JP2021079425A - Heat exchanger manufacturing method - Google Patents

Heat exchanger manufacturing method Download PDF

Info

Publication number
JP2021079425A
JP2021079425A JP2019210777A JP2019210777A JP2021079425A JP 2021079425 A JP2021079425 A JP 2021079425A JP 2019210777 A JP2019210777 A JP 2019210777A JP 2019210777 A JP2019210777 A JP 2019210777A JP 2021079425 A JP2021079425 A JP 2021079425A
Authority
JP
Japan
Prior art keywords
perforated pipe
extruded perforated
lid
stirring pin
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019210777A
Other languages
Japanese (ja)
Other versions
JP7211342B2 (en
Inventor
堀 久司
Hisashi Hori
久司 堀
伸城 瀬尾
Nobushiro Seo
伸城 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2019210777A priority Critical patent/JP7211342B2/en
Publication of JP2021079425A publication Critical patent/JP2021079425A/en
Application granted granted Critical
Publication of JP7211342B2 publication Critical patent/JP7211342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a heat exchanger manufacturing method that can suitably weld an aluminium alloy made of different kinds of materials to each other.SOLUTION: A heat exchanger manufacturing method includes a main welding step in which a stirring pin F2 of a rotary tool F is inserted into an outer peripheral surface 11f of an extrusion polygonal pipe 2, and a butted part J1 is subjected to friction-stir by circling the part around at a predetermined depth along a set movement route L1, while flowing a second aluminium alloy into a gap, in a state where a lower end face of a shoulder part F1 is contacted with the outer peripheral surface 11f of the extrusion polygonal pipe 2 while slightly contacting an outer peripheral surface of the stirring pin F2 with a step inclined surface 23b of a lid body 3. After the stirring pin F2 that rotates is inserted into a start position SP1 set in a direction in which the pin is separated from the butted part J1 more than the set movement route L1, the stirring pin F2 is gradually pushed into up to the predetermined depth while moving a rotation center axis Z of the rotary tool F to a position overlapping with the set movement route L1.SELECTED DRAWING: Figure 5

Description

本発明は、熱交換器の製造方法に関する。 The present invention relates to a method for manufacturing a heat exchanger.

摩擦攪拌接合を利用した熱交換器の製造方法が行われている。例えば、特許文献1には、複数の孔部が並設された押出多孔管と、当該押出多孔管の開口部を封止する封止体とを摩擦攪拌で接合する熱交換器の製造方法が開示されている。 A method of manufacturing a heat exchanger using friction stir welding is being carried out. For example, Patent Document 1 describes a method for manufacturing a heat exchanger in which an extruded perforated pipe in which a plurality of holes are arranged side by side and a sealing body for sealing the openings of the extruded perforated pipe are joined by friction stir welding. It is disclosed.

従来の熱交換器の製造方法は、アルミニウム合金製の押出多孔管の端面と、蓋体の外周に形成された段差部とを突き合わせて突合せ部を形成した後、突合せ部に対して回転ツールを用いて摩擦攪拌接合を行うというものである。 In the conventional method of manufacturing a heat exchanger, an end face of an extruded perforated tube made of an aluminum alloy and a stepped portion formed on the outer periphery of the lid are abutted to form a butt portion, and then a rotation tool is applied to the butt portion. It is used to perform frictional stirring joining.

特開2016−74016号公報Japanese Unexamined Patent Publication No. 2016-74016

ここで、押出多孔管のように比較的単純な形状のものは、1000系アルミニウム合金の展伸材で形成し、蓋体は、例えば、4000系アルミニウム合金の鋳造材で形成するというような場合がある。このように、アルミニウム合金の材種の異なる部材同士を接合して、熱交換器を製造する場合がある。このような場合は、蓋体の方が押出多孔管よりも硬度が高くなることが一般的であるため、摩擦攪拌接合を行うと、攪拌ピンが押出多孔管側から受ける材料抵抗に比べて、蓋体側から受ける材料抵抗が大きくなる。そのため、回転ツールの攪拌ピンによって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 Here, a case where a relatively simple shape such as an extruded perforated pipe is formed of a wrought material of a 1000 series aluminum alloy, and a lid is formed of, for example, a cast material of a 4000 series aluminum alloy. There is. In this way, a heat exchanger may be manufactured by joining members of different grades of aluminum alloy. In such a case, the lid is generally harder than the extruded perforated pipe. Therefore, when friction stir welding is performed, the stirring pin receives a material resistance from the extruded perforated pipe side. The material resistance received from the lid side increases. Therefore, it becomes difficult to stir different grades in a well-balanced manner by the stirring pin of the rotating tool, and there is a problem that cavity defects occur in the plasticized region after joining and the joining strength decreases.

また、攪拌ピンを突合せ部に挿入する際、所定の深さとなるまで鉛直方向に攪拌ピンG2を押入するため、摩擦攪拌の開始位置における摩擦熱が過大となる。これにより、当該開始位置において、蓋体側の金属が押出多孔管側に混入しやすくなり、接合不良の一因となるという問題がある。 Further, when the stirring pin is inserted into the butt portion, the stirring pin G2 is pushed in in the vertical direction until it reaches a predetermined depth, so that the frictional heat at the start position of frictional stirring becomes excessive. As a result, at the starting position, the metal on the lid side is likely to be mixed into the extruded perforated pipe side, which causes a problem of contributing to poor joining.

一方、攪拌ピンを突合せ部から引き抜いて離脱させる際、鉛直方向に攪拌ピンを引き抜くため、摩擦攪拌の終了位置における摩擦熱が過大となる。これにより、当該終了位置において、蓋体側の金属が押出多孔管側に混入しやすくなり、接合不良の一因となるという問題がある。 On the other hand, when the stirring pin is pulled out from the butt portion and separated, the stirring pin is pulled out in the vertical direction, so that the frictional heat at the end position of frictional stirring becomes excessive. As a result, at the end position, the metal on the lid side is likely to be mixed into the extruded perforated pipe side, which causes a problem of contributing to poor joining.

このような観点から、本発明は、材種の異なるアルミニウム合金を好適に接合することができる熱交換器の製造方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a method for manufacturing a heat exchanger capable of suitably joining aluminum alloys of different grades.

前記課題を解決するために、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、前記攪拌ピンは、先細りのテーパー状となっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、回転する前記攪拌ピンを前記設定移動ルートよりもさらに前記突合せ部から離間する方向に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする。 In order to solve the above problems, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and the extruded perforated pipe and the lid are combined. A method for manufacturing a heat exchanger to be joined by frictional stirring, wherein the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a step side surface and a step side surface. A peripheral wall stepped portion having a stepped inclined surface that inclines toward the bottom side toward the outside is formed, and the extruded perforated pipe is fitted with the peripheral wall portion without the fins formed at the end. The extruded porous pipe has a fitting portion to be fitted, the extruded perforated pipe is formed of a second aluminum alloy, the lid is formed of a first aluminum alloy, and the first aluminum alloy is made of the second aluminum alloy. The rotating tool used for friction stirring is provided with a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion, and the stirring pin has a tapered shape. By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped and the extruded portion is formed. A butt step of abutting the end surface of the perforated pipe and the stepped inclined surface of the lid to form a gap having a V-shaped cross section in the butt portion, and a stirring pin of the rotating tool are placed on the outer peripheral surface of the extruded perforated pipe. With the outer peripheral surface of the stirring pin slightly in contact with the stepped inclined surface of the lid, and the lower end surface of the shoulder portion in contact with the outer peripheral surface of the extruded perforated pipe, the first (Ii) While flowing the aluminum alloy, the butt portion is made to go around the outer peripheral surface of the extruded porous pipe at a predetermined depth along a set movement route set on the extruded porous pipe side of the butt portion. In the main joining step, which includes a main joining step of rubbing and stirring, the rotating tool is inserted after the rotating stirring pin is inserted at a start position set in a direction further away from the butt portion than the set movement route. The stirring pin is gradually pushed in until the predetermined depth is reached while moving the rotation center axis of the above to a position overlapping the set movement route.

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、前記攪拌ピンは、先細りのテーパー状となっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする。 Further, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring. A method of manufacturing a switch, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a stepped side surface and the bottom portion as it goes outward from the stepped side surface. A peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted. The extruded perforated pipe is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The rotary tool used for frictional stirring is provided with a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion. The stirring pin has a tapered shape and is extruded. By inserting the peripheral wall portion of the lid body into the fitting portion of the perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid body are overlapped, and the end surface of the extruded perforated pipe and the said A butt step of abutting the stepped inclined surface of the lid to form a gap having a V-shaped cross section in the butt portion, and a stirring pin of the rotating tool are inserted into the outer peripheral surface of the extruded perforated pipe, and the stirring pin is inserted. The second aluminum alloy is allowed to flow into the gap in a state where the lower end surface of the shoulder portion is in contact with the outer peripheral surface of the extruded perforated pipe while the outer peripheral surface of the lid is slightly in contact with the stepped inclined surface of the lid. However, this joining step of frictionally stirring the butt portion by making a circumference around the outer peripheral surface of the extruded porous pipe at a predetermined depth along a set movement route set on the extruded porous pipe side of the butt portion. In the main joining step, the stirring pin is inserted from the start position set on the set movement route, and the stirring pin is gradually pushed in until it reaches a predetermined depth while moving in the traveling direction. It is characterized by.

かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、攪拌ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、ショルダ部の下端面を押出多孔管の外周面に接触させて塑性流動材を押さえることにより、バリの発生を抑制することができる。また、回転ツールを設定移動ルートと重複する位置まで移動させながら所定の深さとなるまで攪拌ピンを徐々に押入することにより、設定移動ルート上で摩擦熱が過大になるのを防ぐことができる。また、回転ツールを設定移動ルート上で移動させつつ所定の深さとなるまで攪拌ピンを徐々に押入することにより、設定移動ルート上の一点で摩擦熱が過大になるのを防ぐことができる。これにより、設定移動ルート上において、蓋体の第一アルミニウム合金が押出多孔管側に混入するのを防ぐことができる。 According to such a manufacturing method, the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the stirring pin is kept in contact with the lid slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid into the extruded perforated pipe. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed. Further, the generation of burrs can be suppressed by bringing the lower end surface of the shoulder portion into contact with the outer peripheral surface of the extruded perforated tube to hold down the plastic fluid material. Further, by gradually pushing the stirring pin until it reaches a predetermined depth while moving the rotation tool to a position overlapping the set movement route, it is possible to prevent the frictional heat from becoming excessive on the set movement route. Further, by gradually pushing the stirring pin until it reaches a predetermined depth while moving the rotation tool on the set movement route, it is possible to prevent the frictional heat from becoming excessive at one point on the set movement route. This makes it possible to prevent the first aluminum alloy of the lid from being mixed into the extruded perforated pipe side on the set movement route.

また、本発明は、前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。 Further, in the present joining step, the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to insert the stirring pin in a state of being rotated at a speed and move the stirring pin to the set movement route while gradually reducing the rotation speed.

かかる製造方法によれば、より好適に摩擦攪拌接合を行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、前記攪拌ピンは、先細りのテーパー状となっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルートよりもさらに前記突合せ部から離間する方向に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする特徴とする。 Further, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring. A method of manufacturing a switch, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a stepped side surface and the bottom portion as it goes outward from the stepped side surface. A peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted. The extruded perforated pipe is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The rotary tool used for frictional stirring is provided with a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion. The stirring pin has a tapered shape and is extruded. By inserting the peripheral wall portion of the lid body into the fitting portion of the perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid body are overlapped, and the end surface of the extruded perforated pipe and the said A butt step of abutting the stepped inclined surface of the lid to form a gap having a V-shaped cross section in the butt portion, and a stirring pin of the rotating tool are inserted into the outer peripheral surface of the extruded perforated pipe, and the stirring pin is inserted. The second aluminum alloy is allowed to flow into the gap in a state where the lower end surface of the shoulder portion is in contact with the outer peripheral surface of the extruded perforated pipe while the outer peripheral surface of the lid is slightly in contact with the stepped inclined surface of the lid. However, this joining step of frictionally stirring the butt portion by making a circumference around the outer peripheral surface of the extruded porous pipe at a predetermined depth along a set movement route set on the extruded porous pipe side of the butt portion. In the main joining step, the end position is set in a direction further away from the butt portion than the set movement route, and after frictional stirring joining to the butt portion, the rotation tool is moved to the end position. The stirring pin is gradually pulled out while being moved, and the rotating tool is separated from the extruded perforated tube at the end position.

また、本発明は、内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、前記攪拌ピンは、先細りのテーパー状となっており、前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、回転する前記回転ツールの攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする。 Further, the present invention is composed of an extruded perforated pipe having fins inside and a lid for sealing the opening of the extruded perforated pipe, and heat for joining the extruded perforated pipe and the lid by frictional stirring. A method of manufacturing a switch, the lid has a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and the outer peripheral edge of the peripheral wall portion has a stepped side surface and the bottom portion as it goes outward from the stepped side surface. A peripheral wall stepped portion having a stepped inclined surface inclined so as to be close to the side is formed, and the extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted. The extruded perforated pipe is made of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy. The rotary tool used for frictional stirring is provided with a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion. The stirring pin has a tapered shape and is extruded. By inserting the peripheral wall portion of the lid body into the fitting portion of the perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid body are overlapped, and the end surface of the extruded perforated pipe and the said A butt step of abutting the stepped inclined surface of the lid to form a gap having a V-shaped cross section in the butt portion, and a stirring pin of the rotating tool are inserted into the outer peripheral surface of the extruded perforated pipe, and the stirring pin is inserted. The second aluminum alloy is allowed to flow into the gap in a state where the lower end surface of the shoulder portion is in contact with the outer peripheral surface of the extruded perforated pipe while the outer peripheral surface of the lid is slightly in contact with the stepped inclined surface of the lid. However, this joining step of frictionally stirring the butt portion by making a circumference around the outer peripheral surface of the extruded porous pipe at a predetermined depth along a set movement route set on the extruded porous pipe side of the butt portion. In the main joining step, the end position is set on the set movement route, and after friction stirring joining to the butt portion, the stirring pin is gradually moved while moving the rotation tool to the end position. It is characterized in that the rotating tool is separated from the extruded perforated pipe at the end position by pulling out.

かかる製造方法によれば、蓋体と押出多孔管との摩擦熱によって突合せ部の主として押出多孔管側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において蓋体と押出多孔管とを接合することができる。また、攪拌ピンの外周面を蓋体にわずかに接触させるに留めるため、蓋体から押出多孔管への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として押出多孔管側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、ショルダ部の下端面を押出多孔管の外周面に接触させて塑性流動材を押さえることにより、バリの発生を抑制することができる。また、回転ツールを終了位置に向かって移動させながら攪拌ピンを徐々に引き抜くことにより、設定移動ルート上で摩擦熱が過大になるのを防ぐことができる。また、回転ツールを設定移動ルート上で移動させつつ所定の深さとなるまで攪拌ピンを徐々に引き抜くことにより、設定移動ルート上の一点で摩擦熱が過大になるのを防ぐことができる。これにより、設定移動ルート上において、蓋体の第一アルミニウム合金が押出多孔管側に混入するのを防ぐことができる。 According to such a manufacturing method, the frictional heat between the lid and the extruded perforated pipe stirs and plastically fluidizes the second aluminum alloy mainly on the extruded perforated pipe side of the butt portion, and the lid and the extruded perforated pipe are formed at the butt portion. Can be joined. Further, since the outer peripheral surface of the stirring pin is kept in contact with the lid slightly, it is possible to minimize the mixing of the first aluminum alloy from the lid into the extruded perforated tube. As a result, the second aluminum alloy on the extruded perforated pipe side is mainly frictionally agitated at the butt portion, so that a decrease in joint strength can be suppressed. Further, by bringing the lower end surface of the shoulder portion into contact with the outer peripheral surface of the extruded perforated pipe and pressing the plastic fluid material, the generation of burrs can be suppressed. Further, by gradually pulling out the stirring pin while moving the rotation tool toward the end position, it is possible to prevent the frictional heat from becoming excessive on the set movement route. Further, by gradually pulling out the stirring pin until it reaches a predetermined depth while moving the rotation tool on the set movement route, it is possible to prevent the frictional heat from becoming excessive at one point on the set movement route. This makes it possible to prevent the first aluminum alloy of the lid from being mixed into the extruded perforated pipe side on the set movement route.

また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、前記本接合工程において前記攪拌ピンを引き抜くとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることが好ましい。 Further, in the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion, and when the stirring pin is pulled out in the main joining step, the stirring pin is gradually pulled out from the predetermined rotation speed. It is preferable to move to the end position while increasing the rotation speed.

かかる製造方法によれば、より好適に摩擦攪拌接合を行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.

また、前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することが好ましい。 Further, in the butt step, it is preferable to form the extruded perforated pipe and the lid so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid.

かかる製造方法によれば、接合部の金属不足を防ぐことができる。 According to such a manufacturing method, it is possible to prevent a metal shortage at the joint.

また、前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することが好ましい。 Further, it is preferable to set the rotation direction and the traveling direction of the rotation tool so that the butt portion side is the advancing side.

かかる製造方法によれば、突合せ部側の摩擦攪拌が促進され、より好適に接合することができる。 According to such a manufacturing method, friction stir welding on the butt portion side is promoted, and more suitable joining can be performed.

また、前記本接合工程では、前記攪拌ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することが好ましい。 Further, in the main joining step, it is preferable that the tip of the stirring pin penetrates the stepped side surface of the lid and circulates around the outer peripheral surface of the extruded perforated pipe to frictionally stir the butt portion.

かかる製造方法によれば、蓋体と押出多孔管とをより好適に接合することができる。 According to such a manufacturing method, the lid body and the extruded perforated pipe can be more preferably joined.

また、前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることが好ましい。 Further, it is preferable that the first aluminum alloy is made of a cast material and the second aluminum alloy is made of a wrought material.

本発明に係る熱交換器の製造方法によれば、材種の異なるアルミニウム合金を好適に接合することができる。 According to the method for manufacturing a heat exchanger according to the present invention, aluminum alloys of different grades can be suitably joined.

本発明の実施形態に係る回転ツールを示す側面図である。It is a side view which shows the rotation tool which concerns on embodiment of this invention. 本発明の第一実施形態に係る熱交換器を示す分解斜視図である。It is an exploded perspective view which shows the heat exchanger which concerns on 1st Embodiment of this invention. 第一実施形態に係る熱交換器の製造方法の突合せ工程を示す断面図である。It is sectional drawing which shows the butt process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程を示す断面図である。It is sectional drawing which shows the main joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 第一実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 1st Embodiment. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の開始位置を示す模式図である。It is a schematic diagram which shows the start position of this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第二実施形態に係る熱交換器の製造方法の本接合工程の終了位置を示す模式図である。It is a schematic diagram which shows the end position of this joining process of the manufacturing method of the heat exchanger which concerns on 2nd Embodiment of this invention.

本発明の実施形態について、適宜図面を参照しながら説明する。まずは、本実施形態に係る接合方法で用いる回転ツールについて説明する。回転ツールは、摩擦攪拌接合に用いられるツールである。図1に示すように、回転ツールFは、例えば工具鋼で形成されており、ショルダ部F1と、攪拌ピンF2とで構成されている。ショルダ部F1は、塑性流動化した金属を押える部位である。ショルダ部F1は円柱状を呈する。ショルダ部F1の下端面は、平坦でもよいし、流動化した金属が外部へ流出するのを防ぐために凹状としてもよい。 Embodiments of the present invention will be described with reference to the drawings as appropriate. First, the rotation tool used in the joining method according to the present embodiment will be described. The rotary tool is a tool used for friction stir welding. As shown in FIG. 1, the rotary tool F is made of, for example, tool steel, and is composed of a shoulder portion F1 and a stirring pin F2. The shoulder portion F1 is a portion that holds down the plastically fluidized metal. The shoulder portion F1 has a columnar shape. The lower end surface of the shoulder portion F1 may be flat or may be concave in order to prevent the fluidized metal from flowing out.

攪拌ピンF2は、ショルダ部F1の下端面の中央から垂下しており、ショルダ部F1と同軸になっている。攪拌ピンF2は、先細りのテーパー状となっている。攪拌ピンF2はショルダ部F1から離間するにつれて先細りになっている。攪拌ピンF2の外周面には螺旋溝が刻設されている。本実施形態では、回転ツールFを右回転させるため、螺旋溝を基端から先端に向けて左回りに刻設する。 The stirring pin F2 hangs down from the center of the lower end surface of the shoulder portion F1 and is coaxial with the shoulder portion F1. The stirring pin F2 has a tapered shape. The stirring pin F2 is tapered as it is separated from the shoulder portion F1. A spiral groove is engraved on the outer peripheral surface of the stirring pin F2. In the present embodiment, in order to rotate the rotation tool F clockwise, a spiral groove is carved counterclockwise from the base end to the tip end.

なお、回転ツールFを左回転させる場合は、螺旋溝を基端から先端に向けて右回りに刻設する。このようにすると、摩擦攪拌接合によって塑性流動化した金属が螺旋溝に導かれて攪拌ピンF2の先端側に移動する。これにより、被接合金属部材(押出多孔管2、蓋体3)から溢れ出る金属を少なくすることができる。 When rotating the rotation tool F counterclockwise, the spiral groove is carved clockwise from the base end to the tip end. In this way, the metal plastically fluidized by friction stir welding is guided by the spiral groove and moves to the tip side of the stirring pin F2. As a result, the amount of metal overflowing from the metal member to be joined (extruded perforated pipe 2, lid 3) can be reduced.

[第一実施形態]
本発明の実施形態について、適宜図面を参照しながら説明する。第一実施形態に係る熱交換器1は、図2に示すように、押出多孔管2と、押出多孔管2の両端に配置された蓋体3,3とで構成されている。熱交換器1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。押出多孔管2と蓋体3,3とは摩擦攪拌接合で一体化される。
[First Embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 2, the heat exchanger 1 according to the first embodiment is composed of an extruded perforated pipe 2 and lids 3 and 3 arranged at both ends of the extruded perforated pipe 2. The heat exchanger 1 is a device that circulates a fluid inside to cool an arranged heating element. The extruded perforated pipe 2 and the lids 3 and 3 are integrated by friction stir welding.

押出多孔管2は、本体部11と、複数のフィン12とで主に構成されている。押出多孔管2は、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。押出多孔管2は、第二アルミニウム合金で形成された押出形材である。 The extruded perforated pipe 2 is mainly composed of a main body 11 and a plurality of fins 12. In the present embodiment, the extruded perforated pipe 2 is formed mainly containing a second aluminum alloy. The second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063. The extruded perforated pipe 2 is an extruded shape member made of a second aluminum alloy.

本体部11は、筒状を呈する。本体部11の側部11a,11bは外側(本体部11の幅方向外側)に凸となるように湾曲している。本体部11の基板部11c,11dは平坦になっており、平行に対向している。つまり、本体部11の断面は長丸形状になっている。フィン12は、基板部11c,11dに対して垂直になっている。フィン12は、本体部11の押し出し方向に延設され、それぞれ平行に形成されている。隣り合うフィン12の間には、流体が流通する断面矩形の複数の孔部13が形成されている。 The main body 11 has a tubular shape. The side portions 11a and 11b of the main body portion 11 are curved so as to be convex outward (outside in the width direction of the main body portion 11). The substrate portions 11c and 11d of the main body portion 11 are flat and face each other in parallel. That is, the cross section of the main body 11 has an oblong shape. The fins 12 are perpendicular to the substrate portions 11c and 11d. The fins 12 extend in the extrusion direction of the main body 11, and are formed in parallel with each other. A plurality of holes 13 having a rectangular cross section through which fluid flows are formed between the adjacent fins 12.

押出多孔管2の両端の開口部には、フィン12が形成されていない嵌合部14が形成されている。嵌合部14は、後記する蓋体3の周壁部22が挿入される部位である。嵌合部14は、フィン12の両端を切削することにより形成されている。押出多孔管2の形状は、上記した形状に限定されるものではない。例えば、押出多孔管2の断面(押出方向に対して垂直な断面)が、円形、楕円形又は角形であってもよい。 Fitting portions 14 on which fins 12 are not formed are formed in the openings at both ends of the extruded perforated pipe 2. The fitting portion 14 is a portion into which the peripheral wall portion 22 of the lid body 3, which will be described later, is inserted. The fitting portion 14 is formed by cutting both ends of the fin 12. The shape of the extruded perforated pipe 2 is not limited to the above-mentioned shape. For example, the cross section of the extruded perforated tube 2 (cross section perpendicular to the extrusion direction) may be circular, elliptical or square.

蓋体3,3は、押出多孔管2の両端の開口部を封止する部材である。蓋体3,3は、それぞれ同形状になっている。蓋体3は、底部21と、周壁部22とを有する。底部21は、長丸形状を呈する板状部材である。底部21の外形は、押出多孔管2の開口部を封止するように、押出多孔管2の本体部11の外形と概ね同形状になっている。周壁部22は、底部21の周縁部から垂直に立ち上がる部位である。周壁部22は、底部21の形状に沿って長丸の枠状に形成されている。底部21と周壁部22とで凹状のヘッダー流路24が形成されている。 The lids 3 and 3 are members that seal the openings at both ends of the extruded perforated pipe 2. The lids 3 and 3 have the same shape. The lid 3 has a bottom portion 21 and a peripheral wall portion 22. The bottom portion 21 is a plate-shaped member having an oval shape. The outer shape of the bottom portion 21 is substantially the same as the outer shape of the main body portion 11 of the extruded perforated pipe 2 so as to seal the opening of the extruded perforated pipe 2. The peripheral wall portion 22 is a portion that rises vertically from the peripheral edge portion of the bottom portion 21. The peripheral wall portion 22 is formed in an oval frame shape along the shape of the bottom portion 21. A concave header flow path 24 is formed by the bottom portion 21 and the peripheral wall portion 22.

蓋体3の材料は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、第二アルミニウム合金よりも硬度の高い材料である。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。なお、本明細書において硬度はブリネル硬さをいい、JIS Z 2243に準じた方法によって測定することができる。 The material of the lid 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy. The first aluminum alloy is a material having a higher hardness than the second aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used. In the present specification, the hardness refers to Brinell hardness, which can be measured by a method according to JIS Z 2243.

図3にも示すように、周壁部22の外周縁には、段差側面23aと、段差側面23aから立ち上がる段差傾斜面23bとで構成された周壁段差部23が形成されている。周壁段差部23は、周方向全体にわたって形成されている。段差側面23aは、押し出し方向と平行になっている。段差傾斜面23bは、段差側面23aから外側(本体部11の幅方向外側)に向かうにつれて底部21に近接するように傾斜している。換言すると、段差傾斜面23bは、外側に向かうにつれて本体部11から離間するように傾斜している。段差傾斜面23bの傾斜角度βは、一定の傾斜角度になっている。鉛直面に対する段差傾斜面23bの傾斜角度β(図3参照)は、回転中心軸Zに対する攪拌ピンF2の傾斜角度α(図1参照)と同一になっている。 As shown in FIG. 3, a peripheral wall step portion 23 composed of a step side surface 23a and a step inclined surface 23b rising from the step side surface 23a is formed on the outer peripheral edge of the peripheral wall portion 22. The peripheral wall step portion 23 is formed over the entire peripheral direction. The step side surface 23a is parallel to the extrusion direction. The step inclined surface 23b is inclined so as to approach the bottom portion 21 from the step side surface 23a toward the outside (outside in the width direction of the main body portion 11). In other words, the step inclined surface 23b is inclined so as to be separated from the main body portion 11 toward the outside. The inclination angle β of the step inclined surface 23b is a constant inclination angle. The inclination angle β (see FIG. 3) of the step inclined surface 23b with respect to the vertical plane is the same as the inclination angle α (see FIG. 1) of the stirring pin F2 with respect to the rotation center axis Z.

押出多孔管2の外周面11fと周壁部22の外周面22bとは面一でもよいが、本実施形態では、蓋体3は、後記する突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。換言すると、段差傾斜面23bの高さ寸法よりも、押出多孔管2の端面11eの高さ(厚さ)寸法の方が大きくなるように設定している。 The outer peripheral surface 11f of the extruded perforated tube 2 and the outer peripheral surface 22b of the peripheral wall portion 22 may be flush with each other, but in the present embodiment, the lid 3 is subjected to the butt step described later, and then the outer peripheral surface 22b of the peripheral wall portion 22 is performed. The outer peripheral surface 11f of the extruded porous tube 2 is set to be on the outer side. In other words, the height (thickness) dimension of the end surface 11e of the extruded perforated pipe 2 is set to be larger than the height dimension of the stepped inclined surface 23b.

次に、本実施形態に係る熱交換器の製造方法について説明する。本実施形態に係る熱交換器の製造方法では、準備工程と、突合せ工程と、本接合工程とを行う。 Next, a method of manufacturing the heat exchanger according to the present embodiment will be described. In the method for manufacturing a heat exchanger according to the present embodiment, a preparation step, a butt step, and a main joining step are performed.

準備工程は、押出多孔管2及び蓋体3を準備する工程である。押出多孔管2及び蓋体3は、製造方法については特に制限されないが、押出多孔管2は、例えば、押出成形で成形する。蓋体3は、例えば、ダイキャストにより成形する。 The preparation step is a step of preparing the extruded perforated pipe 2 and the lid 3. The extruded perforated pipe 2 and the lid 3 are not particularly limited in terms of manufacturing method, but the extruded perforated pipe 2 is molded by, for example, extrusion molding. The lid 3 is molded by die casting, for example.

突合せ工程は、図3に示すように、押出多孔管2に蓋体3を突き合わせる工程である。突合せ工程では、蓋体3の周壁部22に、押出多孔管2の嵌合部14を嵌め合わせる。これにより、蓋体3の段差傾斜面23bと押出多孔管2の端面11eとが突き合わされて突合せ部J1が形成されるとともに、蓋体3の段差側面23aと押出多孔管2の内周面11gとが重ね合わされて突合せ部J2が形成される。周壁部22の端面22aと、フィン12の端面12aとは接触するか、わずかな隙間をあけて対向する。突合せ部J1,J2は、周方向にわたって形成される。突合せ部J1には断面V字状の隙間が形成される。 The butt step is a step of butt-butting the lid 3 against the extruded perforated pipe 2 as shown in FIG. In the butt step, the fitting portion 14 of the extruded perforated pipe 2 is fitted to the peripheral wall portion 22 of the lid body 3. As a result, the stepped inclined surface 23b of the lid 3 and the end surface 11e of the extruded perforated tube 2 are abutted to form the butt portion J1, and the stepped side surface 23a of the lid 3 and the inner peripheral surface 11g of the extruded perforated tube 2 are formed. And are overlapped to form a butt portion J2. The end face 22a of the peripheral wall portion 22 and the end face 12a of the fin 12 are in contact with each other or face each other with a slight gap. The butt portions J1 and J2 are formed over the circumferential direction. A gap having a V-shaped cross section is formed in the butt portion J1.

本接合工程は、図4及び図5に示すように、回転ツールFを用いて突合せ部J1を摩擦攪拌接合する工程である。まず、突合せ部J1に対して蓋体3から離間する位置に「設定移動ルートL1」(一点鎖線)を設定する。設定移動ルートL1は、後記する本接合工程において、突合せ部J1を接合するために必要な回転ツールFの移動ルートである。設定移動ルートL1については追って詳述する。 As shown in FIGS. 4 and 5, this joining step is a step of friction stir welding the butt portion J1 using the rotary tool F. First, the "set movement route L1" (dashed line) is set at a position away from the lid 3 with respect to the butt portion J1. The set movement route L1 is a movement route of the rotation tool F necessary for joining the butt portion J1 in the main joining step described later. The set movement route L1 will be described in detail later.

図4に示すように、本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌接合する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、押出多孔管2の本体部11において、設定移動ルートL1に対して突合せ部J1から離間する位置に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となる位置に開始位置SP1を設定している。 As shown in FIG. 4, in the main joining step, the closet section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the intermediate point S2. The three sections of the detachment section from to the end position EP1 are continuously friction-stir welded. The intermediate points S1 and S2 are set on the set movement route L1. The start position SP1 is set at a position in the main body 11 of the extruded perforated pipe 2 so as to be separated from the butt portion J1 with respect to the set movement route L1. In the present embodiment, the start position SP1 is set at a position where the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.

本接合工程の押入区間では、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、本体部11の外周面11fに対して回転中心軸Zを垂直にしつつ、右回転させた回転ツールF(攪拌ピンF2)を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。回転ツールFが中間点S1に達したら、そのまま本区間に移行する。ここで、「所定の深さ」とは、設定移動ルートL1上の中間点S1から中間点S2までの本区間において、攪拌ピンF2を差し込む深さをいう。 In the closet section of this joining step, friction stir welding is performed from the start position SP1 to the intermediate point S1. In the intrusion section, the rotation tool F (stirring pin F2) rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of the main body 11, and is relatively moved to the intermediate point S1. .. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1. That is, instead of keeping the rotation tool F in one place, the rotation tool F is gradually lowered while being moved to the set movement route L1. When the rotation tool F reaches the intermediate point S1, the section shifts to this section as it is. Here, the "predetermined depth" means the depth at which the stirring pin F2 is inserted in this section from the intermediate point S1 to the intermediate point S2 on the set movement route L1.

本区間では、図5に示すように回転ツールFを設定移動ルートL1に沿って一周させる。本区間においては、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとを平行としつつ、攪拌ピンF2の外周面と段差傾斜面23bとがわずかに接触するように設定する。このとき、少なくとも攪拌ピンF2の外周面と蓋体3との接触により、蓋体3側の第一アルミニウム合金がわずかに削り取られ、第一アルミニウム合金が押出多孔管2側に混入する。また、ショルダ部F1の下端面と、押出多孔管2の外周面11fとが接触しつつ、攪拌ピンF2の平坦面F3が段差側面23aを突き抜けるように挿入深さを設定する。なお、ショルダ部F1の下端面は、周壁部22の外周面22bに接触させない方が好ましい。回転ツールFの回転中心軸Zと、本体部11の外周面11fとが垂直となるように設定し、これらを維持した状態で、突合せ部J1に沿って回転ツールFを相対移動させる。 In this section, as shown in FIG. 5, the rotation tool F is made to go around along the set movement route L1. In this section, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are parallel to each other, and the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are slightly in contact with each other. Set. At this time, at least by the contact between the outer peripheral surface of the stirring pin F2 and the lid 3, the first aluminum alloy on the lid 3 side is slightly scraped off, and the first aluminum alloy is mixed into the extruded perforated pipe 2. Further, the insertion depth is set so that the flat surface F3 of the stirring pin F2 penetrates the step side surface 23a while the lower end surface of the shoulder portion F1 and the outer peripheral surface 11f of the extruded perforated tube 2 are in contact with each other. It is preferable that the lower end surface of the shoulder portion F1 does not come into contact with the outer peripheral surface 22b of the peripheral wall portion 22. The rotation center axis Z of the rotation tool F and the outer peripheral surface 11f of the main body 11 are set to be vertical, and while maintaining these, the rotation tool F is relatively moved along the butt portion J1.

攪拌ピンF2の外周面と段差傾斜面23bとの接触代(オフセット量)Nは、例えば、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 The contact allowance (offset amount) N between the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b is set, for example, between 0 <N ≦ 1.0 mm, preferably 0 <N ≦ 0.85 mm. However, it is more preferably set between 0 <N ≦ 0.65 mm.

設定移動ルートL1は、図5に示すように、平坦面F3の中心が通過する軌跡を示している。つまり、設定移動ルートL1は、突合せ部J1の周方向において、段差傾斜面23bと攪拌ピンF2の外周面とを平行にしつつ両者がわずかに接触するように設定されている。本区間においては、回転ツールFを上方から見た場合に、平坦面F3の中心が、設定移動ルートL1と重なるように回転ツールFを移動させる。なお、攪拌ピンF2の「所定の深さ」は、適宜設定すればよいが、本実施形態では回転ツールFの平坦面F3が、段差側面23aを突き抜ける位置まで挿入する。これにより、突合せ部J2も確実に接合することができる。 As shown in FIG. 5, the set movement route L1 shows a trajectory through which the center of the flat surface F3 passes. That is, the set movement route L1 is set so that the step inclined surface 23b and the outer peripheral surface of the stirring pin F2 are made parallel to each other and slightly contact each other in the circumferential direction of the butt portion J1. In this section, when the rotation tool F is viewed from above, the rotation tool F is moved so that the center of the flat surface F3 overlaps with the set movement route L1. The "predetermined depth" of the stirring pin F2 may be appropriately set, but in the present embodiment, the flat surface F3 of the rotating tool F is inserted to a position where it penetrates the step side surface 23a. As a result, the butt portion J2 can also be reliably joined.

攪拌ピンF2の外周面と段差傾斜面23bとが接触しないように設定すると、突合せ部J1の接合強度が低くなる。一方、攪拌ピンF2の段差傾斜面23bの接触代Nが1.0mmを超えると蓋体3の第一アルミニウム合金が、押出多孔管2側に大量に混入して接合不良となるおそれがある。 If the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are set so as not to come into contact with each other, the joint strength of the butt portion J1 is lowered. On the other hand, if the contact allowance N of the stepped inclined surface 23b of the stirring pin F2 exceeds 1.0 mm, a large amount of the first aluminum alloy of the lid 3 may be mixed into the extruded perforated pipe 2 side, resulting in poor joining.

図6に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上昇させて)、終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。終了位置EP1は、押出多孔管2の本体部11において、設定移動ルートL1に対して突合せ部J1から離間する位置に設定されている。本実施形態では、終了位置EP1と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域W1が形成される。なお、前記したように押出多孔管2と一端側の蓋体3との摩擦攪拌接合が終了したら、同じ要領で押出多孔管2と他端側の蓋体3との摩擦攪拌接合を行う。 As shown in FIG. 6, when the stirring pin F2 reaches the intermediate point S2 by rotating the rotating tool F around the rotation tool F, the rotation tool F shifts to the detachment section as it is. In the detachment section, the stirring pin F2 is gradually pulled out (raised) from the intermediate point S2 toward the end position EP1, and the stirring pin F2 is detached from the extruded perforated pipe 2 at the end position EP1. That is, the rotation tool F is gradually pulled out while being moved to the end position EP1 without staying in one place. The end position EP1 is set at a position in the main body 11 of the extruded perforated pipe 2 so as to be separated from the butt portion J1 with respect to the set movement route L1. In the present embodiment, the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is set to an obtuse angle. A plasticized region W1 is formed in the movement locus of the rotation tool F. When the friction stir welding between the extruded perforated pipe 2 and the lid 3 on one end side is completed as described above, the friction stir welding between the extruded perforated pipe 2 and the lid 3 on the other end side is performed in the same manner.

以上説明した本実施形態における熱交換器の製造方法によれば、押出多孔管2と攪拌ピンF2との摩擦熱によって突合せ部J1の主として押出多孔管2側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部J1において押出多孔管2の端面11eと蓋体3の段差傾斜面23bとを接合することができる。 According to the method for manufacturing the heat exchanger in the present embodiment described above, the second aluminum alloy mainly on the extruded perforated pipe 2 side of the butt portion J1 is agitated by the frictional heat between the extruded perforated pipe 2 and the stirring pin F2 to be plastic. It is fluidized, and the end surface 11e of the extruded perforated pipe 2 and the stepped inclined surface 23b of the lid 3 can be joined at the butt portion J1.

また、攪拌ピンF2の外周面を段差傾斜面23bにわずかに接触させるに留めるため、蓋体3から押出多孔管2への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部J1においては主として押出多孔管2側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、攪拌ピンF2の回転中心軸Zに対して一方側と他方側で、攪拌ピンF2が受ける材料抵抗の不均衡を極力少なくすることができる。また、攪拌ピンF2の外周面と蓋体3の段差傾斜面23bとを平行に設定しているため、塑性流動材がバランス良く摩擦攪拌され、接合強度の低下を抑制することができる。 Further, since the outer peripheral surface of the stirring pin F2 is kept slightly in contact with the stepped inclined surface 23b, it is possible to minimize the mixing of the first aluminum alloy from the lid 3 into the extruded perforated pipe 2. As a result, in the butt portion J1, the second aluminum alloy on the extruded perforated pipe 2 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis Z of the stirring pin F2 can be minimized. Further, since the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b of the lid 3 are set in parallel, the plastic fluid material is frictionally agitated in a well-balanced manner, and a decrease in joint strength can be suppressed.

また、ショルダ部F1の下端面を押出多孔管2の外周面11fに接触させて塑性流動材を押さえることにより、バリの発生を抑制することができる。 Further, by bringing the lower end surface of the shoulder portion F1 into contact with the outer peripheral surface 11f of the extruded perforated pipe 2 to hold down the plastic fluid material, the generation of burrs can be suppressed.

また、本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上で回転ツールFの移動が停止して摩擦熱が過大になるのを防ぐことができる。
同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから攪拌ピンF2を徐々に引き抜いて離脱させることにより、設定移動ルートL1上で回転ツールFの移動が停止して摩擦熱が過大になるのを防ぐことができる。
Further, in the indentation section of the main joining process, the set movement route is gradually pushed in until the stirring pin F2 reaches a predetermined depth while moving the rotation tool F from the start position SP1 to the position overlapping with the set movement route L1. It is possible to prevent the rotation tool F from stopping on L1 and causing the frictional heat to become excessive.
Similarly, in the detachment section of the main joining step, the stirring pin F2 is gradually pulled out from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1 to detach the stirring pin F2 on the set movement route L1. It is possible to prevent the rotation tool F from stopping and excessive frictional heat.

これらにより、設定移動ルートL1上で摩擦熱が過大となり、蓋体3から押出多孔管2へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。 As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and excessive mixing of the first aluminum alloy from the lid 3 into the extruded perforated pipe 2 resulting in poor joining.

また、本接合工程において、開始位置SP1及び終了位置EP1の位置は適宜設定すればよいが、開始位置SP1と設定移動ルートL1とのなす角度、終了位置EP1と設定移動ルートL1とのなす角度が鈍角となるように設定することにより、中間点S1,S2で回転ツールFの移動速度が低下することなくスムーズに本区間又は離脱区間に移行することができる。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより、摩擦熱が過大となることを防ぐことができる。なお、上方から見て回転ツールFの軌跡が曲線を描くように開始位置SP1から設定移動ルートL1に回転ツールFを移動させてもよい。同様に、上方から見て回転ツールFの軌跡が曲線を描くように設定移動ルートL1から終了位置EP1に回転ツールFを移動させてもよい。曲線とは、例えば、円弧状の軌跡であってもよい。 Further, in the main joining step, the positions of the start position SP1 and the end position EP1 may be appropriately set, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are different. By setting the angle to be obtuse, it is possible to smoothly shift to the main section or the departure section at the intermediate points S1 and S2 without reducing the moving speed of the rotation tool F. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set movement route L1. The rotation tool F may be moved from the start position SP1 to the set movement route L1 so that the locus of the rotation tool F draws a curve when viewed from above. Similarly, the rotation tool F may be moved from the set movement route L1 to the end position EP1 so that the locus of the rotation tool F draws a curve when viewed from above. The curve may be, for example, an arcuate locus.

また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域W1のうち、蓋体3側(突合せ部J1側)がシアー側となり、押出多孔管2側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。蓋体3側がシアー側となるように設定することで、突合せ部J1の周囲における攪拌ピンF2による攪拌作用が高まり、突合せ部J1における温度上昇が期待でき、突合せ部J1において蓋体3と押出多孔管2とをより確実に接合することができる。 Further, in the main joining step of the present embodiment, the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the lid 3 side (of the plasticized region W1 formed in the movement locus of the rotation tool F) ( The rotation direction and the traveling direction of the rotation tool F were set so that the butt portion J1 side) was on the shear side and the extruded perforated pipe 2 side was on the flow side. By setting the lid 3 side to be the shear side, the stirring action by the stirring pin F2 around the butt portion J1 is enhanced, and the temperature rise in the butt portion J1 can be expected. The pipe 2 can be joined more reliably.

なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. .. On the other hand, the flow side (Retreating side) refers to the side in which the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.

また、蓋体3の第一アルミニウム合金は、押出多孔管2の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、熱交換器1の耐久性を高めることができる。また、蓋体3の第一アルミニウム合金をアルミニウム合金鋳造材とし、押出多孔管2の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl−Si−Cu系アルミニウム合金鋳造材とすることにより、蓋体3の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、押出多孔管2の加工性、熱伝導性を高めることができる。 Further, the first aluminum alloy of the lid 3 is a material having a higher hardness than the second aluminum alloy of the extruded perforated pipe 2. Thereby, the durability of the heat exchanger 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the lid 3 is an aluminum alloy casting material and the second aluminum alloy of the extruded perforated pipe 2 is an aluminum alloy wrought material. By using an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12 as the first aluminum alloy, the castability, strength, machinability, etc. of the lid 3 can be improved. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, the processability and thermal conductivity of the extruded perforated pipe 2 can be improved.

また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合できるため、熱交換器の気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうようにする。つまり、本接合工程によって形成された塑性化領域W1の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 Further, in this joining step, since the entire circumference of the butt portion J1 can be subjected to friction stir welding, the airtightness and watertightness of the heat exchanger can be improved. Further, at the end portion of the main joining step, the rotation tool F is made to move toward the end position EP1 after completely passing through the intermediate point S1. That is, the airtightness and watertightness can be further improved by overlapping the ends of the plasticized region W1 formed by this joining step with each other.

また、本実施形態では、突合せ工程を行った後、周壁部22の外周面22bよりも、押出多孔管2の外周面11fが外側となるように設定している。これにより、摩擦攪拌される押出多孔管2の第二アルミニウム合金を突合せ部J1の隙間に流入させることができ、突合せ部J1の金属不足を防ぐことができる。 Further, in the present embodiment, after the butt step is performed, the outer peripheral surface 11f of the extruded perforated pipe 2 is set to be outside the outer peripheral surface 22b of the peripheral wall portion 22. As a result, the second aluminum alloy of the extruded perforated pipe 2 that is frictionally agitated can flow into the gap of the butt portion J1 and the metal shortage of the butt portion J1 can be prevented.

また、蓋体3にヘッダー流路24を備えることにより、孔部13に流入又は流出する流体を集約することができる。 Further, by providing the lid 3 with the header flow path 24, the fluid flowing in or out of the hole 13 can be collected.

なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In this joining step, the rotation speed of the rotation tool F may be constant, but may be variable. In the indentation section of the main joining step, if the rotation speed of the rotation tool F at the start position SP1 is V1 and the rotation speed of the rotation tool F in this section is V2, V1> V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.

また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら押出多孔管2から回転ツールFを離脱させてもよい。回転ツールFを押出多孔管2に押し入れる際又は押出多孔管2から離脱させる際に、前記のように設定することで、押入区間又は離脱区間時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the detachment section of the first main joining step, if the rotation speed of the rotation tool F in this section is V2 and the rotation speed of the rotation tool F at the end position EP1 is V3, V3> V2 may be satisfied. That is, after shifting to the detachment section, the rotation tool F may be detached from the extruded perforated pipe 2 while gradually increasing the rotation speed toward the end position EP1. When the rotary tool F is pushed into the extruded perforated pipe 2 or separated from the extruded perforated pipe 2, by setting as described above, it is possible to compensate for the small pressing pressure in the indentation section or the detachment section at the rotation speed. Therefore, friction stir welding can be preferably performed.

[第二実施形態]
次に、本発明の第二実施形態に係る熱交換器の製造方法について説明する。第二実施形態では、図7,8に示すように、本接合工程における開始位置SP1、中間点S1,S2及び終了位置EP1の位置をいずれも設定移動ルートL1上に設定する点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second Embodiment]
Next, a method for manufacturing the heat exchanger according to the second embodiment of the present invention will be described. In the second embodiment, as shown in FIGS. 7 and 8, the first embodiment is set in that the positions of the start position SP1, the intermediate points S1 and S2, and the end position EP1 in the main joining process are all set on the set movement route L1. Different from the form. In the second embodiment, the parts different from the first embodiment will be mainly described.

第二実施形態に係る熱交換器の製造では、準備工程と、突合せ工程と、本接合工程とを行う。準備工程及び突合せ工程は、第一実施形態と同一である。 In the manufacture of the heat exchanger according to the second embodiment, the preparation step, the butt step, and the main joining step are performed. The preparation step and the butt step are the same as those in the first embodiment.

本接合工程では、図7に示すように、開始位置SP1を設定移動ルートL1上に設定する。本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1までの離脱区間の三つの区間を連続して摩擦攪拌する。 In this joining step, as shown in FIG. 7, the start position SP1 is set on the set movement route L1. In this joining process, the intrusion section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the departure from the intermediate point S2 to the end position EP1. Friction stir welding is performed continuously for three sections.

押入区間では、図7に示すように、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、押出多孔管2の外周面11fに対して回転中心軸Zを垂直となるようにしつつ、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで相対移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。 In the closet section, as shown in FIG. 7, friction stir welding is performed from the start position SP1 to the intermediate point S1. In the intrusion section, the stirring pin F2 rotated clockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the outer peripheral surface 11f of the extruded perforated pipe 2, and is relatively moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1.

また、押入区間においては、回転ツールFを移動させつつ、中間点S1に達した際に、攪拌ピンF2の外周面と段差傾斜面23bとが平行となるように設定しつつ、攪拌ピンF2の外周面と段差傾斜面23bとがわずかに接触するように設定する。また、ショルダ部F1の下端面と押出多孔管2の外周面11fとが接触するように設定する。そして、その状態を維持したまま本区間の摩擦攪拌接合に移行する。攪拌ピンF2の外周面と段差傾斜面23bとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 Further, in the closet section, the stirring pin F2 is set so that the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b are parallel to each other when the intermediate point S1 is reached while moving the rotation tool F. The outer peripheral surface and the stepped inclined surface 23b are set so as to be in slight contact with each other. Further, the lower end surface of the shoulder portion F1 and the outer peripheral surface 11f of the extruded perforated pipe 2 are set to be in contact with each other. Then, while maintaining that state, the process shifts to friction stir welding in this section. The contact allowance (offset amount) N between the outer peripheral surface of the stirring pin F2 and the stepped inclined surface 23b and the setting of the set movement route L1 are the same as those in the first embodiment.

図8に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、図8に示すように、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に引き抜いて(上方に移動させて)、設定移動ルートL1上に設定された終了位置EP1で押出多孔管2から攪拌ピンF2を離脱させる。 As shown in FIG. 8, when the stirring pin F2 reaches the intermediate point S2 by rotating the rotating tool F around the rotation tool F, the rotation tool F shifts to the detachment section as it is. In the departure section, as shown in FIG. 8, the stirring pin F2 is gradually pulled out (moved upward) from the intermediate point S2 to the end position EP1 to end the set on the set movement route L1. At position EP1, the stirring pin F2 is separated from the extruded perforated tube 2.

以上説明した第二実施形態に係る熱交換器の製造方法によっても第一実施形態と略同等の効果を奏することができる。さらに、第二実施形態に係る本接合工程の押入区間では、回転ツールFを設定移動ルート上で移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。また、第二実施形態に係る本接合工程の離脱区間では、回転ツールFを設定移動ルート上で移動させつつ攪拌ピンF2を徐々に離脱させることにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。第二実施形態のように本接合工程における開始位置SP1、終了位置EP1は、設定移動ルートL1上に設定してもよい。 The method for manufacturing the heat exchanger according to the second embodiment described above can also achieve substantially the same effect as that of the first embodiment. Further, in the push-in section of the main joining step according to the second embodiment, the stirring pin F2 is gradually pushed in until the depth reaches a predetermined depth while moving the rotation tool F on the set movement route, so that the rotation tool F is moved on the set movement route L1. It is possible to prevent the rotation tool F from stopping at one point and excessive frictional heat. Further, in the detachment section of the main joining step according to the second embodiment, the rotation tool F is moved on the set movement route and the stirring pin F2 is gradually detached, so that the rotation tool F is at one point on the set movement route L1. Can be prevented from stopping and the frictional heat becoming excessive. As in the second embodiment, the start position SP1 and the end position EP1 in the main joining step may be set on the set movement route L1.

1 熱交換器
2 押出多孔管
3 蓋体
F 回転ツール
F1 ショルダ部
F2 攪拌ピン
F3 平坦面
J1 突合せ部
SP1 開始位置
EP1 終了位置
W1 塑性化領域
1 Heat exchanger 2 Extruded perforated pipe 3 Lid F Rotating tool F1 Shoulder part F2 Stirring pin F3 Flat surface J1 Butt part SP1 Start position EP1 End position W1 Plasticization area

Claims (12)

内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、前記攪拌ピンは、先細りのテーパー状となっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの前記攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、回転する前記攪拌ピンを前記設定移動ルートよりもさらに前記突合せ部から離間する方向に設定した開始位置に挿入した後、前記回転ツールの回転中心軸を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger, which comprises an extruded perforated pipe having fins inside and a lid for sealing an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by frictional stirring. There,
The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
The rotary tool used for friction stir is provided with a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion, and the stirring pin has a tapered shape.
By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
The stirring pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the lower end surface of the shoulder portion is touched while the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid. In a state of being in contact with the outer peripheral surface of the extruded perforated pipe, while flowing the second aluminum alloy into the gap, a predetermined depth is taken along the set movement route set on the extruded perforated pipe side from the butt portion. Including the main joining step of circling around the outer peripheral surface of the extruded perforated pipe and rubbing and stirring the butt portion.
In the main joining step, after the rotating stirring pin is inserted at a start position set in a direction further away from the butt portion than the set movement route, the rotation center axis of the rotation tool overlaps with the set movement route. A method for manufacturing a heat exchanger, which comprises gradually pushing in the stirring pin until the predetermined depth is reached while moving the stirring pin to the desired position.
前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項1に記載の熱交換器の製造方法。
In the main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
When the stirring pin is inserted in the main joining step, the stirring pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the stirring pin is moved to the set movement route while gradually reducing the rotation speed. The method for manufacturing a heat exchanger according to claim 1.
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、
前記攪拌ピンは、先細りのテーパー状となっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの前記攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger, which comprises an extruded perforated pipe having fins inside and a lid that seals an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by frictional stirring. There,
The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
The rotary tool used for friction stir welding has a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion.
The stirring pin has a tapered shape and is tapered.
By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
The stirring pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the lower end surface of the shoulder portion is touched while the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid. In a state of being in contact with the outer peripheral surface of the extruded perforated pipe, while flowing the second aluminum alloy into the gap, a predetermined depth is taken along the set movement route set on the extruded perforated pipe side from the butt portion. Including the main joining step of circling around the outer peripheral surface of the extruded perforated pipe and rubbing and stirring the butt portion.
In the main joining step, the stirring pin is inserted from a start position set on the set movement route, and the stirring pin is gradually pushed in until it reaches a predetermined depth while moving in the traveling direction. How to make a switch.
前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項3に記載の熱交換器の製造方法。
In the main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
When the stirring pin is inserted in the main joining step, the stirring pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the stirring pin is moved to the set movement route while gradually reducing the rotation speed. The method for manufacturing a heat exchanger according to claim 3, wherein the heat exchanger is manufactured.
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、
前記攪拌ピンは、先細りのテーパー状となっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの前記攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、前記設定移動ルートよりもさらに前記突合せ部から離間する方向に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger, which comprises an extruded perforated pipe having fins inside and a lid that seals an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by frictional stirring. There,
The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
The rotary tool used for friction stir welding has a shoulder portion and a stirring pin that hangs down from the center of the lower end surface of the shoulder portion.
The stirring pin has a tapered shape and is tapered.
By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
The stirring pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the lower end surface of the shoulder portion is touched while the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid. In a state of being in contact with the outer peripheral surface of the extruded perforated pipe, while flowing the second aluminum alloy into the gap, a predetermined depth is taken along the set movement route set on the extruded perforated pipe side from the butt portion. Including the main joining step of circling around the outer peripheral surface of the extruded perforated pipe and rubbing and stirring the butt portion.
In the main joining step, the end position is set in a direction further away from the butt portion than the set movement route, and after friction stir welding with respect to the butt portion, the rotation tool is moved to the end position and the stirring is performed. A method for manufacturing a heat exchanger, which comprises gradually pulling out a pin to separate the rotary tool from the extruded perforated tube at the end position.
前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて摩擦攪拌を行い、
前記本接合工程において前記攪拌ピンを引き抜くとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項5に記載の熱交換器の製造方法。
In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform frictional stirring.
The method for manufacturing a heat exchanger according to claim 5, wherein when the stirring pin is pulled out in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed.
内部にフィンを有する押出多孔管と、前記押出多孔管の開口部を封止する蓋体とで構成され、前記押出多孔管と前記蓋体とを摩擦攪拌で接合する熱交換器の製造方法であって、
前記蓋体は、底部及び前記底部の周縁から立ち上がる周壁部を有し、前記周壁部の外周縁に、段差側面と、当該段差側面から外側に向かうにつれて前記底部側に近接するように傾斜する段差傾斜面と、を有する周壁段差部を形成し、
前記押出多孔管は、端部に前記フィンが形成されておらず前記周壁部が嵌め合わされる嵌合部を有し、
前記押出多孔管は第二アルミニウム合金で形成されており、前記蓋体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
摩擦攪拌で用いる回転ツールは、ショルダ部を備え、前記ショルダ部の下端面の中央から垂下する攪拌ピンを備えており、
前記攪拌ピンは、先細りのテーパー状となっており、
前記押出多孔管の前記嵌合部に前記蓋体の前記周壁部を挿入することにより、前記押出多孔管の内周面と前記蓋体の段差側面とを重ね合わせるとともに、前記押出多孔管の端面と前記蓋体の前記段差傾斜面とを突き合わせて突合せ部に断面V字状の隙間を形成する突合せ工程と、
回転する前記回転ツールの前記攪拌ピンを前記押出多孔管の外周面に挿入し、前記攪拌ピンの外周面を前記蓋体の段差傾斜面にわずかに接触させつつ、前記ショルダ部の下端面を前記押出多孔管の外周面に接触させた状態で、前記隙間に前記第二アルミニウム合金を流入させながら、前記突合せ部よりも前記押出多孔管側に設定された設定移動ルートに沿って所定の深さで前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に引き抜いて前記終了位置で前記押出多孔管から前記回転ツールを離脱させることを特徴とする熱交換器の製造方法。
A method for manufacturing a heat exchanger, which comprises an extruded perforated pipe having fins inside and a lid that seals an opening of the extruded perforated pipe, and joins the extruded perforated pipe and the lid by frictional stirring. There,
The lid has a bottom portion and a peripheral wall portion that rises from the peripheral edge of the bottom portion, and a stepped side surface and a stepped portion that inclines toward the bottom side toward the outside from the stepped side surface on the outer peripheral edge of the peripheral wall portion. Forming a peripheral wall stepped portion having an inclined surface,
The extruded perforated pipe has a fitting portion in which the fin is not formed at the end portion and the peripheral wall portion is fitted.
The extruded perforated pipe is formed of a second aluminum alloy, the lid is made of a first aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
The rotary tool used for friction stir welding has a shoulder portion and a stirring pin that hangs from the center of the lower end surface of the shoulder portion.
The stirring pin has a tapered shape and is tapered.
By inserting the peripheral wall portion of the lid into the fitting portion of the extruded perforated pipe, the inner peripheral surface of the extruded perforated pipe and the stepped side surface of the lid are overlapped, and the end surface of the extruded perforated pipe is overlapped. And the butt step of abutting the stepped inclined surface of the lid body to form a gap having a V-shaped cross section in the butt portion.
The stirring pin of the rotating tool is inserted into the outer peripheral surface of the extruded perforated pipe, and the lower end surface of the shoulder portion is touched while the outer peripheral surface of the stirring pin is slightly brought into contact with the stepped inclined surface of the lid. In a state of being in contact with the outer peripheral surface of the extruded perforated pipe, while flowing the second aluminum alloy into the gap, a predetermined depth is taken along the set movement route set on the extruded perforated pipe side from the butt portion. Including the main joining step of circling around the outer peripheral surface of the extruded perforated pipe and rubbing and stirring the butt portion.
In the main joining step, an end position is set on the set movement route, and after frictional stirring joining to the butt portion, the stirring pin is gradually pulled out while moving the rotation tool to the end position to reach the end position. A method for manufacturing a heat exchanger, which comprises separating the rotating tool from the extruded perforated tube.
前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
前記本接合工程において前記攪拌ピンを引き抜くとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項7に記載の熱交換器の製造方法。
In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion.
The method for manufacturing a heat exchanger according to claim 7, wherein when the stirring pin is pulled out in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed.
前記突合せ工程では、前記蓋体の外周面よりも前記押出多孔管の外周面の方が外側となるように、前記押出多孔管と前記蓋体とを形成することを特徴とする請求項1乃至請求項8のいずれか一項に記載の熱交換器の製造方法。 The butt step is characterized in that the extruded perforated pipe and the lid are formed so that the outer peripheral surface of the extruded perforated pipe is on the outer side of the outer peripheral surface of the lid. The method for manufacturing a heat exchanger according to any one of claim 8. 前記回転ツールの回転方向及び進行方向を前記突合せ部側がアドバンシング側となるように設定することを特徴とする請求項1乃至請求項9のいずれか一項に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 1 to 9, wherein the rotation direction and the traveling direction of the rotation tool are set so that the butt portion side is the advancing side. 前記本接合工程では、前記攪拌ピンの先端が前記蓋体の段差側面を突き抜けた状態で前記押出多孔管の外周面の廻りに一周させて前記突合せ部を摩擦攪拌することを特徴とする請求項1乃至請求項10のいずれか一項に記載の熱交換器の製造方法。 The present claim is characterized in that, in a state where the tip of the stirring pin penetrates the stepped side surface of the lid, the butt portion is frictionally agitated by circling around the outer peripheral surface of the extruded perforated pipe. The method for manufacturing a heat exchanger according to any one of claims 1 to 10. 前記第一アルミニウム合金は鋳造材からなり、前記第二アルミニウム合金は展伸材からなることを特徴とする請求項1乃至請求項11のいずれか一項に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to any one of claims 1 to 11, wherein the first aluminum alloy is made of a cast material, and the second aluminum alloy is made of a wrought material.
JP2019210777A 2019-11-21 2019-11-21 Heat exchanger manufacturing method Active JP7211342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210777A JP7211342B2 (en) 2019-11-21 2019-11-21 Heat exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210777A JP7211342B2 (en) 2019-11-21 2019-11-21 Heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JP2021079425A true JP2021079425A (en) 2021-05-27
JP7211342B2 JP7211342B2 (en) 2023-01-24

Family

ID=75963681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210777A Active JP7211342B2 (en) 2019-11-21 2019-11-21 Heat exchanger manufacturing method

Country Status (1)

Country Link
JP (1) JP7211342B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
WO2014034590A1 (en) * 2012-09-03 2014-03-06 日本軽金属株式会社 Method for producing hollow container and method for bonding members
JP2019038009A (en) * 2017-08-24 2019-03-14 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
WO2019082439A1 (en) * 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
US10359239B1 (en) * 2015-01-09 2019-07-23 Lockheed Martin Corporation Heat exchange member and heat exchangers utilizing the heat exchange member
JP2021006349A (en) * 2019-06-28 2021-01-21 日本軽金属株式会社 Method of manufacturing heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566073A (en) * 1991-09-05 1993-03-19 Sanden Corp Multilayered heat exchanger
WO2014034590A1 (en) * 2012-09-03 2014-03-06 日本軽金属株式会社 Method for producing hollow container and method for bonding members
US10359239B1 (en) * 2015-01-09 2019-07-23 Lockheed Martin Corporation Heat exchange member and heat exchangers utilizing the heat exchange member
JP2019038009A (en) * 2017-08-24 2019-03-14 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
WO2019082439A1 (en) * 2017-10-27 2019-05-02 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2021006349A (en) * 2019-06-28 2021-01-21 日本軽金属株式会社 Method of manufacturing heat exchanger

Also Published As

Publication number Publication date
JP7211342B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
JP2020011271A (en) Liquid-cooled jacket manufacturing method
WO2020261597A1 (en) Method for manufacturing heat exchanger
JP2021079425A (en) Heat exchanger manufacturing method
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP7020562B2 (en) How to manufacture a liquid-cooled jacket
WO2021171636A1 (en) Method for manufacturing heat exchanger
JP7140061B2 (en) Heat exchanger manufacturing method
WO2021171635A1 (en) Method for manufacturing heat exchanger
JP2021186862A (en) Heat exchanger manufacturing method
JP2021112757A (en) Manufacturing method for liquid-cooled jacket
JP2021112750A (en) Heat exchanger manufacturing method
JP2020175395A (en) Manufacturing method for liquid-cooled jacket
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
WO2021124594A1 (en) Method for manufacturing liquid cooling jacket
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
WO2021144999A1 (en) Joining method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP7226241B2 (en) Liquid cooling jacket manufacturing method
JP2021112755A (en) Manufacturing method of liquid-cooled jacket
WO2020213185A1 (en) Method for manufacturing liquid cooling jacket
JP2020151719A (en) Manufacturing method of liquid-cooled jacket
JP2020151720A (en) Manufacturing method of liquid-cooled jacket
JP2021065915A (en) Liquid-cooled jacket manufacturing method
JP2021186863A (en) Heat exchanger manufacturing method
JP2021074736A (en) Liquid-cooled jacket manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7211342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150