JP2021081327A - Vehicle processor - Google Patents

Vehicle processor Download PDF

Info

Publication number
JP2021081327A
JP2021081327A JP2019209652A JP2019209652A JP2021081327A JP 2021081327 A JP2021081327 A JP 2021081327A JP 2019209652 A JP2019209652 A JP 2019209652A JP 2019209652 A JP2019209652 A JP 2019209652A JP 2021081327 A JP2021081327 A JP 2021081327A
Authority
JP
Japan
Prior art keywords
vehicle
light emitting
light receiving
light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019209652A
Other languages
Japanese (ja)
Other versions
JP7328737B2 (en
Inventor
宮沢 利明
Toshiaki Miyazawa
利明 宮沢
良平 滝澤
Ryohei Takizawa
良平 滝澤
孝宣 境澤
Takanobu Sakaizawa
孝宣 境澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MK Seiko Co Ltd
Original Assignee
MK Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MK Seiko Co Ltd filed Critical MK Seiko Co Ltd
Priority to JP2019209652A priority Critical patent/JP7328737B2/en
Publication of JP2021081327A publication Critical patent/JP2021081327A/en
Application granted granted Critical
Publication of JP7328737B2 publication Critical patent/JP7328737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

To provide a technique that can increase the accuracy of detecting a vehicle.SOLUTION: A car washer 10 includes: a body part 11 having a pair of leg frames 11A standing on a ground G, the body part being movable to a vehicle C relatively back and forth; and a vehicle detector 26 having a light emission unit EU and a light reception unit RU provided in the leg frames 11A, respectively, the vehicle detector detecting the vehicle C between the light emission unit EU and the light reception unit RU. The light emission unit EU has a plurality of light emission elements E, and the light emission elements E are arranged in a matrix along the direction in which the body part 11 stands and in the front-back direction.SELECTED DRAWING: Figure 1

Description

本発明は、車両処理装置に関し、特に、処理対象の車両(車体)に対して検出処理を行い、その形状(車形)に合わせて洗浄処理を行う機能を備える洗車装置に適用して有効な技術に関する。 The present invention is particularly effective when applied to a vehicle washing device having a function of performing detection processing on a vehicle (vehicle body) to be processed and performing cleaning processing according to the shape (vehicle shape) of the vehicle processing device. Regarding technology.

特開平10−338103号公報(特許文献1)には、車形検出装置およびこれを備えた洗車装置が記載されている。 Japanese Unexamined Patent Publication No. 10-338103 (Patent Document 1) describes a vehicle shape detecting device and a car washing device including the vehicle shape detecting device.

特開平10−338103号公報Japanese Unexamined Patent Publication No. 10-338103

特許文献1に記載のような洗車装置では、前後に移動可能な本体部(フレーム)の起立方向(上下方向)に所定間隔毎に対をなす発光(投光)素子と受光素子が設けられている。この洗車装置では、本体部の移動と共に発光素子と受光素子との間に形成される光軸の通光/遮光によって車両の有無を検出する。光軸の通光/遮光は、受光素子での受光量が所定の閾値に達するか否かで判定され、通光した光軸を1、遮光した光軸を0とし2値データに変換される。起立方向を縦、移動方向を横とした行列配置を構成する各セルを2値データで示すことで車形画像データを取得することができる。 In a car wash device as described in Patent Document 1, a pair of light emitting (light emitting) elements and light receiving elements are provided at predetermined intervals in the upright direction (vertical direction) of the main body (frame) that can be moved back and forth. There is. In this car wash device, the presence or absence of a vehicle is detected by light transmission / shading of an optical axis formed between a light emitting element and a light receiving element as the main body moves. The light transmission / shading of the optical axis is determined by whether or not the amount of light received by the light receiving element reaches a predetermined threshold value, and is converted into binary data by setting the light-transmitting optical axis to 1 and the light-shielding optical axis to 0. .. Vehicle-shaped image data can be acquired by showing each cell constituting the matrix arrangement with the standing direction vertical and the moving direction horizontal as binary data.

例えば、縦(行)側の1セルの長さは隣り合う発光素子の縦ピッチ(起立方向ピッチ)に相当し、横(列)側の1セルの長さは走行する本体部の位置検出用ロータリエンコーダのパルス発生タイミングに相当する。このため、1セルの縦分解能には本体部の起立方向に並ぶ複数素子の配置が寄与し、横分解能にはロータリエンコーダの性能が寄与する。車両検出の精度を向上するためには、これらの分解能を向上させることが考えられる。しかしながら、縦分解能を向上(起立方向の発光素子を多くして縦ピッチを狭くする)したり、横分解能を向上(エンコーダの性能向上)したりしても、発光素子や受光素子の汚れ等により光軸自体が妨げられては、車両検出の精度を十分に向上できないおそれがある。 For example, the length of one cell on the vertical (row) side corresponds to the vertical pitch (pitch in the standing direction) of adjacent light emitting elements, and the length of one cell on the horizontal (column) side is for detecting the position of the traveling main body. It corresponds to the pulse generation timing of the rotary encoder. Therefore, the arrangement of a plurality of elements arranged in the upright direction of the main body contributes to the vertical resolution of one cell, and the performance of the rotary encoder contributes to the horizontal resolution. In order to improve the accuracy of vehicle detection, it is conceivable to improve these resolutions. However, even if the vertical resolution is improved (the number of light emitting elements in the upright direction is increased to narrow the vertical pitch) or the horizontal resolution is improved (encoder performance is improved), the light emitting elements and the light receiving elements become dirty. If the optical axis itself is obstructed, the accuracy of vehicle detection may not be sufficiently improved.

本発明の一目的は、車両検出の精度を向上することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the accuracy of vehicle detection.

一解決手段に係る車両処理装置は、地面に起立する一対のフレームを有し、車両に対して相対的に前後に移動可能な本体部と、前記一対のフレームのそれぞれに設けられた発光部および受光部を有し、前記発光部と前記受光部との間で車両を検出する車両検出部と、を備える。ここで、前記発光部は、複数の発光素子を有し、前記本体部の起立方向および前後方向に沿って前記発光素子が並んで行列配置されている。 The vehicle processing device according to one solution has a pair of frames standing on the ground, a main body portion that can move back and forth relative to the vehicle, a light emitting portion provided on each of the pair of frames, and a light emitting unit. It has a light receiving unit, and includes a vehicle detection unit that detects a vehicle between the light emitting unit and the light receiving unit. Here, the light emitting unit has a plurality of light emitting elements, and the light emitting elements are arranged in a matrix along the standing direction and the front-rear direction of the main body portion.

一解決手段によれば、車両検出の精度を向上することができる。 According to one solution, the accuracy of vehicle detection can be improved.

本発明の一実施形態に係る車両処理装置の正面視からの概略図である。It is a schematic view from the front view of the vehicle processing apparatus which concerns on one Embodiment of this invention. 図1に示す車両処理装置の側面視からの概略図である。It is the schematic from the side view of the vehicle processing apparatus shown in FIG. 図1に示す車両処理装置の車両検出部を説明する概略図であり、(a)は受光部側からみた発光部、(b)は発光部側からみた受光部、(c)は平面視の発光部および受光部である。It is a schematic diagram explaining the vehicle detection part of the vehicle processing apparatus shown in FIG. 1, (a) is a light emitting part seen from the light receiving part side, (b) is a light receiving part seen from a light emitting part side, (c) is a plan view. It is a light emitting part and a light receiving part. 図1に示す車両処理装置の制御系の概略図である。It is the schematic of the control system of the vehicle processing apparatus shown in FIG. 図1に示す車両処理装置の車形検出処理フローの概略図である。It is the schematic of the vehicle shape detection processing flow of the vehicle processing apparatus shown in FIG. 本発明の他の実施形態に係る車両処理装置の車両検出部を説明する概略図であり、(a)は受光部側からみた発光部、(b)は発光部側からみた受光部、(c)は平面視の発光部および受光部である。It is a schematic diagram explaining the vehicle detection part of the vehicle processing apparatus which concerns on another embodiment of this invention, (a) is a light emitting part seen from the light receiving part side, (b) is a light receiving part seen from the light receiving part side, (c). ) Are a light emitting part and a light receiving part in a plan view. 本発明の他の実施形態に係る車両処理装置の車両検出部を説明する概略図であり、(a)は受光部側からみた発光部、(b)は発光部側からみた受光部である。It is a schematic diagram explaining the vehicle detection part of the vehicle processing apparatus which concerns on another embodiment of this invention, (a) is a light emitting part seen from the light receiving part side, (b) is a light receiving part seen from the light receiving part side.

以下の本発明における実施形態では、必要な場合に複数のセクションなどに分けて説明するが、原則、それらはお互いに無関係ではなく、一方は他方の一部または全部の変形例、詳細などの関係にある。このため、全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、構成要素の数(個数、数値、量、範囲などを含む)については、特に明示した場合や原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。また、構成要素などの形状に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合などを除き、実質的にその形状などに近似または類似するものなどを含むものとする。 In the following embodiments of the present invention, if necessary, the description will be divided into a plurality of sections and the like, but in principle, they are not unrelated to each other, and one is related to a part or all of the other, such as modifications and details. It is in. Therefore, in all the drawings, members having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted. In addition, the number of components (including the number, numerical value, quantity, range, etc.) is limited to a specific number unless otherwise specified or in principle clearly limited to a specific number. It is not a thing, and may be more than or less than a specific number. In addition, when referring to the shape of a component, etc., it shall include those that are substantially similar to or similar to the shape, etc., unless otherwise specified or when it is considered that this is not the case in principle. ..

(実施形態1)
本発明の実施形態1では、車両処理装置として洗車装置に適用した場合について図面を参照して説明する。図1および図2は、本実施形態に係る洗車装置10の正面視および側面視からの概略図である。図3は、車両検出部26を説明する概略図であり、(a)は受光部RU側からみた発光部EU、(b)は発光部EU側からみた受光部RU、(c)は平面視の発光部EUおよび受光部RUである。図4は、洗車装置10の制御系の概略図である。図5は、洗車装置10の車形検出処理フローの概略図である。
(Embodiment 1)
In the first embodiment of the present invention, a case where the vehicle is applied to a car wash device as a vehicle processing device will be described with reference to the drawings. 1 and 2 are schematic views of the car wash device 10 according to the present embodiment from a front view and a side view. 3A and 3B are schematic views for explaining the vehicle detection unit 26, in which FIG. 3A is a light emitting unit EU viewed from the light receiving unit RU side, FIG. 3B is a light receiving unit RU viewed from the light emitting unit EU side, and FIG. 3C is a plan view. The light emitting unit EU and the light receiving unit RU. FIG. 4 is a schematic view of the control system of the car wash device 10. FIG. 5 is a schematic view of a vehicle shape detection processing flow of the car wash device 10.

洗車装置10は、地面G(敷設面)に起立して設けられた本体部11(本体機ともいう)を備えている。本体部11は、処理対象となる車両Cを跨ぐように門型状のフレーム(筐体)で構成されている。このため、本体部11は、地面Gから起立する一対の脚フレーム11Aと、この一対の脚フレーム11Aにかかる梁フレーム11Bとを有している。 The car wash device 10 includes a main body portion 11 (also referred to as a main body machine) provided upright on the ground G (laying surface). The main body 11 is composed of a gate-shaped frame (housing) so as to straddle the vehicle C to be processed. Therefore, the main body 11 has a pair of leg frames 11A that stand up from the ground G, and a beam frame 11B that covers the pair of leg frames 11A.

また、洗車装置10は、レール12と、車輪13、14とを備えている。一対のレール12は、互いが平行となるように延在して地面Gに設けられている。車輪13、14は、一対の脚フレーム11Aの底部のそれぞれに設けられている。洗車装置10では、車輪13を駆動輪、車輪14を従動輪としている。洗車装置10では、この一対のレール12間に車両Cが停車(図2では車両Cの前端を本体部11に向けて停車)した状態で、一対のレール12上を車輪13、14(計4輪)を介して本体部11が前後に移動(往復走行)することとなる。なお、図2の右方向が本体部11の前方向、左方向が後方向となる。 Further, the car wash device 10 includes rails 12 and wheels 13 and 14. The pair of rails 12 are provided on the ground G so as to extend so as to be parallel to each other. The wheels 13 and 14 are provided on the bottoms of the pair of leg frames 11A, respectively. In the car wash device 10, the wheels 13 are the driving wheels and the wheels 14 are the driven wheels. In the car wash device 10, the wheels 13 and 14 (4 in total) are on the pair of rails 12 in a state where the vehicle C is stopped between the pair of rails 12 (in FIG. 2, the front end of the vehicle C is directed toward the main body 11). The main body 11 moves back and forth (reciprocating) via the wheel). The right direction of FIG. 2 is the front direction of the main body 11, and the left direction is the rear direction.

また、洗車装置10は、モータ15と、エンコーダ16とを備えている。モータ15は、地面Gに対して車輪13よりも高い位置から車輪13と接続されるように本体部11の一対の脚フレーム11Aのそれぞれに設けられている。このモータ15は、正逆転可能に構成されており、車輪13(駆動輪)を介して本体部11を前後に移動させる。エンコーダ16は、本体部11の脚フレーム11Aの一方に設けられ、その一方側のモータ15の出力軸に連結されている。エンコーダ16は、レール12上における本体部11の走行位置を検出する。すなわち、エンコーダ16は、モータ15の回転方向すなわち車輪13の回転方向を検出しながら単位角度回転ごとにパルス信号を出力することで、レール12上における本体部11の位置を与えることができる。 Further, the car wash device 10 includes a motor 15 and an encoder 16. The motor 15 is provided on each of the pair of leg frames 11A of the main body 11 so as to be connected to the wheel 13 from a position higher than the wheel 13 with respect to the ground G. The motor 15 is configured to be capable of forward and reverse rotation, and moves the main body 11 back and forth via wheels 13 (driving wheels). The encoder 16 is provided on one of the leg frames 11A of the main body 11, and is connected to the output shaft of the motor 15 on the one side. The encoder 16 detects the traveling position of the main body 11 on the rail 12. That is, the encoder 16 can give the position of the main body 11 on the rail 12 by outputting a pulse signal for each unit angle rotation while detecting the rotation direction of the motor 15, that is, the rotation direction of the wheels 13.

また、洗車装置10は、前後スイッチ17およびドック18A、18Bを備えている。前後スイッチ17は、一方の脚フレーム11Aの底部に設けられている。また、ドック18Aは、一方のレール12の一端側(本体部11の前後方向前側)に設けられ、ドック18Bは、同じレール12の他端側(前後方向後側)に設けられている。前後スイッチ17は、本体部11の移動によりドック18A、18Bでスイッチングし、ドック18Aとドック18Bとの間で本体部11の移動限界を検出する。このため、洗車装置10では、本体部11が停車した車両Cを跨いで車長方向に通過するように移動限界の範囲内で移動することができる。なお、洗車装置10が入車待ちの状態(待機状態)は、前後スイッチ17がドック18Bとスイッチングして本体部11が停止した状態である。 Further, the car wash device 10 includes a front / rear switch 17 and docks 18A and 18B. The front / rear switch 17 is provided on the bottom of one leg frame 11A. Further, the dock 18A is provided on one end side of one rail 12 (front side in the front-rear direction of the main body 11), and the dock 18B is provided on the other end side (rear side in the front-rear direction) of the same rail 12. The front / rear switch 17 switches between the docks 18A and 18B by moving the main body 11, and detects the movement limit of the main body 11 between the dock 18A and the dock 18B. Therefore, in the car wash device 10, the main body 11 can move within the range of the movement limit so as to straddle the stopped vehicle C and pass in the vehicle length direction. The state in which the car wash device 10 is waiting for entry (standby state) is a state in which the front / rear switch 17 switches with the dock 18B and the main body 11 is stopped.

また、洗車装置10は、本体部11に設けられたトップブラシ20および一対のサイドブラシ21を備えている。トップブラシ20(回転ブラシ)は、待機時に門型状の本体部11の開口上部側(梁フレーム11B側)に収容されている。このトップブラシ20は、可動部として本体部11の移動に伴って回転しながら上下に昇降し、主に車両Cの上面をブラッシングすることができる。また、一対のサイドブラシ21(回転ブラシ)は、それぞれ待機時に門型状の本体部11の開口側部側(一対の脚フレーム11A側)に収容されている。一対のサイドブラシ21は、可動部として本体部11の移動に伴って回転しながら開閉動作(互いが近づいたり離れたりする動作)し、主に車両Cの前面、側面および後面をブラッシングすることができる。 Further, the car wash device 10 includes a top brush 20 and a pair of side brushes 21 provided on the main body 11. The top brush 20 (rotary brush) is housed on the opening upper side (beam frame 11B side) of the gate-shaped main body 11 during standby. The top brush 20 can move up and down while rotating as the main body 11 moves as a movable portion, and can mainly brush the upper surface of the vehicle C. Further, each of the pair of side brushes 21 (rotating brushes) is housed on the opening side (pair of leg frames 11A side) of the gate-shaped main body 11 during standby. The pair of side brushes 21 can open and close (moving toward and away from each other) while rotating as the main body 11 moves as a movable portion, and can mainly brush the front surface, side surface, and rear surface of the vehicle C. it can.

また、洗車装置10は、本体部11に設けられるトップスプレー22および一対のサイドスプレー23を備えている。トップスプレー22は、門型状の本体部11の開口上部側(梁フレーム11B側)に収容されている。トップスプレー22は、本体部11の移動に伴ってパイプに設けられた複数の噴射ノズル(不図示)から水などの洗浄液を噴射し、主に車両Cの上面を洗浄することができる。また、一対のサイドスプレー23は、それぞれ門型状の本体部11の開口側部側(一対の脚フレーム11A側)に収容されている。一対のサイドスプレー23は、本体部11の移動に伴ってパイプに設けられた複数の噴射ノズル(不図示)から水などの洗浄液を噴射し、主に車両Cの側面を洗浄することができる。なお、洗車装置10では、本体部11の前進に伴って車両Cをブラッシング洗浄するため、トップスプレー22およびサイドスプレー23はトップブラシ20およびサイドブラシ21よりも本体部11の前側に設けられている。 Further, the car wash device 10 includes a top spray 22 and a pair of side sprays 23 provided on the main body 11. The top spray 22 is housed on the opening upper side (beam frame 11B side) of the gate-shaped main body 11. The top spray 22 can mainly clean the upper surface of the vehicle C by injecting a cleaning liquid such as water from a plurality of injection nozzles (not shown) provided on the pipe as the main body 11 moves. Further, the pair of side sprays 23 are housed on the opening side (the pair of leg frames 11A side) of the gate-shaped main body 11, respectively. The pair of side sprays 23 can mainly clean the side surface of the vehicle C by injecting a cleaning liquid such as water from a plurality of injection nozzles (not shown) provided on the pipe as the main body 11 moves. In the car wash device 10, the top spray 22 and the side spray 23 are provided on the front side of the main body 11 with respect to the top brush 20 and the side brush 21 in order to brush and wash the vehicle C as the main body 11 advances. ..

また、洗車装置10は、本体部11に設けられるトップノズル24(ブロワノズル)および一対のサイドノズル25(ブロワノズル)を備えている。トップノズル24は、待機時に門型状の本体部11の開口上部側(梁フレーム11B側)に収容されている。トップノズル24は、可動部として本体部11の移動に伴って送風しながら車両Cと接触せずに上下に昇降し、主に車両Cの上面を乾燥することができる。また、一対のサイドノズル25は、それぞれ待機時に門型状の本体部11の開口側部側(一対の脚フレーム11A側)に収容されている。一対のサイドノズル25は、可動部として本体部11の移動に伴って送風しながら車両Cと接触せずに開閉動作(互いが近づいたり離れたりする動作)し、主に車両Cの側面を乾燥することができる。 Further, the car wash device 10 includes a top nozzle 24 (blower nozzle) and a pair of side nozzles 25 (blower nozzles) provided in the main body 11. The top nozzle 24 is housed on the opening upper side (beam frame 11B side) of the gate-shaped main body 11 during standby. The top nozzle 24 can move up and down without contacting the vehicle C while blowing air as the main body 11 moves as a movable portion, and can mainly dry the upper surface of the vehicle C. Further, each of the pair of side nozzles 25 is housed on the opening side (pair of leg frames 11A side) of the gate-shaped main body 11 during standby. The pair of side nozzles 25 open and close (moving toward and away from each other) without contacting the vehicle C while blowing air as the main body 11 moves as a movable portion, and mainly dries the side surfaces of the vehicle C. can do.

また、洗車装置10は、本体部11に設けられ、車両Cを検出する車両検出部26を備えている。車両検出部26は、一対の脚フレーム11Aのそれぞれに設けられた発光部EUおよび受光部RUを備え、発光部EUと受光部RUとの間で車両Cを検出するよう構成されている。発光部EUと受光部RUとが対向するように、発光部EUは、門型状の本体部11の開口右側部側(一方の脚フレーム11A側)に収納され、受光部RUは、門型状の本体部11の開口左側部側(他方の脚フレーム11A側)に収納されている。 Further, the car wash device 10 is provided in the main body portion 11 and includes a vehicle detection unit 26 for detecting the vehicle C. The vehicle detection unit 26 includes a light emitting unit EU and a light receiving unit RU provided on each of the pair of leg frames 11A, and is configured to detect the vehicle C between the light emitting unit EU and the light receiving unit RU. The light emitting unit EU is housed on the right side of the opening (one leg frame 11A side) of the gate-shaped main body 11 so that the light emitting unit EU and the light receiving unit RU face each other, and the light receiving unit RU is a gate type. It is housed on the left side of the opening of the main body 11 (the other leg frame 11A side).

車両検出部26は、発光部EUが有する発光素子Eと、受光部RUが有する受光素子Rとにより、透過型の光電センサとしての機能を有している。より具体的には、発光素子E(例えば、LED)と受光素子R(例えば、フォトダイオード)との間で光信号(例えば、赤外線)を授受して光軸Bが形成される。この光軸Bの通光/遮光を基に、車両検出部26は車両Cの有無を検出し、種々のデータを取得することができる。例えば、通光した光軸を1、遮光した光軸を0に変換した2値データを基にし、車両Cの側方からの形状として車形画像データを取得することができる。また、発光素子Eと受光素子Rは、本体部11の起立方向(鉛直方向)に沿って設けられているため、車両Cを検出した発光素子Eおよび受光素子Rの設置高さを基に、車両Cの高さを取得することができる。 The vehicle detection unit 26 has a function as a transmission type photoelectric sensor by the light emitting element E included in the light emitting unit EU and the light receiving element R included in the light receiving unit RU. More specifically, an optical axis B is formed by exchanging an optical signal (for example, infrared rays) between a light emitting element E (for example, an LED) and a light receiving element R (for example, a photodiode). Based on the light transmission / shading of the optical axis B, the vehicle detection unit 26 can detect the presence / absence of the vehicle C and acquire various data. For example, it is possible to acquire vehicle shape image data as a shape from the side of the vehicle C based on binary data obtained by converting the light-transmitting optical axis to 1 and the light-shielded optical axis to 0. Further, since the light emitting element E and the light receiving element R are provided along the upright direction (vertical direction) of the main body 11, the light emitting element E and the light receiving element R that have detected the vehicle C are based on the installation height of the light emitting element E and the light receiving element R. The height of the vehicle C can be obtained.

図3(a)に示すように、発光部EUは、複数の発光素子Eを有し、本体部11の起立方向yおよび前後方向xに沿って発光素子Eが並んで行列配置されている。本実施形態では、複数の発光素子Eは、起立方向yのm行、前後方向xの3列の行列配置(素子数m×3個)を構成している。また、図3(b)に示すように、受光部RUは、複数の受光素子Rを有し、本体部11の起立方向yおよび前後方向xに沿って受光素子Rが並んで行列配置されている。本実施形態では、複数の受光素子Rは、起立方向yのm行、前後方向xの3列の行列配置(素子数m×3個)を構成している。 As shown in FIG. 3A, the light emitting unit EU has a plurality of light emitting elements E, and the light emitting elements E are arranged in a matrix along the standing direction y and the front-rear direction x of the main body portion 11. In the present embodiment, the plurality of light emitting elements E form a matrix arrangement (number of elements m × 3) in three rows of m rows in the standing direction y and x in the front-rear direction. Further, as shown in FIG. 3B, the light receiving unit RU has a plurality of light receiving elements R, and the light receiving elements R are arranged in a matrix along the standing direction y and the front-back direction x of the main body portion 11. There is. In the present embodiment, the plurality of light receiving elements R form a matrix arrangement (number of elements m × 3) in three rows of m rows in the standing direction y and x in the front-rear direction.

このように、発光部EUにおける発光素子Eの行列配置は、地面G側から1行目、2行目・・・m行目とし、本体部11の前面11F側から1列目、2列目、3列目と構成されている。本実施形態では、例えば、1行1列の発光素子Eであれば発光素子E11と番号を付し、m行3列のものであれば発光素子Em3のように番号を付して表す。また、受光部RUにおける受光素子Rの行列配置についても同様である。 As described above, the matrix arrangement of the light emitting element E in the light emitting unit EU is the first row, the second row, ... mth row from the ground G side, and the first and second columns from the front 11F side of the main body portion 11. It is composed of the third row. In the present embodiment, for example, a light emitting element E having 1 row and 1 column is numbered as a light emitting element E11, and a light emitting element E having 3 rows and 3 columns is numbered as a light emitting element Em3. The same applies to the matrix arrangement of the light receiving elements R in the light receiving unit RU.

ここで、同じ行の発光素子Eであれば、それらの地面Gからの設置高さは同じとなる。具体的には、1行目の発光素子E11、E12、E13であれば、地面Gからの高さy1として全てが同じ設置高さにある。また、2行目の発光素子E21、E22、E23であれば、地面Gからの高さy2として全てが同じ設置高さにある。そして、隣接する行の発光素子Eの間隔は同じである。本体部11の起立方向の発光素子Eが等間隔であることを縦ピッチpy(起立方向ピッチ)と記す。 Here, if the light emitting elements E are in the same row, their installation heights from the ground G are the same. Specifically, the light emitting elements E11, E12, and E13 in the first row are all at the same installation height as the height y1 from the ground G. Further, in the case of the light emitting elements E21, E22, and E23 in the second row, all of them have the same installation height as the height y2 from the ground G. The intervals between the light emitting elements E in the adjacent rows are the same. The fact that the light emitting elements E in the standing direction of the main body 11 are at equal intervals is referred to as a vertical pitch py (pitch in the standing direction).

また、同じ列の発光素子Eであれば、本体部11の前面11Fからの設置距離は同じとなる。具体的には、1列目の発光素子E11、E21、E31、・・・Em1であれば、前面11Fからの距離x1として全てが同じ設置距離にある。また、2列目の発光素子E12、E22、・・・Em2であれば、前面11Fからの距離x2として全てが同じ設置距離にある。また、3列目の発光素子E13、E23、・・・Em3であれば、前面11Fからの距離x3として全てが同じ設置距離にある。そして、隣接する列の発光素子Eの間隔は同じである。本体部11の前後方向の発光素子Eが等間隔であることを横ピッチpx(前後方向ピッチ)と記す。 Further, if the light emitting elements E are in the same row, the installation distance from the front surface 11F of the main body 11 is the same. Specifically, in the case of the light emitting elements E11, E21, E31, ... Em1 in the first row, all of them have the same installation distance as the distance x1 from the front surface 11F. Further, in the case of the light emitting elements E12, E22, ... Em2 in the second row, all of them have the same installation distance as the distance x2 from the front surface 11F. Further, in the case of the light emitting elements E13, E23, ... Em3 in the third row, all of them have the same installation distance as the distance x3 from the front surface 11F. The intervals between the light emitting elements E in the adjacent rows are the same. The fact that the light emitting elements E in the front-rear direction of the main body 11 are evenly spaced is referred to as a horizontal pitch px (front-back direction pitch).

受光部RUにおける受光素子Rの行列配置も発光部EUにおける発光素子Eの行列配置もm行×3列に構成されている。このため、発光部EUの複数の発光素子Eと、受光部RUの複数の受光素子Rは同数であり、本実施形態では、同じ行で同じ列のもの同士が向かい合うように配置されている。例えば、図3(c)に示すように、発光素子E11と受光素子R11とが距離W離れて向かい合っている。発光素子E11が発光し、受光素子R11で受光することで地面に水平な光軸B11が形成される。発光素子E12と受光素子R12、発光素子E13と受光素子R13も同様であり、発光素子E12と受光素子R12との間では光軸B22、発光素子E13と受光素子R13との間では光軸B33が形成される。これら光軸B11、B22、B33による光は車幅方向z(前面11Fと平行な方向)において平行に同じ距離Wを進むことになる。 Both the matrix arrangement of the light receiving element R in the light receiving unit RU and the matrix arrangement of the light emitting element E in the light emitting unit EU are configured in m rows × 3 columns. Therefore, the plurality of light emitting elements E of the light emitting unit EU and the plurality of light receiving elements R of the light receiving unit RU are the same number, and in the present embodiment, the elements in the same row and in the same column are arranged so as to face each other. For example, as shown in FIG. 3C, the light emitting element E11 and the light receiving element R11 face each other at a distance W. The light emitting element E11 emits light, and the light receiving element R11 receives light, so that the optical axis B11 horizontal to the ground is formed. The same applies to the light emitting element E12 and the light receiving element R12, and the light emitting element E13 and the light receiving element R13. It is formed. The light from these optical axes B11, B22, and B33 travels the same distance W in parallel in the vehicle width direction z (direction parallel to the front surface 11F).

ところで、縦分解能向上の観点からは、縦ピッチpyが狭い方が好ましい。しかしながら、例えば、図3(a)に示す発光素子E21に水滴が付着した場合、その水滴は、重力により下へ落ちていくため縦ピッチpyが狭くなると発光素子E11に付着するおそれが高くなってしまう。そこで、本実施形態では、本体部11の前後方向xに複数の発光素子Eを設けることで、同じ設置高さにあるもの同士で補完しあうようにしている。例えば、発光素子E21に水滴が付着していても本体部11の前後方向xに隣接するように設けられた発光素子E22、E23によって、それらが設置されている高さy2における発光素子Eとしての機能(検出に十分な光軸Bが形成されること)を確保することができる。したがって、車両検出の精度を向上することができる。また、本実施形態では、受光部RUでも本体部11の前後方向xに複数の受光素子Rを設けており、同様の作用効果を得ることができる。 By the way, from the viewpoint of improving the vertical resolution, it is preferable that the vertical pitch py is narrow. However, for example, when water droplets adhere to the light emitting element E21 shown in FIG. 3A, the water droplets fall downward due to gravity, so that if the vertical pitch py becomes narrower, the possibility of the water droplets adhering to the light emitting element E11 increases. It ends up. Therefore, in the present embodiment, by providing a plurality of light emitting elements E in the front-rear direction x of the main body portion 11, elements having the same installation height complement each other. For example, even if water droplets are attached to the light emitting element E21, the light emitting elements E22 and E23 provided so as to be adjacent to the front-rear direction x of the main body 11 serve as the light emitting element E at the height y2 where they are installed. The function (the formation of the optical axis B sufficient for detection) can be ensured. Therefore, the accuracy of vehicle detection can be improved. Further, in the present embodiment, the light receiving unit RU is also provided with a plurality of light receiving elements R in the front-rear direction x of the main body portion 11, and the same effect can be obtained.

また、重力により水滴が下へ落ちて下隣の発光素子Eに付着するのを回避するため、ある程度の縦ピッチpyを確保することも考えられる。水滴が付着しづらくなるように縦ピッチpyが確保された場合であっても、横ピッチpxに関しては縦ピッチpyより狭くした方が、光の指向性の面から重力による水滴の影響を回避しやすい。そこで、本実施形態では、横ピッチpx(前後方向ピッチ)が縦ピッチpy(起立方向ピッチ)よりも狭くなるように発光部EUの発光素子Eを配置している。このように前後方向xにおいて発光素子Eが近づくことで、同じ設置高さにあるもの同士でより緊密に補完しあうことができ、車両検出の精度をより向上することができる。また、発光素子Eとして、例えば砲弾型や表面実装型(チップ型)のLEDを用いることができる。表面実装型の場合、本体部11の前後方向xに互いを近づけて配置することができる。 Further, in order to prevent water droplets from falling downward due to gravity and adhering to the light emitting element E adjacent to the bottom, it is conceivable to secure a certain vertical pitch py. Even if the vertical pitch py is secured so that water droplets are hard to adhere, it is better to make the horizontal pitch px narrower than the vertical pitch py to avoid the influence of water droplets due to gravity from the aspect of light directivity. Cheap. Therefore, in the present embodiment, the light emitting element E of the light emitting unit EU is arranged so that the horizontal pitch px (front-back direction pitch) is narrower than the vertical pitch py (standing direction pitch). By approaching the light emitting elements E in the front-rear direction x in this way, objects having the same installation height can complement each other more closely, and the accuracy of vehicle detection can be further improved. Further, as the light emitting element E, for example, a bullet type or surface mount type (chip type) LED can be used. In the case of the surface mount type, the main body 11 can be arranged close to each other in the front-rear direction x.

このような発光部EUおよび受光部RUを有する車両検出部26を備える洗車装置10は、図4に示すように、発光部EU用の走査駆動部30と、受光部RU用の走査駆動部31とを備えている。本実施形態では、走査駆動部30は、車両検出時において本体部11の起立方向(行方向)に並ぶ一列目の発光素子Eを下から上(もしくは上から下)へ順次点灯し、次いで同様に2列目、3列目と順次点灯する。また、走査駆動部31は、発光素子Eの走査に向かい合う受光素子Rを順次受光状態とする。これにより、対応する発光素子Eと受光素子Rとの間で光信号の授受がなされ、地面Gに水平な光軸Bが形成される。 As shown in FIG. 4, the car wash device 10 including the vehicle detection unit 26 having such a light emitting unit EU and a light receiving unit RU has a scanning drive unit 30 for the light emitting unit EU and a scanning drive unit 31 for the light receiving unit RU. And have. In the present embodiment, the scanning drive unit 30 sequentially lights the light emitting elements E in the first row arranged in the standing direction (row direction) of the main body 11 from the bottom to the top (or from the top to the bottom) at the time of vehicle detection, and then similarly. The second and third rows are lit in sequence. Further, the scanning drive unit 31 sequentially puts the light receiving element R facing the scanning of the light emitting element E into a light receiving state. As a result, an optical signal is exchanged between the corresponding light emitting element E and the light receiving element R, and an optical axis B horizontal to the ground G is formed.

また、洗車装置10は、車形制御部32を備えている。車形制御部32はCPUなどの電子部品から構成された種々の処理部(処理手段)を有し、本体部11の走行エンコーダ16からのパルス信号により、各走査駆動部30、31を動作させて車両Cの上面形状を検出するものである。この車形制御部32は、走行位置検出部33と、受光検出部34と、閾値設定部35と、車両検出部36と、車両データ作成部37と、画像処理部40と、データ記憶部41とを備えている。 Further, the car wash device 10 includes a car shape control unit 32. The vehicle-shaped control unit 32 has various processing units (processing means) composed of electronic components such as a CPU, and operates the scanning drive units 30 and 31 by pulse signals from the traveling encoder 16 of the main body unit 11. The top surface shape of the vehicle C is detected. The vehicle shape control unit 32 includes a traveling position detection unit 33, a light reception detection unit 34, a threshold value setting unit 35, a vehicle detection unit 36, a vehicle data creation unit 37, an image processing unit 40, and a data storage unit 41. And have.

走行位置検出部33は、走行エンコーダ16からのパルス信号により本体部11の走行位置を検出する。受光検出部34は、各受光素子Rでの受光量(受光レベル)を検出する。閾値設定部35は、発光部EUと発光部RUとの間に車両Cが存在しない状態で各受光素子Rが受信する受光量に基づいて光軸Bの通光/遮光を判定する閾値を設定する。ここで、閾値とは、発光素子Eが発光したことによって対応する受光素子Rで受ける受光量の増加分と対比される数値である。発光により受光量が閾値以上増加すればその光軸Bは通光しているとして車両非検出と判定し、閾値に達しなければその光軸Bは遮光されているとして車両検出と判定される。 The traveling position detection unit 33 detects the traveling position of the main body 11 by a pulse signal from the traveling encoder 16. The light receiving detection unit 34 detects the amount of light received (light receiving level) at each light receiving element R. The threshold value setting unit 35 sets a threshold value for determining light transmission / shading of the optical axis B based on the amount of light received by each light receiving element R in a state where the vehicle C does not exist between the light emitting unit EU and the light emitting unit RU. To do. Here, the threshold value is a numerical value to be compared with an increase in the amount of light received by the corresponding light receiving element R due to the light emitting element E emitting light. If the amount of received light increases by more than a threshold value due to light emission, the optical axis B is determined to be transmitting light and is determined to be vehicle non-detection, and if the threshold value is not reached, the optical axis B is determined to be light-shielded and vehicle detection is determined.

また、車両検出部36は、走行エンコーダ16からのパルス信号をトリガとして走査駆動部30、31を動作させ、受光検出部34で検出される各受光素子Rの受光量を、閾値設定部35で設定した閾値と比較して各光軸Bの通光/遮光を判定する。車両データ作成部37は、走行位置検出部33から与えられる本体部11の走行位置と車両検出部36で検出した各光軸Bの通光/遮光から2値画像データを作成する。画像処理部40は、車両データ作成部37で作成した2値画像データを解析処理し、洗車用データを作成する。データ記憶部41は、走行位置検出部33で検出される本体部11の走行位置データ、閾値設定部35で設定される閾値、車両データ作成部37で作成される2値画像データや、画像処理部40で抽出される洗車用データなどが記憶される。 Further, the vehicle detection unit 36 operates the scanning drive units 30 and 31 with the pulse signal from the traveling encoder 16 as a trigger, and the threshold value setting unit 35 sets the amount of light received by each light receiving element R detected by the light receiving detection unit 34. The light transmission / shading of each optical axis B is determined by comparing with the set threshold value. The vehicle data creation unit 37 creates binary image data from the travel position of the main body 11 given by the travel position detection unit 33 and the light transmission / shading of each optical axis B detected by the vehicle detection unit 36. The image processing unit 40 analyzes and processes the binary image data created by the vehicle data creation unit 37 to create car wash data. The data storage unit 41 includes running position data of the main body 11 detected by the running position detection unit 33, a threshold value set by the threshold value setting unit 35, binary image data created by the vehicle data creation unit 37, and image processing. The car wash data extracted by the unit 40 and the like are stored.

また、洗車装置10は、洗車制御部42と、洗車駆動部43と、操作パネル44とを備えている。洗車制御部42は、洗車処理プロブラムに従って洗車駆動部43を介してトップブラシ20、トップノズル24などの処理装置(可動部)や本体部11のモータ15などを駆動し、本体部11を移動させつつ、車両Cの洗浄、乾燥といった洗車処理を行わせる。例えば、洗車制御部42は、作成された洗車用車形データに基づいてトップブラシ20およびトップノズル24を昇降制御し、車体面を忠実にトレースするよう操作する。操作パネル44は、本体部11とは別設される洗車受付装置(図示しない)に設けられ、ユーザによって洗車内容の選択入力や洗車開始入力が行われる。 Further, the car wash device 10 includes a car wash control unit 42, a car wash drive unit 43, and an operation panel 44. The car wash control unit 42 drives a processing device (moving unit) such as a top brush 20 and a top nozzle 24 and a motor 15 of the main body 11 via the car wash drive 43 according to the car wash processing program to move the main body 11. At the same time, the vehicle C is washed and dried. For example, the car wash control unit 42 controls the top brush 20 and the top nozzle 24 to move up and down based on the created car wash car shape data, and operates so as to faithfully trace the vehicle body surface. The operation panel 44 is provided in a car wash reception device (not shown) provided separately from the main body 11, and the user performs selection input of car wash contents and car wash start input.

次に、車形制御部32を用いた車形検出の処理方法について説明する。図5に示すように、車形検出処理は、閾値設定処理(ステップS10)、車両検出処理(ステップS20)、判定処理(ステップS30)、車形データ作成処理(ステップS40)、画像処理(ステップS50)を含み、この順に行われる。 Next, a processing method of vehicle shape detection using the vehicle shape control unit 32 will be described. As shown in FIG. 5, the vehicle shape detection processing includes threshold value setting processing (step S10), vehicle detection processing (step S20), determination processing (step S30), vehicle shape data creation processing (step S40), and image processing (step S40). S50) is included, and this is performed in this order.

<閾値設定処理(ステップS10)>
閾値設定部35では、発光素子Eを発光させる前の受光素子Rでの受光量と、発光素子Eを発光させたときの受光素子Rでの受光量との差分受光量に基づいて判別閾値を設定する。この判別閾値は、各発光素子Eや受光素子Rの個々の性能や精度に応じて通光/遮光を判別する基準値となるため、汚れの付着等による受光量低下も許容できるように車両検出前には必ず個々の受光素子R毎に設定される。
<Threshold setting process (step S10)>
In the threshold value setting unit 35, the discrimination threshold value is set based on the difference light receiving amount between the light receiving amount in the light receiving element R before the light emitting element E is made to emit light and the light receiving amount in the light receiving element R when the light emitting element E is made to emit light. Set. Since this discrimination threshold is a reference value for discriminating light transmission / shading according to the individual performance and accuracy of each light emitting element E and light receiving element R, vehicle detection can allow a decrease in the amount of light received due to adhesion of dirt or the like. Before, it is always set for each light receiving element R.

より具体的には、まず、車両検出部26の発光部EUと受光部RUとの間に車両Cが本体部11に入り込んでいない状態で行われ、受光部RUの走査駆動部31を駆動し、発光素子Eを発光させる前の受光素子Rの受光量raの取り込みが行われる。次いで、発光部EUの走査駆動部30と受光部RUの走査駆動部31とを同期駆動し、発光素子Eを発光させた時の受光素子Rの受光量rbの取り込みが行われる。その後、受光量raと受光量rbとの差分受光量rcを算出し、この差分受光量rcに対して所定割合(例えば50%)を閾値Sとして設定し、データ記憶部41に記憶する。 More specifically, first, the vehicle C is performed in a state where the vehicle C does not enter the main body 11 between the light emitting unit EU and the light receiving unit RU of the vehicle detecting unit 26, and drives the scanning drive unit 31 of the light receiving unit RU. , The light receiving amount ra of the light receiving element R before the light emitting element E is made to emit light is taken in. Next, the scanning drive unit 30 of the light emitting unit EU and the scanning drive unit 31 of the light receiving unit RU are synchronously driven, and the light receiving amount rb of the light receiving element R when the light emitting element E is made to emit light is taken in. After that, the differential light receiving amount rc between the light receiving amount ra and the light receiving amount rb is calculated, a predetermined ratio (for example, 50%) is set as the threshold value S with respect to the differential light receiving amount rc, and the data is stored in the data storage unit 41.

上記の手順で、各受光素子Rの全てに対して閾値Sの設定を行う。例えば、この設定動作で検出された受光素子R11の差分受光量rc11=10であった場合、受光素子R11の閾値S=5と設定される。なお、ここでは閾値Sを設定する際の所定割合を50%としているが、洗車装置10を使用する環境(湯気の発生等)や検出の精度によってその都度設定することが望ましい。 In the above procedure, the threshold value S is set for all of the light receiving elements R. For example, when the differential light receiving amount rc11 = 10 of the light receiving element R11 detected by this setting operation, the threshold value S = 5 of the light receiving element R11 is set. Although the predetermined ratio when setting the threshold value S is set to 50% here, it is desirable to set it each time depending on the environment in which the car wash device 10 is used (generation of steam, etc.) and the accuracy of detection.

<車両検出処理(ステップS20)>
車両検出部36では、まず、受光部RUの走査駆動部31を駆動し、発光素子Eを発光させる前の受光素子Rの受光量raの取り込みが行われる。次いで、発光部EUの走査駆動部30と受光部RUの走査駆動部31とを同期駆動し、発光素子Eを発光させた時の受光素子Rの受光量rbの取り込みが行われる。その後、受光量raと受光量rbとの差分受光量rcを算出する。
<Vehicle detection process (step S20)>
The vehicle detection unit 36 first drives the scanning drive unit 31 of the light receiving unit RU to capture the light receiving amount ra of the light receiving element R before causing the light emitting element E to emit light. Next, the scanning drive unit 30 of the light emitting unit EU and the scanning drive unit 31 of the light receiving unit RU are synchronously driven, and the light receiving amount rb of the light receiving element R when the light emitting element E is made to emit light is taken in. After that, the difference light receiving amount rc between the light receiving amount ra and the light receiving amount rb is calculated.

次いで、閾値設定処理によってデータ記憶部41に記憶された閾値Sを読み出して、算出した差分受光量rcと比較する。差分受光量rcが閾値Sよりも低ければ光軸Bを「遮光」と判定し、閾値Sよりも高ければ光軸Bを「通光」と判定する。そして、一走査分(行列配置の一列分)の検出が終わると、それを車両データとしてデータ記憶部41に記憶する。同様に、行列配置の他の列分についても走査による検出を行い、それを車両データとしてデータ記憶部41に記憶する。 Next, the threshold value S stored in the data storage unit 41 by the threshold value setting process is read out and compared with the calculated difference light receiving amount rc. If the differential light receiving amount rc is lower than the threshold value S, the optical axis B is determined to be "light shielding", and if it is higher than the threshold value S, the optical axis B is determined to be "light transmission". Then, when the detection of one scan (one row of the matrix arrangement) is completed, it is stored in the data storage unit 41 as vehicle data. Similarly, the other columns in the matrix arrangement are also detected by scanning and stored in the data storage unit 41 as vehicle data.

なお、行列配置の同じ行にある(本体部11の起立方向の同一高さにおいて前後方向に並ぶ)発光素子Eを同時に発光させることもできる。例えば、発光部EU側では、同一の設置高さy1にある発光素子E11、E12、E13を同時に発光させ、受光部RU側では、同一の設置高さy1にある受光素子R11、R12、R13で順に受光させることもできる。同時に発光させることで発光量が多くなるため、発光部EUと受光部RUとの間に水飛沫がある場合であっても、その影響を受けにくくすることができる。すなわち、水飛沫を車両Cがあると誤検出することを防止することができるので、車両検出の精度を向上することができる。 It should be noted that the light emitting elements E (arranged in the front-rear direction at the same height in the standing direction of the main body 11) in the same row of the matrix arrangement can be made to emit light at the same time. For example, on the light emitting unit EU side, the light emitting elements E11, E12, and E13 at the same installation height y1 are simultaneously emitted, and on the light receiving unit RU side, the light receiving elements R11, R12, and R13 at the same installation height y1. It is also possible to receive light in order. Since the amount of light emitted is increased by emitting light at the same time, even if there is water droplets between the light emitting unit EU and the light receiving unit RU, it is possible to make it less susceptible to the influence. That is, it is possible to prevent erroneous detection of water droplets when there is a vehicle C, so that the accuracy of vehicle detection can be improved.

<判定処理(ステップS30)>
ここでは、同じ設定高さにある受光素子Rの判定結果について多数決判定を行う。例えば、同じ設定高さの行列配置1行目にある受光素子R11、R12、R13の3つ(3列分)において、2つ以上が「通光」であれば、1行目の受光素子Rとして「通光」と判定し、2つ以上が「遮光」であれば、1行目の受光素子Rとして「遮光」と判定する。行列配置のその他の行にある受光素子Rに対しても同様に行われると、それらのデータが車両データ作成部37に送られる。
<Judgment process (step S30)>
Here, a majority decision is made on the determination result of the light receiving element R at the same set height. For example, in the three (three columns) light receiving elements R11, R12, and R13 in the first row of the matrix arrangement having the same set height, if two or more are "light-transmitting", the light receiving element R in the first row. If two or more of them are "light-shielding", it is determined that the light-receiving element R in the first line is "light-shielding". When the same is performed for the light receiving element R in the other rows of the matrix arrangement, those data are sent to the vehicle data creation unit 37.

なお、本実施形態では、発光素子Eおよび受光素子Rの行列配置において本体部11の起立方向に沿って3列の場合を説明している。これに限らず、行列配置において2列や4列、それ以上であってもよく、それらの場合でも前述の多数決判定を行うことができる。また、行列配置が偶数列の場合において、多数決判定が「通光」、「遮光」とも同数であれば、例えば「遮光」と判定すればよい。この判定結果から後述する洗車用データが作成され、これを基に車両Cに対してブラシなどを近づけて処理が行われるため、「遮光」と判定した方が車両Cへ近づきすぎてダメージを与えてしまうことを防止することができるからである。 In this embodiment, the case of three rows along the standing direction of the main body 11 in the matrix arrangement of the light emitting element E and the light receiving element R is described. Not limited to this, the matrix arrangement may be two columns, four columns, or more, and even in these cases, the above-mentioned majority determination can be performed. Further, in the case where the matrix arrangement is an even number column, if the majority decision determination has the same number of both "light transmission" and "light shielding", it may be determined as "light shielding", for example. From this judgment result, the car wash data to be described later is created, and based on this, the brush or the like is brought closer to the vehicle C to perform the processing. Therefore, the person who is judged to be "light-shielding" is too close to the vehicle C and causes damage. This is because it is possible to prevent the data from being lost.

<車両データ作成(ステップS40)>
車両データ作成部37では、車両検出部36から受けた車両データに含まれる「通光」を「0」、「遮光」を「1」とした2値データを作成する。そして、この2値データを本体部11が所定距離走行するごとに作成し、本体部11が往行するまで実行して、横軸を横ピッチpx、縦軸を縦ピッチpyとした行列上に展開された車形データを形成する。作成した車両データは、データ記憶部41に記憶され、画像処理部40で洗車用データに画像処理される。
<Vehicle data creation (step S40)>
The vehicle data creation unit 37 creates binary data in which the “light transmission” included in the vehicle data received from the vehicle detection unit 36 is “0” and the “light shielding” is “1”. Then, this binary data is created every time the main body 11 travels a predetermined distance, and is executed until the main body 11 goes back and forth, and is placed on a matrix in which the horizontal axis is the horizontal pitch px and the vertical axis is the vertical pitch py. Form the expanded vehicle shape data. The created vehicle data is stored in the data storage unit 41, and the image processing unit 40 performs image processing on the car wash data.

<画像処理(ステップS50)>
画像処理部40では、2値化した車両データに論理フィルターをかけて輪郭線を抽出する。この処理は、車両データにおいて「1」が隣どうし連続して存在している連結成分の、最も下でかつ最も左に位置するセルを追跡開始点とし、この点を中心にその周りに隣接する8セルを右まわりに調べ、「0」から「1」に変わるセルを検出していき、検出したセルを輪郭線とするものである。実際には、本体部11の走行とともに車両Cの車体画像データが順次送られてきて展開されつつ輪郭線を追跡するため、車両全体の画像データ取り込みを完了した時点で全体の輪郭線が抽出される。こうして得られた車両Cの輪郭から、本体部11の前後方向xに対する本体部11の起立方向yのデータを決定した洗車用データを作成することができる。
<Image processing (step S50)>
The image processing unit 40 applies a logical filter to the binarized vehicle data to extract contour lines. In this process, the cell located at the bottom and the leftmost of the connected components in which "1" exists consecutively next to each other in the vehicle data is set as the tracking start point, and the cell is adjacent to the center of this point. Eight cells are examined clockwise, cells changing from "0" to "1" are detected, and the detected cells are used as contour lines. Actually, since the vehicle body image data of the vehicle C is sequentially sent and expanded as the main body 11 travels and the contour line is tracked, the entire contour line is extracted when the image data acquisition of the entire vehicle is completed. To. From the contour of the vehicle C thus obtained, it is possible to create car wash data in which the data of the standing direction y of the main body 11 with respect to the front-rear direction x of the main body 11 is determined.

次に、洗車装置10の動作(車両処理方法)について説明する。洗車装置10は、ユーザによって操作パネル44で受付がなされると、所定の停車位置に車両Cを停車させるよう表示機などによってユーザに案内を出す。これにより、車両Cは車両検出部26で検出されない所定の停車位置に停車させられる。次いで、前述したように、車形検出処理が行われ(ステップS10〜S50)、洗車用データが作成される。この洗車用データの作成は、本体部11が往路を走行する間継続して実行され、連続した車両Cの上面輪郭が得られる。なお、1往行中に車形検出と洗浄を同時に行うことが可能である。 Next, the operation of the car wash device 10 (vehicle processing method) will be described. When the user makes a reception on the operation panel 44, the car wash device 10 notifies the user by a display or the like to stop the vehicle C at a predetermined stop position. As a result, the vehicle C is stopped at a predetermined stop position that is not detected by the vehicle detection unit 26. Next, as described above, the vehicle shape detection process is performed (steps S10 to S50), and vehicle wash data is created. The creation of the car wash data is continuously executed while the main body 11 travels on the outward route, and a continuous upper surface contour of the vehicle C is obtained. It is possible to detect the vehicle shape and wash the vehicle at the same time during one trip.

車両Cの形状が検出されると、検出された車両Cの輪郭に基づいて洗車動作が行われる。洗車動作は、本体部11の走行に伴い、例えば、シャンプー噴射を伴う車両Cへのブラッシング処理と、高速風の噴射によるブロー処理が順次実行される。このうち、トップブラシ20およびトップノズル24は、検出された車両Cの輪郭に沿って昇降制御される。洗車動作が終了すると、洗車装置10は表示機などによってユーザに車両Cの退出を促す。 When the shape of the vehicle C is detected, the car wash operation is performed based on the detected contour of the vehicle C. In the car wash operation, for example, a brushing process for the vehicle C accompanied by shampoo injection and a blow process by injection of high-speed wind are sequentially executed as the main body 11 travels. Of these, the top brush 20 and the top nozzle 24 are controlled to move up and down along the detected contour of the vehicle C. When the car wash operation is completed, the car wash device 10 prompts the user to leave the vehicle C by means of a display or the like.

(実施形態2)
前記実施形態1では、受光部の受光素子を行列配置(m行×3列)とした場合について説明した。本発明の実施形態2では、受光部の受光素子を本体部の起立方向に沿って並ぶ一列配置(m行×1列)とした場合について図面を参照して説明する。図6は、本実施形態2に係る車両検出部26aを説明する概略図であり、(a)は受光部RUa側からみた発光部EU、(b)は発光部EU側からみた受光部RUa、(c)は平面視の発光部EUおよび受光部RUaである。
(Embodiment 2)
In the first embodiment, the case where the light receiving elements of the light receiving unit are arranged in a matrix (m rows × 3 columns) has been described. In the second embodiment of the present invention, a case where the light receiving elements of the light receiving portion are arranged in a single row (m rows × 1 column) arranged along the standing direction of the main body portion will be described with reference to the drawings. 6A and 6B are schematic views for explaining the vehicle detection unit 26a according to the second embodiment, in which FIG. 6A is a light emitting unit EU viewed from the light receiving unit RUa side, and FIG. 6B is a light receiving unit RUa viewed from the light emitting unit EU side. (C) is a light emitting unit EU and a light receiving unit RUa in a plan view.

車両検出部26aは、一対の脚フレーム11A(図1参照)のそれぞれに設けられた発光部EUおよび受光部RUaを備え、発光部EUと受光部RUaとの間で車両Cを検出するよう構成されている。図6(a)に示す車両検出部26aの発光部EUは、図3(a)で示したものと同様であり複数の発光素子Eがm行3列の行列配置されている(素子数m×3個)。他方、図6(b)に示す車両検出部26aの受光部RUaは、複数の受光素子Rを有し、本体部11の起立方向yに沿って受光素子Rが並んで一列配置されている(素子数m×1個)。なお、図6(b)に示す受光部RUaは、図3(b)に示した受光部RUの行列配置のうち、2列目の受光素子R12、R22・・・Rm2を残したものとして示している。 The vehicle detection unit 26a includes a light emitting unit EU and a light receiving unit RUa provided on each of the pair of leg frames 11A (see FIG. 1), and is configured to detect the vehicle C between the light emitting unit EU and the light receiving unit RUa. Has been done. The light emitting unit EU of the vehicle detection unit 26a shown in FIG. 6A is the same as that shown in FIG. 3A, and a plurality of light emitting elements E are arranged in a matrix of m rows and 3 columns (number of elements m). × 3). On the other hand, the light receiving unit RUa of the vehicle detection unit 26a shown in FIG. 6B has a plurality of light receiving elements R, and the light receiving elements R are arranged in a row along the standing direction y of the main body portion 11 ( Number of elements m x 1). The light receiving unit RUa shown in FIG. 6 (b) is shown assuming that the light receiving elements R12, R22 ... Rm2 in the second row are left in the matrix arrangement of the light receiving unit RU shown in FIG. 3 (b). ing.

本実施形態では、本体部11の起立方向yの同一設置高さ(例えば、y1)において、前後方向xに並ぶ3つの発光素子(E11、E12、E13)を同時に発光させて1つの受光素子(R12)で受光するよう構成されている。より具体的には、走査駆動部30は本体部11の起立方向yに沿って並ぶ1〜3列目の発光素子Eを同時に下から上(もしくは上から下)へ順次点灯し、走査駆動部31は発光素子Eの走査に向かい合う同一の設定高さにある受光素子Rを順次受光状態とする。これにより、同一設定高さにある3つの発光素子Eと対応する1つの受光素子Rとの間で光信号の授受がなされ、地面Gに水平な光軸Bが形成される。 In the present embodiment, at the same installation height (for example, y1) in the standing direction y of the main body 11, three light emitting elements (E11, E12, E13) arranged in the front-rear direction x are simultaneously emitted to emit one light receiving element (for example, y1). It is configured to receive light at R12). More specifically, the scanning drive unit 30 simultaneously lights the light emitting elements E in the first to third rows arranged along the standing direction y of the main body unit 11 from bottom to top (or from top to bottom) in order, and scan drive unit 30. The light receiving element R at the same set height facing the scan of the light emitting element E is sequentially brought into the light receiving state. As a result, an optical signal is exchanged between the three light emitting elements E at the same set height and the corresponding light receiving element R, and an optical axis B horizontal to the ground G is formed.

例えば、図6(c)に示すように、発光素子E11が発光し、受光素子R12で受光することで地面Gに水平な光軸B12が形成される。発光素子E12と受光素子R12、発光素子E13と受光素子R12も同様であり、地面Gに水平な光軸B22および光軸B32が形成される。同時に発光させることで発光量が多くなるため、発光部EUと受光部RUaとの間に水飛沫がある場合であっても、その影響を受けにくくすることができる。すなわち、水飛沫を車両Cがあると誤検出することを防止することができるので、車両検出の精度を向上することができる。 For example, as shown in FIG. 6C, the light emitting element E11 emits light, and the light receiving element R12 receives light to form an optical axis B12 horizontal to the ground G. The same applies to the light emitting element E12 and the light receiving element R12, and the light emitting element E13 and the light receiving element R12, and the optical axis B22 and the optical axis B32 horizontal to the ground G are formed. Since the amount of light emitted is increased by emitting light at the same time, even if there is water droplets between the light emitting unit EU and the light receiving unit RUa, it is possible to make it less susceptible to the influence. That is, it is possible to prevent erroneous detection of water droplets when there is a vehicle C, so that the accuracy of vehicle detection can be improved.

また、本実施形態では、本体部11の前後方向xに並ぶ発光素子E(例えば、E11、E12、E13)のうち前端のもの(例えば、E11)と後端のもの(例えば、E13)との中間位置(例えば、E12が設けられている設置距離x2)で対向するように受光素子が一列配置されている(R12、R22、R32・・・Rm2)。例えば、図6(c)に示すように、光軸B22による光が車幅方向z(前面11Fと平行な方向)と平行に進んで受光素子R12で受光され、更に光軸B12、B32による光が車幅方向zとは交差して進んで受光素子R12に集まるようにして受光(集光)される。このため、見かけ上は、発光側で太く、受光側に向かうに従い細くなる光軸B22を形成することができる。このような光軸を用いることでも、車両検出の精度を向上させることができる。 Further, in the present embodiment, among the light emitting elements E (for example, E11, E12, E13) arranged in the front-rear direction x of the main body portion 11, the front end (for example, E11) and the rear end (for example, E13) are used. Light receiving elements are arranged in a row so as to face each other at an intermediate position (for example, an installation distance x2 where E12 is provided) (R12, R22, R32 ... Rm2). For example, as shown in FIG. 6C, the light from the optical axis B22 travels parallel to the vehicle width direction z (direction parallel to the front surface 11F) and is received by the light receiving element R12, and further, the light from the optical axes B12 and B32. Is received (condensed) so as to cross the vehicle width direction z and collect on the light receiving element R12. Therefore, it is possible to form the optical axis B22 which is apparently thick on the light emitting side and becomes thinner toward the light receiving side. By using such an optical axis, the accuracy of vehicle detection can be improved.

(実施形態3)
前記実施形態2では、発光部の発光素子を行列配置(m行×3列)とした場合について説明した。本発明の実施形態3では、発光部の行列配置の一列が他列よりも本体部の起立方向に延びている場合について図面を参照して説明する。図7は、本実施形態3に係る車両検出部26bを説明する概略図であり、(a)は受光部RUa側からみた発光部EUa、(b)は発光部EUa側からみた受光部RUaである。
(Embodiment 3)
In the second embodiment, the case where the light emitting elements of the light emitting unit are arranged in a matrix (m rows × 3 columns) has been described. In the third embodiment of the present invention, a case where one row of the matrix arrangement of the light emitting portions extends in the upright direction of the main body portion more than the other rows will be described with reference to the drawings. 7A and 7B are schematic views for explaining the vehicle detection unit 26b according to the third embodiment. FIG. 7A is a light emitting unit EUa seen from the light receiving unit RUa side, and FIG. 7B is a light receiving unit RUa seen from the light receiving unit EUa side. is there.

車両検出部26bは、一対の脚フレーム11A(図1参照)のそれぞれに設けられた発光部EUaおよび受光部RUaを備え、発光部EUaと受光部RUaとの間で車両Cを検出するよう構成されている。図7(b)に示す車両検出部26bの受光部RUaは、図6(b)で示したものと同様であり複数の受光素子Rが一列配置されている(素子数m×1個)。他方、図7(a)に示す車両検出部26bの発光部EUaは、複数の発光素子Eを有し、本体部11の起立方向yおよび前後方向xに沿って発光素子Eが並んで行列配置され(素子数n×3個)、その一列が他列よりも起立方向yの上方に延びて配置されている(素子数(m−n)×1個)。すなわち、発光部EUaでは、1行目からn行目までが3列配置、n+1行目からm行目までが一列配置となるように構成されている。なお、図7(a)に示す発光部EUaの一列配置は、図6(a)に示した発光部EUの行列配置のうち、2列目の発光素子E(n+1)2、・・・Em2を残したものとして示している。 The vehicle detection unit 26b includes a light emitting unit EUa and a light receiving unit RUa provided on each of the pair of leg frames 11A (see FIG. 1), and is configured to detect the vehicle C between the light emitting unit EUa and the light receiving unit RUa. Has been done. The light receiving unit RUa of the vehicle detection unit 26b shown in FIG. 7 (b) is the same as that shown in FIG. 6 (b), and a plurality of light receiving elements R are arranged in a row (number of elements m × 1). On the other hand, the light emitting unit EUa of the vehicle detection unit 26b shown in FIG. 7A has a plurality of light emitting elements E, and the light emitting elements E are arranged in a matrix along the standing direction y and the front-rear direction x of the main body unit 11. (Number of elements n × 3), and one row thereof is arranged so as to extend above the standing direction y from the other rows (number of elements (mn) × 1). That is, in the light emitting unit EUa, the first row to the nth row are arranged in three columns, and the n + 1th row to the mth row are arranged in one column. The one-row arrangement of the light-emitting unit EUa shown in FIG. 7 (a) is the second-row light-emitting element E (n + 1) 2, ... Em2 in the matrix arrangement of the light-emitting unit EU shown in FIG. 6 (a). Is shown as leaving.

水飛沫は重力によって落ちていくため、本体部11の起立方向yの上側よりも下側に多くの発光素子Eを配置することが好ましい。このように、起立方向yの下側に配置された前後方向xに並ぶ3つの発光素子Eを同時に発光させることで発光量を増加させ、発光部EUと受光部RUaとの間に水飛沫がある場合であっても、その影響を受けにくくすることができる。すなわち、水飛沫を車両Cがあると誤検出することを防止することができるので、車両検出の精度を向上することができる。 Since water droplets fall due to gravity, it is preferable to arrange many light emitting elements E below the upper side of the standing direction y of the main body portion 11. In this way, the amount of light emitted is increased by simultaneously emitting light from the three light emitting elements E arranged in the front-rear direction x arranged below the standing direction y, and water droplets are generated between the light emitting unit EU and the light receiving unit RUa. Even in some cases, it can be less affected. That is, it is possible to prevent erroneous detection of water droplets when there is a vehicle C, so that the accuracy of vehicle detection can be improved.

以上、本発明を実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the present invention has been specifically described above based on the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist thereof.

前記実施形態では、車両処理装置として、洗車装置に適用した場合について説明した。これに限らず、例えば、車両の形状を検出する車形検出装置にも適用することができる。 In the above-described embodiment, a case where the vehicle is applied to a car wash device as a vehicle processing device has been described. Not limited to this, for example, it can be applied to a vehicle shape detecting device that detects the shape of a vehicle.

また、前記実施形態では、地面に停車した車両に対して本体部が移動する両処理装置を説明した。これに限らず、例えば、車両の車長方向に移動可能なキャリア(コンベヤ)に車両を搭乗させて、地面に固定された本体部に対して車両が移動する場合や、車両および本体部が共に移動する場合であってもよい。このため、本発明には、処理対象となる車両に対して本体部が相対移動する関係が含まれる。 Further, in the above-described embodiment, both processing devices in which the main body portion moves with respect to a vehicle parked on the ground have been described. Not limited to this, for example, when the vehicle is mounted on a carrier (conveyor) that can move in the direction of the vehicle length and the vehicle moves with respect to the main body fixed to the ground, or both the vehicle and the main body are used. It may be the case of moving. Therefore, the present invention includes a relationship in which the main body moves relative to the vehicle to be processed.

また、前記実施形態では、発光素子からの光信号を同じ設置高さの受光素子で受信することで、地面に水平な光軸を形成する場合について説明した。これに限らず、発光素子とは異なる設置高さの受光素子で受信することで、地面に対して傾斜した光軸を形成することもできる。例えば、図4に示すような発光素子E21からの光信号に対して、受光素子R21で受信する(地面に水平な光軸)だけでなく、受光素子R21の上隣の受光素子R31や下隣の受光素子R11で受信することで、地面Gに対して傾斜した光軸を形成することもできる。これによれば、発光素子E11と発光素子E21との間(受光素子R11と受光素子R21との間)、発光素子E21と発光素子E31との間(受光素子R21と受光素子R31との間)の高さにおいても車両Cを検出することができることとなる。このため、受光素子Rの縦ピッチpyに基づく縦分解能よりも、高分解能とすることもできる。 Further, in the above-described embodiment, a case where an optical axis horizontal to the ground is formed by receiving an optical signal from a light emitting element by a light receiving element having the same installation height has been described. Not limited to this, it is also possible to form an optical axis inclined with respect to the ground by receiving with a light receiving element having an installation height different from that of the light emitting element. For example, the light signal from the light emitting element E21 as shown in FIG. 4 is not only received by the light receiving element R21 (optical axis horizontal to the ground), but also received from the light receiving element R31 above and below the light receiving element R21. By receiving light with the light receiving element R11 of the above, it is also possible to form an optical axis inclined with respect to the ground G. According to this, between the light emitting element E11 and the light emitting element E21 (between the light receiving element R11 and the light receiving element R21), between the light emitting element E21 and the light emitting element E31 (between the light receiving element R21 and the light receiving element R31). The vehicle C can be detected even at the height of. Therefore, the resolution can be higher than the vertical resolution based on the vertical pitch py of the light receiving element R.

10 洗車装置
11 本体部
11A 脚フレーム
C 車両
EU 発光部
RU 受光部
G 地面
10 Car wash device 11 Main body 11A Leg frame C Vehicle EU Light emitting part RU Light receiving part G Ground

Claims (7)

地面に起立する一対のフレームを有し、車両に対して相対的に前後に移動可能な本体部と、
前記一対のフレームのそれぞれに設けられた発光部および受光部を有し、前記発光部と前記受光部との間で車両を検出する車両検出部と、を備え、
前記発光部は、複数の発光素子を有し、前記本体部の起立方向および前後方向に沿って前記発光素子が並んで行列配置されている、
車両処理装置。
A main body that has a pair of frames that stand on the ground and can move back and forth relative to the vehicle,
Each of the pair of frames has a light emitting unit and a light receiving unit, and includes a vehicle detecting unit that detects a vehicle between the light emitting unit and the light receiving unit.
The light emitting unit has a plurality of light emitting elements, and the light emitting elements are arranged in a matrix along the standing direction and the front-rear direction of the main body portion.
Vehicle processing equipment.
前記受光部は、複数の受光素子を有し、前記本体部の起立方向に沿って前記受光素子が並んで一列配置されている、
請求項1記載の車両処理装置。
The light receiving portion has a plurality of light receiving elements, and the light receiving elements are arranged side by side in a row along the upright direction of the main body portion.
The vehicle processing device according to claim 1.
前記本体部の前後方向に並ぶ前記発光素子のうち前端のものと後端のものとの中間位置で対向するように前記受光素子が一列配置されている、
請求項2記載の車両処理装置。
Among the light emitting elements arranged in the front-rear direction of the main body portion, the light receiving elements are arranged in a row so as to face each other at an intermediate position between the front end and the rear end.
The vehicle processing device according to claim 2.
前記本体部の起立方向の同一高さにおいて前後方向に並ぶ前記発光素子が同時に発光される、
請求項1〜3のいずれか一項に記載の車両処理装置。
The light emitting elements arranged in the front-rear direction at the same height in the standing direction of the main body portion emit light at the same time.
The vehicle processing device according to any one of claims 1 to 3.
前記発光素子の行列配置において前後方向ピッチが起立方向ピッチよりも狭い、
請求項1〜4のいずれか一項に記載の車両処理装置。
In the matrix arrangement of the light emitting elements, the pitch in the front-rear direction is narrower than the pitch in the standing direction.
The vehicle processing device according to any one of claims 1 to 4.
前記発光素子が、表面実装型LEDである、
請求項1〜5のいずれか一項に記載の車両処理装置。
The light emitting element is a surface mount type LED.
The vehicle processing device according to any one of claims 1 to 5.
前記発光素子の行列配置の一列が他列よりも前記本体部の起立方向上方に延びている、請求項1〜6のいずれか一項に記載の車両処理装置。 The vehicle processing apparatus according to any one of claims 1 to 6, wherein one row of the matrix arrangement of the light emitting elements extends upward in the upright direction of the main body portion with respect to the other rows.
JP2019209652A 2019-11-20 2019-11-20 vehicle processing equipment Active JP7328737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209652A JP7328737B2 (en) 2019-11-20 2019-11-20 vehicle processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209652A JP7328737B2 (en) 2019-11-20 2019-11-20 vehicle processing equipment

Publications (2)

Publication Number Publication Date
JP2021081327A true JP2021081327A (en) 2021-05-27
JP7328737B2 JP7328737B2 (en) 2023-08-17

Family

ID=75964896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209652A Active JP7328737B2 (en) 2019-11-20 2019-11-20 vehicle processing equipment

Country Status (1)

Country Link
JP (1) JP7328737B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180453A (en) * 1999-12-27 2001-07-03 Shibuya Kogyo Co Ltd Car form detecting method and device in portal car washer
JP2003098007A (en) * 2001-09-20 2003-04-03 Toshiba Corp Sensor driving circuit and sensor driving method
JP2016217837A (en) * 2015-05-19 2016-12-22 日本精工株式会社 Proximity sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180453A (en) * 1999-12-27 2001-07-03 Shibuya Kogyo Co Ltd Car form detecting method and device in portal car washer
JP2003098007A (en) * 2001-09-20 2003-04-03 Toshiba Corp Sensor driving circuit and sensor driving method
JP2016217837A (en) * 2015-05-19 2016-12-22 日本精工株式会社 Proximity sensor

Also Published As

Publication number Publication date
JP7328737B2 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP7013926B2 (en) Optical ranging device and its method
US8867045B2 (en) Triggering light grid and method for determining the position of containers
US20110290989A1 (en) Optoelectronic sensor for detecting object edges
CN109916305B (en) Vehicle size measuring system and method based on photoelectric sensing and TOF technology
JP6824697B2 (en) Object detection device and object detection method for traveling objects
JP6771984B2 (en) Car shape detection device and car wash machine equipped with this device
JP7328737B2 (en) vehicle processing equipment
JP7259525B2 (en) Optical ranging device and method
CN103101520B (en) Car washer
JP2010023777A (en) Method and device for detecting vehicle shape in car washing machine
JP7412837B2 (en) Vehicle processing device and object detection method
JP5492598B2 (en) Car shape detection device and car wash machine equipped with the same
JP3902026B2 (en) Car shape detection device and car wash machine equipped with the same
JP7041554B2 (en) Car shape detection device and car wash machine equipped with the same device
JP5492665B2 (en) Car shape detection device and car wash machine equipped with the same
JP7316896B2 (en) vehicle processing equipment
JP2021070387A (en) Vehicle processing device
JP4047672B2 (en) Car shape detection device and car wash machine having the same
JP6779077B2 (en) Vehicle shape detection method and device in car wash machine
JP6085449B2 (en) Car body detection device and car wash machine equipped with the same
CN108459327A (en) Distance measuring device
CN109480700A (en) Automatic cleaning equipment and its control method
JP4035379B2 (en) Vehicle shape detection method and apparatus in car wash machine
KR200444466Y1 (en) Car shape Washing appar sensing apparatus for washing machine
JP2019095327A (en) Vehicle shape detecting device and car washer equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150