態を説明する模式図で、図1のA−A断面図に対応する図である。It is a schematic diagram explaining the structure of the display apparatus using the spatial light modulator which concerns on 1st Embodiment, and the state of pixel selection, and is a figure corresponding to AA sectional drawing of FIG. 第1実施形態に係る空間光変調器の磁性細線における磁壁の移動を模式的に説明する平面図である。It is a top view which illustrates typically the movement of the domain wall in the magnetic fine wire of the spatial light modulator which concerns on 1st Embodiment. 本発明に係る空間光変調器の画素アレイの製造方法を説明する模式図で、(a)は磁性細線形成工程における断面図、(b)および(c)はXコンタクトホール形成工程における平面図およびそのB−B断面図、(d)および(e)はX電極形成工程における平面図およびそのB−B断面図である。It is a schematic diagram explaining the manufacturing method of the pixel array of the spatial light modulator which concerns on this invention, (a) is sectional drawing in a magnetic wire formation process, (b) And (c) is a top view in a X contact hole formation process, The BB sectional drawing, (d) and (e) are the top views in the X electrode formation process, and the BB sectional drawing. 本発明に係る空間光変調器の画素アレイの製造方法を説明する模式図で、(a)はYコンタクトホール形成工程における断面図、(b)、(c)および(d)はY電極形成工程における平面図、そのB−B断面図、および底面図である。It is a schematic diagram explaining the manufacturing method of the pixel array of the spatial light modulator which concerns on this invention, (a) is sectional drawing in a Y contact hole formation process, (b), (c) and (d) are Y electrode formation processes. FIG. 3 is a plan view, a BB cross-sectional view, and a bottom view thereof. 第1実施形態の変形例に係る空間光変調器を用いた表示装置の構成および画素選択の状態を説明する模式図で、図1のA−A断面図に対応する図である。It is a schematic diagram explaining the structure of a display apparatus using the spatial light modulator which concerns on the modification of 1st Embodiment, and the state of pixel selection, and is a figure corresponding to the AA sectional drawing of FIG. 第2実施形態に係る空間光変調器の画素アレイの底面模式図である。It is a bottom face schematic diagram of a pixel array of a spatial light modulator concerning a 2nd embodiment. 第3実施形態に係る空間光変調器の画素アレイの底面模式図であり、(a)は第3実施形態、(b)は第3実施形態の変形例である。It is a bottom face schematic diagram of a pixel array of a spatial light modulator concerning a 3rd embodiment, (a) is a 3rd embodiment and (b) is a modification of a 3rd embodiment. 第3実施形態に係る空間光変調器の磁性細線における磁壁の移動を模式的に説明する平面図である。It is a top view which illustrates typically the movement of the magnetic wall in the magnetic fine wire of the spatial light modulator which concerns on 3rd Embodiment. 空間光変調器のサンプルの外部磁界に対するカー回転角特性を示すグラフであり、(a)は本発明に係る実施例、(b)は比較例である。It is a graph which shows the Kerr rotation angle characteristic with respect to the external magnetic field of the sample of a spatial light modulator, (a) is an Example which concerns on this invention, (b) is a comparative example. 従来の磁性細線を画素に適用した空間光変調器の断面模式図である。It is a cross-sectional schematic diagram of the spatial light modulator which applied the conventional magnetic fine wire to the pixel.

以下、本発明に係る空間光変調器を実現するための形態について、図を参照して説明する。   Hereinafter, embodiments for realizing a spatial light modulator according to the present invention will be described with reference to the drawings.

[第1実施形態]
空間光変調器10は、図1に示すように、マトリクス状に配列された複数の画素4を備える画素アレイ40と、画素アレイ40から1以上の画素4を選択して駆動する電流制御部90と、を備える。本明細書における画素とは、空間光変調器による表示の最小単位での情報(明/暗)を提示する手段を指す。また、本明細書における底面(下面)は、空間光変調器の光の入射面であり、空間光変調器10は画素4(画素アレイ40)に下方から入射した光を反射してその光を変調して下方へ出射する反射型の空間光変調器である。
[First Embodiment]
As shown in FIG. 1, the spatial light modulator 10 includes a pixel array 40 including a plurality of pixels 4 arranged in a matrix, and a current control unit 90 that selects and drives one or more pixels 4 from the pixel array 40. And comprising. The pixel in this specification refers to a means for presenting information (bright / dark) in the minimum unit of display by the spatial light modulator. The bottom surface (lower surface) in this specification is a light incident surface of the spatial light modulator, and the spatial light modulator 10 reflects light incident on the pixel 4 (pixel array 40) from below and reflects the light. It is a reflective spatial light modulator that modulates and emits downward.

画素アレイ40は、図2に示すように、基板7の表面全体に磁気転写膜5を積層したさらにその上に画素4を配列してなる。基板7および磁気転写膜5は、図1に示す画素アレイ40の全面であるため、図1では図示を省略する。ここで、一般的な空間光変調器の画素アレイは、例えば画面表示規格の1種であるVGA(Video Graphics Array)においては640×480の約30万画素であるが、本明細書では簡略化して説明するために、図1に示すように、画素アレイ40は4行×4列の16個の画素4を備える構成として示す。この画素アレイ40は、平面視で列(縦)方向に延設されたストライプ状の4本のX電極2と、X電極2の上に、同じくストライプ状で、平面視でX電極2と直交するように行(横)方向に延設された4本のY電極3と、を備え、X電極2とY電極3との交点毎に1つの画素4を備える。   As shown in FIG. 2, the pixel array 40 is formed by laminating the magnetic transfer film 5 on the entire surface of the substrate 7 and further arranging the pixels 4 thereon. Since the substrate 7 and the magnetic transfer film 5 are the entire surface of the pixel array 40 shown in FIG. 1, the illustration is omitted in FIG. Here, a pixel array of a general spatial light modulator is about 300,000 pixels of 640 × 480 in a VGA (Video Graphics Array) which is one kind of screen display standard, for example, but is simplified in this specification. For the sake of explanation, as shown in FIG. 1, the pixel array 40 is shown as a configuration including 16 pixels 4 of 4 rows × 4 columns. The pixel array 40 has four striped X electrodes 2 extending in the column (vertical) direction in plan view, and is also striped on the X electrodes 2 and orthogonal to the X electrodes 2 in plan view. Thus, four Y electrodes 3 extending in the row (lateral) direction are provided, and one pixel 4 is provided for each intersection of the X electrode 2 and the Y electrode 3.

このような画素アレイ40においては、列方向に配列された4個の画素4が1本のX電極2を共有し、行方向に配列された4個の画素4が1本のY電極3を共有する構造となる。そして、画素4は、画素アレイ40の対角線の一方向に沿った細線状の磁性体(以下、磁性細線)1を磁気転写膜5に接触させて備え、この磁性細線1は、その両端を画素4毎に異なる組み合わせのX電極2とY電極3とに接続されている。X電極2とY電極3は、適宜、両者をまとめて電極2,3と称する。X電極2、Y電極3のそれぞれの配線ピッチすなわち画素サイズ(画素ピッチ)は、入射光(図2のレーザー光)の波長にもよるが、0.25μm程度以上とすることが好ましい。画素アレイ40において、これら磁性細線1および電極2,3のない領域(隙間)、すなわち図2における空白部(磁気転写膜5上面からY電極3上まで)は、絶縁部材6で埋められている(図5(c)参照)。   In such a pixel array 40, four pixels 4 arranged in the column direction share one X electrode 2, and four pixels 4 arranged in the row direction share one Y electrode 3. It becomes a shared structure. The pixel 4 is provided with a thin line-shaped magnetic body (hereinafter referred to as a magnetic thin line) 1 along one diagonal line of the pixel array 40 in contact with the magnetic transfer film 5, and the magnetic thin line 1 has both ends connected to the pixel. The X electrode 2 and the Y electrode 3 of different combinations for every four are connected. The X electrode 2 and the Y electrode 3 are collectively referred to as electrodes 2 and 3 as appropriate. The wiring pitch, that is, the pixel size (pixel pitch) of the X electrode 2 and the Y electrode 3 depends on the wavelength of incident light (laser light in FIG. 2), but is preferably about 0.25 μm or more. In the pixel array 40, the region (gap) where the magnetic thin wire 1 and the electrodes 2 and 3 are not present, that is, the blank portion (from the top surface of the magnetic transfer film 5 to the top of the Y electrode 3) in FIG. (See FIG. 5 (c)).

図1に示すように、電流制御部90は、X電極2を選択するX電極選択部92と、Y電極3を選択するY電極選択部93と、これらの電極選択部92,93を制御する画素選択部(画素選択手段)94と、電極2,3に電流を供給する電源(電流供給手段)91と、を備える。これらはそれぞれ公知のものを適用でき、磁性細線1に適正な電圧・電流を供給するものとする。   As shown in FIG. 1, the current control unit 90 controls the X electrode selection unit 92 that selects the X electrode 2, the Y electrode selection unit 93 that selects the Y electrode 3, and the electrode selection units 92 and 93. A pixel selection unit (pixel selection unit) 94 and a power source (current supply unit) 91 that supplies current to the electrodes 2 and 3 are provided. As these, known ones can be applied, and appropriate voltage / current is supplied to the magnetic wire 1.

X電極選択部92はX電極2の1つ以上を選択し、Y電極選択部93はY電極3の1つ以上を選択し、それぞれに電源91から所定の電流を供給させる。画素選択部94は、例えば図示しない外部からの信号に基づいて画素アレイ40の特定の1つ以上の画素4を選択し、選択した画素4(磁性細線1)に接続する電極2,3を電極選択部92,93に選択させる。電源91は、選択した画素4における磁性細線1に、X電極2からY電極3へ、およびその反対方向のいずれかの向きに電流を供給する。磁性細線1に供給する電流は、パルス幅10ns〜10μs、電流密度105〜1013A/m2の直流パルス電流が好ましい。パルス電流の供給によれば、後記する磁壁の移動距離を制御し易い。また、磁性細線1は連続電流を供給されると発熱するため、パルス電流の適用が望ましい。このような構成により、特定の画素4が選択され、この画素4の磁性細線1に電流が供給されて後記の動作を行う。 The X electrode selection unit 92 selects one or more of the X electrodes 2, and the Y electrode selection unit 93 selects one or more of the Y electrodes 3, and each supplies a predetermined current from the power source 91. The pixel selection unit 94 selects, for example, one or more specific pixels 4 of the pixel array 40 based on an external signal (not shown), and connects the electrodes 2 and 3 connected to the selected pixel 4 (magnetic thin line 1). The selection units 92 and 93 are selected. The power supply 91 supplies a current to the magnetic thin wire 1 in the selected pixel 4 from the X electrode 2 to the Y electrode 3 and in either direction. The current supplied to the magnetic wire 1 is preferably a DC pulse current having a pulse width of 10 ns to 10 μs and a current density of 10 5 to 10 13 A / m 2 . According to the supply of the pulse current, it is easy to control the moving distance of the domain wall described later. Moreover, since the magnetic thin wire 1 generates heat when supplied with a continuous current, it is desirable to apply a pulse current. With such a configuration, a specific pixel 4 is selected, and a current is supplied to the magnetic thin wire 1 of the pixel 4 to perform the operation described later.

(磁性細線)
磁性細線1は、細線方向に区切られた所定の領域における磁化方向を、一方向およびその反対方向のいずれかとすることで、この領域に入射した光を反射する際に、偏光方向を2値に変化させる(2値の角度で旋光する)空間光変調器10の光変調素子となる。磁性細線1において光が入射する、細線方向に区切られた領域を入射領域1rと称する(図3(a)、(c)参照)。この入射領域1rは、磁性細線1において予め指定された位置の領域であり、画素4において光を入射させて2値の角度で旋光した光を取り出すための領域となる。図2に示すように、磁性細線1は、互いに反対方向の磁化を示す2つの磁区D1,D0が細線方向に連続して形成され、これらの磁区D1,D0を区切るように磁壁DWが生成している。磁壁DWは、後記するように、磁性細線1に電流を細線方向に供給することにより細線方向に移動し、入射領域1rの両外側のいずれかに到達することで、入射領域1rにおける磁化方向が変化(反転)する。
(Magnetic wire)
The magnetic thin wire 1 has a magnetization direction in a predetermined region divided in the thin wire direction as either one direction or the opposite direction, so that when the light incident on this region is reflected, the polarization direction is binarized. The light modulation element of the spatial light modulator 10 is changed (rotates at a binary angle). An area where light is incident on the magnetic thin line 1 and is divided in the direction of the thin line is referred to as an incident area 1r (see FIGS. 3A and 3C). The incident region 1r is a region at a position designated in advance in the magnetic thin wire 1, and is a region for extracting light that has been incident on the pixel 4 and rotated at a binary angle. As shown in FIG. 2, the magnetic wire 1 has two magnetic domains D1 and D0 showing magnetization in opposite directions, which are continuously formed in the thin wire direction, and a domain wall DW is generated so as to separate these magnetic domains D1 and D0. ing. As will be described later, the domain wall DW moves in the thin wire direction by supplying current to the magnetic thin wire 1 in the thin wire direction and reaches either one of the outer sides of the incident region 1r, so that the magnetization direction in the incident region 1r is changed. Change (invert).

磁性細線1は、公知の強磁性材料を適用でき、好ましくは光反射率の高い材料、さらに好ましく磁気光学効果(カー効果)の大きい材料を適用する。具体的には、面内磁気異方性材料として、Ni,Fe,Coから選択される遷移金属やNi−Fe,Ni−Fe−Mo,Co−Cr等の遷移金属合金、あるいはCo−Pt等のPd,Pt,Cuとの合金が挙げられる。垂直磁気異方性材料としては、Co/Pd多層膜のような遷移金属とPd,Pt,Cuとを繰り返し積層した多層膜、またTb−Fe−Co,Gd−Fe等の希土類金属と遷移金属との合金(RE−TM合金)が挙げられる。磁性細線1は、さらに最上層や最下層にRu等からなる保護層(図示せず)を備えてもよい。これらの材料はスパッタリング法等の公知の方法により成膜され、フォトリソグラフィおよびエッチングまたはリフトオフにより、以下の細線形状に成形されて磁性細線1となる。   A known ferromagnetic material can be applied to the magnetic wire 1, preferably a material having a high light reflectance, and more preferably a material having a large magneto-optic effect (Kerr effect). Specifically, as an in-plane magnetic anisotropic material, a transition metal selected from Ni, Fe, Co, a transition metal alloy such as Ni—Fe, Ni—Fe—Mo, Co—Cr, or Co—Pt, etc. And alloys with Pd, Pt, and Cu. Perpendicular magnetic anisotropic materials include multilayer films in which transition metals such as Co / Pd multilayer films and Pd, Pt, Cu are repeatedly laminated, and rare earth metals such as Tb-Fe-Co, Gd-Fe, and transition metals. Alloy (RE-TM alloy). The magnetic wire 1 may further include a protective layer (not shown) made of Ru or the like on the uppermost layer or the lowermost layer. These materials are formed into a film by a known method such as a sputtering method, and are formed into the following fine wire shape by photolithography and etching or lift-off to form the magnetic wire 1.

磁性細線1の形状は、厚さおよび幅に対して十分に長い細線状とする。本実施形態では、画素4において、磁性細線1の細線方向長さを長くするために、細線方向を画素アレイ40の対角線に平行な方向に、すなわち平面(底面)視で45°傾斜させているが、これに限らない。磁性細線1の大きさについては、厚さ(膜厚)70nm以下、幅300nm以下であれば、形成時(製造時)に、細線方向のみに磁区が分割され易いため、好ましい。本実施形態(図2、図3参照)においては、磁性細線1が面内磁気異方性材料からなるため、細線方向に沿った一方向およびその反対方向の磁化の磁区となり、後記の変形例(図6参照)のように、垂直磁気異方性材料からなる磁性細線1Aは、厚さ方向に沿った磁化方向(上方向および下方向)の磁区となる。なお、前記よりも厚さや幅の大きい磁性細線は、幅方向等にも磁区が分割されて複数形成される場合があるが、外部磁界を印加することで、細線方向のみに磁区が分割された状態にすることができる。また、磁性細線1の厚さおよび幅(断面積)が小さいほど、小さい電流で画素を動作させることができる(後記参照)。一方、磁性細線1の厚さが30nm未満では、入射した光が透過して反射光(出射光)の光量が低下する。磁性細線1の幅は、入射光(図2に示すレーザー光)の波長にもよるが、100nm程度以上とすることが好ましく、また、画素4の大きさ(画素ピッチ)に対して細すぎると画素4に入射した光のうち、磁性細線1で反射して旋光する光が少なくなる。同様に、磁性細線1の細線方向長さは十分に長いことが好ましく、特に入射領域1rは波長にもよるが100nm程度以上とすることが好ましい。なお、画素4の面積に対して、選択により2値のいずれかの角度で旋光した光が出射する領域の面積の割合を、画素4の開口率とする。原則として、前記いずれかの角度で旋光した光が出射する領域が、磁性細線1の入射領域1rの下面(反射面)である。したがって、磁性細線1は、画素4における開口率を高くするために入射領域1rを広く、すなわち細線方向長さを長く設けることが好ましい。   The shape of the magnetic wire 1 is a thin wire that is sufficiently long with respect to the thickness and width. In the present embodiment, in the pixel 4, in order to increase the length of the magnetic thin line 1 in the thin line direction, the thin line direction is inclined 45 ° in a direction parallel to the diagonal line of the pixel array 40, that is, in plan (bottom) view. However, it is not limited to this. As for the size of the magnetic thin wire 1, a thickness (film thickness) of 70 nm or less and a width of 300 nm or less are preferable because the magnetic domains can be easily divided only in the thin wire direction during formation (manufacturing). In the present embodiment (see FIGS. 2 and 3), since the magnetic wire 1 is made of an in-plane magnetic anisotropic material, it becomes a magnetic domain of magnetization in one direction along the direction of the thin wire and in the opposite direction. As shown in FIG. 6, the magnetic wire 1A made of a perpendicular magnetic anisotropic material becomes a magnetic domain in the magnetization direction (upward and downward) along the thickness direction. In addition, magnetic thin wires having a thickness and width larger than the above may be formed by dividing a magnetic domain in the width direction or the like, but by applying an external magnetic field, the magnetic domain is divided only in the thin line direction. Can be in a state. Further, as the thickness and width (cross-sectional area) of the magnetic wire 1 are smaller, the pixel can be operated with a smaller current (see below). On the other hand, when the thickness of the magnetic wire 1 is less than 30 nm, incident light is transmitted and the amount of reflected light (emitted light) is reduced. The width of the magnetic wire 1 depends on the wavelength of the incident light (laser light shown in FIG. 2), but is preferably about 100 nm or more, and if it is too narrow with respect to the size of the pixel 4 (pixel pitch). Of the light incident on the pixel 4, less light is reflected by the magnetic wire 1 and rotated. Similarly, the length of the magnetic wire 1 in the thin wire direction is preferably sufficiently long. In particular, the incident region 1r is preferably about 100 nm or more depending on the wavelength. Note that the ratio of the area of the region where the light rotated at any one of the two selected angles is emitted with respect to the area of the pixel 4 is defined as the aperture ratio of the pixel 4. In principle, the region where the light rotated at any one of the angles is emitted is the lower surface (reflecting surface) of the incident region 1r of the magnetic wire 1. Therefore, in order to increase the aperture ratio in the pixel 4, the magnetic fine wire 1 is preferably provided with a large incident region 1r, that is, a long length in the fine wire direction.

さらに、図3に示すように、磁性細線1は、入射領域1rの外部の両側で括れた形状に形成されていることが好ましい。これらの括れた箇所(括れ部)1c1,1c2には、後記するように磁壁DWが生成され易く、また電流の供給を停止した時に固定(トラップ)され易いため、入射領域1rには磁壁DWが静止せず、その結果、電流停止時には入射領域1rの全体を1つの磁区が占める。前記したように、磁性細線1は入射領域1rを広く設けることが好ましいため、括れ部1c1と括れ部1c2に挟まれた全領域を入射領域1rとすることが好ましく、言い換えれば、括れ部1c1,1c2で細線方向に区切るように入射領域1rを設けることが好ましい。   Further, as shown in FIG. 3, the magnetic fine wire 1 is preferably formed in a shape constricted on both sides outside the incident region 1r. In these constricted portions (constricted portions) 1c1 and 1c2, a domain wall DW is easily generated as described later, and is easily fixed (trapped) when the supply of current is stopped. Therefore, the domain wall DW is formed in the incident region 1r. As a result, the magnetic field occupies the entire incident region 1r when the current is stopped. As described above, since the magnetic thin wire 1 preferably has a wide incident region 1r, the entire region sandwiched between the constricted portion 1c1 and the constricted portion 1c2 is preferably used as the incident region 1r. In other words, the constricted portions 1c1, It is preferable to provide the incident region 1r so as to be separated in the thin line direction by 1c2.

磁性細線1が括れた形状に形成されているとは、断面積(細線方向に垂直な断面)が局所的に小さくなっていることを指す。本実施形態では、磁性細線1は、平面視で幅狭となるように括れ部1c1,1c2で側面を凹ませて形成され、例えば細線状に成形されるときに、平面視で細長い長方形に2箇所の括れ(4箇所の凹み)がある形状となればよい。本実施形態においては、括れ部1c1,1c2を両側面で凹ませているが、片側面のみを凹ませてもよい。また、後記の図6に示す変形例においては、括れ部1c1,1c2を、断面図において位置をわかり易く示すために磁性細線1Aの上面に凹状に示しているが、実際に磁性細線1A(1)を局所的に薄く形成してもよく、例えば、磁性細線1,1Aを細線状(平面視で細長い長方形)に成形した後にその表面を局所的に削ってもよい。括れ部1c1,1c2は、その幅または厚さが、他の部分に対して断面積で20〜98%の範囲で狭くまたは薄くすることが好ましい。また、括れ部1c1,1c2の位置は、磁性細線1のそれぞれの端から磁性細線1の全長(細線方向長さ)の5〜40%、括れ部1c1,1c2間の長さは同全長の30〜90%とすることが好ましい。2つの括れ部1c1,1c2の磁性細線1のそれぞれの端からの距離は均等でなくてもよく、さらに、磁性細線1の一端側のみに括れ部が1つだけ形成されてもよい。   The fact that the magnetic wire 1 is formed in a constricted shape means that the cross-sectional area (cross-section perpendicular to the thin wire direction) is locally small. In the present embodiment, the magnetic fine wire 1 is formed by denting the side surfaces at the constricted portions 1c1 and 1c2 so as to be narrow in a plan view. What is necessary is just to become a shape with the constriction (4 dents) of a location. In the present embodiment, the constricted portions 1c1 and 1c2 are recessed on both side surfaces, but only one side surface may be recessed. Further, in the modified example shown in FIG. 6 described later, the constricted portions 1c1 and 1c2 are shown in a concave shape on the upper surface of the magnetic wire 1A for easy understanding of the position in the sectional view, but the magnetic wire 1A (1) is actually used. May be formed locally thin, for example, after the magnetic fine wires 1 and 1A are formed into a thin wire shape (a long and narrow rectangle in a plan view), the surface thereof may be locally shaved. It is preferable that the narrow portions 1c1 and 1c2 have a width or thickness that is narrower or thinner in a range of 20 to 98% in cross-sectional area than other portions. Further, the positions of the constricted portions 1c1 and 1c2 are 5 to 40% of the total length (length in the fine line direction) of the magnetic thin wire 1 from the respective ends of the magnetic thin wire 1, and the length between the constricted portions 1c1 and 1c2 is 30 of the same total length. It is preferable to set it to -90%. The distances from the respective ends of the magnetic fine wires 1 of the two constricted portions 1c1 and 1c2 may not be equal, and only one constricted portion may be formed only on one end side of the magnetic fine wire 1.

(電極)
X電極2およびY電極3は、一対の電極として磁性細線1にその細線方向に電流を供給するために、磁性細線1に接続される。そのため、電極2,3は、磁性細線1の細線方向における接続位置は規定されないが、両端近傍に接続されればよい。磁性細線1の電極2,3の接続箇所間で、供給された電流が流れ、後記するように磁壁が移動可能であるので、電極2,3の接続箇所間が磁性細線1の実効的な細線方向長さといえる。また、電極2,3の磁性細線1における接続面は限定されないが、図2に示すように磁性細線1の上面が好ましい。電極2,3を共に磁性細線1の上面に接続することで、基板7上の全面に成膜された磁気転写膜5上に直接に磁性細線1を形成して、磁性細線1の下面全体を磁気転写膜5に接触させることができる。したがって、電極2,3は、図1に示す画素アレイ40のストライプ状の配線から、下方へ、図2に示すように層間領域62,61を経由して磁性細線1の上面に接続される。なお、本明細書において、X電極2およびY電極3は、1つの画素4毎の磁性細線1への接続部(磁性細線1の端子)と、画素アレイ40において縦横に延設されたストライプ状の部分(適宜、配線部と称する)とを含む。電極2,3は、Cu,Al,Ta,Cr,W,Ag,Au,Pt等の金属やその合金のような一般的な電極用金属材料からなり、スパッタリング法等により成膜、フォトリソグラフィ等によりストライプ状に成形される。また、電極2,3の厚さおよび幅は、画素ピッチ、材料や供給する電圧・電流等によって設定される。
(electrode)
The X electrode 2 and the Y electrode 3 are connected to the magnetic wire 1 in order to supply a current in the direction of the wire to the magnetic wire 1 as a pair of electrodes. For this reason, the connection positions of the magnetic thin wires 1 in the thin wire direction are not defined, but the electrodes 2 and 3 may be connected in the vicinity of both ends. Since the supplied current flows between the connecting portions of the magnetic thin wires 1 between the electrodes 2 and 3 and the domain wall is movable as will be described later, the effective thin wires of the magnetic thin wires 1 are connected between the connecting portions of the electrodes 2 and 3. It can be said to be the direction length. Further, the connection surface of the electrodes 2 and 3 in the magnetic wire 1 is not limited, but the upper surface of the magnetic wire 1 is preferable as shown in FIG. By connecting both the electrodes 2 and 3 to the upper surface of the magnetic wire 1, the magnetic wire 1 is formed directly on the magnetic transfer film 5 formed on the entire surface of the substrate 7, and the entire lower surface of the magnetic wire 1 is formed. The magnetic transfer film 5 can be contacted. Therefore, the electrodes 2 and 3 are connected to the upper surface of the magnetic thin wire 1 downward from the stripe-like wiring of the pixel array 40 shown in FIG. 1 via the interlayer regions 62 and 61 as shown in FIG. In the present specification, the X electrode 2 and the Y electrode 3 are connected to the magnetic wire 1 for each pixel 4 (terminals of the magnetic wire 1) and stripes extending vertically and horizontally in the pixel array 40. Part (referred to as a wiring part as appropriate). The electrodes 2 and 3 are made of a general metal material for electrodes such as metals such as Cu, Al, Ta, Cr, W, Ag, Au, and Pt, and alloys thereof, and are formed by sputtering or the like, photolithography, etc. Is formed into a stripe shape. The thicknesses and widths of the electrodes 2 and 3 are set by the pixel pitch, material, supplied voltage / current, and the like.

(磁気転写膜)
磁気転写膜5は、外部の磁気を帯びて容易に磁化され、特に接触する磁性体の磁気に強く影響される。したがって、図2に示すように、磁気転写膜5は、上面に磁性細線1が接触して配置された領域では、当該磁性細線1の磁区D0,D1の直下の領域でそれぞれ同じ磁化方向を示す磁区が形成され、磁区を区切る磁壁が生成する。したがって、磁性細線1において磁壁DWの移動に伴い磁区D0,D1が伸長または収縮して、磁性細線1のある領域における磁化方向が変化すれば、それに対応して前記領域の直下における磁気転写膜5の磁化方向が速やかに変化する。磁気転写膜5は、磁性細線1の配置された直下の領域のみにおける磁化方向が変化するので、画素アレイ40(基板7)の全面に形成すればよいが、例えば画素4毎に分割されてもよいし、磁性細線1の形成時に同じ平面視形状に加工されてもよい。画素4に入射した光について、磁性細線1を反射したカー回転角のみでは反射光の旋光角が1°未満と小さいため、本発明に係る空間光変調器10においては、磁気転写膜5を透過させることで、磁化方向の違いによる出射光の偏光の向きの差を拡大して磁気の検出精度を向上させる。
(Magnetic transfer film)
The magnetic transfer film 5 is easily magnetized with external magnetism, and is particularly strongly influenced by the magnetism of the magnetic material in contact therewith. Therefore, as shown in FIG. 2, the magnetic transfer film 5 shows the same magnetization direction in the region immediately below the magnetic domains D0 and D1 of the magnetic wire 1 in the region where the magnetic wire 1 is in contact with the upper surface. Magnetic domains are formed, and domain walls that delimit the magnetic domains are generated. Therefore, if the magnetic domain D0, D1 expands or contracts in accordance with the movement of the domain wall DW in the magnetic wire 1 and the magnetization direction in a region where the magnetic wire 1 is changed, the magnetic transfer film 5 immediately below the region correspondingly changes. The magnetization direction of swiftly changes. The magnetic transfer film 5 may be formed on the entire surface of the pixel array 40 (substrate 7) because the magnetization direction changes only in the region immediately below where the magnetic thin wires 1 are arranged. Alternatively, it may be processed into the same plan view shape when the magnetic wire 1 is formed. With respect to the light incident on the pixel 4, the optical rotation angle of the reflected light is as small as less than 1 ° only at the Kerr rotation angle reflected from the magnetic wire 1. By doing so, the difference in the direction of polarization of the outgoing light due to the difference in the magnetization direction is expanded to improve the magnetic detection accuracy.

磁気転写膜5は、低保磁力で、磁気光学効果の大きい(ファラデー回転角の大きい)絶縁性の磁性材料からなり、透過率の高い材料が好ましい。このような材料として、具体的にはイットリウム鉄ガーネット(Y3Fe512:YIG)のような磁性ガーネット膜が挙げられ、特にビスマス置換磁性ガーネット(Y3-XBiXFe512:Bi−YIG)はファラデー回転角が約5°/μm(波長532nm)と大きいことから好ましい。磁性ガーネット膜は、例えばGd3Ga512(ガドリニウム・ガリウム・ガーネット:GGG)単結晶基板上に液相エピタキシャル成長(Liquid Phase Epitaxy:LPE)法にて成膜させることで製造でき、GGG基板を基板7として、磁気転写膜5が成膜された状態でその上に画素4を形成することができる。あるいは、スピンコート焼結法の一種である有機金属分解(Metal Organic Decomposition:MOD)法や、有機金属気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法にて、ガラス基板等に磁気転写膜5を成膜することもできる。また、磁気転写膜5は、磁化容易軸を磁性細線1の磁化方向に沿ったものとし、すなわち本実施形態においては、磁性細線1の細線方向とする(後記製造方法参照)。磁気転写膜5の膜厚は特に限定されず、厚くするほど比例してファラデー回転角を大きくすることができるが、一方で光が吸収されて出射光が減衰するため、具体的には0.1〜2μm程度が好ましい。 The magnetic transfer film 5 is made of an insulating magnetic material having a low coercive force and a large magneto-optical effect (a large Faraday rotation angle), and a material having a high transmittance is preferable. Specific examples of such a material include a magnetic garnet film such as yttrium iron garnet (Y 3 Fe 5 O 12 : YIG), and in particular, a bismuth-substituted magnetic garnet (Y 3 -X Bi x Fe 5 O 12 : Bi-YIG) is preferable because the Faraday rotation angle is as large as about 5 ° / μm (wavelength: 532 nm). A magnetic garnet film can be manufactured, for example, by forming a film on a Gd 3 Ga 5 O 12 (gadolinium gallium garnet: GGG) single crystal substrate by a liquid phase epitaxy (LPE) method. The pixel 4 can be formed on the substrate 7 with the magnetic transfer film 5 formed thereon. Alternatively, the magnetic transfer film 5 is applied to a glass substrate or the like by a metal organic decomposition (MOD) method or a metal organic chemical vapor deposition (MOCVD) method which is a kind of spin coat sintering method. Can also be formed. The magnetic transfer film 5 has an easy axis along the magnetization direction of the magnetic wire 1, that is, in the present embodiment, the direction of the magnetic wire 1 (refer to the manufacturing method described later). The film thickness of the magnetic transfer film 5 is not particularly limited, and the Faraday rotation angle can be proportionally increased as the thickness is increased. On the other hand, the light is absorbed and the emitted light is attenuated. About 1 to 2 μm is preferable.

(絶縁部材)
絶縁部材6は、画素アレイ40における磁性細線1,1間、X電極2,2間およびY電極3,3間、ならびに磁性細線1とX電極2との間(層間領域61)、X電極2とY電極3との間(層間領域62)に配され、さらにY電極3の上面を被覆してもよい。絶縁部材6は、例えばSiO2やAl23等の公知の絶縁材料からなり、また画素アレイ40の全体で同じ材料を適用しなくともよい。
(Insulating material)
The insulating member 6 is formed between the magnetic thin wires 1 and 1, between the X electrodes 2 and 2 and between the Y electrodes 3 and 3, between the magnetic thin wire 1 and the X electrode 2 (interlayer region 61), and between the X electrodes 2 And the Y electrode 3 (interlayer region 62), and the upper surface of the Y electrode 3 may be covered. The insulating member 6 is made of a known insulating material such as SiO 2 or Al 2 O 3 , and the same material may not be applied to the entire pixel array 40.

(基板)
基板7は、画素4に入射する光を透過させ、さらに画素4から出射する光を透過させるため、透明な材料からなり、例えば、SiO2、酸化マグネシウム(MgO)、ガラス等の公知の透明基板材料が挙げられる。また、前記したようにGGG基板を適用した場合は、LPE法にて磁気転写膜5を成膜することができる。
(substrate)
The substrate 7 is made of a transparent material so as to transmit light incident on the pixel 4 and further transmit light emitted from the pixel 4. For example, a known transparent substrate such as SiO 2 , magnesium oxide (MgO), or glass is used. Materials. Further, when the GGG substrate is applied as described above, the magnetic transfer film 5 can be formed by the LPE method.

(光吸収膜)
図2に示すように、基板7の下面(裏面)を光吸収膜8(図1では図示省略)で被覆してもよい。光吸収膜8は、空間光変調器10に入射する光を遮光して、画素4のそれぞれの磁性細線1の入射領域1r以外に光が入射しないようにする。詳しくは、磁性細線1の入射領域1r以外の領域で反射した光、ならびに磁気転写膜5の入射領域1rの直下の領域(以下、入射領域5rと称する)以外を透過した光が、画素アレイ40から出射しないようにする。そのため、光吸収膜8は、所定の形状の孔(開口領域8r、図5(d)参照)を画素4毎に形成される。光吸収膜8の開口領域8rは、磁気転写膜5の入射領域5rを透過する光(入射光および磁性細線1で反射した光)の光路に合わせて、形状および画素4における位置が設計される。このような光吸収膜8としては、カーボン、ビスマス、マンガン、フェライト等の公知の黒色膜が挙げられ、塗布法等、公知の方法で成膜して、リソグラフィーおよびエッチング等で入射光および出射光を通過させる開口領域8rを形成する。また、入射光および出射光を基板7の下面で透過させないようにすればよいので、光吸収膜8に代えて光反射膜(図示せず)でもよく、Al,Au,Ag,Pt等を適用することができる。
(Light absorption film)
As shown in FIG. 2, the lower surface (back surface) of the substrate 7 may be covered with a light absorbing film 8 (not shown in FIG. 1). The light absorption film 8 shields the light incident on the spatial light modulator 10 so that the light does not enter other than the incident region 1 r of each magnetic wire 1 of the pixel 4. Specifically, the light reflected by the region other than the incident region 1r of the magnetic wire 1 and the light transmitted through the region other than the region immediately below the incident region 1r (hereinafter referred to as the incident region 5r) of the magnetic transfer film 5 are the pixel array 40. Do not exit from Therefore, the light absorption film 8 is formed with a hole having a predetermined shape (opening region 8r, see FIG. 5D) for each pixel 4. The opening region 8r of the light absorbing film 8 is designed in shape and position in the pixel 4 according to the optical path of light (incident light and light reflected by the magnetic wire 1) transmitted through the incident region 5r of the magnetic transfer film 5. . Examples of such a light absorbing film 8 include known black films such as carbon, bismuth, manganese, and ferrite. Films are formed by a known method such as a coating method, and incident light and outgoing light are obtained by lithography and etching. An opening region 8r through which the light passes is formed. Further, since it is sufficient that incident light and outgoing light are not transmitted through the lower surface of the substrate 7, a light reflecting film (not shown) may be used instead of the light absorbing film 8, and Al, Au, Ag, Pt, etc. are applied. can do.

(画素アレイの製造方法)
本発明に係る空間光変調器の画素アレイの製造方法について、その一例を図4および図5を参照して説明する。この説明において、縦および横とは図4、図5の平面図における方向を指す。
(Pixel array manufacturing method)
An example of a method for manufacturing a pixel array of a spatial light modulator according to the present invention will be described with reference to FIGS. In this description, vertical and horizontal indicate directions in the plan views of FIGS.

まず、基板7の表面全体に磁気転写膜5を形成する。前記したように基板7としてGGG基板を適用し、全面にLPE法にて磁性ガーネット膜を成膜する(図示省略)。ここで、GGG基板上にLPE法にて成膜した磁性ガーネット膜は、磁化容易軸が膜面垂直方向となり易い。そこで、この後に形成する磁性細線1の細線方向に沿って十分大きな磁界を印加しながらアニール処理を行って、磁化容易軸を面内方向に寝かせた磁気転写膜5にする。   First, the magnetic transfer film 5 is formed on the entire surface of the substrate 7. As described above, a GGG substrate is applied as the substrate 7, and a magnetic garnet film is formed on the entire surface by the LPE method (not shown). Here, in the magnetic garnet film formed on the GGG substrate by the LPE method, the easy axis of magnetization tends to be in the direction perpendicular to the film surface. Therefore, annealing is performed while applying a sufficiently large magnetic field along the direction of the fine magnetic wire 1 to be formed later, so that the magnetic transfer film 5 with the easy magnetization axis lying in the in-plane direction is obtained.

次に、図4(a)に示すように、基板7上の磁気転写膜5の表面に、強磁性材料を公知の方法で成膜、成形して、2箇所の括れ部1c1,1c2(図3(a)参照)を有する細線状の磁性細線1(図4(b)参照)を形成する。次に、磁性細線1,1間および磁性細線1上(層間領域61)に絶縁部材6として絶縁材料を堆積させる。そして、図4(b)、(c)に示すように、絶縁部材6について、磁性細線1の両端近傍上にコンタクトホールV1,V1を形成して、磁性細線1を露出させる。   Next, as shown in FIG. 4A, a ferromagnetic material is formed and formed on the surface of the magnetic transfer film 5 on the substrate 7 by a known method, and two constricted portions 1c1, 1c2 (FIG. 3 (a)) is formed, and a thin magnetic wire 1 (see FIG. 4 (b)) is formed. Next, an insulating material is deposited as the insulating member 6 between the magnetic wires 1 and 1 and on the magnetic wire 1 (interlayer region 61). 4B and 4C, contact holes V1 and V1 are formed on the insulating member 6 in the vicinity of both ends of the magnetic wire 1 so that the magnetic wire 1 is exposed.

次に、絶縁部材6上に金属電極材料を成膜して、図4(d)、(e)に示すように、磁性細線1の一端のコンタクトホールV1を埋めて、縦方向に磁性細線1,1同士を連結する配線部を備えるX電極2を形成する。それと同時に、磁性細線1の他端のコンタクトホールV1を埋めて、後記のY電極3に接続するための金属層31を形成する。次に、X電極(配線部)2,2間およびX電極2上(層間領域62)に、絶縁部材6として絶縁材料を堆積させる。そして、図5(a)に示すように、この絶縁部材6の金属層31上にコンタクトホールV2を形成して、金属層31を露出させる。   Next, a metal electrode material is deposited on the insulating member 6, and as shown in FIGS. 4D and 4E, the contact hole V1 at one end of the magnetic wire 1 is filled, and the magnetic wire 1 is formed in the vertical direction. , 1 is formed, and an X electrode 2 having a wiring portion for connecting the two is formed. At the same time, a contact hole V1 at the other end of the magnetic wire 1 is filled, and a metal layer 31 for connecting to the Y electrode 3 described later is formed. Next, an insulating material is deposited as the insulating member 6 between the X electrodes (wiring portions) 2 and 2 and on the X electrode 2 (interlayer region 62). Then, as shown in FIG. 5A, a contact hole V2 is formed on the metal layer 31 of the insulating member 6 so that the metal layer 31 is exposed.

次に、絶縁部材6上に金属電極材料を成膜して、図5(b)、(c)に示すように、コンタクトホールV2を埋めて、横方向に金属層31,31同士を連結する配線部を備える金属層32を形成してY電極3を形成する。そして、図5(c)に示すように、Y電極(配線部)3,3間を絶縁材料で埋めて、さらにY電極3上を被覆するように絶縁材料を堆積させて、絶縁部材6とする。最後に、図5(c)、(d)に示すように、基板7の下面に画素4毎(磁性細線1毎)に開口領域8rを除いて光吸収膜8を被覆して、画素アレイ40となる。   Next, a metal electrode material is formed on the insulating member 6, and as shown in FIGS. 5B and 5C, the contact hole V2 is filled and the metal layers 31, 31 are connected in the lateral direction. A Y layer 3 is formed by forming a metal layer 32 having a wiring portion. Then, as shown in FIG. 5C, the space between the Y electrodes (wiring portions) 3 and 3 is filled with an insulating material, and further an insulating material is deposited so as to cover the Y electrode 3. To do. Finally, as shown in FIGS. 5C and 5D, the lower surface of the substrate 7 is covered with the light absorption film 8 except for the opening region 8r for each pixel 4 (for each magnetic wire 1), and the pixel array 40 is formed. It becomes.

ここで、磁性体は磁気エネルギーが安定した状態となるようにその内部が複数の磁区に分割されるが、磁性細線1が十分に細い(厚さおよび幅が小さい)形状の場合は、形成時(製造時)に画素アレイ40のすべての磁性細線1において磁区が細線方向のみに分割された状態となり易い。さらに、図3(a)に示すように磁性細線1に2箇所の括れ部1c1,1c2が形成されている場合は、画素アレイ40の磁性細線1のそれぞれにおいて、この括れ部1c1,1c2のいずれか一方または両方に磁壁が生成されて細線方向に2つまたは3つの磁区が生成した状態となる(図示省略)。そのため、初期化作業(リセット)として、すべての磁性細線1(画素アレイ40)に数10G〜5kG(〜0.5T)程度の磁界を外部から印加して、括れ部1c1,1c2の所望の一方にのみ1つの磁壁DWが生成、固定されるようにする。この初期化作業によって1つの磁性細線1に磁壁が1つとなるように、磁性細線1は括れ部1c1,1c2も含めてその形状が設計される。   Here, the inside of the magnetic material is divided into a plurality of magnetic domains so that the magnetic energy is stable. If the magnetic wire 1 is sufficiently thin (thickness and width), In (manufacturing), the magnetic domains in all the magnetic thin wires 1 of the pixel array 40 are likely to be divided only in the direction of the thin wires. Further, as shown in FIG. 3A, when two constricted portions 1c1 and 1c2 are formed on the magnetic thin wire 1, any of the constricted portions 1c1 and 1c2 is provided in each of the magnetic thin wires 1 of the pixel array 40. A domain wall is generated on one or both of them, and two or three magnetic domains are generated in the direction of the thin line (not shown). Therefore, as initialization work (reset), a magnetic field of about several tens of G to 5 kG (up to 0.5 T) is applied to all the magnetic thin wires 1 (pixel array 40) from the outside, and the desired one of the constricted portions 1c1 and 1c2 is applied. Only one domain wall DW is generated and fixed. The shape of the magnetic wire 1 including the constricted portions 1c1 and 1c2 is designed so that one magnetic wall 1 is provided for one magnetic wire 1 by this initialization operation.

(磁性細線における磁壁の移動)
次に、本発明に係る空間光変調器の画素選択の動作である、磁性細線における磁壁の移動について、図3を参照して説明する。第1実施形態においては、画素4に備えられた磁性細線1は、右方向の磁化の磁区D1と左方向の磁化の磁区D0との2つの磁区が、磁壁DWを挟んで細線方向に(図3における左右に)並んで存在する。図3に示す磁性細線1においては、磁区D0,D1の別をわかり易くするため、磁区D0にハッチングを付す。磁壁内部ではそれを挟む2つの磁区の一方の磁区の磁化方向から他方の磁区の磁化方向へと磁化が徐々に変化すなわち回転している。なお、一般的に、磁壁の長さ(厚さ)は磁性細線の形状や大きさ(幅、厚さ、細線長)等にもよるが、5〜100nm程度で、磁区の長さに対して極めて短い(狭い)が、図3においては磁壁を模式的に拡大して示す。図3(a)は磁性細線1への電流供給が停止した状態を示し、左側の括れ部1c1に磁壁DWが静止しているため、入射領域1rにおいては磁区D0が存在するので左方向の磁化を示す。
(Movement of domain wall in magnetic wire)
Next, the movement of the domain wall in the magnetic wire, which is the pixel selection operation of the spatial light modulator according to the present invention, will be described with reference to FIG. In the first embodiment, the magnetic thin line 1 provided in the pixel 4 has two magnetic domains, a magnetic domain D1 in the right direction magnetization and a magnetic domain D0 in the left direction magnetization, in the thin line direction across the domain wall DW (see FIG. 3 side by side). In the magnetic thin wire 1 shown in FIG. 3, the magnetic domain D0 is hatched in order to make it easy to distinguish the magnetic domains D0 and D1. Inside the domain wall, the magnetization gradually changes, that is, rotates from the magnetization direction of one of the two magnetic domains sandwiching it to the magnetization direction of the other magnetic domain. In general, the length (thickness) of the domain wall depends on the shape and size (width, thickness, thin wire length) of the magnetic wire, but is about 5 to 100 nm with respect to the length of the magnetic domain. Although extremely short (narrow), the domain wall is schematically enlarged in FIG. FIG. 3A shows a state in which the current supply to the magnetic wire 1 is stopped. Since the domain wall DW is stationary at the left constricted portion 1c1, the magnetic domain D0 exists in the incident region 1r, so that the magnetization in the left direction Indicates.

図3(a)に示す磁性細線1に、X電極2を「−」、Y電極3を「+」として、細線方向に左へ電流I(図3(b)にて「+I」と表記する)を供給する。すると、図3(b)に示すように、右方向へ流れる電子e-のスピントルクに影響されて、磁壁DWが右へ移動する。磁壁DWの移動により、磁区D1は細線方向に伸張し、磁区D0は収縮する。厚さおよび幅が一定な磁性細線に一定の大きさの電流を供給したとき、磁壁は一定の速度で移動し、その速度は磁性細線の断面積あたりの電流密度が高いほど速くなる。なお、磁性細線1は局所的に幅の狭い箇所(括れ部1c1,1c2)が形成されているが、括れ部1c1,1c2以外の領域においては磁壁の移動速度は一定である。そして、図3(c)に示すように、磁壁DWが右側の括れ部1c2に到達した時点で、電流Iの供給を停止すると、磁壁DWが静止し、入射領域1rにおいては磁区D1が存在するので右方向の磁化を示す。したがって、磁性細線1の入射領域1rに限定したとき、電流供給によって、左方向から右方向へ磁化反転したといえる。 In the magnetic thin wire 1 shown in FIG. 3A, the X electrode 2 is represented as “−”, the Y electrode 3 is represented as “+”, and the current I is written to the left in the thin wire direction (“+ I” in FIG. ). Then, as shown in FIG. 3B, the domain wall DW moves to the right under the influence of the spin torque of the electron e flowing in the right direction. Due to the movement of the domain wall DW, the magnetic domain D1 expands in the thin line direction and the magnetic domain D0 contracts. When a constant current is supplied to a magnetic wire having a constant thickness and width, the domain wall moves at a constant speed, and the speed increases as the current density per cross-sectional area of the magnetic wire increases. In addition, although the magnetic narrow wire 1 has locally narrow portions (constricted portions 1c1 and 1c2), the domain wall moving speed is constant in regions other than the constricted portions 1c1 and 1c2. Then, as shown in FIG. 3C, when the supply of the current I is stopped when the domain wall DW reaches the right constricted portion 1c2, the domain wall DW is stopped, and the magnetic domain D1 exists in the incident region 1r. Therefore, it shows magnetization in the right direction. Therefore, when limited to the incident region 1r of the magnetic wire 1, it can be said that the magnetization is reversed from the left direction to the right direction by the current supply.

反対に、図3(c)に示す磁性細線1に、X電極2を「+」、Y電極3を「−」として右方向へ電流I(図3(d)にて「−I」と表記する)を供給すると、図3(d)に示すように、左方向へ流れる電子e-により、磁壁DWが左へ移動する。この磁壁DWの移動により、磁区D1は収縮し、磁区D0は伸張する。そして、磁壁DWが左側の括れ部1c1に到達した時点で、電流Iの供給を停止すると、磁壁DWが静止し、再び図3(a)に示すように、入射領域1rにおいて左方向の磁化を示す。このように、磁性細線1に向きを変えて電流を供給することによって、入射領域1rにおいては、左方向または右方向のいずれか所望の方向へ磁化反転させることができる。 On the other hand, the magnetic thin wire 1 shown in FIG. 3C has a current I (referred to as “−I” in FIG. 3D) in the right direction with the X electrode 2 being “+” and the Y electrode 3 being “−”. 3), the domain wall DW moves to the left due to the electrons e flowing in the left direction as shown in FIG. Due to the movement of the domain wall DW, the magnetic domain D1 contracts and the magnetic domain D0 expands. When the supply of the current I is stopped when the domain wall DW reaches the left constricted portion 1c1, the domain wall DW is stopped, and as shown in FIG. 3A, the magnetization in the left direction is again performed in the incident region 1r. Show. Thus, by changing the direction of the magnetic wire 1 and supplying a current, the magnetization can be reversed in the left direction or the right direction in the incident region 1r.

前記した通り、磁性細線1に供給する電流の大きさが一定であれば磁壁DWの移動速度も一定であるので、入射領域1rの磁化反転は磁壁DWが入射領域1rの左右両外側の間の距離を移動する時間だけ電流Iを供給すればよい。しかし、電流の大きさや供給時間等の誤差により磁壁DWの静止位置が僅かにずれて、この微小ずれが累積されると、電流停止時に磁壁DWが入射領域1rで静止して、入射領域1rに2つの磁区D1,D0が到達した状態となったり、反対に磁壁DWが磁性細線1の端まで到達して消失する虞がある。このような磁壁DWの位置ずれを防止するため、磁性細線1に、入射領域1rの両外側に括れ部1c1,1c2が形成されていることが好ましい。磁性細線1の局所的に細い部位には磁壁が形成され易く、また電流供給により磁壁DWが移動して、電流停止時に括れ部1c1(1c2)の近傍に到達した場合は、自発的に括れ部1c1(1c2)まで移動してから静止する。したがって、磁性細線1には磁壁DWが括れ部1c1,1c2間の距離を移動する時間だけ電流Iを供給すれば、供給時間等に微小な誤差があったとしても、電流停止時には磁壁DWが括れ部1c1,1c2の一方に係止され、入射領域1rの全体において左方向または右方向の1つの磁化方向のみを示す。   As described above, since the moving speed of the domain wall DW is constant if the magnitude of the current supplied to the magnetic wire 1 is constant, the magnetization reversal of the incident region 1r is between the left and right outer sides of the domain wall Dr. What is necessary is just to supply the electric current I only for the time which moves a distance. However, when the stationary position of the domain wall DW is slightly shifted due to errors such as the magnitude of the current and the supply time, and this minute shift is accumulated, the domain wall DW is stationary in the incident region 1r when the current is stopped, and is moved to the incident region 1r. There is a possibility that the two magnetic domains D1 and D0 have reached, or the domain wall DW reaches the end of the magnetic wire 1 and disappears. In order to prevent such a position shift of the domain wall DW, it is preferable that the narrow portions 1c1 and 1c2 are formed on the magnetic thin wire 1 on both outer sides of the incident region 1r. A magnetic wall is easily formed in a locally thin portion of the magnetic wire 1, and when the magnetic wall DW moves due to current supply and reaches the vicinity of the constricted portion 1 c 1 (1 c 2) when the current is stopped, the constricted portion spontaneously occurs. It moves to 1c1 (1c2) and then stops. Therefore, if the current I is supplied to the magnetic wire 1 only for the time during which the domain wall DW moves the distance between the constricted portions 1c1 and 1c2, the domain wall DW is constricted when the current is stopped even if there is a slight error in the supply time. Locked to one of the portions 1c1 and 1c2, only one magnetization direction in the left direction or the right direction is shown in the entire incident region 1r.

ここで、前記した通り、電源91から磁性細線1に供給する電流はパルス電流が好ましい。パルス電流が磁性細線1に供給されると、磁壁DWはパルスに同期して断続的に移動する。1回(1パルス)の移動距離はパルス幅および電流密度に依存するので、合計の供給時間(パルス幅×回数)で括れ部1c1,1c2間の距離を移動するような回数のパルス電流を供給すればよい。   Here, as described above, the current supplied from the power source 91 to the magnetic wire 1 is preferably a pulse current. When a pulse current is supplied to the magnetic wire 1, the domain wall DW moves intermittently in synchronization with the pulse. Since the movement distance of one time (one pulse) depends on the pulse width and current density, the pulse current is supplied as many times as to move the distance between the constricted portions 1c1 and 1c2 in the total supply time (pulse width × number of times). do it.

なお、磁性細線1において、この動作による磁壁DWの固定後、また前記初期化による磁壁DWの生成後は、この磁壁DWを挟んだ2つの磁区D0,D1のそれぞれで磁性細線1の保磁力により磁化が保持されるので、磁性細線1に新たに電流の供給や磁界の印加を行うまでは磁壁DWの移動や消失は起こらない。   In the magnetic wire 1, after the domain wall DW is fixed by this operation, and after the domain wall DW is generated by the initialization, the two magnetic domains D 0 and D 1 sandwiching the domain wall DW are caused by the coercive force of the magnetic wire 1. Since the magnetization is maintained, the domain wall DW does not move or disappear until a new current is supplied to the magnetic wire 1 or a magnetic field is applied.

(空間光変調器の動作)
本発明に係る空間光変調器の光変調動作を、図2を参照して、この空間光変調器を用いた表示装置にて説明する。表示装置は、図11に示す従来の反射型の空間光変調器100を用いたものとほぼ同様の構成であるが、空間光変調器100が画素アレイの上面を光の入射面とするのに対して、本発明に係る空間光変調器10は、下面すなわち基板7側を光の入射面とする。そのため、空間光変調器10を用いた表示装置においては、画素アレイ40の下方に、画素アレイ40に向けて光(レーザー光)を照射する光源等を備える光学系OPSと、光学系OPSから照射された光を画素アレイ40に入射する前に1つの偏光成分の光(1つの向きの偏光)とする偏光子PFiと、画素アレイ40で反射して出射した光から特定の偏光成分の光を遮光する偏光子PFoと、偏光子PFoを透過した光を検出する検出器PDとが配置される。
(Operation of spatial light modulator)
The light modulation operation of the spatial light modulator according to the present invention will be described with reference to FIG. 2 using a display device using this spatial light modulator. The display device has substantially the same configuration as that using the conventional reflective spatial light modulator 100 shown in FIG. 11, but the spatial light modulator 100 uses the upper surface of the pixel array as the light incident surface. On the other hand, the spatial light modulator 10 according to the present invention has the lower surface, that is, the substrate 7 side as the light incident surface. Therefore, in the display device using the spatial light modulator 10, an optical system OPS provided with a light source or the like that irradiates light (laser light) toward the pixel array 40 below the pixel array 40, and irradiation from the optical system OPS. Light having a specific polarization component from the light Pref that is reflected by the pixel array 40 and emitted from the pixel array 40 before being incident on the pixel array 40. A polarizer PFo that shields light and a detector PD that detects light transmitted through the polarizer PFo are arranged.

光学系OPSは、例えばレーザー光源、およびこれに光学的に接続されてレーザー光を画素アレイ40の全面に照射する大きさに拡大するビーム拡大器、さらに拡大されたレーザー光を平行光とするレンズで構成される(図示省略)。光学系OPSから照射された光(レーザー光)は様々な偏光成分を含んでいるため、この光を画素アレイ40の手前の偏光子PFiを透過させて、1つの偏光成分の光とする。以下、1つの偏光成分の光を偏光と称する。偏光子PFi,PFoはそれぞれ偏光板等であり、検出器PDはスクリーン等の画像表示手段である。   The optical system OPS includes, for example, a laser light source, a beam expander that is optically connected to the laser light source and expands the laser light onto the entire surface of the pixel array 40, and a lens that converts the expanded laser light into parallel light. (Not shown). Since the light (laser light) emitted from the optical system OPS includes various polarization components, this light is transmitted through the polarizer PFi in front of the pixel array 40 to be light of one polarization component. Hereinafter, light of one polarization component is referred to as polarization. The polarizers PFi and Pfo are polarizing plates, respectively, and the detector PD is an image display means such as a screen.

光学系OPSは、平行光としたレーザー光を、画素アレイ40の下面に所定の入射角で入射するように照射する。レーザー光は偏光子PFiを透過して偏光(入射偏光)となり、画素アレイ40の下方からすべての画素4に向けて入射する。入射偏光は、基板7を透過し、さらに磁気転写膜5を透過してそれぞれの画素4の磁性細線1に到達し、その下面で反射して、再び磁気転写膜5および基板7を透過して、画素アレイ40から出射偏光として出射する。それぞれの画素4で反射したすべての出射偏光は、偏光子PFoに到達する。偏光子PFoは特定の偏光を遮光し、偏光子PFoを透過した光が検出器PDに入射する。   The optical system OPS irradiates the parallel laser beam so as to enter the lower surface of the pixel array 40 at a predetermined incident angle. The laser light passes through the polarizer PFi to become polarized light (incident polarized light), and enters the pixels 4 from below the pixel array 40. Incident polarized light passes through the substrate 7, further passes through the magnetic transfer film 5, reaches the magnetic thin wire 1 of each pixel 4, reflects off the lower surface thereof, and passes through the magnetic transfer film 5 and the substrate 7 again. The light is emitted from the pixel array 40 as outgoing polarized light. All outgoing polarized light reflected by each pixel 4 reaches the polarizer PFo. The polarizer PFo shields specific polarized light, and light transmitted through the polarizer PFo enters the detector PD.

図2に示す空間光変調器10において、左側の画素4の磁性細線1は入射領域1rの左側(括れ部1c1、図3(a)参照)に磁壁DWが到達しているので、入射領域1rにおいては、左方向の磁化の磁区D0が存在する。一方、右側の画素4の磁性細線1は入射領域1rの右側(括れ部1c2、図3(c)参照)に磁壁DWが到達しているので、入射領域1rにおいては、右方向の磁化の磁区D1が存在する。そして、それぞれの画素4の磁性細線1の入射領域1rの直下の領域(入射領域5r)における磁気転写膜5も、磁性細線1の磁化方向が転写されて同じ磁化方向となる。   In the spatial light modulator 10 shown in FIG. 2, the magnetic thin line 1 of the pixel 4 on the left side has the domain wall DW reaching the left side of the incident region 1r (constricted portion 1c1, see FIG. 3A). In FIG. 5, there is a magnetic domain D0 of magnetization in the left direction. On the other hand, the magnetic thin line 1 of the right pixel 4 has a domain wall DW that reaches the right side of the incident region 1r (constricted portion 1c2, see FIG. 3C). D1 exists. In the magnetic transfer film 5 in the region (incident region 5r) immediately below the incident region 1r of the magnetic thin wire 1 of each pixel 4, the magnetization direction of the magnetic thin wire 1 is transferred to the same magnetization direction.

画素4に入射する光は、当該画素4に入射する前に磁気転写膜5を透過する際に、磁気転写膜5の磁化方向によって異なる回転方向に旋光し、さらに磁性細線1の下面で反射する際にも、磁性細線1の磁化方向によって異なる回転方向に旋光し、再び磁気転写膜5を透過する際にも旋光して出射する。したがって、磁性細線1の入射領域1rで反射し、かつその直下の入射領域5rにおける磁気転写膜5を往復して透過した出射偏光は、当該入射領域1rにおける磁化方向によって、入射偏光に対して同じ角度で互いに反対方向に旋光した、すなわち2値の角度−θK,+θK旋光した偏光となる。 When the light incident on the pixel 4 passes through the magnetic transfer film 5 before entering the pixel 4, the light is rotated in a different rotation direction depending on the magnetization direction of the magnetic transfer film 5, and further reflected on the lower surface of the magnetic wire 1. At this time, the light rotates in different rotation directions depending on the magnetization direction of the magnetic wire 1, and is also rotated and emitted when passing through the magnetic transfer film 5 again. Therefore, the outgoing polarized light reflected by the incident region 1r of the magnetic wire 1 and reciprocatingly transmitted through the magnetic transfer film 5 in the incident region 5r immediately below it is the same as the incident polarized light depending on the magnetization direction in the incident region 1r. Polarized light that is optically rotated in opposite directions at an angle, that is, a binary angle −θ K , + θ K optically rotated.

ここで、磁性細線1は、入射領域1rの外に当該入射領域1rにおける磁区とは異なる磁化方向の磁区が形成されている。入射領域1r外のこのような磁区で反射した光、あるいはさらにこの磁区と同じ磁化が転写された領域の磁気転写膜5を透過した光が出射すると、正しい情報が表示されないことになる。したがって、基板7の下面に、画素4毎に開口領域8rを空けた光吸収膜8を設けて、磁性細線1の入射領域1r以外で反射した光が出射しないようにすることが好ましい。光吸収膜8により、画素4毎に、前記2値の角度−θK,+θKのいずれかで旋光した偏光のみが、画素アレイ40から出射する。 Here, in the magnetic thin wire 1, a magnetic domain having a magnetization direction different from the magnetic domain in the incident region 1r is formed outside the incident region 1r. If light reflected by such a magnetic domain outside the incident region 1r or light transmitted through the magnetic transfer film 5 in the region where the same magnetization as this magnetic domain is transferred is emitted, correct information will not be displayed. Therefore, it is preferable to provide a light absorption film 8 having an opening region 8r for each pixel 4 on the lower surface of the substrate 7 so that light reflected from other than the incident region 1r of the magnetic wire 1 is not emitted. Due to the light absorbing film 8, only the polarized light rotated at any one of the binary angles −θ K and + θ K is emitted from the pixel array 40 for each pixel 4.

偏光子PFoは、入射偏光に対して角度+θK旋光した偏光を遮光する。したがって、図2に示す右側の画素4からの出射偏光は、偏光子PFoにすべて遮光され、検出器PDにまったく入射しないので、この画素4は検出器PDに暗く(黒く)表示される。一方、左側の画素4からの出射偏光は、偏光子PFoを透過して検出器PDに入射し、この画素4は検出器PDに明るく(白く)表示される。このように、空間光変調器10は、画素4毎に明/暗(白/黒)を切り分けられ、また前記したように、電極2,3にて供給される電流の向きに対応して磁性細線1の再生領域1rにおいて磁化を反転させることができるので、明/暗を切り換えることができる。なお、偏光子PFoを透過する偏光は、入射偏光に対して角度+θK旋光した偏光と偏光成分の角度の差が大きいほど多くなり、90°で透過率100%となる。したがって、本発明に係る空間光変調器10は、明るく表示しようとする画素4からの出射偏光、すなわち入射偏光に対して角度−θK旋光した偏光を、磁気転写膜5にて偏光成分の角度の差2|θK|を大きくすることにより、偏光子PFoに多く透過させて、画素選択性に優れたものとなる。 The polarizer PFo shields the polarized light having an angle + θ K rotation with respect to the incident polarized light. Therefore, all the polarized light emitted from the pixel 4 on the right side shown in FIG. 2 is shielded by the polarizer PFo and does not enter the detector PD at all, so that the pixel 4 is displayed dark (black) on the detector PD. On the other hand, the outgoing polarized light from the left pixel 4 passes through the polarizer PFo and enters the detector PD, and this pixel 4 is displayed brightly (white) on the detector PD. As described above, the spatial light modulator 10 is divided into light / dark (white / black) for each pixel 4 and, as described above, the magnetic light according to the direction of the current supplied from the electrodes 2 and 3. Since the magnetization can be reversed in the reproduction region 1r of the thin wire 1, the light / dark can be switched. The polarized light passing through the polarizer PFo increases as the difference between the angle of the polarized light component and the polarized light obtained by rotating the angle + θ K with respect to the incident polarized light increases, and the transmittance becomes 100% at 90 °. Therefore, the spatial light modulator 10 according to the present invention uses the polarization of the polarized light component emitted from the pixel 4 to be displayed brightly, that is, the polarized light that has been rotated by the angle −θ K with respect to the incident polarized light at the magnetic transfer film 5. By increasing the difference 2 | θ K |, a large amount of light is transmitted through the polarizer PFo, and the pixel selectivity becomes excellent.

また、旋光角−θK,+θK(|θK|)を大きくする、すなわち磁気光学効果(磁性細線1のカー効果および磁気転写膜5のファラデー効果)を大きくするために、入射偏光は、入射領域1r,5rにおける磁化方向により平行に近い方向に沿って入射されることが好ましい。本実施形態に係る空間光変調器10においては、磁性細線1、磁気転写膜5の入射領域1r,5rにおける磁化方向は磁性細線1の細線方向であり、画素アレイ40の対角線方向である。ただし、入射方向は磁化方向と平行に近付き過ぎるとそれぞれの画素4に光が入射することが困難となるので、入射角が80°程度以内となるように、磁性細線1の細線方向に対して10°〜60°程度の角度の方向とすることが好ましい。したがって、本実施形態に係る空間光変調器10においては、入射角30°〜80°程度の範囲となるように入射偏光の入射方向を傾斜させるため、図2に示すように、入射偏光および出射偏光のそれぞれの光路に合わせて、光学系OPSや偏光子PFi,PFo等が配置される。 In order to increase the optical rotation angle −θ K , + θ K (| θ K |), that is, to increase the magneto-optical effect (the Kerr effect of the magnetic wire 1 and the Faraday effect of the magnetic transfer film 5), It is preferable that the light is incident along a direction closer to parallel with the magnetization direction in the incident regions 1r and 5r. In the spatial light modulator 10 according to the present embodiment, the magnetization direction in the incident regions 1 r and 5 r of the magnetic thin wire 1 and the magnetic transfer film 5 is the thin wire direction of the magnetic thin wire 1 and the diagonal direction of the pixel array 40. However, if the incident direction is too close to the magnetization direction, it becomes difficult for light to enter each pixel 4, so that the incident angle is within about 80 ° with respect to the thin wire direction of the magnetic thin wire 1. It is preferable that the direction is an angle of about 10 ° to 60 °. Therefore, in the spatial light modulator 10 according to the present embodiment, since the incident direction of the incident polarized light is tilted so that the incident angle is in the range of about 30 ° to 80 °, as shown in FIG. An optical system OPS, polarizers PFi, PFo, and the like are arranged in accordance with each optical path of polarized light.

(変形例)
第1実施形態の変形例に係る空間光変調器について、図1および図6を参照して説明する。第1実施形態の変形例に係る空間光変調器10Aは、垂直磁気異方性材料からなる磁性細線1Aを適用し、磁気転写膜5Aの磁化容易軸が膜面垂直方向であること以外は、空間光変調器10(図1および図2参照)と同様の構成であり、同一の要素については同じ符号を付し、説明を省略する。図6に示すように、磁性細線1Aの磁化方向は上方向または下方向であり、磁気転写膜5Aの磁化方向は直上の磁性細線1Aの磁化方向に転写される。したがって、磁性細線1Aの細線形状は、その磁化方向に影響しないので、第1実施形態と同様に画素アレイ40Aの対角線方向に平行な直線でもよいし(図1参照)、厚さおよび幅に対して十分に緩やかな円弧等の曲線状に形成してもよい。また、磁性細線1Aは、画素4A毎に異なる向きに配置してもよい。ただし、画素4Aにおける入射領域1rの位置が、すべての画素4Aにおいて統一されているようにする。このような磁性細線1Aにおいても、電流の供給による磁壁DWの移動およびそれに伴う磁区D1,D0の伸長、収縮は、面内磁気異方性材料からなる磁性細線1と同様であり(図3参照)、入射領域1rにおいて磁化方向を下方向または上方向のいずれか所望の方向へ磁化反転させることができる。
(Modification)
A spatial light modulator according to a modification of the first embodiment will be described with reference to FIGS. 1 and 6. The spatial light modulator 10A according to the modification of the first embodiment applies a magnetic wire 1A made of a perpendicular magnetic anisotropic material, and the magnetization easy axis of the magnetic transfer film 5A is perpendicular to the film surface. The configuration is the same as that of the spatial light modulator 10 (see FIGS. 1 and 2), and the same elements are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 6, the magnetization direction of the magnetic wire 1A is upward or downward, and the magnetization direction of the magnetic transfer film 5A is transferred to the magnetization direction of the magnetic wire 1A immediately above. Therefore, since the fine wire shape of the magnetic fine wire 1A does not affect the magnetization direction, it may be a straight line parallel to the diagonal direction of the pixel array 40A as in the first embodiment (see FIG. 1). It may be formed in a curved shape such as a sufficiently gentle arc. Further, the magnetic wire 1A may be arranged in a different direction for each pixel 4A. However, the position of the incident region 1r in the pixel 4A is made uniform in all the pixels 4A. Also in such a magnetic wire 1A, the movement of the domain wall DW due to the current supply and the expansion and contraction of the magnetic domains D1, D0 accompanying therewith are the same as those of the magnetic wire 1 made of the in-plane magnetic anisotropic material (see FIG. 3). ), The magnetization direction in the incident region 1r can be reversed to a desired direction, either downward or upward.

空間光変調器10Aにおいては、磁性細線1Aおよび磁気転写膜5Aの磁化方向に平行に、すなわち画素アレイ40A(画素アレイ40Aの面内方向)に垂直に光(入射偏光)を入射することで、出射偏光の旋光角が最大となる。したがって、空間光変調器10Aを用いた表示装置においては、図6に示すように、画素アレイ40Aの直下に、光学系OPS(図2参照)および偏光子PFiが配置されて、入射偏光が画素アレイ40Aに入射角0°で入射されることが好ましい。このような構成の表示装置においては、画素アレイ40Aで反射して出射した光(出射偏光)が入射偏光と同一の光路となるため、偏光子PFiと画素アレイ40Aとの間に画素アレイ40Aに対して45°傾斜させたハーフミラーHMがさらに配置される。なお、図6ではハーフミラーHMは2つに分割されて示されているが、実際には、1枚で画素アレイ40Aからの出射偏光がすべて入射されるような形状とする。ハーフミラーHMは、下方から照射される入射偏光は透過させ、上方から照射される出射偏光は側方へ反射させる。したがって、偏光子PFoおよび検出器PDは、ハーフミラーHMの側方に配置される。   In the spatial light modulator 10A, light (incident polarization) is incident in parallel to the magnetization direction of the magnetic thin wire 1A and the magnetic transfer film 5A, that is, perpendicular to the pixel array 40A (in-plane direction of the pixel array 40A). The optical rotation angle of the outgoing polarized light is maximized. Therefore, in the display device using the spatial light modulator 10A, as shown in FIG. 6, the optical system OPS (see FIG. 2) and the polarizer PFi are arranged immediately below the pixel array 40A, and the incident polarized light is converted into pixels. It is preferable to enter the array 40A at an incident angle of 0 °. In the display device having such a configuration, the light reflected by the pixel array 40A and emitted (emitted polarized light) has the same optical path as the incident polarized light. Therefore, the pixel array 40A is interposed between the polarizer PFi and the pixel array 40A. A half mirror HM inclined by 45 ° is further arranged. In FIG. 6, the half mirror HM is divided into two parts, but in actuality, the single half mirror HM has a shape in which all the outgoing polarized light from the pixel array 40 </ b> A is incident. The half mirror HM transmits incident polarized light irradiated from below and reflects outgoing polarized light irradiated from above laterally. Therefore, the polarizer PFo and the detector PD are arranged on the side of the half mirror HM.

画素アレイ40Aには垂直に光が入射し、かつ出射する。したがって、磁性細線1Aの入射領域1r以外の領域で反射した光、ならびに磁気転写膜5Aの入射領域5r以外を透過した光を遮光するための光吸収膜8に形成する開口領域8r(図5(d)参照)は、平面視において、形状および位置を磁性細線1Aの入射領域1rと一致させる。   Light vertically enters and exits the pixel array 40A. Therefore, the opening region 8r formed in the light absorption film 8 for shielding light reflected by the region other than the incident region 1r of the magnetic wire 1A and light transmitted through the region other than the incident region 5r of the magnetic transfer film 5A (FIG. 5 ( (d) makes the shape and position coincide with the incident region 1r of the magnetic wire 1A in plan view.

空間光変調器10Aを用いた表示装置においても、空間光変調器10と同様に入射偏光を傾斜させて画素アレイ40Aに入射し(入射角>0°)、出射偏光と光路が重複しないようにして、ハーフミラーHMを配置しない構成としてもよい(図2参照)。ただし、前記したように入射方向が磁化方向に平行に近いほど好ましいので、入射角は30°程度以内とすることが好ましい。   In the display device using the spatial light modulator 10A, similarly to the spatial light modulator 10, the incident polarized light is tilted and incident on the pixel array 40A (incident angle> 0 °) so that the output polarized light does not overlap the optical path. The half mirror HM may not be disposed (see FIG. 2). However, as described above, the closer the incident direction is to be parallel to the magnetization direction, the better. Therefore, the incident angle is preferably within about 30 °.

以上のように、第1実施形態およびその変形例に係る空間光変調器によれば、選択画素−非選択画素間で旋光角の差が従来の空間光変調器よりも大きいため、画素の明/暗の切り分けおよび切り換えのための選択性に優れた反射型空間光変調器となる。   As described above, according to the spatial light modulator according to the first embodiment and the modification thereof, the difference in the optical rotation angle between the selected pixel and the non-selected pixel is larger than that of the conventional spatial light modulator. / A reflective spatial light modulator with excellent selectivity for dark separation and switching.

[第2実施形態]
第1実施形態およびその変形例に係る空間光変調器においては、1つの画素に1本の磁性細線を備える構成としたが、それに限らない。本発明の第2実施形態に係る空間光変調器の画素アレイ40Bは、図7に示すように、1つの画素4Bに平面(底面)視で2本の磁性細線1B,1Bを平行に配置して備える。画素4Bにおいて、磁性細線1B,1Bはそれぞれの両端を同一の組み合わせのX電極2BおよびY電極3Bに並列に接続される。1本の磁性細線1Bは、2箇所の括れ部を一側面のみに形成していること以外は、大きさおよび材料等については第1実施形態およびその変形例の磁性細線1,1Aと同様であり、面内磁気異方性材料、垂直磁気異方性材料のいずれも適用できる。電極2B,3Bは、それぞれの画素4Bの磁性細線1B,1Bの両端に接続するため、平面視で屈曲した帯状としているが、材料等については第1実施形態の電極2,3と同様である。また、画素4Bは、基板7の表面全体に磁気転写膜5(5A)を積層したさらにその上に配列されて、画素アレイ40Bとなり、さらに基板7の裏面に光吸収膜8を設けるので、画素アレイ40BのC−C断面図は、図2または図6と同様の構成となる。ただし、磁性細線1Bの細線方向(画素アレイ40Bの対角線方向)に隣り合う画素4B,4Bのそれぞれの磁性細線1B,1Bは、Y電極3Bの接続される側同士が向き合って、同じY電極3Bに接続される対称の配置となる。そのため、画素アレイ40Bは、4列に配列されている画素4Bに対して、1本多い5本のY電極3Bを備える。また、X電極2BおよびY電極3Bは、第1実施形態に係る空間光変調器10の画素アレイ40の電極2,3と同様に、電流制御部90に接続されている(図1参照)ので、図示および説明は省略する。
[Second Embodiment]
In the spatial light modulator according to the first embodiment and the modification thereof, one pixel is provided with one magnetic thin wire, but the configuration is not limited thereto. As shown in FIG. 7, the pixel array 40B of the spatial light modulator according to the second embodiment of the present invention has two magnetic thin wires 1B and 1B arranged in parallel in one pixel 4B in plan (bottom) view. Prepare. In the pixel 4B, the magnetic thin wires 1B and 1B are connected in parallel to the X electrode 2B and Y electrode 3B of the same combination at both ends. One magnetic wire 1B is the same as the magnetic wires 1 and 1A of the first embodiment and its modification in size and material, except that two constricted portions are formed on only one side. Yes, both in-plane magnetic anisotropic materials and perpendicular magnetic anisotropic materials can be applied. Since the electrodes 2B and 3B are connected to both ends of the magnetic thin wires 1B and 1B of the respective pixels 4B, the electrodes 2B and 3B are formed in a band shape bent in plan view, but the materials and the like are the same as those of the electrodes 2 and 3 in the first embodiment. . In addition, the pixel 4B is arranged on the magnetic transfer film 5 (5A) laminated on the entire surface of the substrate 7 to form a pixel array 40B, and the light absorption film 8 is further provided on the back surface of the substrate 7. CC sectional view of the array 40B has the same configuration as FIG. 2 or FIG. However, the magnetic thin wires 1B and 1B of the pixels 4B and 4B adjacent to each other in the thin wire direction of the magnetic thin wire 1B (diagonal direction of the pixel array 40B) face each other on the side to which the Y electrode 3B is connected, so It becomes symmetrical arrangement connected to. Therefore, the pixel array 40B includes five Y electrodes 3B, one more than the pixels 4B arranged in four columns. Further, the X electrode 2B and the Y electrode 3B are connected to the current control unit 90 (see FIG. 1) similarly to the electrodes 2 and 3 of the pixel array 40 of the spatial light modulator 10 according to the first embodiment. Illustration and description are omitted.

前記した通り、磁性細線は細い(幅および厚さが小さい)ほど少ない電流で磁壁を移動させることができ、また電流あたりの移動速度も速くなって好ましい。画素サイズがある程度大きい場合においては、磁性細線1(1A)の幅を小さくすると、その入射領域1rの画素4(4A)における面積比(開口率)が小さくなり、空間光変調器として光取り出し効率に劣ることになる。本実施形態のように、複数の磁性細線1Bを、それぞれの入射領域1r(図2、図6参照)を近付けて配置することで、光吸収膜8の1つの画素4Bにおける開口領域8r(図7では1つの画素4Bにのみ示す)を広くすることができる。   As described above, it is preferable that the magnetic wire is thinner (smaller in width and thickness) so that the domain wall can be moved with a smaller current and the moving speed per current is increased. When the pixel size is large to some extent, if the width of the magnetic thin wire 1 (1A) is reduced, the area ratio (aperture ratio) of the incident region 1r in the pixel 4 (4A) is reduced, and the light extraction efficiency as a spatial light modulator is reduced. Will be inferior. As in the present embodiment, a plurality of magnetic thin wires 1B are arranged close to each incident region 1r (see FIGS. 2 and 6), so that an opening region 8r (see FIG. 7 shows only one pixel 4B).

以上のように、第2実施形態に係る空間光変調器によれば、第1実施形態およびその変形例に係る空間光変調器と同様に選択性に優れ、さらに開口率の高い反射型空間光変調器となる。   As described above, according to the spatial light modulator according to the second embodiment, like the spatial light modulator according to the first embodiment and its modification, the reflective spatial light is excellent in selectivity and has a high aperture ratio. It becomes a modulator.

[第3実施形態]
図8および図9を参照して、本発明の第3実施形態について説明する。第1実施形態(図1、図2、図3参照)と同一の要素については同じ符号を付し、説明は省略する。図8(a)に示すように、第3実施形態における空間光変調器の磁性細線1Cは、細線形状が略コの字型であり、第1実施形態と同様に、両端近傍がX電極2およびY電極3に接続されている。さらに、X電極2およびY電極3は、第1実施形態に係る空間光変調器10の画素アレイ40の電極2,3と同様に、電流制御部90に接続されている(図1参照)ので、図示および説明は省略する。また、画素4Cは、基板7の表面全体に磁気転写膜5(5A)を積層したその上に配列されて、画素アレイ40Cとなり、さらに基板7の裏面に光吸収膜8を設けるので、画素アレイ40Cの断面構造は、第1実施形態における画素アレイ40等と同様の構造となる。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIGS. The same elements as those in the first embodiment (see FIGS. 1, 2, and 3) are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 8 (a), the magnetic thin wire 1C of the spatial light modulator in the third embodiment has a substantially U-shaped thin wire shape. And connected to the Y electrode 3. Further, the X electrode 2 and the Y electrode 3 are connected to the current control unit 90 (see FIG. 1), similarly to the electrodes 2 and 3 of the pixel array 40 of the spatial light modulator 10 according to the first embodiment. Illustration and description are omitted. Further, the pixel 4C is arranged on the magnetic transfer film 5 (5A) laminated on the entire surface of the substrate 7 to form the pixel array 40C, and the light absorption film 8 is provided on the back surface of the substrate 7, so that the pixel array The cross-sectional structure of 40C is the same structure as the pixel array 40 and the like in the first embodiment.

図9(a)に示すように、磁性細線1Cは、括れ部がなく厚さおよび幅が一定であり、平面視90°で屈曲した2箇所の屈曲部1f1,1f2を有して細線形状が略コの字型で、その全長が厚さおよび幅に対して十分に長い。それ以外の材料、厚さ、幅については、磁性細線1Cは第1実施形態およびその変形例の磁性細線1,1Aと同様であり、面内磁気異方性材料、垂直磁気異方性材料のいずれも適用できる。磁性細線1Cにおける屈曲部1f1,1f2は、第1実施形態の磁性細線1における括れ部1c1,1c2と同様に電流停止時に磁壁を係止するためのものである。本実施形態では屈曲の角度を90°としているがこれに限られず、好適に磁壁を係止するためには15°〜135°の範囲であることが好ましい。また、屈曲部1f1,1f2で屈曲の向きを同じとしなくてもよく、平面視でクランク型の磁性細線でもよい。したがって、磁性細線1Cは、略コの字型の中央の直線部分に入射領域1rを設け、言い換えれば、入射領域1rの外部の両側に、屈曲部1f1,1f2をそれぞれ形成される。そして、磁性細線1Cにおける屈曲部1f1,1f2の位置および屈曲部1f1,1f2間の長さは、磁性細線1における括れ部1c1,1c2と同様であり、また屈曲部は1箇所でもよい。また、磁性細線1Cは、図8(b)に示すように、画素4Dにおいて平面(底面)視で例えば45°傾斜させて配置してもよい。このような配置とすることで、画素サイズに対して屈曲部1f1,1f2間距離を長くすることができる。本実施形態の変形例に係る空間光変調器の画素アレイ40Dは、磁性細線1Cの形状(配置)以外は、画素アレイ40Cと同様の構成である。   As shown in FIG. 9A, the magnetic thin wire 1C has no constricted portion, has a constant thickness and width, has two bent portions 1f1 and 1f2 bent at 90 ° in plan view, and has a thin wire shape. It is substantially U-shaped and its full length is sufficiently long with respect to thickness and width. Regarding the other materials, thickness, and width, the magnetic wire 1C is the same as the magnetic wires 1 and 1A of the first embodiment and its modifications, and the in-plane magnetic anisotropy material and the perpendicular magnetic anisotropy material are the same. Either can be applied. The bent portions 1f1 and 1f2 in the magnetic wire 1C are for locking the domain wall when the current is stopped, similarly to the constricted portions 1c1 and 1c2 in the magnetic wire 1 of the first embodiment. In this embodiment, the angle of bending is 90 °, but is not limited to this, and it is preferably in the range of 15 ° to 135 ° in order to suitably lock the domain wall. Further, the bending directions of the bent portions 1f1 and 1f2 do not have to be the same, and may be a crank-type magnetic wire in plan view. Therefore, the magnetic thin wire 1C is provided with the incident region 1r in the substantially straight central portion of the U-shape, in other words, the bent portions 1f1 and 1f2 are formed on both sides outside the incident region 1r. The positions of the bent portions 1f1 and 1f2 in the magnetic thin wire 1C and the length between the bent portions 1f1 and 1f2 are the same as those of the constricted portions 1c1 and 1c2 in the magnetic thin wire 1, and one bent portion may be provided. Further, as shown in FIG. 8B, the magnetic thin wire 1C may be disposed at an inclination of, for example, 45 ° in a plan (bottom) view in the pixel 4D. With this arrangement, the distance between the bent portions 1f1 and 1f2 can be increased with respect to the pixel size. The pixel array 40D of the spatial light modulator according to the modification of the present embodiment has the same configuration as the pixel array 40C except for the shape (arrangement) of the magnetic thin wire 1C.

磁性細線1Cは、第1実施形態の磁性細線1と同様に、その形状によって、または適当な強さの外部磁界を印加されることによって、磁区が磁性細線1Cの細線方向に分割されている。ここで、細線方向とは、当該磁区が存在する領域における細線方向を指す。磁性細線1Cが面内磁気異方性材料からなる場合、その磁化方向は細線方向に沿うので、図9に示す平面図では、屈曲部1f1,1f2間の直線部には右または左方向の磁化を示す磁区が形成され、その両側の直線部には上または下方向の磁化を示す磁区が形成される。そして、直線状の磁性細線1と同様に、磁気エネルギーが安定した状態となるように、磁性細線1Cは、細線方向に沿って180°異なる複数の磁区に分割される。したがって、図9に示すように、磁性細線1Cにおいて、平面視で磁化が右回り(時計回り)方向である磁区D1と、磁化が左回り方向である磁区D0とが存在し、これら2つの磁区間の境界領域が磁壁DWとなる。図9に示す磁性細線1Cにおいては、磁区D0,D1の別をわかり易くするため、第1実施形態(図3参照)と同様に磁区D0にハッチングを付す。   Similarly to the magnetic wire 1 of the first embodiment, the magnetic wire 1C is divided in the direction of the magnetic wire 1C by the shape thereof or by applying an external magnetic field having an appropriate strength. Here, the fine line direction refers to the fine line direction in a region where the magnetic domain exists. When the magnetic thin wire 1C is made of an in-plane magnetic anisotropy material, the magnetization direction is along the thin wire direction. Therefore, in the plan view shown in FIG. 9, the straight line between the bent portions 1f1 and 1f2 has a magnetization in the right or left direction. Are formed, and magnetic domains indicating upward or downward magnetization are formed on the linear portions on both sides thereof. Then, similarly to the linear magnetic wire 1, the magnetic wire 1 </ b> C is divided into a plurality of magnetic domains different by 180 ° along the direction of the wire so that the magnetic energy is in a stable state. Therefore, as shown in FIG. 9, in the magnetic thin wire 1C, there are a magnetic domain D1 whose magnetization is clockwise (clockwise) and a magnetic domain D0 whose magnetization is counterclockwise in plan view. The boundary area of the section becomes the domain wall DW. In the magnetic wire 1C shown in FIG. 9, the magnetic domain D0 is hatched in the same manner as in the first embodiment (see FIG. 3) in order to make the distinction between the magnetic domains D0 and D1 easier to understand.

細線状の磁性体において、磁壁は、外部磁界のない状態では、括れ部のような断面積の小さい部分と同様に、屈曲した箇所に生成、固定され易い。したがって、本実施形態に係る磁性細線1Cにおいては、屈曲部1f1,1f2のいずれか一方または両方に磁壁が生成されることになるが、第1実施形態と同様に初期化作業として、すべての磁性細線1C(画素アレイ40C)に外部磁界を印加して、屈曲部1f1,1f2の所望の一方にのみ1つの磁壁DWが生成、固定されるようにする。この初期化作業によって1つの磁性細線1Cに磁壁が1つとなるように、磁性細線1Cは屈曲部1f1,1f2も含めてその形状が設計される。ここで、例えば図9(a)に示す磁性細線1Cにおいては、屈曲部1f2を挟んだ2つの直線状の領域で、磁化方向は90°回転しているが左回り方向に揃っている(磁区D0)。この場合は、屈曲部1f2には磁壁は生成されない、または生成されても比較的領域の狭い磁壁となる。本実施形態においては、このように、磁化方向が右回り、左回りで揃っていれば、屈曲部1f1または屈曲部1f2を挟んで磁化方向が90°回転している領域も1つの磁区と定義する。   In a thin wire-like magnetic body, a domain wall is easily generated and fixed at a bent portion, like a constricted portion having a small cross-sectional area, in the absence of an external magnetic field. Therefore, in the magnetic wire 1C according to the present embodiment, a domain wall is generated in one or both of the bent portions 1f1 and 1f2. However, as in the first embodiment, all the magnetic wires An external magnetic field is applied to the thin wire 1C (pixel array 40C) so that one domain wall DW is generated and fixed only at a desired one of the bent portions 1f1 and 1f2. The shape of the magnetic wire 1C including the bent portions 1f1 and 1f2 is designed so that one magnetic wall is formed in one magnetic wire 1C by this initialization operation. Here, for example, in the magnetic wire 1C shown in FIG. 9A, the magnetization direction is rotated by 90 ° in the two linear regions sandwiching the bent portion 1f2, but is aligned in the counterclockwise direction (magnetic domain). D0). In this case, no domain wall is generated in the bent portion 1f2, or even if it is generated, the domain wall has a relatively narrow region. In this embodiment, when the magnetization directions are aligned clockwise and counterclockwise as described above, a region in which the magnetization direction is rotated by 90 ° with the bent portion 1f1 or the bent portion 1f2 interposed therebetween is also defined as one magnetic domain. To do.

(磁性細線における磁壁の移動)
次に、本発明に係る空間光変調器の画素選択の動作である、磁性細線における磁壁の移動について図9を参照して説明する。本実施形態の磁性細線1Cは、図3に示す第1実施形態の直線状の磁性細線1と同様に、細線方向に電流を供給することにより、磁壁DWが細線方向において電流の向きとは反対方向に移動し、それに伴い磁壁DWの両側の磁区D1,D0が伸長または収縮する。図9(a)は、初期化され、また磁性細線1Cへの電流供給が停止した状態を示し、左側の屈曲部1f1に磁壁DWが静止しているため、入射領域1rにおいては磁区D0が存在するので左方向の磁化を示す。以下、磁性細線1Cの磁化や電流供給等の方向については、適宜、屈曲部1f1,1f2間の直線部(入射領域1r)での方向(右または左)で示す。
(Movement of domain wall in magnetic wire)
Next, the movement of the domain wall in the magnetic wire, which is the pixel selection operation of the spatial light modulator according to the present invention, will be described with reference to FIG. The magnetic wire 1C of the present embodiment is similar to the linear magnetic wire 1 of the first embodiment shown in FIG. 3 by supplying current in the direction of the thin line, so that the domain wall DW is opposite to the direction of current in the direction of the thin line. The magnetic domains D1 and D0 on both sides of the domain wall DW expand or contract accordingly. FIG. 9 (a) shows a state in which the current supply to the magnetic wire 1C is initialized and the magnetic domain wall DW is stationary at the left bent portion 1f1, so that the magnetic domain D0 exists in the incident region 1r. Therefore, it shows magnetization in the left direction. Hereinafter, the direction of magnetization, current supply, and the like of the magnetic wire 1C is appropriately indicated by the direction (right or left) at the straight line portion (incident region 1r) between the bent portions 1f1 and 1f2.

図9(a)に示す磁性細線1Cに、X電極2を「−」、Y電極3を「+」として、細線方向に左回りへ電流I(図9(b)にて「+I」と表記する)を供給すると、図9(b)に示すように、右方向へ流れる電子e-により、磁壁DWが右へ移動する。そして、図9(c)に示すように、磁壁DWが右側の屈曲部1f2に到達した時点で、電流Iの供給を停止すると、磁壁DWが静止し、入射領域1rにおいては磁区D1が存在するので右方向の磁化を示す。反対に、図9(c)に示す磁性細線1に、X電極2を「+」、Y電極3を「−」として右回りへ電流Iを供給すると、磁壁DWが左へ移動し(図示省略)、磁壁DWが左側の屈曲部1f1に到達した時点で、電流Iの供給を停止すると、磁壁DWが静止し、再び図9(a)に示すように、入射領域1rにおいて左方向の磁化を示す。 The magnetic thin wire 1C shown in FIG. 9A has the X electrode 2 as “−” and the Y electrode 3 as “+”, and represents the current I counterclockwise in the thin wire direction (“+ I” in FIG. 9B). Is supplied), as shown in FIG. 9B, the domain wall DW moves to the right due to electrons e flowing in the right direction. Then, as shown in FIG. 9 (c), when the supply of the current I is stopped when the domain wall DW reaches the right bent portion 1f2, the domain wall DW stops, and the magnetic domain D1 exists in the incident region 1r. Therefore, it shows magnetization in the right direction. Conversely, when the current I is supplied clockwise to the magnetic wire 1 shown in FIG. 9C with the X electrode 2 being “+” and the Y electrode 3 being “−”, the domain wall DW moves to the left (not shown). ) When the supply of the current I is stopped at the time when the domain wall DW reaches the left bent portion 1f1, the domain wall DW stops, and as shown in FIG. 9A, the magnetization in the left direction is again performed in the incident region 1r. Show.

このように、磁性細線1Cについても、第1実施形態と同様に、電極2,3にて向きを変えて電流を供給することによって、入射領域1rにおいては磁化方向を左方向または右方向のいずれか所望の方向へ磁化反転させることができる。さらに、磁性細線1Cは2箇所で屈曲した形状とすることで、屈曲部1f1,1f2のいずれかに磁壁DWが係止されるため、屈曲部1f1,1f2間の入射領域1rにおける磁化方向を安定して制御できる。したがって、磁性細線1Cを画素4Cに備える第3実施形態に係る空間光変調器は、第1実施形態に係る空間光変調器10と同様に画素選択の動作が可能で、選択性に優れた反射型空間光変調器となる。   Thus, also in the magnetic thin wire 1C, as in the first embodiment, by changing the direction at the electrodes 2 and 3 and supplying a current, the magnetization direction in the incident region 1r is either left or right. Alternatively, the magnetization can be reversed in a desired direction. Furthermore, since the magnetic wire 1C has a shape bent at two locations, the domain wall DW is locked to one of the bent portions 1f1 and 1f2, so that the magnetization direction in the incident region 1r between the bent portions 1f1 and 1f2 is stabilized. Can be controlled. Therefore, the spatial light modulator according to the third embodiment including the magnetic thin wire 1C in the pixel 4C can perform the pixel selection operation similarly to the spatial light modulator 10 according to the first embodiment, and has excellent selectivity. Type spatial light modulator.

以上、本発明を実施するための形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although the form for implementing this invention was described, this invention is not limited to these embodiment, A various change is possible in the range shown to the claim.

(サンプル作製)
本発明の効果を確認するために、本発明の第1実施形態の変形例に係るに係る空間光変調器10A(図6参照)を模擬するサンプルを作製し、その磁気光学効果を評価した。なお、磁性細線1Aの材料として適用したCo−Pt合金は面内磁気異方性材料であるが、外部から垂直に磁界を印加することにより、その磁化方向を垂直とした。GGG基板(基板7)に膜厚0.5μmのビスマス置換磁性ガーネット(Bi−YIG)膜をLPE法にて成膜して磁気転写膜5Aとし、その上に膜厚40nmのCo−Pt合金膜をイオンビームスパッタ法にて成膜した。このCo−Pt合金膜を幅700nm、長さ20μmの細線状に電子線リソグラフィーにて加工して磁性細線1Aを形成し、サンプルとした。また、比較例(従来例)のサンプルとして、表面を熱酸化したSi基板上に、前記実施例と同じ磁性細線1Aを形成した。
(Sample preparation)
In order to confirm the effect of the present invention, a sample simulating the spatial light modulator 10A (see FIG. 6) according to the modification of the first embodiment of the present invention was produced, and the magneto-optical effect was evaluated. The Co—Pt alloy applied as the material of the magnetic wire 1A is an in-plane magnetic anisotropic material, and its magnetization direction was made vertical by applying a magnetic field perpendicularly from the outside. A bismuth-substituted magnetic garnet (Bi-YIG) film having a film thickness of 0.5 μm is formed on the GGG substrate (substrate 7) by the LPE method to form a magnetic transfer film 5A, and a Co—Pt alloy film having a film thickness of 40 nm thereon. Was formed by ion beam sputtering. This Co—Pt alloy film was processed by electron beam lithography into a thin wire having a width of 700 nm and a length of 20 μm to form a magnetic wire 1A, which was used as a sample. Further, as a sample of a comparative example (conventional example), the same magnetic wire 1A as that of the above example was formed on a Si substrate whose surface was thermally oxidized.

作製したサンプルに、初期化として外部磁界を垂直に印加して、すべての磁性細線1Aおよび磁気転写膜5Aの磁化を垂直に一様の方向とした。そして、波長408nmのレーザー光をサンプルの直上より入射して、サンプル(磁性細線1A)からの反射光をハーフミラーで取り出し、その偏光の角度を、垂直磁界Kerr効果測定装置で測定した。次に、反射光の偏光の測定を継続したまま、前記印加磁界と反対方向の磁界をその大きさを漸増させながら印加することによって、磁性細線1Aの磁化を下向きへ反転させた。図10に、外部磁界(H)に対するカー回転角(θk)特性のグラフ(カーループ)を示す。図10(a)に示すように、磁気転写膜5Aを設けたことによって、図10(b)に示す磁気転写膜5Aを設けていない比較例よりもカー回転角が大幅に増大し、磁気光学効果が向上した。   As an initialization, an external magnetic field was applied vertically to the prepared sample, and the magnetizations of all the magnetic wires 1A and the magnetic transfer film 5A were made vertically uniform. Then, a laser beam having a wavelength of 408 nm was incident from directly above the sample, the reflected light from the sample (magnetic thin wire 1A) was taken out with a half mirror, and the angle of polarization was measured with a vertical magnetic field Kerr effect measuring device. Next, while continuing to measure the polarization of the reflected light, a magnetic field in the direction opposite to the applied magnetic field was applied while gradually increasing the magnitude, thereby reversing the magnetization of the magnetic wire 1A downward. FIG. 10 shows a graph (Kerr loop) of Kerr rotation angle (θk) characteristics with respect to the external magnetic field (H). As shown in FIG. 10A, the provision of the magnetic transfer film 5A significantly increases the Kerr rotation angle as compared with the comparative example in which the magnetic transfer film 5A shown in FIG. The effect was improved.

10,10A 空間光変調器
1,1A,1B,1C 磁性細線
1r 入射領域
1c1,1c2 括れ部
1f1,1f2 屈曲部
2,2B X電極(電極)
3,3B Y電極(電極)
40,40A,40B,40C,40D 画素アレイ
4,4A,4B,4C,4D 画素
5,5A 磁気転写膜
7 基板
90 電流制御部
91 電源(電流供給手段)
94 画素選択部(画素選択手段)
D0,D1 磁区
DW 磁壁
10, 10A Spatial light modulator 1, 1A, 1B, 1C Magnetic thin wire 1r Incident area 1c1, 1c2 Constricted part 1f1, 1f2 Bent part 2, 2B X electrode (electrode)
3,3B Y electrode (electrode)
40, 40A, 40B, 40C, 40D Pixel array 4, 4A, 4B, 4C, 4D Pixel 5, 5A Magnetic transfer film 7 Substrate 90 Current controller 91 Power supply (current supply means)
94 Pixel selection section (pixel selection means)
D0, D1 Domain DW Domain wall

Claims (4)

光を透過させる基板と、この基板上にマトリクス状に配列された複数の画素と、前記複数の画素から1以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備え、前記基板を透過して前記画素選択手段が選択した画素に入射した光を、偏光の向きを特定の方向に変化させて反射して出射する空間光変調器であって、
前記画素は、磁気光学材料を細線状に形成して細線方向に連続して2以上の磁区が形成された磁性細線と、この磁性細線の両端近傍に接続された一対の電極とを備え、
前記磁性細線は、前記光を入射させるための細線方向に区切られた領域である入射領域が予め指定された位置に設けられ、前記電流が前記一対の電極を介して細線方向に供給されることにより、隣り合う2つの磁区の間に生成している磁壁が細線方向に移動して、前記入射領域に前記2つの磁区のいずれか1つが到達するものであり、
前記基板と前記複数の画素との間に、さらに磁気転写膜を前記磁性細線の前記基板側の面に接触させて備えることを特徴とする空間光変調器。
A substrate that transmits light, a plurality of pixels arranged in a matrix on the substrate, a pixel selection unit that selects one or more pixels from the plurality of pixels, and a pixel selected by the pixel selection unit Current supply means for supplying current, and is a spatial light that reflects and emits light incident on the pixel selected by the pixel selection means through the substrate while changing the direction of polarization in a specific direction. A modulator,
The pixel includes a magnetic thin wire in which a magneto-optical material is formed in a thin line shape and two or more magnetic domains are continuously formed in the thin line direction, and a pair of electrodes connected in the vicinity of both ends of the magnetic thin line,
The magnetic thin wire is provided with an incident region, which is a region partitioned in the thin wire direction for allowing the light to enter, at a predetermined position, and the current is supplied in the thin wire direction via the pair of electrodes. Thus, the domain wall generated between two adjacent magnetic domains moves in the direction of the thin line, and any one of the two magnetic domains reaches the incident region,
A spatial light modulator, further comprising a magnetic transfer film in contact with the surface of the magnetic thin wire on the substrate side between the substrate and the plurality of pixels.
前記磁性細線は、前記入射領域の外で局所的に括れた形状に形成されていることを特徴とする請求項1に記載の空間光変調器。   The spatial light modulator according to claim 1, wherein the magnetic wire is formed in a locally confined shape outside the incident region. 前記磁性細線は、前記入射領域の外で屈曲した細線形状に形成されていることを特徴とする請求項1に記載の空間光変調器。   The spatial light modulator according to claim 1, wherein the magnetic thin wire is formed in a thin wire shape bent outside the incident region. 前記一対の電極は前記磁性細線の上に接続され、
前記複数の画素において、同じ行に配列された画素の前記一対の電極の一方が1つの配線に接続され、同じ列に配列された画素の前記一対の電極の他方が前記配線上に絶縁層を介して配設された1つの配線に接続されることを特徴とする請求項1ないし請求項3のいずれか一項に記載の空間光変調器。
The pair of electrodes are connected on the magnetic wire,
In the plurality of pixels, one of the pair of electrodes of the pixels arranged in the same row is connected to one wiring, and the other of the pair of electrodes of the pixels arranged in the same column has an insulating layer on the wiring. The spatial light modulator according to any one of claims 1 to 3, wherein the spatial light modulator is connected to one wiring line disposed through the space light modulator.
JP2010293081A 2010-12-28 2010-12-28 Spatial light modulator Pending JP2012141402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293081A JP2012141402A (en) 2010-12-28 2010-12-28 Spatial light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293081A JP2012141402A (en) 2010-12-28 2010-12-28 Spatial light modulator

Publications (1)

Publication Number Publication Date
JP2012141402A true JP2012141402A (en) 2012-07-26

Family

ID=46677767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293081A Pending JP2012141402A (en) 2010-12-28 2010-12-28 Spatial light modulator

Country Status (1)

Country Link
JP (1) JP2012141402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068990A (en) * 2013-09-30 2015-04-13 日本放送協会 Spatial light modulator
JP2016001255A (en) * 2014-06-12 2016-01-07 日本放送協会 Spatial light modulator
JP2020008633A (en) * 2018-07-04 2020-01-16 日本放送協会 Opening ratio improvement structure of domain wall movement type spatial light modulation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280844A (en) * 1985-10-04 1987-04-14 Ricoh Co Ltd Photomagnetic recording medium
JP2010020114A (en) * 2008-07-10 2010-01-28 Nippon Hoso Kyokai <Nhk> Magnetooptical spatial light modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280844A (en) * 1985-10-04 1987-04-14 Ricoh Co Ltd Photomagnetic recording medium
JP2010020114A (en) * 2008-07-10 2010-01-28 Nippon Hoso Kyokai <Nhk> Magnetooptical spatial light modulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068990A (en) * 2013-09-30 2015-04-13 日本放送協会 Spatial light modulator
JP2016001255A (en) * 2014-06-12 2016-01-07 日本放送協会 Spatial light modulator
JP2020008633A (en) * 2018-07-04 2020-01-16 日本放送協会 Opening ratio improvement structure of domain wall movement type spatial light modulation device
JP7168359B2 (en) 2018-07-04 2022-11-09 日本放送協会 Aperture improvement structure of domain wall motion type spatial light modulator

Similar Documents

Publication Publication Date Title
JP4939489B2 (en) Magneto-optic spatial light modulator
JP5567969B2 (en) Light modulator and spatial light modulator using the same
JP5782334B2 (en) Spatial light modulator and pixel driving method thereof
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
JP5852363B2 (en) Spatial light modulator
JP2008064825A (en) Multi-element spatial light modulator and video display device with the same
JP2012141402A (en) Spatial light modulator
JP2010282103A (en) Magneto-optical element, optical modulator, magneto-optical control element, and image display device
JP6017190B2 (en) Manufacturing method of light modulation element
JP6017165B2 (en) Spatial light modulator
JP5054639B2 (en) Light modulator and spatial light modulator
JP2010145462A (en) Multi-element spatial light modulator
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP2011180355A (en) Optical modulation element and spatial light modulator
JP2012230143A (en) Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP5249876B2 (en) Reflective spatial light modulator
JP5581171B2 (en) Light modulator and spatial light modulator using the same
JP5567970B2 (en) Light modulator and spatial light modulator using the same
JP5873363B2 (en) Light modulator and spatial light modulator
JP2009271210A (en) Multi-element spatial light modulator
JP2017054009A (en) Spatial optical modulator
JP2011059279A (en) Spatial light modulator
JP5238616B2 (en) Light modulation element
JP5054640B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP5836857B2 (en) Light modulator and spatial light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916