JP2021081107A - Metal melting device - Google Patents

Metal melting device Download PDF

Info

Publication number
JP2021081107A
JP2021081107A JP2019207479A JP2019207479A JP2021081107A JP 2021081107 A JP2021081107 A JP 2021081107A JP 2019207479 A JP2019207479 A JP 2019207479A JP 2019207479 A JP2019207479 A JP 2019207479A JP 2021081107 A JP2021081107 A JP 2021081107A
Authority
JP
Japan
Prior art keywords
melting
molten metal
chamber
raw material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019207479A
Other languages
Japanese (ja)
Other versions
JP6861442B1 (en
Inventor
富弘 岩本
Tomihiro Iwamoto
富弘 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUNETSU Co Ltd
Original Assignee
TOUNETSU Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2019207479A priority Critical patent/JP6861442B1/en
Application filed by TOUNETSU Co Ltd filed Critical TOUNETSU Co Ltd
Priority to US17/637,345 priority patent/US20220307768A1/en
Priority to CN202310924599.7A priority patent/CN116900292A/en
Priority to CN202310924571.3A priority patent/CN116900291A/en
Priority to CN202080061068.4A priority patent/CN114340816B/en
Priority to EP20887977.5A priority patent/EP4006471A4/en
Priority to PCT/JP2020/041950 priority patent/WO2021095731A1/en
Application granted granted Critical
Publication of JP6861442B1 publication Critical patent/JP6861442B1/en
Publication of JP2021081107A publication Critical patent/JP2021081107A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a metal melting device that melts a melting raw material having a specific gravity lighter than a molten metal without oxidizing the raw material.SOLUTION: A metal melting device includes: a melting chamber for supplying a melting raw material into a molten metal; and a heating chamber communicated to the melting chamber via a supply passage and having heating means for heating the molten metal. A screen plate for preventing a non-melted melting raw material transported from the supply passage from floating until it becomes at least a predetermined size is provided in the heating chamber.SELECTED DRAWING: Figure 1

Description

本発明は、溶解原料を溶湯中で溶解する金属溶解装置に関し、特に、アルミニウム、アルミニウム合金及び非鉄金属等の溶解原料を、鋳造機や溶解炉等へ供給するための溶湯にするために溶解する金属溶解装置に関する。 The present invention relates to a metal melting apparatus that melts a melting raw material in a molten metal, and in particular, melts a melting raw material such as aluminum, an aluminum alloy, and a non-ferrous metal in order to prepare a molten metal for supplying to a casting machine, a melting furnace, or the like. Regarding metal melting equipment.

環境保全の意識の高まりにより、自動車業界等において、エンジンブロック等の様々な鋳物製造品による部材や装置の軽量化が進められている。これに伴い、アルミニウム材、アルミニウム合金材等の軽量な非鉄金属材の使用量が増加している。
このため鋳物を製造する溶湯の溶解原料として、リターン材、ブリケット材、切粉等のスクラップ材を用いることで、原料中の新材の使用量を減少させる取り組みが進められている。
Due to the growing awareness of environmental protection, the automobile industry and the like are promoting the weight reduction of members and devices by various casting products such as engine blocks. Along with this, the amount of lightweight non-ferrous metal materials such as aluminum materials and aluminum alloy materials is increasing.
For this reason, efforts are being made to reduce the amount of new materials used in the raw materials by using scrap materials such as return materials, briquette materials, and chips as the melting raw materials for the molten metal that manufactures castings.

スクラップ材の中でも特にブリケット材は、加工より発生する切削屑や切粉等を圧縮して固形化したものであり、油分や水分を含むため、そのまま溶湯中に供給すると油分が燃焼し、排ガスが生ずるため、予め含まれる油分や水分等を蒸発させる前処理が行われることもある。 Among scrap materials, briquette material is solidified by compressing cutting chips and chips generated from processing, and contains oil and water. Therefore, if it is supplied to the molten metal as it is, the oil will burn and exhaust gas will be emitted. Since it is generated, a pretreatment for evaporating oil, water, etc. contained in advance may be performed.

しかしながら、ブリケット材は、溶湯と比べた場合、比重が小さく表面積が大きいため、前処理を行っても、湯面に浮きやすく溶解に際し一部が酸化されやすい問題がある。そして、例えば、アルミニウムの酸化物であるAl23の融点が2072℃であるように、アルミニウム材等の非鉄金属材の酸化物であるAl23等は、極めて融点が高く、溶湯中にAl23等の酸化物が形成されると溶湯中で溶解せず異物となって、鋳物の質を低下させる。 However, since the briquette material has a smaller specific density and a larger surface area than the molten metal, there is a problem that even if the pretreatment is performed, the briquette material easily floats on the surface of the molten metal and a part of the briquette material is easily oxidized during melting. And, for example, as the melting point of Al 2 O 3 which is an oxide of aluminum is 2072 ° C., Al 2 O 3 which is an oxide of a non-ferrous metal material such as an aluminum material has an extremely high melting point and is in a molten metal. When an oxide such as Al 2 O 3 is formed in the molten metal, it does not dissolve in the molten metal and becomes a foreign substance, which deteriorates the quality of the casting.

一方、ブリケット材を溶解して溶湯とする際に酸化物が形成され難くする技術としては下記特許文献1又は2のように、溶湯の渦流にブリケット材を供給するようにして、ブリケット材を溶湯中に迅速に引き込むようにする技術がある。 On the other hand, as a technique for making it difficult for oxides to be formed when the briquette material is melted into a molten metal, the briquette material is melted by supplying the briquette material to the vortex of the molten metal as described in Patent Document 1 or 2 below. There is a technique to pull in quickly.

特開2013−60629号公報Japanese Unexamined Patent Publication No. 2013-60629 特開平2−219978号公報Japanese Unexamined Patent Publication No. 2-219978

しかしながら、渦流によりブリケット材が溶湯中に引き込まれても、引き込まれたブリケット材が完全に溶解せずに未溶解のまま次工程に移送されることがあった。
そして、そのような場合には、次工程において未溶解のブリケット材が湯面に浮上し、そこで酸化されてしまう。
However, even if the briquette material is drawn into the molten metal by the vortex flow, the drawn briquette material may not be completely dissolved and may be transferred to the next process without being dissolved.
Then, in such a case, the undissolved briquette material floats on the surface of the molten metal in the next step and is oxidized there.

そこで、本発明の主たる課題は、上記従来技術の問題を解決しブリケット材のような溶湯に比して比重の軽い溶解原料を酸化させないように溶解させる金属溶解装置を提供することにある。 Therefore, a main object of the present invention is to provide a metal melting apparatus that solves the above-mentioned problems of the prior art and melts a melting raw material having a lighter specific gravity than a molten metal such as a briquette material so as not to oxidize.

上記課題を解決するための手段は次のとおりである。 The means for solving the above problems are as follows.

その第一の手段は、
溶湯中に溶解原料を供給する溶解室と、
供給路を介して前記溶解室に連通し、溶湯を加熱する加熱手段を有する加熱室と、を有し、
前記加熱室内に、前記供給路から移送される未溶解の溶解原料の浮上を、少なくとも所定の大きさとなるまで防止するスクリーン板が設けられている、
ことを特徴とする金属溶解装置である。
The first means is
A melting chamber that supplies the melting raw material into the molten metal,
It has a heating chamber that communicates with the melting chamber via a supply path and has a heating means for heating the molten metal.
A screen plate is provided in the heating chamber to prevent the undissolved dissolved raw material transferred from the supply path from floating until it reaches at least a predetermined size.
It is a metal melting device characterized by the above.

第二の手段は、
前記スクリーン板は、多数の貫通孔を有するものであり、それら貫通孔が、底面側から上面側に向かって狭窄するテーパー状となっている、上記第一の手段に係る金属溶解装置である。
The second means is
The screen plate has a large number of through holes, and the through holes are tapered from the bottom surface side to the top surface side, and is a metal melting device according to the first means.

第三の手段は、
前記供給路又は前記溶解室の供給路近傍に、前記溶解室から前記加熱室に移送される前記未溶解の溶解原料に衝撃を与える衝撃付与手段を備える、上記第一又は第二の手段に係る金属溶解装置である。
The third means is
The first or second means is provided with an impact applying means for giving an impact to the undissolved dissolved raw material transferred from the melting chamber to the heating chamber in the vicinity of the supply passage or the supply passage of the melting chamber. It is a metal melting device.

第四の手段は、
前記衝撃付与手段は、前記未溶解の溶解原料が衝突するように構成された前記供給路の内壁又は前記溶解室の供給路近傍の内壁である、上記第一〜第三の手段に係る金属溶解装置である。
The fourth means is
The impact applying means is a metal melting means according to the first to third means, which is an inner wall of the supply path configured so that the undissolved dissolved raw materials collide with each other or an inner wall in the vicinity of the supply path of the melting chamber. It is a device.

第五の手段は、
前記溶解室に、当該溶解室内の溶湯に渦流を発生させる渦流発生手段が、設けられている、上記第一〜第四の手段に係る金属溶解装置である。
The fifth means is
The metal melting apparatus according to the first to fourth means, wherein the melting chamber is provided with a vortex generating means for generating a vortex in the molten metal in the melting chamber.

第六の手段は、
前記渦流発生手段が、溶湯中に気体を噴出することで、溶湯に渦流を発生させるものである、上記第五の手段に係る金属溶解装置。
The sixth means is
The metal melting apparatus according to the fifth means, wherein the vortex generating means generates a vortex in the molten metal by ejecting a gas into the molten metal.

第七の手段は、
前記気体が、溶湯に対して不活性な不活性ガスである、上記第六の手段に係る金属溶解装置である。
The seventh means is
The metal melting apparatus according to the sixth means, wherein the gas is an inert gas that is inert to the molten metal.

〔作用効果〕
本発明によれば、例えばアルミニウム合金又は非鉄金属材料のスクラップ材であるブリケット材のような溶湯に比して比重の軽い溶解原料を溶解するにあたり、加熱室内にスクリーン板を設けたことにより、その溶解原料の湯面へ浮上が防止されるため、湯面において空気等と接触して酸化することが防止され、酸化物の少ない清浄な溶湯を得ることができる。さらに、精製する溶湯の歩留りの向上とともに、酸化物処理のための脱滓処理作業も軽減される。
[Action effect]
According to the present invention, in order to melt a melting raw material having a lighter specific gravity than a molten metal such as a briquette material which is a scrap material of an aluminum alloy or a non-ferrous metal material, a screen plate is provided in a heating chamber. Since the molten raw material is prevented from floating on the surface of the molten metal, it is prevented from coming into contact with air or the like on the surface of the molten metal to be oxidized, and a clean molten metal with less oxide can be obtained. Further, the yield of the molten metal to be refined is improved, and the slag treatment work for the oxide treatment is also reduced.

また、スクリーン板を多数の貫通孔を有するものとし、それら貫通孔を、底面側から上面側に向かって狭窄するテーパー状となっているものとすると、溶解原料が、貫通孔に嵌り、所定の大きさ、具体的には、湯面に上昇する前に溶解されるに十分な大きさとなるまで、保持して、湯面に浮上することなく好適に酸化しないよう溶解させることができる。 Further, assuming that the screen plate has a large number of through holes and the through holes have a tapered shape narrowing from the bottom surface side to the top surface side, the dissolved raw material fits into the through holes and is predetermined. It can be held until it is large enough to be dissolved before it rises to the surface of the water, and can be dissolved without floating on the surface of the water so as not to be suitably oxidized.

また、供給路又は溶解室の供給路近傍に、加熱室に移送される未溶解の溶解原料に衝撃を与える衝撃付与手段を設ければ、未溶解の溶解原料が衝撃付与手段によって衝撃が与えられて砕け、加熱室に供給されるまでに溶解されやすくなる。特に、ブリケット材のような、切削屑や切粉等を圧縮して固形化したものであれば、衝撃により崩壊しやすく特に効果的に溶解を進めることができる。
その衝撃付与手段を未溶解の溶解原料が衝突するように構成された供給路等とすれば、簡易かつ動的部分を作ることなく未溶解の溶解原料に衝撃を与えることができる。
Further, if an impact applying means for giving an impact to the undissolved dissolved raw material transferred to the heating chamber is provided near the supply path or the supply path of the melting chamber, the undissolved dissolved raw material is impacted by the impact applying means. It is easily dissolved by the time it is crushed and supplied to the heating chamber. In particular, if it is a material such as a briquette material that is solidified by compressing cutting chips, chips, etc., it is likely to collapse due to an impact, and dissolution can proceed particularly effectively.
If the impact applying means is a supply path or the like configured so that the undissolved dissolved raw materials collide with each other, the undissolved dissolved raw materials can be impacted simply and without creating a dynamic portion.

また、溶解室に、溶解室内の溶湯に渦流を発生させる渦流発生手段を設ければ、ブリケット材のような比重の軽いスクラップ材が供給されてもそれらが迅速に、渦中心部において渦底に引き込まれるため外気と接触し難くなるため、より酸化物が形成された難く、より清浄な溶湯を得ることができるようになる。 Further, if the melting chamber is provided with a vortex generating means for generating a vortex in the molten metal in the melting chamber, even if a scrap material having a light specific density such as a briquette material is supplied, they quickly reach the bottom of the vortex at the center of the vortex. Since it is drawn in, it becomes difficult to come into contact with the outside air, so that it becomes difficult for oxides to be formed and a cleaner molten metal can be obtained.

さらに、その渦流発生手段を、溶湯中に気体を噴出することで、溶湯に渦流を発生させるものとすれば、渦中心底部に撹拌翼やスターラといった攪拌部材が存在させないようにでき、溶解原料と攪拌部材との接触のおそれが各段に少なくなり、ブリケット材や切粉等の溶湯よりも比重の軽い溶解原料だけでなく、リターン材や新材といった溶湯に沈む溶解原料を組み合わせて溶解室に供給して溶解することができるようになる。攪拌翼やスターラのような動的部品を少なくできるため、メンテナンスや取り扱い性にも優れるようになる。 Further, if the vortex flow generating means is to generate a vortex flow in the molten metal by ejecting a gas into the molten metal, it is possible to prevent a stirring member such as a stirring blade or a stirrer from being present at the bottom of the center of the vortex, and it can be used as a melting raw material. The risk of contact with the stirring member is reduced to each stage, and not only the melting raw materials such as briquettes and chips, which have a lighter specific gravity than the molten metal, but also the melting raw materials that sink in the molten metal such as return materials and new materials are combined into the melting chamber. It will be able to be supplied and dissolved. Since the number of dynamic parts such as stirring blades and stirrers can be reduced, maintenance and handleability will be improved.

さらに、その気体が、溶湯に対して不活性な不活性ガスとすれば、脱ガス効果が発現し、より清浄で質の高い溶湯が得られるようになる。 Further, if the gas is an inert gas that is inert to the molten metal, the degassing effect is exhibited, and a cleaner and higher quality molten metal can be obtained.

本発明によれば、ブリケット材のような溶湯に比して比重の軽い溶解原料を酸化させないように溶解させる金属溶解装置を提供が提供される。 According to the present invention, there is provided a metal melting apparatus that melts a melting raw material having a lighter specific gravity than a molten metal such as a briquette material so as not to oxidize.

本発明に係る金属溶解装置を含む溶解保持炉の平面概略図である。It is a top view of the plane of the melting holding furnace including the metal melting apparatus which concerns on this invention. 図1におけるII-II矢視図であり、本発明に係る金属溶解装置を含む溶解保持炉の断面概略図である。但し、説明の便宜のためII-II矢視に現れない部材等も記載する。FIG. 1 is a view taken along the line II-II in FIG. 1, which is a schematic cross-sectional view of a melting and holding furnace including the metal melting device according to the present invention. However, for convenience of explanation, members that do not appear in the II-II arrow are also described. 本発明に係る他の金属溶解装置を含む溶解保持炉の平面概略図である。It is a top view of the plan view of the melting holding furnace including another metal melting apparatus which concerns on this invention. 図3におけるIV-IV矢視図であり、本発明に係る他の金属溶解装置を含む溶解保持炉の断面概略図である。但し、説明の便宜のためIV-IV矢視に現れない部材等も記載する。FIG. 3 is a view taken along the line IV-IV in FIG. 3, which is a schematic cross-sectional view of a melting and holding furnace including another metal melting device according to the present invention. However, for convenience of explanation, members that do not appear in the IV-IV arrow are also described. 本発明に係る噴流ポンプを説明するための断面図である。It is sectional drawing for demonstrating the jet pump which concerns on this invention. 本実施形態に係るスクリーン板を説明するための斜視図である。It is a perspective view for demonstrating the screen board which concerns on this embodiment. 本実施形態に係る他のスクリーン板のVI-VI断面図である。It is a VI-VI sectional view of another screen plate which concerns on this embodiment. 本実施形態に係る他のスクリーン板を説明するための斜視図である。It is a perspective view for demonstrating another screen board which concerns on this Embodiment. 本実施形態に係る他のスクリーン板のVIII-VIII断面図である。It is VIII-VIII sectional view of another screen plate which concerns on this embodiment. 本発明に係る溶解室の例の断面図である。It is sectional drawing of the example of the melting chamber which concerns on this invention. 本発明に係る溶解室の別の例の断面図である。It is sectional drawing of another example of the melting chamber which concerns on this invention. 本発明に係る別の金属溶解装置を含む溶解保持炉の平面概略図である。It is a top view of the plan of the melting holding furnace which includes another metal melting apparatus which concerns on this invention. 図12におけるXIII-XIII矢視図であり、本発明に係る別の金属溶解装置を含む溶解保持炉の断面概略図である。但し、説明の便宜のためXIII-XIII矢視に現れない部材等も記載する。FIG. 12 is an arrow view of XIII-XIII in FIG. 12, which is a schematic cross-sectional view of a melting and holding furnace including another metal melting device according to the present invention. However, for convenience of explanation, members and the like that do not appear in the XIII-XIII arrow are also described.

以下、本発明に係る実施形態を図1〜図13を参照しながら説明する。
本実施形態に係る金属溶解装置10は、溶解原料Bを溶湯M中に供給する溶解室11と、供給路13を介して溶解室11に連通し溶湯Mを加熱する加熱室20とを有している。この本実施形態に係る金属溶解装置10は、溶湯Mを保持して溶湯M中の不純物等を沈殿させるなどする鎮静室30、溶湯Mを汲み出して外部の鋳造機、他の溶解保持炉や保持炉等へ出湯する汲出室40を備える溶解保持炉1に好ましく組み込まれている。この金属溶解装置10が組み込まれた溶解保持炉1も本発明として提案される。
Hereinafter, embodiments according to the present invention will be described with reference to FIGS. 1 to 13.
The metal melting apparatus 10 according to the present embodiment has a melting chamber 11 for supplying the melting raw material B into the molten metal M, and a heating chamber 20 for heating the molten metal M by communicating with the melting chamber 11 via the supply path 13. ing. The metal melting apparatus 10 according to the present embodiment has a sedation chamber 30 that holds the molten metal M and precipitates impurities and the like in the molten metal M, an external casting machine that pumps out the molten metal M, and other melting and holding furnaces and holding. It is preferably incorporated in a melting and holding furnace 1 provided with a pumping chamber 40 for discharging hot water to a furnace or the like. A melting and holding furnace 1 incorporating the metal melting device 10 is also proposed as the present invention.

但し、本発明の金属溶解装置10は、本実施形態に係る溶解保持炉1に組み込まれる形態に限定されることなく、溶解原料Bを溶湯M中に供給して溶解する装置として、単独で又は他の種の溶解保持炉や溶解炉に組み込んで実施することができる。 However, the metal melting device 10 of the present invention is not limited to the form incorporated in the melting and holding furnace 1 according to the present embodiment, and can be used alone or as a device for supplying and melting the melting raw material B into the molten metal M. It can be carried out by incorporating it into other types of melting and holding furnaces and melting furnaces.

本実施形態に係る溶解保持炉1は、外殻3内において各室が耐火材2により形成され、溶解室11は供給路13を介して加熱室20に連通している。さらに、前記加熱室20及び溶解室11に連通する循環室50が好ましく設けられており、溶湯Mが、加熱室20から循環室50を介して溶解室11に還流可能に構成されている。 In the melting and holding furnace 1 according to the present embodiment, each chamber is formed of a refractory material 2 in the outer shell 3, and the melting chamber 11 communicates with the heating chamber 20 via a supply path 13. Further, a circulation chamber 50 communicating with the heating chamber 20 and the melting chamber 11 is preferably provided, and the molten metal M is configured to be able to return from the heating chamber 20 to the melting chamber 11 via the circulation chamber 50.

溶解室11は、上方に溶解原料Bを供給するための供給口11Aを有しており、図示されないホッパーやコンベア等の搬入装置から、供給口11Aを介して溶解原料Bであるアルミニウム、アルミニウム合金及びその他の非鉄金属材が、溶解室11中の溶湯Mに対して供給される。アルミニウム、アルミニウム合金及びその他の非鉄金属材の具体的形態としては、リターン材、ブリケット材及び切粉等のスクラップ材と、新材とが挙げられる。特に、本発明に係る金属溶解装置10は、溶湯Mよりも比重が軽く湯面に浮くブリケット材のような溶解原料Bに適する。ブリケット材等の油分や水分等を含む溶解原料Bについては、事前に乾燥・予熱により油分・水分等を除去する前処理を行ってもよい。 The melting chamber 11 has a supply port 11A for supplying the melting raw material B upward, and is an aluminum or aluminum alloy which is the melting raw material B from a carry-in device such as a hopper or a conveyor (not shown) via the supply port 11A. And other non-ferrous metal materials are supplied to the molten metal M in the melting chamber 11. Specific forms of aluminum, aluminum alloys and other non-ferrous metal materials include scrap materials such as return materials, briquette materials and chips, and new materials. In particular, the metal melting apparatus 10 according to the present invention is suitable for a melting raw material B such as a briquette material which has a lighter specific gravity than the molten metal M and floats on the surface of the molten metal. The dissolved raw material B containing oil, water, etc. of the briquette material may be pretreated to remove the oil, water, etc. by drying and preheating in advance.

加熱室20には、好ましい形態として、浸漬ヒータ21,21が上方から加熱室20内に差し込まれるように配されており、溶湯Mを加熱する。この浸漬ヒータ21,21による溶湯Mの加熱により、溶解保持炉1内の溶湯Mの温度が保持され、溶解室11に供給された溶解原料B及び溶解室11から供給路13を介して加熱室20に送られた溶解原料Bは、溶湯M中で溶解される。但し、加熱室20における溶湯Mの加熱手段は、浸漬ヒータ21,21に限定されず、浸漬バーナを採用してもよい。また、浸漬ヒータ21,21の配置についても、上方から加熱室20内に差し込む形態に限らず、図12及び図13のように加熱室20の側壁側から加熱室20内に差し込む形態や、底部に配置するようにしてもよい。 In the heating chamber 20, as a preferable form, immersion heaters 21 and 21 are arranged so as to be inserted into the heating chamber 20 from above to heat the molten metal M. By heating the molten metal M by the immersion heaters 21 and 21, the temperature of the molten metal M in the melting holding furnace 1 is maintained, and the melting raw material B supplied to the melting chamber 11 and the heating chamber 11 from the melting chamber 11 via the supply path 13 are used. The dissolution raw material B sent to No. 20 is dissolved in the molten metal M. However, the heating means of the molten metal M in the heating chamber 20 is not limited to the immersion heaters 21 and 21, and an immersion burner may be adopted. Further, the arrangement of the immersion heaters 21 and 21 is not limited to the form of inserting into the heating chamber 20 from above, but also the form of inserting into the heating chamber 20 from the side wall side of the heating chamber 20 as shown in FIGS. 12 and 13. It may be arranged in.

また、加熱室20は、溶湯Mの湯面との間に空間が作られないように上部開口部を閉塞して設置された溶解室蓋22を備えており、溶解室11から送られた溶解原料Bが無酸素状態で溶解されやすくなっている。但し、本発明に係る加熱室20は、このような溶湯Mの湯面との間に空間を作らない溶解室蓋22が必ずしも備えられていなくてもよい。 Further, the heating chamber 20 includes a melting chamber lid 22 installed by closing the upper opening so as not to create a space between the molten metal M and the surface of the molten metal M, and the melting chamber 20 is sent from the melting chamber 11. The raw material B is easily dissolved in an oxygen-free state. However, the heating chamber 20 according to the present invention does not necessarily have to be provided with a melting chamber lid 22 that does not form a space between the molten metal M and the surface of the molten metal M.

溶解室11から加熱室20に至る供給路13は、図2、図4及び図13に示すように、その出口が加熱室20の下方位置にあるのが望ましい。このように供給路13の出口を加熱室20の下部とすることで、例えば、溶解室11で完全に溶解されなかった未溶解のブリケット材のように溶湯よりも比重の軽い溶解原料Bが加熱室20に供給された場合に、加熱室20内の溶湯M中を浮き上がる過程で溶解させることができ、加熱室20の上部に未溶解のブリケット材が溜まり酸化されるような事象が起き難くなる。なお、溶湯Mの湯面との間に空間が作られないように上部開口部を溶解室蓋22により閉塞して設置しても、溶解室蓋22と湯面との間に空気等の気体が存在する場合があり、また、ブリケット材のような油分や水分を含む溶解原料Bでは、水分や油分等に由来する気体が蓋下面に溜まることがあるため、溶解原料Bが湯面に浮くと酸化されることがある。したがって、溶湯の湯面との間に空間が作られないように上部開口部を溶解室蓋22により閉塞している場合でも、供給路13の出口は加熱室20の下方位置とするのが望ましい。 It is desirable that the outlet of the supply path 13 from the melting chamber 11 to the heating chamber 20 is located below the heating chamber 20, as shown in FIGS. 2, 4 and 13. By setting the outlet of the supply path 13 as the lower part of the heating chamber 20, for example, the melting raw material B having a lighter specific gravity than the molten metal, such as an undissolved briquette material that was not completely melted in the melting chamber 11, is heated. When supplied to the chamber 20, the molten metal M in the heating chamber 20 can be melted in the process of floating, and an event in which undissolved briquette material accumulates in the upper part of the heating chamber 20 and is oxidized is less likely to occur. .. Even if the upper opening is closed by the melting chamber lid 22 so as not to create a space between the molten metal M and the molten metal surface, a gas such as air is provided between the melting chamber lid 22 and the molten metal surface. In addition, in the dissolved raw material B containing oil and water such as briquette material, gas derived from water and oil may accumulate on the lower surface of the lid, so that the dissolved raw material B floats on the surface of the hot water. May be oxidized. Therefore, even when the upper opening is closed by the melting chamber lid 22 so as not to create a space between the molten metal and the surface of the molten metal, it is desirable that the outlet of the supply path 13 is located below the heating chamber 20. ..

本実施形態の係る金属溶解装置10では、、図2、図4及び図13に示すように、特徴的に、加熱室20の前記供給路13の出口がある下部と、それよりも上方の上部とを区画するようにして、加熱室20内に、供給路13から移送される溶解原料Bの浮上を、少なくとも所定の大きさとなるまで防止するスクリーン板70が設けられている。 In the metal melting apparatus 10 according to the present embodiment, as shown in FIGS. 2, 4 and 13, characteristically, the lower part where the outlet of the supply path 13 of the heating chamber 20 is located and the upper part above it. A screen plate 70 is provided in the heating chamber 20 to prevent the molten material B transferred from the supply path 13 from floating until it reaches at least a predetermined size.

このスクリーン板70は、図6〜図8に示すように、溶湯M内に沈没設置可能な素材で形成された、多数の貫通孔71を有する板状体であり、溶解室11から供給路13を介して加熱室20内に供給された未溶解の溶解原料Bが、スクリーン板70に形成された貫通孔71を通過可能な大きさとなるまで加熱室20内の特にスクリーン板70の下方位置に保持して溶湯M内で溶解が進むようにする。但し、スクリーン板70は、これに限らず、溶湯Mよりも比重の軽い溶解原料Bの浮上を防止するものであれば、特に限定されない。 As shown in FIGS. 6 to 8, the screen plate 70 is a plate-like body formed of a material that can be submerged and installed in the molten metal M and has a large number of through holes 71, and is a plate-like body having a large number of through holes 71, and is a supply path 13 from the melting chamber 11. The undissolved dissolved raw material B supplied into the heating chamber 20 through the screen plate 70 is placed at a position particularly below the screen plate 70 in the heating chamber 20 until it becomes large enough to pass through the through hole 71 formed in the screen plate 70. Hold it so that the dissolution proceeds in the molten metal M. However, the screen plate 70 is not limited to this, and is not particularly limited as long as it prevents the melting raw material B having a specific gravity lighter than that of the molten metal M from floating.

このように加熱室20内にスクリーン板70を設けることで、ブリケット材のような溶湯に比して比重の軽い溶解原料Bが、加熱室20内の湯面に至るまで浮くことが防止され、無酸素状態で溶解することができるようになる。 By providing the screen plate 70 in the heating chamber 20 in this way, it is possible to prevent the melting raw material B, which has a lighter specific gravity than the molten metal such as briquette material, from floating up to the surface of the molten metal in the heating chamber 20. It becomes possible to dissolve in anoxic state.

スクリーン板70に形成された貫通孔71の個数や大きさは、特に限定されないが、供給される溶解原料Bの大きさ、溶解速度、スクリーン板70の設置深さと湯面との距離、溶解原料Bの性質等を考慮して適宜に定めればよい。貫通孔71を通過可能となった大きさの溶解原料Bが、湯面に浮上するまでの間に、溶湯によって十分に溶解されるように設定すればよい。好ましくは、未溶解の溶解原料Bが、貫通孔を通過して浮上し、湯面に到達するまえに溶解されるまでの時間が、2〜3分となるように設計するのが望ましい。例えばアルミスクラップ材からのブリケット材の一般的な大きさを考慮すると、貫通孔71は直径が20〜50mmであるのが望ましい。 The number and size of the through holes 71 formed in the screen plate 70 are not particularly limited, but the size and dissolution rate of the dissolved raw material B to be supplied, the distance between the installation depth of the screen plate 70 and the molten metal surface, and the melting raw material It may be determined appropriately in consideration of the property of B and the like. The melting raw material B having a size that allows it to pass through the through hole 71 may be set so as to be sufficiently dissolved by the molten metal before it floats on the surface of the molten metal. Preferably, it is desirable to design so that the time until the undissolved dissolved raw material B floats through the through hole and is dissolved before reaching the surface of the molten metal is 2 to 3 minutes. For example, considering the general size of a briquette material from an aluminum scrap material, it is desirable that the through hole 71 has a diameter of 20 to 50 mm.

また、貫通孔71は、図6及び図7に示すように円柱形状、又は図8及び図9に示すように、上方に向かって狭窄するテーパー形状であるのが望ましい。このように構成すると貫通孔71に未溶解の溶解原料Bが嵌り、加熱室20内で移動せずに定位置に留まるようになり溶解が進みやすくなる。 Further, it is desirable that the through hole 71 has a cylindrical shape as shown in FIGS. 6 and 7, or a tapered shape that narrows upward as shown in FIGS. 8 and 9. With this configuration, the undissolved raw material B fits into the through hole 71, stays in a fixed position without moving in the heating chamber 20, and the dissolution facilitates.

スクリーン板70の素材は、溶湯M内に沈没設置可能な素材であればよいが、好ましくは、炭化ケイ素、ジルコニア系、ファインセラミックスである。
スクリーン板70の厚さは、特に限定されないが、上記素材であれば、20〜80mmであれば十分な強度としやすい。
The material of the screen plate 70 may be any material that can be submerged and installed in the molten metal M, but is preferably silicon carbide, zirconia, or fine ceramics.
The thickness of the screen plate 70 is not particularly limited, but if it is the above material, it is easy to obtain sufficient strength if it is 20 to 80 mm.

加熱室20内におけるスクリーン板70の設置形態としては、加熱室20の底部に固定するようにして設置してもよいし、加熱室20の天面から吊り下げるように設置してもよい。設置の方法は限定されない。但し、実施形態の加熱室20のように浸漬ヒータ21,21を上方から室内に差し込むように配置するのであれば、浸漬ヒータ21,21と浮上する溶解原料Bとが接触しないよう、スクリーン板70を浸漬ヒータ21,21の底よりも下方位置に配置するのが望ましい。また、スクリーン板70は、加熱室20の底から20〜35%の高さ位置に設けるのがよい。さらに、図4に示すように、加熱室20内にスクリーン板70を複数段設けるようにしてもよい。この場合、各スクリーン板70の貫通孔71の孔径を異なるようにしてもよい。その場合、上段のスクリーン板70の貫通孔71の直径を下段のスクリーン板70の貫通孔71の直径よりも小さくするのが望ましい。 The screen plate 70 may be installed in the heating chamber 20 so as to be fixed to the bottom of the heating chamber 20 or suspended from the top surface of the heating chamber 20. The installation method is not limited. However, if the immersion heaters 21 and 21 are arranged so as to be inserted into the room from above as in the heating chamber 20 of the embodiment, the screen plate 70 is provided so that the immersion heaters 21 and 21 and the floating melting raw material B do not come into contact with each other. Is preferably placed below the bottom of the immersion heaters 21 and 21. Further, the screen plate 70 is preferably provided at a height of 20 to 35% from the bottom of the heating chamber 20. Further, as shown in FIG. 4, a plurality of screen plates 70 may be provided in the heating chamber 20. In this case, the hole diameter of the through hole 71 of each screen plate 70 may be different. In that case, it is desirable that the diameter of the through hole 71 of the upper screen plate 70 be smaller than the diameter of the through hole 71 of the lower screen plate 70.

他方で、本発明に係る金属溶解装置10は、供給路13又は溶解室11の供給路13近傍に、溶解室11から加熱室20に送られる未溶解の溶解原料Bに衝撃を与える衝撃付与手段を設けるのが望ましい。衝撃付与手段は、動的に衝撃を付与するものであってもよいが、好ましくは、メンテナンス性の面で、未溶解の溶解原料Bが溶湯の流れによって加熱室20に搬送される過程で衝突するような障害物など静的なものであるのが望ましい。例えば、供給路13の内壁又は溶解室11の供給路13近傍の内壁に凸部を設け、未溶解の溶解原料Bが通過する際に凸部に衝突するようにすればよい。さらに、具体的な例としては、溶湯Mに比して比重の軽いブリケット材等の未溶解の溶解原料Bは、浮力と加熱室20への溶湯Mの流れによって、供給路13の上面に沿って移動されるため、図2、図4及び図13に示すように、供給路13の上壁面13Bを階段状に形成したり、上壁面13Bに凸部を形成したりするなどすれば、未溶解の溶解原料Bが加熱室20に移動する際に、供給路13の階段状の上壁面13Bや上壁面13Bに形成した凸部などに衝突することになり衝撃が付与され、未溶解の溶解原料Bが崩壊し、スクリーン板70が設置されている加熱室20で迅速に溶解されやすい。 On the other hand, the metal melting apparatus 10 according to the present invention is an impact applying means for giving an impact to the undissolved dissolved raw material B sent from the melting chamber 11 to the heating chamber 20 in the vicinity of the supply passage 13 or the supply passage 13 of the melting chamber 11. It is desirable to provide. The impact applying means may dynamically apply an impact, but preferably, in terms of maintainability, the undissolved dissolved raw material B collides in the process of being conveyed to the heating chamber 20 by the flow of the molten metal. It is desirable that it is a static object such as an obstacle that does. For example, a convex portion may be provided on the inner wall of the supply path 13 or the inner wall in the vicinity of the supply path 13 of the melting chamber 11 so that the undissolved dissolved raw material B collides with the convex portion when passing through. Further, as a specific example, the undissolved dissolved raw material B such as a briquette material having a lighter specific gravity than the molten metal M is along the upper surface of the supply path 13 due to the buoyancy and the flow of the molten metal M into the heating chamber 20. As shown in FIGS. 2, 4 and 13, if the upper wall surface 13B of the supply path 13 is formed in a stepped shape or a convex portion is formed on the upper wall surface 13B, it is not possible. When the dissolution raw material B for dissolution moves to the heating chamber 20, it collides with the stepped upper wall surface 13B of the supply path 13 and the convex portion formed on the upper wall surface 13B, and an impact is applied to the undissolved dissolution material B. The raw material B collapses and is easily melted quickly in the heating chamber 20 in which the screen plate 70 is installed.

他方で、本発明に係る金属溶解装置10は、溶解室11に、溶解室11内の溶湯Mに渦流を発生させる渦流発生手段が、設けられているのが望ましい。渦流発生手段としては、図1〜4及び図12〜図13に示す形態のように、溶湯M中に気体Gを噴出することで、溶湯Mに渦流を発生させるものであるのが望ましいが、図10に示すように、溶解室11の下方に磁気攪拌装置114を設けて溶解室11内の溶湯Mに渦流を発生させるものであってもよい。さらに、図11に示すように、回転軸115の先端に攪拌翼116を設けた攪拌装置を溶解室11の溶湯M内に挿入して、攪拌翼116によって溶湯Mを攪拌して渦流を発生させるようにしたものであってもよい。この形態では、回転軸115の先端から溶湯Mに対して不活性な不活性ガスGを噴射して、脱ガス処理を行うようにしてもよい。これらの形態のように溶解室11内の溶湯Mに渦流を発生させることにより、溶湯Mよりも比重の軽い溶解原料Bが供給されてもそれらが迅速に、渦中心部において渦底に引き込まれるようになり、溶解原料Bと外気とが接触し難くなり、より酸化物が形成され難く、より清浄な溶湯Mが得られる。また、溶解原料Bが、渦流により攪拌される過程で、溶解原料B同士の衝突が促されて崩壊により溶解されやすくなる。特に、切削屑や切粉等を圧縮して固形化したブリケット材では、崩壊が効果的に発生する。 On the other hand, in the metal melting apparatus 10 according to the present invention, it is desirable that the melting chamber 11 is provided with a vortex generating means for generating a vortex in the molten metal M in the melting chamber 11. As the vortex generating means, as shown in FIGS. 1 to 4 and 12 to 13, it is desirable that the vortex is generated in the molten metal M by ejecting the gas G into the molten metal M. As shown in FIG. 10, a magnetic stirring device 114 may be provided below the melting chamber 11 to generate a vortex in the molten metal M in the melting chamber 11. Further, as shown in FIG. 11, a stirring device provided with a stirring blade 116 at the tip of the rotating shaft 115 is inserted into the molten metal M of the melting chamber 11, and the molten metal M is stirred by the stirring blade 116 to generate a vortex. It may be made like this. In this embodiment, the degassing treatment may be performed by injecting the inert gas G, which is inert to the molten metal M, from the tip of the rotating shaft 115. By generating a vortex flow in the molten metal M in the melting chamber 11 as in these forms, even if the melting raw material B having a lighter specific density than the molten metal M is supplied, they are quickly drawn into the vortex bottom at the center of the vortex. As a result, the melting raw material B and the outside air are less likely to come into contact with each other, and oxides are less likely to be formed, so that a cleaner molten metal M can be obtained. Further, in the process in which the dissolved raw material B is agitated by the vortex flow, the collision between the dissolved raw materials B is promoted and the dissolved raw materials B are easily dissolved by the collapse. In particular, in a briquette material obtained by compressing and solidifying cutting chips and chips, collapse occurs effectively.

溶解室11の形状は、矩形の箱型でもよいが、渦流を発生させるのであれば、特に図1
〜4及び図12〜図13に示されるように、溶湯Mが貯留される内空間が略円筒型又は略逆円錐型であるのが望ましい。内壁面に案内されるように溶湯Mが流動されて、溶解室11内に溶湯Mの渦流が発生しやすくなるとともに、その渦流を持続させやすくなる。このため気体噴出に係るエネルギーを少なくすることが可能となる。
The shape of the melting chamber 11 may be a rectangular box shape, but if a vortex is to be generated, the shape of FIG. 1 is particularly high.
As shown in No. 4 and FIGS. 12 to 13, it is desirable that the inner space in which the molten metal M is stored is a substantially cylindrical shape or a substantially inverted conical shape. The molten metal M is flowed so as to be guided by the inner wall surface, so that a vortex of the molten metal M is likely to be generated in the melting chamber 11 and the vortex is easily maintained. Therefore, it is possible to reduce the energy related to the gas ejection.

また、溶解室11は、特に渦流を発生させるようにする場合、溶解室11と加熱室20とを繋ぐ供給路13の溶解室側開口13Aは、渦流の中心底部、例えば、図2、図4及び図13に示すように溶解室11の中央底部に形成するのが望ましい。溶解原料Bが渦流によって渦底中心部に引き込まれるとともに、溶解原料Bが浮くことなく加熱室20に供給されるようになり、効果的に溶解原料Bの溶解がなされるようになる。 Further, when the melting chamber 11 is to generate a vortex, the melting chamber side opening 13A of the supply path 13 connecting the melting chamber 11 and the heating chamber 20 is formed at the central bottom of the vortex, for example, FIGS. 2 and 4. And, as shown in FIG. 13, it is desirable to form it at the central bottom of the dissolution chamber 11. The dissolved raw material B is drawn into the center of the vortex bottom by the vortex flow, and the dissolved raw material B is supplied to the heating chamber 20 without floating, so that the dissolved raw material B is effectively melted.

また、溶解室11は、溶湯Mを加熱する溶湯加熱手段を備えるのが望ましい。溶湯加熱手段としては、図示はしないが、溶解室11底部や側壁近傍に浸漬ヒータを設ければよい。浸漬ヒータは、溶解室11側壁近傍において上方から溶湯M内に差し込むように配置してもよい。溶解室11に溶湯加熱手段を設ければ、溶解室11に貯留される溶湯Mが加熱され、溶解原料Bの供給による溶湯Mの温度低下が少なくなり、溶解原料Bがより迅速に溶解されやすくなる。また、浸漬ヒータの代わりに浸漬バーナを採用しても構わない。 Further, it is desirable that the melting chamber 11 is provided with a molten metal heating means for heating the molten metal M. Although not shown, the molten metal heating means may be provided with a dipping heater at the bottom of the melting chamber 11 or near the side wall. The immersion heater may be arranged so as to be inserted into the molten metal M from above near the side wall of the melting chamber 11. If the molten metal heating means is provided in the melting chamber 11, the molten metal M stored in the melting chamber 11 is heated, the temperature drop of the molten metal M due to the supply of the melting raw material B is reduced, and the melting raw material B is easily melted more quickly. Become. Further, a dipping burner may be used instead of the dipping heater.

続けて、本発明に係る溶解室11における特に好ましい形態である渦流発生手段としては、溶湯中に気体Gを噴出することで、溶湯Mに渦流を発生させる具体的な形態を説明する。
この溶解室11は、図1〜図4に示すように、特徴的に、溶解室11内の溶湯M中に気体Gを噴出して、溶湯Mとともに溶解原料Bを攪拌する渦流を溶解室11内に発生させる気体噴出装置14が設けられており、前記加熱室20とともに金属溶解装置10を構成している。
Subsequently, as a vortex generating means which is a particularly preferable form in the melting chamber 11 according to the present invention, a specific form for generating a vortex in the molten metal M by ejecting the gas G into the molten metal will be described.
As shown in FIGS. 1 to 4, the melting chamber 11 characteristically creates a vortex in which the gas G is ejected into the molten metal M in the melting chamber 11 and the molten metal B is stirred together with the molten metal M. A gas ejection device 14 for generating gas inside is provided, and the metal melting device 10 is configured together with the heating chamber 20.

気体噴出装置14は、例えば、図示のように、溶湯M内に位置する噴出口14Aを有する噴出部14B、この噴出部14Bに連通する送気管14C、及び気体Gを発生させる気体発生装置14Dで構成することができる。例えば気体が窒素ガスの場合、気体発生装置の例としては、株式会社日立産機システムの「窒素ガス発生装置(N2パック)」及びアネスト岩田株式会社製等のその相当装置が挙げられる。気体発生装置14Dから送気管14Cを介して溶解室11内に送気される気体Gを噴出口14Aから溶湯M内に噴出させることで、溶解室11内の溶湯Mを攪拌して渦流が発生させる。 As shown in the figure, the gas ejection device 14 is, for example, an ejection portion 14B having an ejection port 14A located in the molten metal M, an air supply pipe 14C communicating with the ejection portion 14B, and a gas generator 14D for generating gas G. Can be configured. For example, when the gas is nitrogen gas, examples of the gas generator include "nitrogen gas generator (N2 pack)" manufactured by Hitachi Industrial Equipment Systems Co., Ltd. and equivalent devices manufactured by Anest Iwata Co., Ltd. By ejecting the gas G sent from the gas generator 14D into the melting chamber 11 via the air supply pipe 14C from the ejection port 14A into the molten metal M, the molten metal M in the melting chamber 11 is agitated and a vortex is generated. Let me.

さらに、図示はしないが、溶解室11内に噴出口14Aから噴出された気体Gを適宜の方向に案内し、渦流を発生させやすくする整流板を設けてもよい。例えば、溶解室11の内壁から溶解室11の中心方向に向かって突出する整流板を、噴出口14Aの直近上方の位置に設ける。噴出口14Aから噴出された気体Gが気泡となって直ぐに上昇せず、渦流が発生しやすくなる。この際、整流板を、噴出口14A側から遠ざかるにしたがって、やや上方に向かうように傾斜させれば、気体Gが略螺旋方向に噴射されるようになり、渦流をより発生させやすくなる。また、溶解室11の内壁に螺旋状に溝を形成してもよい。このようにすれば渦流がさらに発生しやすくなる。 Further, although not shown, a straightening vane may be provided in the melting chamber 11 to guide the gas G ejected from the ejection port 14A in an appropriate direction to facilitate the generation of a vortex flow. For example, a straightening vane protruding from the inner wall of the melting chamber 11 toward the center of the melting chamber 11 is provided at a position immediately above the ejection port 14A. The gas G ejected from the ejection port 14A becomes bubbles and does not rise immediately, so that a vortex flow is likely to occur. At this time, if the straightening vane is tilted so as to move slightly upward as the distance from the ejection port 14A side increases, the gas G is injected in a substantially spiral direction, and it becomes easier to generate a vortex flow. Further, a groove may be formed spirally on the inner wall of the melting chamber 11. In this way, eddy currents are more likely to occur.

本実施形態における気体噴出装置14は、図1及び図2、図12及び図13に示す形態のように、溶解室11内において噴出部14Bを内壁面近傍に設けるのが望ましい。供給された溶解原料Bは渦流により渦流中心へと引き込まれる。噴出部14Bが内壁面近傍にあれば、溶解原料Bが噴出部14Bと接触し難くなり、気体噴出装置14の破損の虞が小さくなる。 In the gas ejection device 14 of the present embodiment, it is desirable that the ejection portion 14B is provided in the vicinity of the inner wall surface in the melting chamber 11 as shown in FIGS. 1 and 2, 12 and 13. The supplied melting raw material B is drawn to the center of the vortex flow by the vortex flow. If the ejection portion 14B is near the inner wall surface, the dissolution raw material B is less likely to come into contact with the ejection portion 14B, and the risk of damage to the gas ejection device 14 is reduced.

さらに、気体噴出装置14は、図3及び図4に示す形態のように、溶解原料Bとより接触し難いように、溶解室11の側壁内に設け、壁面から噴出口14Aが溶解室11内に臨むようにしてもよい。図3及び図4に示す形態では、溶解室11が溶解保持炉1の一部であり、加熱室20から溶解室11に溶湯Mが還流するように循環室50や循環路を設けるように構成されているため、溶解室11と循環室50との間の壁間、つまり溶解室11と循環室50との間の連通路51等、加熱室20から溶解室11へ溶湯Mを循環させる循環路中に、噴出部14Bをその噴出口14Aが溶解室11に臨むように設けている。このようにすれば、溶解室11内に噴出部14Bが位置しなくなり、噴出部14Bと溶解原料Bとの接触が効果的に防止され、気体噴出装置14の破損の虞が各段に小さくなる。 Further, as shown in FIGS. 3 and 4, the gas ejection device 14 is provided in the side wall of the dissolution chamber 11 so as to be less likely to come into contact with the dissolution raw material B, and the ejection port 14A is provided in the dissolution chamber 11 from the wall surface. You may try to face. In the embodiment shown in FIGS. 3 and 4, the melting chamber 11 is a part of the melting holding furnace 1, and the circulation chamber 50 and the circulation passage are provided so that the molten metal M returns from the heating chamber 20 to the melting chamber 11. Therefore, the molten metal M is circulated from the heating chamber 20 to the melting chamber 11, such as between the walls between the melting chamber 11 and the circulation chamber 50, that is, the communication passage 51 between the melting chamber 11 and the circulation chamber 50. A spouting portion 14B is provided in the road so that the spouting port 14A faces the melting chamber 11. By doing so, the ejection portion 14B is not located in the melting chamber 11, the contact between the ejection portion 14B and the dissolution raw material B is effectively prevented, and the risk of damage to the gas ejection device 14 is further reduced. ..

気体Gの噴出口14Aが望む方向、すなわち気体噴出方向としては、図1〜図4に示すように、発生させる渦流の中心が溶解室11の中央部となるように設定すればよい。例えば、図示例のように平面視で略円径の溶解室11であれば、その円の略接線方向に向けるようにすればよい。 As shown in FIGS. 1 to 4, the desired direction of the gas G ejection port 14A, that is, the gas ejection direction, may be set so that the center of the generated vortex flow is the central portion of the melting chamber 11. For example, if the melting chamber 11 has a substantially circular diameter in a plan view as shown in the illustrated example, it may be oriented in the substantially tangential direction of the circle.

さらに、図1及び図2、図12及び図13に示すように、噴出部14Bを溶解室11内の底部近傍の深さ位置に設け、噴出口14Aをやや上方に向けるようにし、噴出口14Aから噴出された気体Gが溶解室11中央部に対して、溶解室11底部側方から螺旋方向に噴出されるようにすれば、溶解室11内に渦流をより発生させやすくなる。なお、図示の気体Gの噴出方向は、溶解室11中央部が渦中心となるように設定した例であるが、もちろん、渦流の中心を溶解室11中央部とは異なる位置となるように設定した場合には、その渦流の中心に対して気体Gが螺旋方向に噴出するように噴出口14A及び噴出部14Bを適宜に設けるようにすればよい。 Further, as shown in FIGS. 1 and 2, FIG. 12 and FIG. 13, the ejection portion 14B is provided at a depth position near the bottom portion in the melting chamber 11, and the ejection port 14A is directed slightly upward so that the ejection port 14A is directed slightly upward. If the gas G ejected from the gas G is ejected from the side of the bottom of the dissolution chamber 11 in a spiral direction with respect to the central portion of the dissolution chamber 11, it becomes easier to generate a vortex in the dissolution chamber 11. The ejection direction of the gas G shown in the figure is an example in which the central portion of the melting chamber 11 is set to be the center of the vortex, but of course, the center of the vortex flow is set to be different from the central portion of the melting chamber 11. In this case, the ejection port 14A and the ejection portion 14B may be appropriately provided so that the gas G is ejected in the spiral direction with respect to the center of the vortex flow.

溶解室11内における気体Gの噴出箇所は、複数とするのが望ましい。図示の形態では、二か所に設けている。噴出個所を複数とする場合、複数の噴出口14Aを有する一つの気体噴出装置14を溶解室11に設けるようにしてもよいし、溶解室11に複数の気体噴出装置14を設けるようにしてもよい。複数個所から気体Gを噴出するようにすれば、溶湯Mに対するより大きな攪拌力を発生させることができるため渦流が発生しやすくなる。この場合、発生させる渦流の中心、例えば、溶解室11中央部に対して点対称位置に噴出口14Aを配置すれば、渦流をより発生させやすくなる。さらに、噴出個所を複数とする場合、噴出個所の深さ位置を異なるようにするとより、渦流が発生しやすくなる。一般的な溶解室11の深さであれば、好ましくは、一方の噴出個所を350〜400mmとし、他方の噴出個所を170〜230mmとするのがよい。 It is desirable that the number of gas G ejection points in the dissolution chamber 11 is a plurality. In the illustrated form, it is provided in two places. When there are a plurality of ejection points, one gas ejection device 14 having a plurality of ejection ports 14A may be provided in the dissolution chamber 11, or a plurality of gas ejection devices 14 may be provided in the dissolution chamber 11. Good. If the gas G is ejected from a plurality of places, a larger stirring force for the molten metal M can be generated, so that a vortex flow is likely to occur. In this case, if the ejection port 14A is arranged at a point-symmetrical position with respect to the center of the vortex to be generated, for example, the central portion of the melting chamber 11, the vortex can be more easily generated. Further, when there are a plurality of ejection points, eddy currents are more likely to occur if the depth positions of the ejection points are different. If it is a general melting chamber 11, the depth of one ejection portion is preferably 350 to 400 mm, and the other ejection portion is preferably 170 to 230 mm.

本実施形態に係る気体噴出装置14は、溶湯M中に気体Gを噴出させて溶湯Mを流動させ、渦流を発生させるものであれば限定されないが、図5に断面概略を示す、ジェットポンプとも称される噴流ポンプ16の構成を採用するのが望ましい。噴流ポンプ16は、高圧の駆動流体Gをノズル17に圧送し、そこからスロート18に向けて高速に噴出させると噴流の圧力が低圧になることを利用して、噴流の周囲の被駆動流体Mを引き込んで、混合しながら噴射する。したがって、噴流ポンプ16を用いれば、気体Gを駆動流体として噴射することで、周囲の溶湯Mを被駆動流体として吸引又は巻き込みつつ気体Gとともに噴射されるようになるため、気体Gのみで溶解室11内の溶湯Mに流動性を付与するよりも、各段に溶湯Mを流動させやすく、渦流を容易に発生させることができる。 The gas ejection device 14 according to the present embodiment is not limited as long as it ejects a gas G into the molten metal M to flow the molten metal M to generate a vortex, but it is also a jet pump whose cross section is outlined in FIG. It is desirable to adopt the configuration of the jet pump 16 referred to. The jet pump 16 pumps a high-pressure driving fluid G to the nozzle 17 and ejects the high-pressure driving fluid G toward the throat 18 at a high speed, so that the pressure of the jet becomes low, and the driven fluid M around the jet flows. Is drawn in and jetted while mixing. Therefore, if the jet pump 16 is used, by injecting the gas G as the driving fluid, the surrounding molten metal M is sucked or entrained as the driven fluid and injected together with the gas G. Therefore, only the gas G is used as the melting chamber. Rather than imparting fluidity to the molten metal M in 11, the molten metal M can be easily flowed in each stage, and a vortex can be easily generated.

特に、図3及び図4に示す形態のように、噴出部14Bを溶解室11と循環室50との間の壁間、つまり溶解室11と循環室50との間の連通路51等に配するとともに、噴流ポンプ16の構成を採用すれば、連通路51近傍の溶湯Mが気体Gとともに溶解室11内に流れこむようになり、効果的に渦流を発生させることができるうえ、溶解原料Bと気体噴出装置14の一部である噴出部14Bとの接触がなくなるため望ましい。さらに、加熱室20から溶解室11に還流する溶湯Mの流れが発生し、溶解室11に供給された溶解原料Bのうち未溶解の溶解原料Bが溶解室11に留まらず、加熱室20に供給されて、溶解原料Bの溶解が効果的に進むようになる。 In particular, as shown in FIGS. 3 and 4, the jet portion 14B is arranged between the walls between the dissolution chamber 11 and the circulation chamber 50, that is, the communication passage 51 between the dissolution chamber 11 and the circulation chamber 50 and the like. At the same time, if the configuration of the jet pump 16 is adopted, the molten metal M in the vicinity of the communication passage 51 will flow into the melting chamber 11 together with the gas G, and an eddy current can be effectively generated, and the melting raw material B and the melting raw material B can be generated. This is desirable because the contact with the ejection portion 14B, which is a part of the gas ejection device 14, is eliminated. Further, a flow of the molten metal M refluxing from the heating chamber 20 to the melting chamber 11 is generated, and the undissolved dissolved raw material B among the dissolved raw materials B supplied to the melting chamber 11 does not stay in the melting chamber 11 and enters the heating chamber 20. It is supplied so that the dissolution raw material B can be effectively dissolved.

溶湯M内に噴出する気体Gとしては、窒素ガス、アルゴンガス等の溶湯Mに対して不活性な不活性ガス(以下「不活性なガス」という)であるのが望ましい。不活性なガスGの生成や送気方法について限定されない。空気から窒素ガスを分離するコンプレッサーや不活性ガスを封入したボンベ等から圧送して供給すればよい。好ましくは、0.5MPa以下、より好ましくは0.3〜0.5MPaの圧力で噴出させるとよい。不活性なガスGを溶湯M内に吹き込むようにすることで、渦流発生とともに脱ガス効果が発現し溶湯Mを清浄することができる。特に、渦流の発生により溶湯Mと不活性なガスGの接触性が高まることで高い脱ガス効果が得られる。また、係る構成をとることで、溶解保持炉1に別途に脱ガス室を設ける必要がなくなり、炉全体をコンパクトにすることができる。 The gas G ejected into the molten metal M is preferably an inert gas (hereinafter referred to as "inert gas") that is inactive with respect to the molten metal M such as nitrogen gas and argon gas. The generation of the inert gas G and the method of supplying air are not limited. It may be supplied by pumping from a compressor that separates nitrogen gas from air or a cylinder filled with an inert gas. It is preferable to eject at a pressure of 0.5 MPa or less, more preferably 0.3 to 0.5 MPa. By blowing the inert gas G into the molten metal M, the degassing effect is exhibited at the same time as the vortex is generated, and the molten metal M can be cleaned. In particular, the generation of a vortex increases the contact between the molten metal M and the inert gas G, so that a high degassing effect can be obtained. Further, by adopting such a configuration, it is not necessary to separately provide a degassing chamber in the melting and holding furnace 1, and the entire furnace can be made compact.

図1〜図4に示す実施形態の金属溶解装置10では、溶解室11内に気体噴出によって溶湯Mの渦流が発生しているため、溶解室11の上部に形成され供給口11Aから投入された溶解原料Bのうち、ブリケット材のように軽量であったり溶湯Mよりも比重が軽く溶湯Mに浮く溶解原料Bは、渦流の中心部底側に向かって引き込まれる。その一方で、質量があり溶湯Mよりも比重が重い溶解原料Bでは、渦流に巻き込まれつつあるいは渦流の流れを受けつつ底に沈んでいく。
この形態の溶解室11では、攪拌翼等の動的な機械装置部分により渦流を発生させるのではなく、気体Gにより渦流を発生させるため、比重の軽い溶解原料Bであっても溶湯Mに沈む溶解原料Bであっても機械装置部分との接触がないため、比重の軽い溶解原料Bとともに、溶解室11に供給することができる利点がある。
In the metal melting apparatus 10 of the embodiment shown in FIGS. 1 to 4, since a vortex of the molten metal M is generated in the melting chamber 11 by gas ejection, it is formed in the upper part of the melting chamber 11 and is charged from the supply port 11A. Among the melting raw materials B, the melting raw material B, which is lightweight like a briquette material or has a lighter specific gravity than the molten metal M and floats on the molten metal M, is drawn toward the bottom side of the center of the vortex. On the other hand, the molten material B, which has a mass and a heavier specific gravity than the molten metal M, sinks to the bottom while being caught in the vortex or receiving the vortex.
In the melting chamber 11 of this form, since the vortex is generated by the gas G instead of being generated by the dynamic mechanical device portion such as the stirring blade, even the melting raw material B having a light specific gravity sinks in the molten metal M. Since the melting raw material B does not come into contact with the mechanical device portion, there is an advantage that it can be supplied to the melting chamber 11 together with the melting raw material B having a light specific density.

本発明に係る溶解原料Bとしては、リターン材、ブリケット材及び切粉等のスクラップ材と、新材とが挙げられるが、このうちブリケット材と切粉は、溶湯Mに対して浮きやすく、また、リターン材や新材は、溶湯Mに対して沈みやすい。したがって、図1〜図4に示す実施形態に係る金属溶解装置10では、ブリケット材や切粉は、渦流により迅速に渦底に引き込まれ加熱室20に送られる。また、新材やリターン材は、溶湯M中に沈む過程で渦流に曝されて溶解が進む。よって、この実施形態に係る気体Gの噴出により溶解室11に渦流を発生させる金属溶解装置10では、リターン材、ブリケット材及び切粉等のスクラップ材と、新材とをいずれの組み合わせでも溶解室11に供給することができる利点がある。なお、この金属溶解装置10では、例えば、新材やリターン材のような溶湯Mに沈む溶解原料Bのみを溶解する場合には気体噴出を停止し、切粉やブリケット材のような溶湯Mに沈み難い溶解原料Bを供給する場合のみ気体噴出を行って渦流を発生させるようにしてもよい。 Examples of the melting raw material B according to the present invention include scrap materials such as return material, briquette material and chips, and new materials. Among them, the briquette material and chips are easy to float with respect to the molten metal M, and , The return material and the new material are liable to sink with respect to the molten metal M. Therefore, in the metal melting apparatus 10 according to the embodiment shown in FIGS. 1 to 4, the briquette material and chips are rapidly drawn into the vortex bottom by the vortex flow and sent to the heating chamber 20. Further, the new material and the return material are exposed to a vortex in the process of sinking in the molten metal M, and the dissolution proceeds. Therefore, in the metal melting device 10 that generates a vortex in the melting chamber 11 by ejecting the gas G according to this embodiment, the melting chamber can be any combination of scrap materials such as return material, briquette material and chips, and a new material. There is an advantage that it can be supplied to 11. In the metal melting device 10, for example, when only the melting raw material B that sinks in the molten metal M such as a new material or a return material is dissolved, the gas ejection is stopped and the molten metal M such as chips or briquette material is formed. The gas may be ejected to generate a vortex only when the dissolved raw material B that is hard to sink is supplied.

以上、説明の本発明に係る金属溶解装置10、さらに本発明に係る金属溶解装置10を組み込んだ溶解保持炉1では、ブリケット材のような溶湯Mに比して比重の軽い溶解原料Bを酸化させないように溶解して、酸化物の少ない清浄な溶湯Mを得ることができる。 In the melting and holding furnace 1 incorporating the metal melting device 10 according to the present invention and the metal melting device 10 according to the present invention described above, the melting raw material B having a lighter specific gravity than the molten metal M such as a briquette material is oxidized. It is possible to obtain a clean molten metal M with a small amount of oxide by dissolving it so as not to cause it.

1…溶解保持炉、2,112…耐火材、3…外殻、
10…金属溶解装置、20…加熱室、21…浸漬ヒータ(浸漬バーナ)、22…加熱室蓋、30…鎮静室、40…汲出室、50…循環室、51…連通路、
11,101,102…溶解室、11A…供給口、13…供給路、13A…溶解室側開口、13B…供給路上壁面、
14…気体噴出装置、14A…噴出口、14B…噴出部、14C…送気管、14D…気体発生装置
16…噴流ポンプ、17…ノズル、18…スロート
G…不活性なガス・気体・駆動流体、B…溶解原料、M…溶湯・被駆動流体、
70…スクリーン板、 71…貫通孔、
114…磁気撹拌装置、115…回転軸、116…攪拌翼。
1 ... Melting and holding furnace, 2,112 ... Refractory material, 3 ... Outer shell,
10 ... metal melting device, 20 ... heating chamber, 21 ... immersion heater (immersion burner), 22 ... heating chamber lid, 30 ... sedative chamber, 40 ... pumping chamber, 50 ... circulation chamber, 51 ... communication passage,
11,101,102 ... Melting chamber, 11A ... Supply port, 13 ... Supply path, 13A ... Melting chamber side opening, 13B ... Supply path upper wall surface,
14 ... gas ejection device, 14A ... ejection port, 14B ... ejection part, 14C ... air supply pipe, 14D ... gas generator 16 ... jet pump, 17 ... nozzle, 18 ... throat G ... inert gas / gas / driving fluid, B ... dissolution raw material, M ... molten metal / driven fluid,
70 ... screen board, 71 ... through hole,
114 ... Magnetic stirrer, 115 ... Rotating shaft, 116 ... Stirring blade.

本発明は、溶解原料を溶湯中で溶解する金属溶解装置に関し、特に、アルミニウム、アルミニウム合金及び非鉄金属等の溶解原料を、鋳造機や溶解炉等へ供給するための溶湯にするために溶解する金属溶解装置に関する。 The present invention relates to a metal melting apparatus that melts a melting raw material in a molten metal, and in particular, melts a melting raw material such as aluminum, an aluminum alloy, and a non-ferrous metal in order to prepare a molten metal for supplying to a casting machine, a melting furnace, or the like. Regarding metal melting equipment.

環境保全の意識の高まりにより、自動車業界等において、エンジンブロック等の様々な鋳物製造品による部材や装置の軽量化が進められている。これに伴い、アルミニウム材、アルミニウム合金材等の軽量な非鉄金属材の使用量が増加している。
このため鋳物を製造する溶湯の溶解原料として、リターン材、ブリケット材、切粉等のスクラップ材を用いることで、原料中の新材の使用量を減少させる取り組みが進められている。
Due to the growing awareness of environmental protection, the automobile industry and the like are promoting the weight reduction of members and devices by various casting products such as engine blocks. Along with this, the amount of lightweight non-ferrous metal materials such as aluminum materials and aluminum alloy materials is increasing.
For this reason, efforts are being made to reduce the amount of new materials used in the raw materials by using scrap materials such as return materials, briquette materials, and chips as the melting raw materials for the molten metal that manufactures castings.

スクラップ材の中でも特にブリケット材は、加工より発生する切削屑や切粉等を圧縮して固形化したものであり、油分や水分を含むため、そのまま溶湯中に供給すると油分が燃焼し、排ガスが生ずるため、予め含まれる油分や水分等を蒸発させる前処理が行われることもある。 Among scrap materials, briquette material is solidified by compressing cutting chips and chips generated from processing, and contains oil and water. Therefore, if it is supplied to the molten metal as it is, the oil will burn and exhaust gas will be emitted. Since it is generated, a pretreatment for evaporating oil, water, etc. contained in advance may be performed.

しかしながら、ブリケット材は、溶湯と比べた場合、比重が小さく表面積が大きいため、前処理を行っても、湯面に浮きやすく溶解に際し一部が酸化されやすい問題がある。そして、例えば、アルミニウムの酸化物であるAl23の融点が2072℃であるように、アルミニウム材等の非鉄金属材の酸化物であるAl23等は、極めて融点が高く、溶湯中にAl23等の酸化物が形成されると溶湯中で溶解せず異物となって、鋳物の質を低下させる。 However, since the briquette material has a smaller specific density and a larger surface area than the molten metal, there is a problem that even if the pretreatment is performed, the briquette material easily floats on the surface of the molten metal and a part of the briquette material is easily oxidized during melting. And, for example, as the melting point of Al 2 O 3 which is an oxide of aluminum is 2072 ° C., Al 2 O 3 which is an oxide of a non-ferrous metal material such as an aluminum material has an extremely high melting point and is in a molten metal. When an oxide such as Al 2 O 3 is formed in the molten metal, it does not dissolve in the molten metal and becomes a foreign substance, which deteriorates the quality of the casting.

一方、ブリケット材を溶解して溶湯とする際に酸化物が形成され難くする技術としては下記特許文献1又は2のように、溶湯の渦流にブリケット材を供給するようにして、ブリケット材を溶湯中に迅速に引き込むようにする技術がある。 On the other hand, as a technique for making it difficult for oxides to be formed when the briquette material is melted into a molten metal, the briquette material is melted by supplying the briquette material to the vortex of the molten metal as described in Patent Document 1 or 2 below. There is a technique to pull in quickly.

特開2013−60629号公報Japanese Unexamined Patent Publication No. 2013-60629 特開平2−219978号公報Japanese Unexamined Patent Publication No. 2-219978

しかしながら、渦流によりブリケット材が溶湯中に引き込まれても、引き込まれたブリケット材が完全に溶解せずに未溶解のまま次工程に移送されることがあった。
そして、そのような場合には、次工程において未溶解のブリケット材が湯面に浮上し、そこで酸化されてしまう。
However, even if the briquette material is drawn into the molten metal by the vortex flow, the drawn briquette material may not be completely dissolved and may be transferred to the next process without being dissolved.
Then, in such a case, the undissolved briquette material floats on the surface of the molten metal in the next step and is oxidized there.

そこで、本発明の主たる課題は、上記従来技術の問題を解決しブリケット材のような溶湯に比して比重の軽い溶解原料を酸化させないように溶解させる金属溶解装置を提供することにある。 Therefore, a main object of the present invention is to provide a metal melting apparatus that solves the above-mentioned problems of the prior art and melts a melting raw material having a lighter specific gravity than a molten metal such as a briquette material so as not to oxidize.

上記課題を解決するための手段は次のとおりである。 The means for solving the above problems are as follows.

その第一の手段は、
溶湯中に溶解原料を供給する溶解室と、
供給路を介して前記溶解室に連通し、溶湯を加熱する加熱手段を有する加熱室と、を有し、
前記加熱室内に、前記供給路から移送される未溶解の溶解原料の浮上を、少なくとも所定の大きさとなるまで防止するスクリーン板が設けられている、
ことを特徴とする金属溶解装置である。
The first means is
A melting chamber that supplies the melting raw material into the molten metal,
It has a heating chamber that communicates with the melting chamber via a supply path and has a heating means for heating the molten metal.
A screen plate is provided in the heating chamber to prevent the undissolved dissolved raw material transferred from the supply path from floating until it reaches at least a predetermined size.
It is a metal melting device characterized by the above.

第二の手段は、
前記スクリーン板は、多数の貫通孔を有するものであり、それら貫通孔が、底面側から上面側に向かって狭窄するテーパー状となっている、上記第一の手段に係る金属溶解装置である。
The second means is
The screen plate has a large number of through holes, and the through holes are tapered from the bottom surface side to the top surface side, and is a metal melting device according to the first means.

第三の手段は、
前記供給路又は前記溶解室の供給路近傍に、前記溶解室から前記加熱室に移送される前記未溶解の溶解原料に衝撃を与える衝撃付与手段を備える、上記第一又は第二の手段に係る金属溶解装置である。
The third means is
The first or second means is provided with an impact applying means for giving an impact to the undissolved dissolved raw material transferred from the melting chamber to the heating chamber in the vicinity of the supply passage or the supply passage of the melting chamber. It is a metal melting device.

第四の手段は、
前記衝撃付与手段は、前記未溶解の溶解原料が衝突するように構成された前記供給路の内壁又は前記溶解室の供給路近傍の内壁である、上記第三の手段に係る金属溶解装置である。
The fourth means is
The impact applying means is a metal melting device according to the third means, which is an inner wall of the supply path or an inner wall in the vicinity of the supply path of the melting chamber, which is configured so that the undissolved dissolved raw materials collide with each other. ..

第五の手段は、
前記溶解室に、当該溶解室内の溶湯に渦流を発生させる渦流発生手段が、設けられている、上記第一〜第四の手段に係る金属溶解装置である。
The fifth means is
The metal melting apparatus according to the first to fourth means, wherein the melting chamber is provided with a vortex generating means for generating a vortex in the molten metal in the melting chamber.

第六の手段は、
前記渦流発生手段が、溶湯中に気体を噴出することで、溶湯に渦流を発生させるものである、上記第五の手段に係る金属溶解装置。
The sixth means is
The metal melting apparatus according to the fifth means, wherein the vortex generating means generates a vortex in the molten metal by ejecting a gas into the molten metal.

第七の手段は、
前記気体が、溶湯に対して不活性な不活性ガスである、上記第六の手段に係る金属溶解装置である。
The seventh means is
The metal melting apparatus according to the sixth means, wherein the gas is an inert gas that is inert to the molten metal.

〔作用効果〕
本発明によれば、例えばアルミニウム合金又は非鉄金属材料のスクラップ材であるブリケット材のような溶湯に比して比重の軽い溶解原料を溶解するにあたり、加熱室内にスクリーン板を設けたことにより、その溶解原料の湯面へ浮上が防止されるため、湯面において空気等と接触して酸化することが防止され、酸化物の少ない清浄な溶湯を得ることができる。さらに、精製する溶湯の歩留りの向上とともに、酸化物処理のための脱滓処理作業も軽減される。
[Action effect]
According to the present invention, in order to melt a melting raw material having a lighter specific gravity than a molten metal such as a briquette material which is a scrap material of an aluminum alloy or a non-ferrous metal material, a screen plate is provided in a heating chamber. Since the molten raw material is prevented from floating on the surface of the molten metal, it is prevented from coming into contact with air or the like on the surface of the molten metal to be oxidized, and a clean molten metal with less oxide can be obtained. Further, the yield of the molten metal to be refined is improved, and the slag treatment work for the oxide treatment is also reduced.

また、スクリーン板を多数の貫通孔を有するものとし、それら貫通孔を、底面側から上面側に向かって狭窄するテーパー状となっているものとすると、溶解原料が、貫通孔に嵌り、所定の大きさ、具体的には、湯面に上昇する前に溶解されるに十分な大きさとなるまで、保持して、湯面に浮上することなく好適に酸化しないよう溶解させることができる。 Further, assuming that the screen plate has a large number of through holes and the through holes have a tapered shape narrowing from the bottom surface side to the top surface side, the dissolved raw material fits into the through holes and is predetermined. It can be held until it is large enough to be dissolved before it rises to the surface of the water, and can be dissolved without floating on the surface of the water so as not to be suitably oxidized.

また、供給路又は溶解室の供給路近傍に、加熱室に移送される未溶解の溶解原料に衝撃を与える衝撃付与手段を設ければ、未溶解の溶解原料が衝撃付与手段によって衝撃が与えられて砕け、加熱室に供給されるまでに溶解されやすくなる。特に、ブリケット材のような、切削屑や切粉等を圧縮して固形化したものであれば、衝撃により崩壊しやすく特に効果的に溶解を進めることができる。
その衝撃付与手段を未溶解の溶解原料が衝突するように構成された供給路等とすれば、簡易かつ動的部分を作ることなく未溶解の溶解原料に衝撃を与えることができる。
Further, if an impact applying means for giving an impact to the undissolved dissolved raw material transferred to the heating chamber is provided near the supply path or the supply path of the melting chamber, the undissolved dissolved raw material is impacted by the impact applying means. It is easily dissolved by the time it is crushed and supplied to the heating chamber. In particular, if it is a material such as a briquette material that is solidified by compressing cutting chips, chips, etc., it is likely to collapse due to an impact, and dissolution can proceed particularly effectively.
If the impact applying means is a supply path or the like configured so that the undissolved dissolved raw materials collide with each other, the undissolved dissolved raw materials can be impacted simply and without creating a dynamic portion.

また、溶解室に、溶解室内の溶湯に渦流を発生させる渦流発生手段を設ければ、ブリケット材のような比重の軽いスクラップ材が供給されてもそれらが迅速に、渦中心部において渦底に引き込まれるため外気と接触し難くなるため、より酸化物が形成された難く、より清浄な溶湯を得ることができるようになる。 Further, if the melting chamber is provided with a vortex generating means for generating a vortex in the molten metal in the melting chamber, even if a scrap material having a light specific density such as a briquette material is supplied, they quickly reach the bottom of the vortex at the center of the vortex. Since it is drawn in, it becomes difficult to come into contact with the outside air, so that it becomes difficult for oxides to be formed and a cleaner molten metal can be obtained.

さらに、その渦流発生手段を、溶湯中に気体を噴出することで、溶湯に渦流を発生させるものとすれば、渦中心底部に撹拌翼やスターラといった攪拌部材が存在させないようにでき、溶解原料と攪拌部材との接触のおそれが各段に少なくなり、ブリケット材や切粉等の溶湯よりも比重の軽い溶解原料だけでなく、リターン材や新材といった溶湯に沈む溶解原料を組み合わせて溶解室に供給して溶解することができるようになる。攪拌翼やスターラのような動的部品を少なくできるため、メンテナンスや取り扱い性にも優れるようになる。 Further, if the vortex flow generating means is to generate a vortex flow in the molten metal by ejecting a gas into the molten metal, it is possible to prevent a stirring member such as a stirring blade or a stirrer from being present at the bottom of the center of the vortex, and it can be used as a melting raw material. The risk of contact with the stirring member is reduced to each stage, and not only the melting raw materials such as briquettes and chips, which have a lighter specific gravity than the molten metal, but also the melting raw materials that sink in the molten metal such as return materials and new materials are combined into the melting chamber. It will be able to be supplied and dissolved. Since the number of dynamic parts such as stirring blades and stirrers can be reduced, maintenance and handleability will be improved.

さらに、その気体が、溶湯に対して不活性な不活性ガスとすれば、脱ガス効果が発現し、より清浄で質の高い溶湯が得られるようになる。 Further, if the gas is an inert gas that is inert to the molten metal, the degassing effect is exhibited, and a cleaner and higher quality molten metal can be obtained.

本発明によれば、ブリケット材のような溶湯に比して比重の軽い溶解原料を酸化させないように溶解させる金属溶解装置を提供が提供される。 According to the present invention, there is provided a metal melting apparatus that melts a melting raw material having a lighter specific gravity than a molten metal such as a briquette material so as not to oxidize.

本発明に係る金属溶解装置を含む溶解保持炉の平面概略図である。It is a top view of the plane of the melting holding furnace including the metal melting apparatus which concerns on this invention. 図1におけるII-II矢視図であり、本発明に係る金属溶解装置を含む溶解保持炉の断面概略図である。但し、説明の便宜のためII-II矢視に現れない部材等も記載する。FIG. 1 is a view taken along the line II-II in FIG. 1, which is a schematic cross-sectional view of a melting and holding furnace including the metal melting device according to the present invention. However, for convenience of explanation, members that do not appear in the II-II arrow are also described. 本発明に係る他の金属溶解装置を含む溶解保持炉の平面概略図である。It is a top view of the plan view of the melting holding furnace including another metal melting apparatus which concerns on this invention. 図3におけるIV-IV矢視図であり、本発明に係る他の金属溶解装置を含む溶解保持炉の断面概略図である。但し、説明の便宜のためIV-IV矢視に現れない部材等も記載する。FIG. 3 is a view taken along the line IV-IV in FIG. 3, which is a schematic cross-sectional view of a melting and holding furnace including another metal melting device according to the present invention. However, for convenience of explanation, members that do not appear in the IV-IV arrow are also described. 本発明に係る噴流ポンプを説明するための断面図である。It is sectional drawing for demonstrating the jet pump which concerns on this invention. 本実施形態に係るスクリーン板を説明するための斜視図である。It is a perspective view for demonstrating the screen board which concerns on this embodiment. 本実施形態に係る他のスクリーン板のVI-VI断面図である。It is a VI-VI sectional view of another screen plate which concerns on this embodiment. 本実施形態に係る他のスクリーン板を説明するための斜視図である。It is a perspective view for demonstrating another screen board which concerns on this Embodiment. 本実施形態に係る他のスクリーン板のVIII-VIII断面図である。It is VIII-VIII sectional view of another screen plate which concerns on this embodiment. 本発明に係る溶解室の例の断面図である。It is sectional drawing of the example of the melting chamber which concerns on this invention. 本発明に係る溶解室の別の例の断面図である。It is sectional drawing of another example of the melting chamber which concerns on this invention. 本発明に係る別の金属溶解装置を含む溶解保持炉の平面概略図である。It is a top view of the plan of the melting holding furnace which includes another metal melting apparatus which concerns on this invention. 図12におけるXIII-XIII矢視図であり、本発明に係る別の金属溶解装置を含む溶解保持炉の断面概略図である。但し、説明の便宜のためXIII-XIII矢視に現れない部材等も記載する。FIG. 12 is an arrow view of XIII-XIII in FIG. 12, which is a schematic cross-sectional view of a melting and holding furnace including another metal melting device according to the present invention. However, for convenience of explanation, members and the like that do not appear in the XIII-XIII arrow are also described.

以下、本発明に係る実施形態を図1〜図13を参照しながら説明する。
本実施形態に係る金属溶解装置10は、溶解原料Bを溶湯M中に供給する溶解室11と、供給路13を介して溶解室11に連通し溶湯Mを加熱する加熱室20とを有している。この本実施形態に係る金属溶解装置10は、溶湯Mを保持して溶湯M中の不純物等を沈殿させるなどする鎮静室30、溶湯Mを汲み出して外部の鋳造機、他の溶解保持炉や保持炉等へ出湯する汲出室40を備える溶解保持炉1に好ましく組み込まれている。この金属溶解装置10が組み込まれた溶解保持炉1も本発明として提案される。
Hereinafter, embodiments according to the present invention will be described with reference to FIGS. 1 to 13.
The metal melting apparatus 10 according to the present embodiment has a melting chamber 11 for supplying the melting raw material B into the molten metal M, and a heating chamber 20 for heating the molten metal M by communicating with the melting chamber 11 via the supply path 13. ing. The metal melting apparatus 10 according to the present embodiment has a sedation chamber 30 that holds the molten metal M and precipitates impurities and the like in the molten metal M, an external casting machine that pumps out the molten metal M, and other melting and holding furnaces and holding. It is preferably incorporated in a melting and holding furnace 1 provided with a pumping chamber 40 for discharging hot water to a furnace or the like. A melting and holding furnace 1 incorporating the metal melting device 10 is also proposed as the present invention.

但し、本発明の金属溶解装置10は、本実施形態に係る溶解保持炉1に組み込まれる形態に限定されることなく、溶解原料Bを溶湯M中に供給して溶解する装置として、単独で又は他の種の溶解保持炉や溶解炉に組み込んで実施することができる。 However, the metal melting device 10 of the present invention is not limited to the form incorporated in the melting and holding furnace 1 according to the present embodiment, and can be used alone or as a device for supplying and melting the melting raw material B into the molten metal M. It can be carried out by incorporating it into other types of melting and holding furnaces and melting furnaces.

本実施形態に係る溶解保持炉1は、外殻3内において各室が耐火材2により形成され、溶解室11は供給路13を介して加熱室20に連通している。さらに、前記加熱室20及び溶解室11に連通する循環室50が好ましく設けられており、溶湯Mが、加熱室20から循環室50を介して溶解室11に還流可能に構成されている。 In the melting and holding furnace 1 according to the present embodiment, each chamber is formed of a refractory material 2 in the outer shell 3, and the melting chamber 11 communicates with the heating chamber 20 via a supply path 13. Further, a circulation chamber 50 communicating with the heating chamber 20 and the melting chamber 11 is preferably provided, and the molten metal M is configured to be able to return from the heating chamber 20 to the melting chamber 11 via the circulation chamber 50.

溶解室11は、上方に溶解原料Bを供給するための供給口11Aを有しており、図示されないホッパーやコンベア等の搬入装置から、供給口11Aを介して溶解原料Bであるアルミニウム、アルミニウム合金及びその他の非鉄金属材が、溶解室11中の溶湯Mに対して供給される。アルミニウム、アルミニウム合金及びその他の非鉄金属材の具体的形態としては、リターン材、ブリケット材及び切粉等のスクラップ材と、新材とが挙げられる。特に、本発明に係る金属溶解装置10は、溶湯Mよりも比重が軽く湯面に浮くブリケット材のような溶解原料Bに適する。ブリケット材等の油分や水分等を含む溶解原料Bについては、事前に乾燥・予熱により油分・水分等を除去する前処理を行ってもよい。 The melting chamber 11 has a supply port 11A for supplying the melting raw material B upward, and is an aluminum or aluminum alloy which is the melting raw material B from a carry-in device such as a hopper or a conveyor (not shown) via the supply port 11A. And other non-ferrous metal materials are supplied to the molten metal M in the melting chamber 11. Specific forms of aluminum, aluminum alloys and other non-ferrous metal materials include scrap materials such as return materials, briquette materials and chips, and new materials. In particular, the metal melting apparatus 10 according to the present invention is suitable for a melting raw material B such as a briquette material which has a lighter specific gravity than the molten metal M and floats on the surface of the molten metal. The dissolved raw material B containing oil, water, etc. of the briquette material may be pretreated to remove the oil, water, etc. by drying and preheating in advance.

加熱室20には、好ましい形態として、浸漬ヒータ21,21が上方から加熱室20内に差し込まれるように配されており、溶湯Mを加熱する。この浸漬ヒータ21,21による溶湯Mの加熱により、溶解保持炉1内の溶湯Mの温度が保持され、溶解室11に供給された溶解原料B及び溶解室11から供給路13を介して加熱室20に送られた溶解原料Bは、溶湯M中で溶解される。但し、加熱室20における溶湯Mの加熱手段は、浸漬ヒータ21,21に限定されず、浸漬バーナを採用してもよい。また、浸漬ヒータ21,21の配置についても、上方から加熱室20内に差し込む形態に限らず、図12及び図13のように加熱室20の側壁側から加熱室20内に差し込む形態や、底部に配置するようにしてもよい。 In the heating chamber 20, as a preferable form, immersion heaters 21 and 21 are arranged so as to be inserted into the heating chamber 20 from above to heat the molten metal M. By heating the molten metal M by the immersion heaters 21 and 21, the temperature of the molten metal M in the melting holding furnace 1 is maintained, and the melting raw material B supplied to the melting chamber 11 and the heating chamber 11 from the melting chamber 11 via the supply path 13 are used. The dissolution raw material B sent to No. 20 is dissolved in the molten metal M. However, the heating means of the molten metal M in the heating chamber 20 is not limited to the immersion heaters 21 and 21, and an immersion burner may be adopted. Further, the arrangement of the immersion heaters 21 and 21 is not limited to the form of inserting into the heating chamber 20 from above, but also the form of inserting into the heating chamber 20 from the side wall side of the heating chamber 20 as shown in FIGS. 12 and 13. It may be arranged in.

また、加熱室20は、溶湯Mの湯面との間に空間が作られないように上部開口部を閉塞して設置された溶解室蓋22を備えており、溶解室11から送られた溶解原料Bが無酸素状態で溶解されやすくなっている。但し、本発明に係る加熱室20は、このような溶湯Mの湯面との間に空間を作らない溶解室蓋22が必ずしも備えられていなくてもよい。 Further, the heating chamber 20 includes a melting chamber lid 22 installed by closing the upper opening so as not to create a space between the molten metal M and the surface of the molten metal M, and the melting chamber 20 is sent from the melting chamber 11. The raw material B is easily dissolved in an oxygen-free state. However, the heating chamber 20 according to the present invention does not necessarily have to be provided with a melting chamber lid 22 that does not form a space between the molten metal M and the surface of the molten metal M.

溶解室11から加熱室20に至る供給路13は、図2、図4及び図13に示すように、その出口が加熱室20の下方位置にあるのが望ましい。このように供給路13の出口を加熱室20の下部とすることで、例えば、溶解室11で完全に溶解されなかった未溶解のブリケット材のように溶湯よりも比重の軽い溶解原料Bが加熱室20に供給された場合に、加熱室20内の溶湯M中を浮き上がる過程で溶解させることができ、加熱室20の上部に未溶解のブリケット材が溜まり酸化されるような事象が起き難くなる。なお、溶湯Mの湯面との間に空間が作られないように上部開口部を溶解室蓋22により閉塞して設置しても、溶解室蓋22と湯面との間に空気等の気体が存在する場合があり、また、ブリケット材のような油分や水分を含む溶解原料Bでは、水分や油分等に由来する気体が蓋下面に溜まることがあるため、溶解原料Bが湯面に浮くと酸化されることがある。したがって、溶湯の湯面との間に空間が作られないように上部開口部を溶解室蓋22により閉塞している場合でも、供給路13の出口は加熱室20の下方位置とするのが望ましい。 It is desirable that the outlet of the supply path 13 from the melting chamber 11 to the heating chamber 20 is located below the heating chamber 20, as shown in FIGS. 2, 4 and 13. By setting the outlet of the supply path 13 as the lower part of the heating chamber 20, for example, the melting raw material B having a lighter specific gravity than the molten metal, such as an undissolved briquette material that was not completely melted in the melting chamber 11, is heated. When supplied to the chamber 20, the molten metal M in the heating chamber 20 can be melted in the process of floating, and an event in which undissolved briquette material accumulates in the upper part of the heating chamber 20 and is oxidized is less likely to occur. .. Even if the upper opening is closed by the melting chamber lid 22 so as not to create a space between the molten metal M and the molten metal surface, a gas such as air is provided between the melting chamber lid 22 and the molten metal surface. In addition, in the dissolved raw material B containing oil and water such as briquette material, gas derived from water and oil may accumulate on the lower surface of the lid, so that the dissolved raw material B floats on the surface of the hot water. May be oxidized. Therefore, even when the upper opening is closed by the melting chamber lid 22 so as not to create a space between the molten metal and the surface of the molten metal, it is desirable that the outlet of the supply path 13 is located below the heating chamber 20. ..

本実施形態の係る金属溶解装置10では、、図2、図4及び図13に示すように、特徴的に、加熱室20の前記供給路13の出口がある下部と、それよりも上方の上部とを区画するようにして、加熱室20内に、供給路13から移送される溶解原料Bの浮上を、少なくとも所定の大きさとなるまで防止するスクリーン板70が設けられている。 In the metal melting apparatus 10 according to the present embodiment, as shown in FIGS. 2, 4 and 13, characteristically, the lower part where the outlet of the supply path 13 of the heating chamber 20 is located and the upper part above it. A screen plate 70 is provided in the heating chamber 20 to prevent the molten material B transferred from the supply path 13 from floating until it reaches at least a predetermined size.

このスクリーン板70は、図6〜図8に示すように、溶湯M内に沈没設置可能な素材で形成された、多数の貫通孔71を有する板状体であり、溶解室11から供給路13を介して加熱室20内に供給された未溶解の溶解原料Bが、スクリーン板70に形成された貫通孔71を通過可能な大きさとなるまで加熱室20内の特にスクリーン板70の下方位置に保持して溶湯M内で溶解が進むようにする。但し、スクリーン板70は、これに限らず、溶湯Mよりも比重の軽い溶解原料Bの浮上を防止するものであれば、特に限定されない。 As shown in FIGS. 6 to 8, the screen plate 70 is a plate-like body formed of a material that can be submerged and installed in the molten metal M and has a large number of through holes 71, and is a plate-like body having a large number of through holes 71, and is a supply path 13 from the melting chamber 11. The undissolved dissolved raw material B supplied into the heating chamber 20 through the screen plate 70 is placed at a position particularly below the screen plate 70 in the heating chamber 20 until it becomes large enough to pass through the through hole 71 formed in the screen plate 70. Hold it so that the dissolution proceeds in the molten metal M. However, the screen plate 70 is not limited to this, and is not particularly limited as long as it prevents the melting raw material B having a specific gravity lighter than that of the molten metal M from floating.

このように加熱室20内にスクリーン板70を設けることで、ブリケット材のような溶湯に比して比重の軽い溶解原料Bが、加熱室20内の湯面に至るまで浮くことが防止され、無酸素状態で溶解することができるようになる。 By providing the screen plate 70 in the heating chamber 20 in this way, it is possible to prevent the melting raw material B, which has a lighter specific gravity than the molten metal such as briquette material, from floating up to the surface of the molten metal in the heating chamber 20. It becomes possible to dissolve in anoxic state.

スクリーン板70に形成された貫通孔71の個数や大きさは、特に限定されないが、供給される溶解原料Bの大きさ、溶解速度、スクリーン板70の設置深さと湯面との距離、溶解原料Bの性質等を考慮して適宜に定めればよい。貫通孔71を通過可能となった大きさの溶解原料Bが、湯面に浮上するまでの間に、溶湯によって十分に溶解されるように設定すればよい。好ましくは、未溶解の溶解原料Bが、貫通孔を通過して浮上し、湯面に到達するまえに溶解されるまでの時間が、2〜3分となるように設計するのが望ましい。例えばアルミスクラップ材からのブリケット材の一般的な大きさを考慮すると、貫通孔71は直径が20〜50mmであるのが望ましい。 The number and size of the through holes 71 formed in the screen plate 70 are not particularly limited, but the size and dissolution rate of the dissolved raw material B to be supplied, the distance between the installation depth of the screen plate 70 and the molten metal surface, and the melting raw material It may be determined appropriately in consideration of the property of B and the like. The melting raw material B having a size that allows it to pass through the through hole 71 may be set so as to be sufficiently dissolved by the molten metal before it floats on the surface of the molten metal. Preferably, it is desirable to design so that the time until the undissolved dissolved raw material B floats through the through hole and is dissolved before reaching the surface of the molten metal is 2 to 3 minutes. For example, considering the general size of a briquette material from an aluminum scrap material, it is desirable that the through hole 71 has a diameter of 20 to 50 mm.

また、貫通孔71は、図6及び図7に示すように円柱形状、又は図8及び図9に示すように、上方に向かって狭窄するテーパー形状であるのが望ましい。このように構成すると貫通孔71に未溶解の溶解原料Bが嵌り、加熱室20内で移動せずに定位置に留まるようになり溶解が進みやすくなる。 Further, it is desirable that the through hole 71 has a cylindrical shape as shown in FIGS. 6 and 7, or a tapered shape that narrows upward as shown in FIGS. 8 and 9. With this configuration, the undissolved raw material B fits into the through hole 71, stays in a fixed position without moving in the heating chamber 20, and the dissolution facilitates.

スクリーン板70の素材は、溶湯M内に沈没設置可能な素材であればよいが、好ましくは、炭化ケイ素、ジルコニア系、ファインセラミックスである。
スクリーン板70の厚さは、特に限定されないが、上記素材であれば、20〜80mmであれば十分な強度としやすい。
The material of the screen plate 70 may be any material that can be submerged and installed in the molten metal M, but is preferably silicon carbide, zirconia, or fine ceramics.
The thickness of the screen plate 70 is not particularly limited, but if it is the above material, it is easy to obtain sufficient strength if it is 20 to 80 mm.

加熱室20内におけるスクリーン板70の設置形態としては、加熱室20の底部に固定するようにして設置してもよいし、加熱室20の天面から吊り下げるように設置してもよい。設置の方法は限定されない。但し、実施形態の加熱室20のように浸漬ヒータ21,21を上方から室内に差し込むように配置するのであれば、浸漬ヒータ21,21と浮上する溶解原料Bとが接触しないよう、スクリーン板70を浸漬ヒータ21,21の底よりも下方位置に配置するのが望ましい。また、スクリーン板70は、加熱室20の底から20〜35%の高さ位置に設けるのがよい。さらに、図4に示すように、加熱室20内にスクリーン板70を複数段設けるようにしてもよい。この場合、各スクリーン板70の貫通孔71の孔径を異なるようにしてもよい。その場合、上段のスクリーン板70の貫通孔71の直径を下段のスクリーン板70の貫通孔71の直径よりも小さくするのが望ましい。 The screen plate 70 may be installed in the heating chamber 20 so as to be fixed to the bottom of the heating chamber 20 or suspended from the top surface of the heating chamber 20. The installation method is not limited. However, if the immersion heaters 21 and 21 are arranged so as to be inserted into the room from above as in the heating chamber 20 of the embodiment, the screen plate 70 is provided so that the immersion heaters 21 and 21 and the floating melting raw material B do not come into contact with each other. Is preferably placed below the bottom of the immersion heaters 21 and 21. Further, the screen plate 70 is preferably provided at a height of 20 to 35% from the bottom of the heating chamber 20. Further, as shown in FIG. 4, a plurality of screen plates 70 may be provided in the heating chamber 20. In this case, the hole diameter of the through hole 71 of each screen plate 70 may be different. In that case, it is desirable that the diameter of the through hole 71 of the upper screen plate 70 be smaller than the diameter of the through hole 71 of the lower screen plate 70.

他方で、本発明に係る金属溶解装置10は、供給路13又は溶解室11の供給路13近傍に、溶解室11から加熱室20に送られる未溶解の溶解原料Bに衝撃を与える衝撃付与手段を設けるのが望ましい。衝撃付与手段は、動的に衝撃を付与するものであってもよいが、好ましくは、メンテナンス性の面で、未溶解の溶解原料Bが溶湯の流れによって加熱室20に搬送される過程で衝突するような障害物など静的なものであるのが望ましい。例えば、供給路13の内壁又は溶解室11の供給路13近傍の内壁に凸部を設け、未溶解の溶解原料Bが通過する際に凸部に衝突するようにすればよい。さらに、具体的な例としては、溶湯Mに比して比重の軽いブリケット材等の未溶解の溶解原料Bは、浮力と加熱室20への溶湯Mの流れによって、供給路13の上面に沿って移動されるため、図2、図4及び図13に示すように、供給路13の上壁面13Bを階段状に形成したり、上壁面13Bに凸部を形成したりするなどすれば、未溶解の溶解原料Bが加熱室20に移動する際に、供給路13の階段状の上壁面13Bや上壁面13Bに形成した凸部などに衝突することになり衝撃が付与され、未溶解の溶解原料Bが崩壊し、スクリーン板70が設置されている加熱室20で迅速に溶解されやすい。 On the other hand, the metal melting apparatus 10 according to the present invention is an impact applying means for giving an impact to the undissolved dissolved raw material B sent from the melting chamber 11 to the heating chamber 20 in the vicinity of the supply passage 13 or the supply passage 13 of the melting chamber 11. It is desirable to provide. The impact applying means may dynamically apply an impact, but preferably, in terms of maintainability, the undissolved dissolved raw material B collides in the process of being conveyed to the heating chamber 20 by the flow of the molten metal. It is desirable that it is a static object such as an obstacle that does. For example, a convex portion may be provided on the inner wall of the supply path 13 or the inner wall in the vicinity of the supply path 13 of the melting chamber 11 so that the undissolved dissolved raw material B collides with the convex portion when passing through. Further, as a specific example, the undissolved dissolved raw material B such as a briquette material having a lighter specific gravity than the molten metal M is along the upper surface of the supply path 13 due to the buoyancy and the flow of the molten metal M into the heating chamber 20. As shown in FIGS. 2, 4 and 13, if the upper wall surface 13B of the supply path 13 is formed in a stepped shape or a convex portion is formed on the upper wall surface 13B, it is not possible. When the dissolution raw material B for dissolution moves to the heating chamber 20, it collides with the stepped upper wall surface 13B of the supply path 13 and the convex portion formed on the upper wall surface 13B, and an impact is applied to the undissolved dissolution material B. The raw material B collapses and is easily melted quickly in the heating chamber 20 in which the screen plate 70 is installed.

他方で、本発明に係る金属溶解装置10は、溶解室11に、溶解室11内の溶湯Mに渦流を発生させる渦流発生手段が、設けられているのが望ましい。渦流発生手段としては、図1〜4及び図12〜図13に示す形態のように、溶湯M中に気体Gを噴出することで、溶湯Mに渦流を発生させるものであるのが望ましいが、図10に示すように、溶解室11の下方に磁気攪拌装置114を設けて溶解室11内の溶湯Mに渦流を発生させるものであってもよい。さらに、図11に示すように、回転軸115の先端に攪拌翼116を設けた攪拌装置を溶解室11の溶湯M内に挿入して、攪拌翼116によって溶湯Mを攪拌して渦流を発生させるようにしたものであってもよい。この形態では、回転軸115の先端から溶湯Mに対して不活性な不活性ガスGを噴射して、脱ガス処理を行うようにしてもよい。これらの形態のように溶解室11内の溶湯Mに渦流を発生させることにより、溶湯Mよりも比重の軽い溶解原料Bが供給されてもそれらが迅速に、渦中心部において渦底に引き込まれるようになり、溶解原料Bと外気とが接触し難くなり、より酸化物が形成され難く、より清浄な溶湯Mが得られる。また、溶解原料Bが、渦流により攪拌される過程で、溶解原料B同士の衝突が促されて崩壊により溶解されやすくなる。特に、切削屑や切粉等を圧縮して固形化したブリケット材では、崩壊が効果的に発生する。 On the other hand, in the metal melting apparatus 10 according to the present invention, it is desirable that the melting chamber 11 is provided with a vortex generating means for generating a vortex in the molten metal M in the melting chamber 11. As the vortex generating means, as shown in FIGS. 1 to 4 and 12 to 13, it is desirable that the vortex is generated in the molten metal M by ejecting the gas G into the molten metal M. As shown in FIG. 10, a magnetic stirrer 114 may be provided below the melting chamber 11 to generate a vortex in the molten metal M in the melting chamber 11. Further, as shown in FIG. 11, a stirring device provided with a stirring blade 116 at the tip of the rotating shaft 115 is inserted into the molten metal M of the melting chamber 11, and the molten metal M is stirred by the stirring blade 116 to generate a vortex. It may be made like this. In this embodiment, the degassing treatment may be performed by injecting the inert gas G, which is inert to the molten metal M, from the tip of the rotating shaft 115. By generating a vortex flow in the molten metal M in the melting chamber 11 as in these forms, even if the melting raw material B having a lighter specific density than the molten metal M is supplied, they are quickly drawn into the vortex bottom at the center of the vortex. As a result, the melting raw material B and the outside air are less likely to come into contact with each other, and oxides are less likely to be formed, resulting in a cleaner molten metal M. Further, in the process in which the dissolved raw material B is agitated by the vortex flow, the collision between the dissolved raw materials B is promoted and the dissolved raw materials B are easily dissolved by the collapse. In particular, in a briquette material obtained by compressing and solidifying cutting chips and chips, collapse occurs effectively.

溶解室11の形状は、矩形の箱型でもよいが、渦流を発生させるのであれば、特に図1
〜4及び図12〜図13に示されるように、溶湯Mが貯留される内空間が略円筒型又は略逆円錐型であるのが望ましい。内壁面に案内されるように溶湯Mが流動されて、溶解室11内に溶湯Mの渦流が発生しやすくなるとともに、その渦流を持続させやすくなる。このため気体噴出に係るエネルギーを少なくすることが可能となる。
The shape of the melting chamber 11 may be a rectangular box shape, but if a vortex is to be generated, the shape of FIG. 1 is particularly high.
As shown in No. 4 and FIGS. 12 to 13, it is desirable that the inner space in which the molten metal M is stored is a substantially cylindrical shape or a substantially inverted conical shape. The molten metal M is flowed so as to be guided by the inner wall surface, so that a vortex of the molten metal M is likely to be generated in the melting chamber 11 and the vortex is easily maintained. Therefore, it is possible to reduce the energy related to the gas ejection.

また、溶解室11は、特に渦流を発生させるようにする場合、溶解室11と加熱室20とを繋ぐ供給路13の溶解室側開口13Aは、渦流の中心底部、例えば、図2、図4及び図13に示すように溶解室11の中央底部に形成するのが望ましい。溶解原料Bが渦流によって渦底中心部に引き込まれるとともに、溶解原料Bが浮くことなく加熱室20に供給されるようになり、効果的に溶解原料Bの溶解がなされるようになる。 Further, when the melting chamber 11 is to generate a vortex, the melting chamber side opening 13A of the supply path 13 connecting the melting chamber 11 and the heating chamber 20 is formed at the central bottom of the vortex, for example, FIGS. 2 and 4. And, as shown in FIG. 13, it is desirable to form it at the central bottom of the dissolution chamber 11. The dissolved raw material B is drawn into the center of the vortex bottom by the vortex flow, and the dissolved raw material B is supplied to the heating chamber 20 without floating, so that the dissolved raw material B is effectively melted.

また、溶解室11は、溶湯Mを加熱する溶湯加熱手段を備えるのが望ましい。溶湯加熱手段としては、図示はしないが、溶解室11底部や側壁近傍に浸漬ヒータを設ければよい。浸漬ヒータは、溶解室11側壁近傍において上方から溶湯M内に差し込むように配置してもよい。溶解室11に溶湯加熱手段を設ければ、溶解室11に貯留される溶湯Mが加熱され、溶解原料Bの供給による溶湯Mの温度低下が少なくなり、溶解原料Bがより迅速に溶解されやすくなる。また、浸漬ヒータの代わりに浸漬バーナを採用しても構わない。 Further, it is desirable that the melting chamber 11 is provided with a molten metal heating means for heating the molten metal M. Although not shown, the molten metal heating means may be provided with a dipping heater at the bottom of the melting chamber 11 or near the side wall. The immersion heater may be arranged so as to be inserted into the molten metal M from above near the side wall of the melting chamber 11. If the molten metal heating means is provided in the melting chamber 11, the molten metal M stored in the melting chamber 11 is heated, the temperature drop of the molten metal M due to the supply of the melting raw material B is reduced, and the melting raw material B is easily melted more quickly. Become. Further, a dipping burner may be used instead of the dipping heater.

続けて、本発明に係る溶解室11における特に好ましい形態である渦流発生手段としては、溶湯中に気体Gを噴出することで、溶湯Mに渦流を発生させる具体的な形態を説明する。
この溶解室11は、図1〜図4に示すように、特徴的に、溶解室11内の溶湯M中に気体Gを噴出して、溶湯Mとともに溶解原料Bを攪拌する渦流を溶解室11内に発生させる気体噴出装置14が設けられており、前記加熱室20とともに金属溶解装置10を構成している。
Subsequently, as a vortex generating means which is a particularly preferable form in the melting chamber 11 according to the present invention, a specific form for generating a vortex in the molten metal M by ejecting the gas G into the molten metal will be described.
As shown in FIGS. 1 to 4, the melting chamber 11 characteristically creates a vortex in which the gas G is ejected into the molten metal M in the melting chamber 11 and the molten metal B is stirred together with the molten metal M. A gas ejection device 14 for generating gas inside is provided, and the metal melting device 10 is configured together with the heating chamber 20.

気体噴出装置14は、例えば、図示のように、溶湯M内に位置する噴出口14Aを有する噴出部14B、この噴出部14Bに連通する送気管14C、及び気体Gを発生させる気体発生装置14Dで構成することができる。例えば気体が窒素ガスの場合、気体発生装置の例としては、株式会社日立産機システムの「窒素ガス発生装置(N2パック)」及びアネスト岩田株式会社製等のその相当装置が挙げられる。気体発生装置14Dから送気管14Cを介して溶解室11内に送気される気体Gを噴出口14Aから溶湯M内に噴出させることで、溶解室11内の溶湯Mを攪拌して渦流が発生させる。 As shown in the figure, the gas ejection device 14 is, for example, an ejection portion 14B having an ejection port 14A located in the molten metal M, an air supply pipe 14C communicating with the ejection portion 14B, and a gas generator 14D for generating gas G. Can be configured. For example, when the gas is nitrogen gas, examples of the gas generator include "nitrogen gas generator (N2 pack)" manufactured by Hitachi Industrial Equipment Systems Co., Ltd. and equivalent devices manufactured by Anest Iwata Co., Ltd. By ejecting the gas G sent from the gas generator 14D into the melting chamber 11 via the air supply pipe 14C from the ejection port 14A into the molten metal M, the molten metal M in the melting chamber 11 is agitated and a vortex is generated. Let me.

さらに、図示はしないが、溶解室11内に噴出口14Aから噴出された気体Gを適宜の方向に案内し、渦流を発生させやすくする整流板を設けてもよい。例えば、溶解室11の内壁から溶解室11の中心方向に向かって突出する整流板を、噴出口14Aの直近上方の位置に設ける。噴出口14Aから噴出された気体Gが気泡となって直ぐに上昇せず、渦流が発生しやすくなる。この際、整流板を、噴出口14A側から遠ざかるにしたがって、やや上方に向かうように傾斜させれば、気体Gが略螺旋方向に噴射されるようになり、渦流をより発生させやすくなる。また、溶解室11の内壁に螺旋状に溝を形成してもよい。このようにすれば渦流がさらに発生しやすくなる。 Further, although not shown, a straightening vane may be provided in the melting chamber 11 to guide the gas G ejected from the ejection port 14A in an appropriate direction to facilitate the generation of a vortex flow. For example, a straightening vane protruding from the inner wall of the melting chamber 11 toward the center of the melting chamber 11 is provided at a position immediately above the ejection port 14A. The gas G ejected from the ejection port 14A becomes bubbles and does not rise immediately, so that a vortex flow is likely to occur. At this time, if the straightening vane is tilted so as to move slightly upward as the distance from the ejection port 14A side increases, the gas G is injected in a substantially spiral direction, and it becomes easier to generate a vortex flow. Further, a groove may be formed spirally on the inner wall of the melting chamber 11. In this way, eddy currents are more likely to occur.

本実施形態における気体噴出装置14は、図1及び図2、図12及び図13に示す形態のように、溶解室11内において噴出部14Bを内壁面近傍に設けるのが望ましい。供給された溶解原料Bは渦流により渦流中心へと引き込まれる。噴出部14Bが内壁面近傍にあれば、溶解原料Bが噴出部14Bと接触し難くなり、気体噴出装置14の破損の虞が小さくなる。 In the gas ejection device 14 of the present embodiment, it is desirable that the ejection portion 14B is provided in the vicinity of the inner wall surface in the melting chamber 11 as shown in FIGS. 1 and 2, 12 and 13. The supplied melting raw material B is drawn to the center of the vortex flow by the vortex flow. If the ejection portion 14B is near the inner wall surface, the dissolution raw material B is less likely to come into contact with the ejection portion 14B, and the risk of damage to the gas ejection device 14 is reduced.

さらに、気体噴出装置14は、図3及び図4に示す形態のように、溶解原料Bとより接触し難いように、溶解室11の側壁内に設け、壁面から噴出口14Aが溶解室11内に臨むようにしてもよい。図3及び図4に示す形態では、溶解室11が溶解保持炉1の一部であり、加熱室20から溶解室11に溶湯Mが還流するように循環室50や循環路を設けるように構成されているため、溶解室11と循環室50との間の壁間、つまり溶解室11と循環室50との間の連通路51等、加熱室20から溶解室11へ溶湯Mを循環させる循環路中に、噴出部14Bをその噴出口14Aが溶解室11に臨むように設けている。このようにすれば、溶解室11内に噴出部14Bが位置しなくなり、噴出部14Bと溶解原料Bとの接触が効果的に防止され、気体噴出装置14の破損の虞が各段に小さくなる。 Further, as shown in FIGS. 3 and 4, the gas ejection device 14 is provided in the side wall of the dissolution chamber 11 so as to be less likely to come into contact with the dissolution raw material B, and the ejection port 14A is provided in the dissolution chamber 11 from the wall surface. You may try to face. In the embodiment shown in FIGS. 3 and 4, the melting chamber 11 is a part of the melting holding furnace 1, and the circulation chamber 50 and the circulation passage are provided so that the molten metal M returns from the heating chamber 20 to the melting chamber 11. Therefore, the molten metal M is circulated from the heating chamber 20 to the melting chamber 11, such as between the walls between the melting chamber 11 and the circulation chamber 50, that is, the communication passage 51 between the melting chamber 11 and the circulation chamber 50. A spouting portion 14B is provided in the road so that the spouting port 14A faces the melting chamber 11. By doing so, the ejection portion 14B is not located in the melting chamber 11, the contact between the ejection portion 14B and the dissolution raw material B is effectively prevented, and the risk of damage to the gas ejection device 14 is further reduced. ..

気体Gの噴出口14Aが望む方向、すなわち気体噴出方向としては、図1〜図4に示すように、発生させる渦流の中心が溶解室11の中央部となるように設定すればよい。例えば、図示例のように平面視で略円径の溶解室11であれば、その円の略接線方向に向けるようにすればよい。 As shown in FIGS. 1 to 4, the desired direction of the gas G ejection port 14A, that is, the gas ejection direction, may be set so that the center of the generated vortex flow is the central portion of the melting chamber 11. For example, if the melting chamber 11 has a substantially circular diameter in a plan view as shown in the illustrated example, it may be oriented in the substantially tangential direction of the circle.

さらに、図1及び図2、図12及び図13に示すように、噴出部14Bを溶解室11内の底部近傍の深さ位置に設け、噴出口14Aをやや上方に向けるようにし、噴出口14Aから噴出された気体Gが溶解室11中央部に対して、溶解室11底部側方から螺旋方向に噴出されるようにすれば、溶解室11内に渦流をより発生させやすくなる。なお、図示の気体Gの噴出方向は、溶解室11中央部が渦中心となるように設定した例であるが、もちろん、渦流の中心を溶解室11中央部とは異なる位置となるように設定した場合には、その渦流の中心に対して気体Gが螺旋方向に噴出するように噴出口14A及び噴出部14Bを適宜に設けるようにすればよい。 Further, as shown in FIGS. 1 and 2, FIG. 12 and FIG. 13, the ejection portion 14B is provided at a depth position near the bottom portion in the melting chamber 11, and the ejection port 14A is directed slightly upward so that the ejection port 14A is directed slightly upward. If the gas G ejected from the gas G is ejected from the side of the bottom of the dissolution chamber 11 in a spiral direction with respect to the central portion of the dissolution chamber 11, it becomes easier to generate a vortex in the dissolution chamber 11. The ejection direction of the gas G shown in the figure is an example in which the central portion of the melting chamber 11 is set to be the center of the vortex, but of course, the center of the vortex flow is set to be different from the central portion of the melting chamber 11. In this case, the ejection port 14A and the ejection portion 14B may be appropriately provided so that the gas G is ejected in the spiral direction with respect to the center of the vortex flow.

溶解室11内における気体Gの噴出箇所は、複数とするのが望ましい。図示の形態では、二か所に設けている。噴出個所を複数とする場合、複数の噴出口14Aを有する一つの気体噴出装置14を溶解室11に設けるようにしてもよいし、溶解室11に複数の気体噴出装置14を設けるようにしてもよい。複数個所から気体Gを噴出するようにすれば、溶湯Mに対するより大きな攪拌力を発生させることができるため渦流が発生しやすくなる。この場合、発生させる渦流の中心、例えば、溶解室11中央部に対して点対称位置に噴出口14Aを配置すれば、渦流をより発生させやすくなる。さらに、噴出個所を複数とする場合、噴出個所の深さ位置を異なるようにするとより、渦流が発生しやすくなる。一般的な溶解室11の深さであれば、好ましくは、一方の噴出個所を350〜400mmとし、他方の噴出個所を170〜230mmとするのがよい。 It is desirable that the number of gas G ejection points in the dissolution chamber 11 is a plurality. In the illustrated form, it is provided in two places. When there are a plurality of ejection points, one gas ejection device 14 having a plurality of ejection ports 14A may be provided in the dissolution chamber 11, or a plurality of gas ejection devices 14 may be provided in the dissolution chamber 11. Good. If the gas G is ejected from a plurality of places, a larger stirring force for the molten metal M can be generated, so that a vortex flow is likely to occur. In this case, if the ejection port 14A is arranged at a point-symmetrical position with respect to the center of the vortex to be generated, for example, the central portion of the melting chamber 11, the vortex can be more easily generated. Further, when there are a plurality of ejection points, eddy currents are more likely to occur if the depth positions of the ejection points are different. If it is a general melting chamber 11, the depth of one ejection portion is preferably 350 to 400 mm, and the other ejection portion is preferably 170 to 230 mm.

本実施形態に係る気体噴出装置14は、溶湯M中に気体Gを噴出させて溶湯Mを流動させ、渦流を発生させるものであれば限定されないが、図5に断面概略を示す、ジェットポンプとも称される噴流ポンプ16の構成を採用するのが望ましい。噴流ポンプ16は、高圧の駆動流体Gをノズル17に圧送し、そこからスロート18に向けて高速に噴出させると噴流の圧力が低圧になることを利用して、噴流の周囲の被駆動流体Mを引き込んで、混合しながら噴射する。したがって、噴流ポンプ16を用いれば、気体Gを駆動流体として噴射することで、周囲の溶湯Mを被駆動流体として吸引又は巻き込みつつ気体Gとともに噴射されるようになるため、気体Gのみで溶解室11内の溶湯Mに流動性を付与するよりも、各段に溶湯Mを流動させやすく、渦流を容易に発生させることができる。 The gas ejection device 14 according to the present embodiment is not limited as long as it ejects a gas G into the molten metal M to flow the molten metal M to generate a vortex, but it is also a jet pump whose cross section is outlined in FIG. It is desirable to adopt the configuration of the jet pump 16 referred to. The jet pump 16 pumps a high-pressure driving fluid G to the nozzle 17 and ejects the high-pressure driving fluid G toward the throat 18 at a high speed, so that the pressure of the jet becomes low, and the driven fluid M around the jet flows. Is drawn in and jetted while mixing. Therefore, if the jet pump 16 is used, by injecting the gas G as the driving fluid, the surrounding molten metal M is sucked or entrained as the driven fluid and injected together with the gas G. Therefore, only the gas G is used as the melting chamber. Rather than imparting fluidity to the molten metal M in 11, the molten metal M can be easily flowed in each stage, and a vortex can be easily generated.

特に、図3及び図4に示す形態のように、噴出部14Bを溶解室11と循環室50との間の壁間、つまり溶解室11と循環室50との間の連通路51等に配するとともに、噴流ポンプ16の構成を採用すれば、連通路51近傍の溶湯Mが気体Gとともに溶解室11内に流れこむようになり、効果的に渦流を発生させることができるうえ、溶解原料Bと気体噴出装置14の一部である噴出部14Bとの接触がなくなるため望ましい。さらに、加熱室20から溶解室11に還流する溶湯Mの流れが発生し、溶解室11に供給された溶解原料Bのうち未溶解の溶解原料Bが溶解室11に留まらず、加熱室20に供給されて、溶解原料Bの溶解が効果的に進むようになる。 In particular, as shown in FIGS. 3 and 4, the jet portion 14B is arranged between the walls between the dissolution chamber 11 and the circulation chamber 50, that is, the communication passage 51 between the dissolution chamber 11 and the circulation chamber 50 and the like. At the same time, if the configuration of the jet pump 16 is adopted, the molten metal M in the vicinity of the communication passage 51 will flow into the melting chamber 11 together with the gas G, and an eddy current can be effectively generated, and the melting raw material B and the melting raw material B can be generated. This is desirable because the contact with the ejection portion 14B, which is a part of the gas ejection device 14, is eliminated. Further, a flow of the molten metal M refluxing from the heating chamber 20 to the melting chamber 11 is generated, and the undissolved dissolved raw material B among the dissolved raw materials B supplied to the melting chamber 11 does not stay in the melting chamber 11 and enters the heating chamber 20. It is supplied so that the dissolution raw material B can be effectively dissolved.

溶湯M内に噴出する気体Gとしては、窒素ガス、アルゴンガス等の溶湯Mに対して不活性な不活性ガス(以下「不活性なガス」という)であるのが望ましい。不活性なガスGの生成や送気方法について限定されない。空気から窒素ガスを分離するコンプレッサーや不活性ガスを封入したボンベ等から圧送して供給すればよい。好ましくは、0.5MPa以下、より好ましくは0.3〜0.5MPaの圧力で噴出させるとよい。不活性なガスGを溶湯M内に吹き込むようにすることで、渦流発生とともに脱ガス効果が発現し溶湯Mを清浄することができる。特に、渦流の発生により溶湯Mと不活性なガスGの接触性が高まることで高い脱ガス効果が得られる。また、係る構成をとることで、溶解保持炉1に別途に脱ガス室を設ける必要がなくなり、炉全体をコンパクトにすることができる。 The gas G ejected into the molten metal M is preferably an inert gas (hereinafter referred to as "inert gas") that is inactive with respect to the molten metal M such as nitrogen gas and argon gas. The generation of the inert gas G and the method of supplying air are not limited. It may be supplied by pumping from a compressor that separates nitrogen gas from air or a cylinder filled with an inert gas. It is preferable to eject at a pressure of 0.5 MPa or less, more preferably 0.3 to 0.5 MPa. By blowing the inert gas G into the molten metal M, the degassing effect is exhibited at the same time as the vortex is generated, and the molten metal M can be cleaned. In particular, the generation of a vortex increases the contact between the molten metal M and the inert gas G, so that a high degassing effect can be obtained. Further, by adopting such a configuration, it is not necessary to separately provide a degassing chamber in the melting and holding furnace 1, and the entire furnace can be made compact.

図1〜図4に示す実施形態の金属溶解装置10では、溶解室11内に気体噴出によって溶湯Mの渦流が発生しているため、溶解室11の上部に形成され供給口11Aから投入された溶解原料Bのうち、ブリケット材のように軽量であったり溶湯Mよりも比重が軽く溶湯Mに浮く溶解原料Bは、渦流の中心部底側に向かって引き込まれる。その一方で、質量があり溶湯Mよりも比重が重い溶解原料Bでは、渦流に巻き込まれつつあるいは渦流の流れを受けつつ底に沈んでいく。
この形態の溶解室11では、攪拌翼等の動的な機械装置部分により渦流を発生させるのではなく、気体Gにより渦流を発生させるため、比重の軽い溶解原料Bであっても溶湯Mに沈む溶解原料Bであっても機械装置部分との接触がないため、比重の軽い溶解原料Bとともに、溶解室11に供給することができる利点がある。
In the metal melting apparatus 10 of the embodiment shown in FIGS. 1 to 4, since a vortex of the molten metal M is generated in the melting chamber 11 by gas ejection, it is formed in the upper part of the melting chamber 11 and is charged from the supply port 11A. Among the melting raw materials B, the melting raw material B, which is lightweight like a briquette material or has a lighter specific gravity than the molten metal M and floats on the molten metal M, is drawn toward the bottom side of the center of the vortex. On the other hand, the molten material B, which has a mass and a heavier specific gravity than the molten metal M, sinks to the bottom while being caught in the vortex or receiving the vortex.
In the melting chamber 11 of this form, since the vortex is generated by the gas G instead of being generated by the dynamic mechanical device portion such as the stirring blade, even the melting raw material B having a light specific gravity sinks in the molten metal M. Since the melting raw material B does not come into contact with the mechanical device portion, there is an advantage that it can be supplied to the melting chamber 11 together with the melting raw material B having a light specific density.

本発明に係る溶解原料Bとしては、リターン材、ブリケット材及び切粉等のスクラップ材と、新材とが挙げられるが、このうちブリケット材と切粉は、溶湯Mに対して浮きやすく、また、リターン材や新材は、溶湯Mに対して沈みやすい。したがって、図1〜図4に示す実施形態に係る金属溶解装置10では、ブリケット材や切粉は、渦流により迅速に渦底に引き込まれ加熱室20に送られる。また、新材やリターン材は、溶湯M中に沈む過程で渦流に曝されて溶解が進む。よって、この実施形態に係る気体Gの噴出により溶解室11に渦流を発生させる金属溶解装置10では、リターン材、ブリケット材及び切粉等のスクラップ材と、新材とをいずれの組み合わせでも溶解室11に供給することができる利点がある。なお、この金属溶解装置10では、例えば、新材やリターン材のような溶湯Mに沈む溶解原料Bのみを溶解する場合には気体噴出を停止し、切粉やブリケット材のような溶湯Mに沈み難い溶解原料Bを供給する場合のみ気体噴出を行って渦流を発生させるようにしてもよい。 Examples of the melting raw material B according to the present invention include scrap materials such as return material, briquette material and chips, and new materials. Among them, the briquette material and chips are easy to float with respect to the molten metal M, and , The return material and the new material are liable to sink with respect to the molten metal M. Therefore, in the metal melting apparatus 10 according to the embodiment shown in FIGS. 1 to 4, the briquette material and chips are rapidly drawn into the vortex bottom by the vortex flow and sent to the heating chamber 20. Further, the new material and the return material are exposed to a vortex in the process of sinking in the molten metal M, and the dissolution proceeds. Therefore, in the metal melting device 10 that generates a vortex in the melting chamber 11 by ejecting the gas G according to this embodiment, the melting chamber can be any combination of scrap materials such as return material, briquette material and chips, and a new material. There is an advantage that it can be supplied to 11. In the metal melting device 10, for example, when only the melting raw material B that sinks in the molten metal M such as a new material or a return material is dissolved, the gas ejection is stopped and the molten metal M such as chips or briquette material is formed. The gas may be ejected to generate a vortex only when the dissolved raw material B that is hard to sink is supplied.

以上、説明の本発明に係る金属溶解装置10、さらに本発明に係る金属溶解装置10を組み込んだ溶解保持炉1では、ブリケット材のような溶湯Mに比して比重の軽い溶解原料Bを酸化させないように溶解して、酸化物の少ない清浄な溶湯Mを得ることができる。 In the melting and holding furnace 1 incorporating the metal melting device 10 according to the present invention and the metal melting device 10 according to the present invention described above, the melting raw material B having a lighter specific gravity than the molten metal M such as a briquette material is oxidized. It is possible to obtain a clean molten metal M with a small amount of oxide by dissolving it so as not to cause it.

1…溶解保持炉、2,112…耐火材、3…外殻、
10…金属溶解装置、20…加熱室、21…浸漬ヒータ(浸漬バーナ)、22…加熱室蓋、30…鎮静室、40…汲出室、50…循環室、51…連通路、
11,101,102…溶解室、11A…供給口、13…供給路、13A…溶解室側開口、13B…供給路上壁面、
14…気体噴出装置、14A…噴出口、14B…噴出部、14C…送気管、14D…気体発生装置
16…噴流ポンプ、17…ノズル、18…スロート
G…不活性なガス・気体・駆動流体、B…溶解原料、M…溶湯・被駆動流体、
70…スクリーン板、 71…貫通孔、
114…磁気撹拌装置、115…回転軸、116…攪拌翼。
1 ... Melting and holding furnace, 2,112 ... Refractory material, 3 ... Outer shell,
10 ... metal melting device, 20 ... heating chamber, 21 ... immersion heater (immersion burner), 22 ... heating chamber lid, 30 ... sedative chamber, 40 ... pumping chamber, 50 ... circulation chamber, 51 ... communication passage,
11,101,102 ... Melting chamber, 11A ... Supply port, 13 ... Supply path, 13A ... Melting chamber side opening, 13B ... Supply path upper wall surface,
14 ... gas ejection device, 14A ... ejection port, 14B ... ejection part, 14C ... air supply pipe, 14D ... gas generator 16 ... jet pump, 17 ... nozzle, 18 ... throat G ... inert gas / gas / driving fluid, B ... dissolution raw material, M ... molten metal / driven fluid,
70 ... screen board, 71 ... through hole,
114 ... Magnetic stirrer, 115 ... Rotating shaft, 116 ... Stirring blade.

Claims (7)

溶湯中に溶解原料を供給する溶解室と、
供給路を介して前記溶解室に連通し、溶湯を加熱する加熱手段を有する加熱室と、を有し、
前記加熱室内に、前記供給路から移送される未溶解の溶解原料の浮上を、少なくとも所定の大きさとなるまで防止するスクリーン板が設けられている、
ことを特徴とする金属溶解装置。
A melting chamber that supplies the melting raw material into the molten metal,
It has a heating chamber that communicates with the melting chamber via a supply path and has a heating means for heating the molten metal.
A screen plate is provided in the heating chamber to prevent the undissolved dissolved raw material transferred from the supply path from floating until it reaches at least a predetermined size.
A metal melting device characterized by the fact that.
前記スクリーン板は、多数の貫通孔を有するものであり、それら貫通孔が、底面側から上面側に向かって狭窄するテーパー状となっている、請求項1記載の金属溶解装置。 The metal melting apparatus according to claim 1, wherein the screen plate has a large number of through holes, and the through holes are tapered from the bottom surface side to the upper surface side. 前記供給路又は前記溶解室の供給路近傍に、前記溶解室から前記加熱室に移送される前記未溶解の溶解原料に衝撃を与える衝撃付与手段を備える、請求項1又は2記載の金属溶解装置。 The metal melting apparatus according to claim 1 or 2, further comprising an impact applying means for giving an impact to the undissolved dissolved raw material transferred from the melting chamber to the heating chamber in the vicinity of the supply passage or the supply passage of the melting chamber. .. 前記衝撃付与手段は、前記未溶解の溶解原料が衝突するように構成された前記供給路の内壁又は前記溶解室の供給路近傍の内壁である、請求項1〜3の何れか1項に記載の金属溶解装置。 The impact applying means according to any one of claims 1 to 3, wherein the impact applying means is an inner wall of the supply path configured so that the undissolved dissolved raw materials collide with each other, or an inner wall in the vicinity of the supply path of the dissolution chamber. Metal melting equipment. 前記溶解室に、当該溶解室内の溶湯に渦流を発生させる渦流発生手段が、設けられている、請求項1〜4の何れか1項に記載の金属溶解装置。 The metal melting apparatus according to any one of claims 1 to 4, wherein the melting chamber is provided with a vortex generating means for generating a vortex in the molten metal in the melting chamber. 前記渦流発生手段が、溶湯中に気体を噴出することで、溶湯に渦流を発生させるものである、請求項5記載の金属溶解装置。 The metal melting apparatus according to claim 5, wherein the vortex generating means generates a vortex in the molten metal by ejecting a gas into the molten metal. 前記気体が、溶湯に対して不活性な不活性ガスである、請求項6記載の金属溶解装置。 The metal melting apparatus according to claim 6, wherein the gas is an inert gas that is inert to the molten metal.
JP2019207479A 2019-11-15 2019-11-15 Metal melting device Active JP6861442B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019207479A JP6861442B1 (en) 2019-11-15 2019-11-15 Metal melting device
CN202310924599.7A CN116900292A (en) 2019-11-15 2020-11-10 Metal melting device, screen plate for metal melting, and metal melting method
CN202310924571.3A CN116900291A (en) 2019-11-15 2020-11-10 Metal melting device, screen plate for metal melting, and metal melting method
CN202080061068.4A CN114340816B (en) 2019-11-15 2020-11-10 Metal melting device, screen plate for metal melting, and metal melting method
US17/637,345 US20220307768A1 (en) 2019-11-15 2020-11-10 Metal melting apparatus, screen plate for metal melting, and method of melting metal
EP20887977.5A EP4006471A4 (en) 2019-11-15 2020-11-10 Metal melting device, screen plate for melting metal, and method for melting metal
PCT/JP2020/041950 WO2021095731A1 (en) 2019-11-15 2020-11-10 Metal melting device, screen plate for melting metal, and method for melting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207479A JP6861442B1 (en) 2019-11-15 2019-11-15 Metal melting device

Publications (2)

Publication Number Publication Date
JP6861442B1 JP6861442B1 (en) 2021-04-21
JP2021081107A true JP2021081107A (en) 2021-05-27

Family

ID=75520922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207479A Active JP6861442B1 (en) 2019-11-15 2019-11-15 Metal melting device

Country Status (1)

Country Link
JP (1) JP6861442B1 (en)

Also Published As

Publication number Publication date
JP6861442B1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6393256B2 (en) Molten metal immersion equipment
EP0832304B1 (en) Method and apparatus for continuous in-line gas treatment of molten metals
JP2554510B2 (en) Non-ferrous metal chip melting device
WO2021095731A1 (en) Metal melting device, screen plate for melting metal, and method for melting metal
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
JP6861442B1 (en) Metal melting device
AU747623B2 (en) Injector for gas treatment of molten metals
JP6829491B1 (en) Screen plate for metal melting and metal melting method
JP6855084B1 (en) Metal melting device
KR102079388B1 (en) Continuous type aluminum complex furnace
JP5242254B2 (en) Aluminum melting furnace and melting furnace system with aluminum melting furnace
JP2019098396A (en) Jet rotation type degasification device and gas nozzle
CN108253799A (en) side-blown spray gun
JP3947452B2 (en) Non-ferrous metal scrap melting furnace
JP2006305616A (en) Molten metal feeding device and molten metal feeding method
JP5721527B2 (en) Furnace structure of aluminum melting furnace
KR102209610B1 (en) Nozzle apparatus
JP5318326B2 (en) Gas injection nozzle device and gas injection equipment provided with the same
JP2853145B2 (en) Equipment for dissolving aluminum metal chips
JP6445557B2 (en) Method and apparatus for refining molten metal
JP5267797B2 (en) Glass melting furnace
JP2004154822A (en) Molten metal treatment method, molten metal treatment device, and crucible furnace
JP2023515106A (en) Multipurpose pump system for metal furnaces and related methods
RU2231560C1 (en) Metal deoxidizing and modifying method and apparatus
JP2022147875A (en) Gas injection jig for molten metal processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6861442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250