WO2021124594A1 - Method for manufacturing liquid cooling jacket - Google Patents

Method for manufacturing liquid cooling jacket Download PDF

Info

Publication number
WO2021124594A1
WO2021124594A1 PCT/JP2020/006342 JP2020006342W WO2021124594A1 WO 2021124594 A1 WO2021124594 A1 WO 2021124594A1 JP 2020006342 W JP2020006342 W JP 2020006342W WO 2021124594 A1 WO2021124594 A1 WO 2021124594A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing body
stirring pin
peripheral wall
jacket
main joining
Prior art date
Application number
PCT/JP2020/006342
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to JP2021565322A priority Critical patent/JP7272465B2/en
Priority to CN202080085935.8A priority patent/CN114786862A/en
Publication of WO2021124594A1 publication Critical patent/WO2021124594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a method for manufacturing a liquid-cooled jacket.
  • Patent Document 1 discloses a method for manufacturing a liquid-cooled jacket.
  • FIG. 15 is a cross-sectional view showing a conventional method for manufacturing a liquid-cooled jacket.
  • the butt portion J10 formed by abutting the step side surface 101c provided on the step portion of the aluminum alloy jacket body 101 and the side surface 102c of the aluminum alloy sealing body 102. This is to perform friction stir welding.
  • the stirring pin F2 of the rotating tool F is inserted into the butt portion J10 to perform friction stir welding.
  • the rotation center axis C of the rotation tool F is overlapped with the butt portion J10 and relatively moved.
  • the jacket body 101 tends to have a complicated shape.
  • a jacket body 101 formed of a cast material of 4000 series aluminum alloy and a relatively simple shape such as a sealing body 102 is a wrought material of 1000 series aluminum alloy. In some cases, it is formed by.
  • a liquid-cooled jacket may be manufactured by joining members of different grades of aluminum alloy.
  • the jacket body 101 generally has a higher hardness than the sealing body 102. Therefore, when friction stir welding is performed as shown in FIG. 15, the stirring pin F2 becomes the sealing body 102.
  • the material resistance received from the jacket body 101 side is larger than the material resistance received from the side. Therefore, it becomes difficult to stir different grades in a well-balanced manner by the stirring pin F2 of the rotating tool F, and there is a problem that cavity defects occur in the plasticized region after joining and the joining strength decreases.
  • the first invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing an opening of the jacket body.
  • the jacket body is made of a first aluminum alloy
  • the sealing body is made of a second aluminum alloy.
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy
  • the rotating tool used for friction stirring includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion.
  • the stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening.
  • the first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body, and the stirring pin is formed.
  • the outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while slightly contacting the outer peripheral surface of the first peripheral wall step portion with the first step side surface of the first peripheral wall step portion.
  • the main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and rubbing and stirring the first butt portion.
  • the rotation center axis of the rotation tool After inserting the rotating stirring pin into the set start position further inside the set movement route, the rotation center axis of the rotation tool is moved to a position overlapping the set movement route to the predetermined depth. It is characterized in that the stirring pin is gradually pushed in until it becomes.
  • the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. In addition, by moving the rotation center axis of the rotation tool to a position that overlaps with the set movement route and gradually pushing the stirring pin until it reaches a predetermined depth, it is possible to prevent excessive frictional heat on the set movement route. be able to.
  • the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. It is preferable that the second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. ..
  • the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
  • the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
  • the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the stirring is performed at a speed higher than the predetermined rotation speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually reducing the rotation speed.
  • friction stir welding can be performed more preferably.
  • the second invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing the opening of the jacket body.
  • the jacket body is made of a first aluminum alloy
  • the sealing body is made of a second aluminum alloy.
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy
  • the rotating tool used for friction stirring includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion.
  • the stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening.
  • the first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body, and the stirring pin is formed.
  • the outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while slightly contacting the outer peripheral surface of the first peripheral wall step portion with the first step side surface of the first peripheral wall step portion.
  • the main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and rubbing and stirring the first butt portion.
  • the stirring pin is inserted from the start position set on the set movement route, and the stirring pin is gradually pushed in until the predetermined depth is reached while moving in the traveling direction.
  • the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. In addition, by gradually pushing the stirring pin until it reaches a predetermined depth while moving the rotation tool in the traveling direction on the set movement route, it is possible to prevent the frictional heat from becoming excessive at one point on the set movement route. it can.
  • the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. It is preferable that the second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. ..
  • the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
  • the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
  • the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the stirring is performed at a speed higher than the predetermined rotation speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually reducing the rotation speed.
  • friction stir welding can be performed more preferably.
  • the third invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing the opening of the jacket body.
  • a method for manufacturing a liquid-cooled jacket in which a jacket body and the sealing body are joined by friction stir welding is made of a first aluminum alloy, and the sealing body is made of a second aluminum alloy.
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy, and the rotary tool used for friction stir welding includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion.
  • the stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening.
  • the first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body to form the second butt portion.
  • the outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while the outer peripheral surface of the first peripheral wall stepped portion is slightly in contact with the first step side surface.
  • the main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and frictionally agitating the first butt portion.
  • the end position is set further inside the set movement route, and after friction stir welding with respect to the first butt portion, the stirring pin is gradually moved from the sealing body while moving the rotation tool to the end position. It is characterized in that the rotating tool is detached from the sealing body at the end position by pulling out the tool.
  • the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. Further, by gradually pulling out the tip side pin while moving the rotation tool from the position overlapping with the set movement route to the inner end position, it is possible to prevent the frictional heat from becoming excessive on the set movement route.
  • the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. It is preferable that the second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. ..
  • the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
  • the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
  • the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is separated in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed. It is preferable to move it to the end position while raising it.
  • friction stir welding can be performed more preferably.
  • the fourth invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing the opening of the jacket body.
  • a method for manufacturing a liquid-cooled jacket in which a jacket body and the sealing body are joined by friction stir welding is made of a first aluminum alloy, and the sealing body is made of a second aluminum alloy.
  • the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy, and the rotary tool used for friction stir welding includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion.
  • the stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening.
  • the first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body to form the second butt portion.
  • the outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while the outer peripheral surface of the first peripheral wall stepped portion is slightly in contact with the first step side surface.
  • the main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and frictionally agitating the first butt portion.
  • the stirring pin is gradually pulled out from the sealing body while moving the rotation tool to the end position. It is characterized in that the rotating tool is detached from the sealing body at the ending position.
  • the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. Further, by gradually pulling out the tip side pin while moving the rotation tool on the set movement route, it is possible to prevent the frictional heat from becoming excessive at one point on the set movement route.
  • the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening.
  • a second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. It is preferable that the lower end surface is located closer to the bottom surface of the second step than the end surface of the peripheral wall portion to perform friction stir welding.
  • the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
  • the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
  • the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is separated in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed. It is preferable to move it to the end position while raising it.
  • friction stir welding can be performed more preferably.
  • the liquid-cooled jacket 1 is composed of a jacket body 2 and a sealing body 3.
  • the liquid-cooled jacket 1 is a device that circulates a fluid inside to cool an arranged heating element.
  • the jacket body 2 and the sealing body 3 are integrated by friction stir welding.
  • the "front surface” means the surface opposite to the "back surface”.
  • the jacket body 2 is mainly composed of a bottom portion 10 and a peripheral wall portion 11.
  • the jacket body 2 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy.
  • a first aluminum alloy for example, an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used.
  • the bottom portion 10 is a plate-shaped member having a rectangular shape.
  • the peripheral wall portion 11 is a wall portion that rises in a rectangular frame shape from the peripheral edge portion of the bottom portion 10.
  • a recess 13 is formed in the bottom portion 10 and the peripheral wall portion 11.
  • a first peripheral wall step portion 12 is formed on the inner peripheral edge of the peripheral wall portion 11.
  • the first peripheral wall step portion 12 is composed of a first step bottom surface 12a and a first step side surface 12b that rises obliquely from the first step bottom surface 12a.
  • the inclination angle ⁇ of the first step side surface 12b may be appropriately set, but for example, in the present embodiment, it is the same as the inclination angle ⁇ of the stirring pin F2 of the rotation tool F shown in FIG. ing.
  • the peripheral wall step portion, the step bottom surface and the step side surface are one step at a time, but in the third embodiment, the second step portion, the second step bottom surface and the second step side surface appear. Also in this embodiment, they are referred to as "first peripheral wall step portion 12", “first step bottom surface 12a”, and “first step side surface 12b”.
  • the first step side surface 12b may be perpendicular to the first step bottom surface 12a.
  • the jacket body 2 of the present embodiment is integrally formed, for example, the peripheral wall portion 11 may be formed as a divided structure and joined by a seal member to be integrated.
  • the sealing body 3 is a member that seals the opening 14 of the jacket body 2.
  • the sealing body 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a second aluminum alloy.
  • the second aluminum alloy is a material having a lower hardness than the first aluminum alloy.
  • the second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063.
  • a preparation step, a mounting step, and a main joining step are performed.
  • the preparation process is a process of preparing the jacket body 2 and the sealing body 3.
  • the jacket body 2 and the sealing body 3 are not particularly limited in terms of manufacturing method, but the jacket body 2 is molded by die casting, for example.
  • the sealing body 3 is formed by, for example, extrusion molding.
  • the mounting step is a step of mounting the sealing body 3 on the jacket body 2 as shown in FIG.
  • the outer peripheral side surface 3c of the sealing body 3 and the first step side surface 12b of the first peripheral wall step portion 12 are abutted to form the first abutment portion J1. Since the first step side surface 12b is inclined outward, a gap having a V-shaped cross section is formed in the first butt portion J1.
  • the first butt portion J1 is formed in a rectangular shape in a plan view along the periphery of the sealing body 3. Further, the first step bottom surface 12a of the first peripheral wall step portion 12 and the back surface 3b of the sealing body 3 are butted to form the second butted portion J2.
  • the plate thickness of the sealing body 3 may be appropriately set, but in the present embodiment, it is larger than the height dimension of the first step side surface 12b.
  • the surface 3a of the sealing body 3 is located above the end surface 11a of the peripheral wall portion 11 of the jacket body 2.
  • the "set movement route L1" (dashed line) is set inside the first butt portion J1.
  • the set movement route L1 is a movement route of the rotation tool F necessary for joining the first butt portion J1 in the main joining step described later.
  • the stirring pin F2 is slightly brought into contact with the first step side surface 12b, the set movement route L1 is set in a rectangular shape in a plan view inside the outer peripheral side surface 3c of the sealing body 3. To do.
  • this joining step is a step of friction stir welding the first butt portion J1 using the rotary tool F.
  • the intrusion section from the start position SP1 to the intermediate point S1 and the intermediate point S2 around the end face from the intermediate point S1 on the set movement route L1 (see FIG. 7).
  • This section and the three sections of the detachment section from the intermediate point S2 to the end position EP1 are continuously frictionally agitated.
  • the intermediate points S1 and S2 are set on the set movement route L1.
  • the start position SP1 is set at a position inside the set movement route L1 on the surface 3a of the sealing body 3.
  • the line segment connecting the start position SP1 and the intermediate point S1 is gradually curved along the set movement route L1 from the start position SP1 toward the intermediate point S1.
  • the line segment connecting the start position SP1 and the intermediate point S1 may be linear.
  • the position of the start position SP1 is set so that the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.
  • the rotation tool F is composed of a shoulder portion F1 and a stirring pin F2.
  • the rotary tool F is made of, for example, tool steel.
  • the shoulder portion F1 is a portion connected to a rotation shaft of a friction stir device (not shown).
  • the shoulder portion F1 has a columnar shape, and a screw hole (not shown) for fastening a bolt is formed.
  • the stirring pin F2 hangs down from the shoulder portion F1 and is coaxial with the shoulder portion F1.
  • the stirring pin F2 is tapered as it is separated from the shoulder portion F1.
  • a flat flat surface F3 is provided at the tip of the stirring pin F2.
  • a spiral groove is engraved on the outer peripheral surface of the stirring pin F2.
  • the spiral groove in order to rotate the rotation tool F clockwise, is formed counterclockwise from the base end to the tip end.
  • the spiral groove is formed counterclockwise when viewed from above when the spiral groove is traced from the base end to the tip end.
  • the spiral groove When rotating the rotation tool F counterclockwise, it is preferable to form the spiral groove clockwise from the base end to the tip end.
  • the spiral groove in this case is formed clockwise when viewed from above when the spiral groove is traced from the base end to the tip end.
  • FIG. 4 is a cross-sectional view seen from the rear side of the stirring pin F2 in the traveling direction and shows the moving state of the stirring pin F2
  • FIG. 5 FIG. 4 is a cross-sectional view seen from the rear side of the stirring pin F2 in the traveling direction and shows the moving state of the stirring pin F2
  • the stirring pin F2 is gradually pushed in so as to reach the preset "predetermined depth". That is, instead of keeping the rotation tool F in one place, the rotation tool F is gradually lowered while being moved to the set movement route L1.
  • the "predetermined depth” means the depth at which the stirring pin F2 is inserted in this section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 around the end face.
  • the process shifts to friction stir welding in this section as it is.
  • the rotation tool F is moved so that the rotation center axis C of the stirring pin F2 and the set movement route L1 overlap.
  • the “predetermined depth” of the stirring pin F2 is set so that the flat surface F3 at the tip of the stirring pin F2 slightly contacts the step first difference bottom surface 12a.
  • the "predetermined depth" of the stirring pin F2 may be appropriately set, and may be set, for example, at a position where the stirring pin F2 does not reach the bottom surface 12a of the first step.
  • the set movement route L1 is set so that the outer peripheral surface of the stirring pin F2 slightly contacts the first step side surface 12b. At this time, at least by the contact between the outer peripheral surface of the stirring pin F2 and the peripheral wall portion 11, the first aluminum alloy on the peripheral wall portion 11 side is slightly scraped off, and the first aluminum alloy is mixed in the sealing body 3 side.
  • the set movement route L1 is moved at the “predetermined depth”
  • the lower end surface of the shoulder portion F1 of the rotation tool F comes into contact with the surface 3a of the sealing body 3.
  • the lower end surface of the shoulder portion F1 of the rotation tool F is not in contact with the end surface 11a of the peripheral wall portion 11.
  • the contact allowance of the outer peripheral surface of the stirring pin F2 with respect to the first step side surface 12b is set to the offset amount N.
  • the flat surface F3 of the stirring pin F2 is inserted deeper than the first step bottom surface 12a of the first peripheral wall step portion 12, and the outer peripheral surface of the stirring pin F2 is in contact with the first step side surface 12b.
  • the offset amount N is set between 0 ⁇ N ⁇ 1.0 mm, preferably between 0 ⁇ N ⁇ 0.85 mm, and more preferably between 0 ⁇ N ⁇ 0.65 mm. Set.
  • the joint strength of the first butt portion J1 becomes low. Further, when the offset amount N between the outer peripheral surface of the stirring pin F2 and the first step side surface 12b exceeds 1.0 mm, a large amount of the first aluminum alloy of the jacket body 2 is mixed into the sealing body 3 side, resulting in poor bonding. There is a risk of becoming.
  • the end position EP1 is curved so that the line segment connecting the end position EP1 and the intermediate point S2 gradually increases the inclination angle with the set movement route L1 from the intermediate point S2 toward the end position EP1. (See FIG. 7).
  • the line segment connecting the end position EP1 and the intermediate point S2 may be a straight line.
  • the position of the end position EP1 is set so that the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle.
  • a plasticized region W is formed in the movement locus of the rotation tool F.
  • the plasticized region W is formed so as to extend beyond the first butt portion J1 and the second butt portion J2 and reach the jacket body 2.
  • the plasticized region W is high on the sealing body 3 side and low on the jacket body 2 side, and an inclined surface is formed on the surface of the plasticized region W.
  • the upper end portion of the plasticized region W on the sealing body 3 side protrudes toward the sealing body 3 at the portion where the sealing body 3 and the shoulder portion F1 are in contact with each other.
  • the second aluminum alloy mainly on the sealing body 3 side of the first butt portion J1 is stirred by the frictional heat between the sealing body 3 and the stirring pin F2. It is plastically fluidized, and the first step side surface 12b and the outer peripheral side surface 3c of the sealing body 3 can be joined at the first butt portion J1. Further, since the outer peripheral surface of the stirring pin F2 is kept slightly in contact with the first step side surface 12b of the jacket body 2, the mixing of the first aluminum alloy from the jacket body 2 into the sealing body 3 can be minimized. ..
  • the second aluminum alloy on the sealing body 3 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis C of the stirring pin F2 can be minimized. As a result, the plastic fluid material is frictionally agitated in a well-balanced manner, so that a decrease in joint strength can be suppressed. Further, by increasing the plate thickness of the sealing body 3, it is possible to prevent a metal shortage at the joint portion.
  • the set movement route is gradually pushed in until the stirring pin F2 reaches a predetermined depth while moving the rotation tool F from the start position SP1 to a position overlapping the set movement route L1. It is possible to prevent the rotation tool F from stopping on L1 and causing the frictional heat to become excessive.
  • the set movement route L1 is separated by gradually raising the stirring pin F2 from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1. It is possible to prevent the rotation tool F from stopping on the top and excessive frictional heat. As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and the first aluminum alloy from being excessively mixed from the jacket body 2 to the sealing body 3 to cause poor bonding.
  • the stirring pin F2 By performing friction stir welding with the stirring pin F2 slightly in contact with the first step side surface 12b, the first butt portion J1 and the second butt portion J2 can be reliably joined. Further, since the first step side surface 12b and the stirring pin F2 are kept in slight contact with each other, it is possible to prevent the first aluminum alloy from being mixed into the sealing body 3 from the jacket body 2 as much as possible.
  • the position of the start position SP1 may be appropriately set, but the line segment (movement locus of the rotation tool F) connecting the start position SP1 and the intermediate point S1 is set from the start position SP1 to the intermediate point S1.
  • the movement speed of the rotation tool F does not decrease at the intermediate point S1 and the section smoothly shifts to this section.
  • the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the jacket body 2 side of the plasticized region W formed in the movement locus of the rotation tool F is sheer.
  • the rotation direction and the traveling direction of the rotation tool F were set so as to be on the side and the sealing body 3 side was on the flow side.
  • the jacket body 2 side By setting the jacket body 2 side to be the shear side, the stirring action by the stirring pin F2 around the first butt portion J1 is enhanced, and the temperature rise in the first butt portion J1 can be expected.
  • the first step side surface 12b and the outer peripheral side surface 3c of the sealing body 3 can be more reliably joined.
  • the shear side means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. ..
  • the flow side refers to the side where the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.
  • the first aluminum alloy of the jacket body 2 is a material having a higher hardness than the second aluminum alloy of the sealing body 3. Thereby, the durability of the liquid-cooled jacket 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the jacket body 2 is an aluminum alloy casting material and the second aluminum alloy of the sealing body 3 is an aluminum alloy wrought material.
  • an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12 as the first aluminum alloy
  • the castability, strength, machinability, etc. of the jacket body 2 can be improved.
  • JIS A1000 series or A6000 series as the second aluminum alloy, processability and thermal conductivity can be improved.
  • the detaching step may be performed so that the rotation tool F completely passes through the intermediate point S1 and then heads toward the end position EP1. That is, the airtightness and watertightness can be further improved by overlapping each end of the start end portion and the end end portion of the plasticized region W formed by this joining step.
  • the inclination angle ⁇ of the outer peripheral surface of the stirring pin F2 and the inclination angle ⁇ of the first step side surface 12b are made uniform over the entire height direction.
  • the stirring pin F2 can be brought into contact with the stirring pin F2. As a result, friction stir welding can be performed in a well-balanced manner.
  • the rotation speed of the rotation tool F may be constant, but may be variable.
  • V1 the rotation speed of the rotation tool F between the intermediate points S1 and S2
  • V1> V2 may be satisfied.
  • the rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
  • the rotation speed of the rotation tool F between the intermediate points S1 and S2 is V2 and the rotation speed of the rotation tool F at the end position EP1 is V3 in the separation section of the main joining process, V3> V2. Good. That is, after shifting to the detachment section, the rotation tool F may be detached from the sealing body 3 while gradually increasing the rotation speed toward the end position EP1.
  • the small pressing force during the pushing step or the separating step can be supplemented by the rotation speed. Therefore, friction stir welding can be preferably performed.
  • the fact that the rotation speed of the rotation tool F may be changed during the push-in step or the release step is the same in this joining step and in other embodiments.
  • the preparation step, the mounting step, and the main joining step are performed.
  • the preparation step and the placement step are the same as those in the first embodiment.
  • the start position SP2 is set on the set movement route L1 on the upstream side of the intermediate point S1. Further, the end position EP2 is set on the set movement route L1 on the downstream side of the intermediate point S2.
  • the process shifts to friction stir welding in this section as it is.
  • the rotation tool F is moved so that the rotation center axis (not shown) of the stirring pin F2 and the set movement route L1 overlap.
  • the contact allowance between the stirring pin F2 and the first step side surface 12b and the insertion depth of the stirring pin F2 are the same as those in the first embodiment.
  • the stirring pin F2 When the stirring pin F2 reaches the intermediate point S2, it shifts to the departure section as it is. In the detachment section, the stirring pin F2 is gradually moved upward from the intermediate point S2 toward the ending position EP2, and the stirring pin F2 is moved from the sealing body 3 at the ending position EP2 set on the set movement route L1. To leave.
  • the liquid-cooled jacket manufacturing method according to the second embodiment described above can also achieve substantially the same effect as that of the first embodiment.
  • the stirring pin F2 is gradually pushed in until the depth reaches a predetermined depth while moving the rotation tool F on the set movement route, whereby the rotation tool F is moved on the set movement route L1. It is possible to prevent the rotation tool F from stopping at one point and excessive frictional heat.
  • the rotation tool F is moved on the set movement route and the stirring pin F2 is gradually detached, so that the rotation tool F is at one point on the set movement route L1. Can be prevented from stopping and the frictional heat becoming excessive.
  • the start position SP2 and the end position EP2 in the main joining step may be set on the set movement route L1.
  • the third embodiment is different from the first embodiment in that, as shown in FIG. 12, in the preparation step, the second peripheral wall step portion 15 is further formed on the upper side of the first peripheral wall step portion 12 of the jacket body 2. To do.
  • the second peripheral wall step portion 15 includes a second step bottom surface 15a extending from the upper end of the first step side surface 12b to the outside of the opening 14 and a second step side surface 15b rising from the second step bottom surface 15a toward the opening 14.
  • the second step bottom surface 15a is formed at a position where the bottom surface of the shoulder portion F1 does not come into contact when the stirring pin F2 of the rotation tool F is inserted to a predetermined depth.
  • the second step side surface 15b is formed at a position where the outer peripheral surface of the shoulder portion F1 does not come into contact when the rotation tool F is moved on the set movement route L1.
  • the jacket body 2 having the above configuration is molded by die casting, for example.
  • the set movement route L1 is set so that the outer peripheral surface of the stirring pin F2 slightly contacts the first step side surface 12b.
  • the insertion depth is set so that the bottom surface of the shoulder portion F1 of the rotating tool F comes into contact with the surface 3a of the sealing body 3.
  • the shoulder portion F1 of the rotation tool F is located inside the second peripheral wall step portion 15 and rotates.
  • the lower end surface of the shoulder portion F1 is located on the side of the second step bottom surface 15a, which is inside the second step side surface 15b, and is separated from the second step bottom surface 15a by a predetermined distance.
  • the plasticized region W is formed so as to extend beyond the first butt portion J1 and the second butt portion J2 and reach the jacket body 2.
  • the plasticized region W is high on the sealing body 3 side and low on the jacket body 2 side, and an inclined surface is formed on the surface of the plasticized region W.
  • the upper end portion of the plasticized region W on the sealing body 3 side protrudes toward the sealing body 3 at the portion where the sealing body 3 and the shoulder portion F1 are in contact with each other.
  • the upper end of the plasticized region W on the peripheral wall portion 11 side projects toward the peripheral wall portion 11 in the space of the second peripheral wall step portion 15.
  • the liquid-cooled jacket manufacturing method according to the third embodiment described above can also achieve substantially the same effect as that of the first embodiment.
  • the plastic fluid material is pressed by the lower end surface of the shoulder portion F1 and sealed. It does not flow out to the surface of the stop body 3. Therefore, the plastic fluid can be flowed to the first butt portion J1 side to fill the gap, and the generation of burrs can be suppressed.
  • the plastic fluid since the lower end surface of the shoulder portion F1 presses the second peripheral wall step portion 15 from above, the plastic fluid does not flow out to the surface of the peripheral wall portion 11. Therefore, the plastic fluid can be flowed to the first butt portion J1 side to fill the gap, and the generation of burrs can be suppressed. Further, since the shoulder portion F1 is not in contact with the second peripheral wall step portion 15, the rotational load of the rotating tool F is not increased. That is, by providing the second peripheral wall step portion 15, the stirring pin F2 can be inserted to a deep position while avoiding contact between the rotating tool F and the peripheral wall portion 11. Thereby, the joint strength can be increased.
  • the design can be appropriately changed within a range not contrary to the gist of the present invention.
  • the surface 3a of the sealing body 3 is located above the end surface 11a of the peripheral wall portion 11 of the jacket body 2, but the present invention is not limited to this.
  • the surface 3a of the sealing body 3 and the end surface 11a of the peripheral wall portion 11 of the jacket body 2 may have the same height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention addresses the problem of providing a method for manufacturing a liquid cooling jacket wherein aluminum alloys of different material types can be properly bonded. The present invention is characterized by including a main joining step in which a stirring pin (F2) of a rotating rotary tool (F) is inserted into a sealing body (3) and is made to move in a circuit around the sealing body (3) at a prescribed depth and along a set movement route (L1) set to the inside of a peripheral side surface (3c) of the sealing body (3), while a peripheral surface of the stirring pin (F2) is made to be in slight contact with a first stepped side surface (12b) of a first peripheral wall stepped section (12) and a lower end surface of a shoulder section (F1) is made to be in contact with a surface (3a) of the sealing body (3), thereby friction-stirring a first abutment section (J1), wherein during this main joining step, after the rotating stirring pin (F2) is inserted at a starting position (SP1) that is set further to the inside than the set movement route (L1), the stirring pin (F2) is gradually pressed in to a prescribed depth while the rotation center axis (C) of the rotary tool (F) is moved to a position that overlaps with the set movement route (L1).

Description

液冷ジャケットの製造方法How to manufacture a liquid-cooled jacket
 本発明は、液冷ジャケットの製造方法に関する。 The present invention relates to a method for manufacturing a liquid-cooled jacket.
 摩擦攪拌接合を利用した液冷ジャケットの製造が行われている。例えば、特許文献1には、液冷ジャケットの製造方法が開示されている。図15は、従来の液冷ジャケットの製造方法を示す断面図である。従来の液冷ジャケットの製造方法では、アルミニウム合金製のジャケット本体101の段差部に設けられた段差側面101cと、アルミニウム合金製の封止体102の側面102cとを突き合わせて形成された突合せ部J10に対して摩擦攪拌接合を行うというものである。また、従来の液冷ジャケットの製造方法では、回転ツールFの攪拌ピンF2のみを突合せ部J10に挿入して摩擦攪拌接合を行っている。また、従来の液冷ジャケットの製造方法では、回転ツールFの回転中心軸線Cを突合せ部J10に重ねて相対移動させるというものである。 A liquid-cooled jacket using friction stir welding is being manufactured. For example, Patent Document 1 discloses a method for manufacturing a liquid-cooled jacket. FIG. 15 is a cross-sectional view showing a conventional method for manufacturing a liquid-cooled jacket. In the conventional method for manufacturing a liquid-cooled jacket, the butt portion J10 formed by abutting the step side surface 101c provided on the step portion of the aluminum alloy jacket body 101 and the side surface 102c of the aluminum alloy sealing body 102. This is to perform friction stir welding. Further, in the conventional method for manufacturing a liquid-cooled jacket, only the stirring pin F2 of the rotating tool F is inserted into the butt portion J10 to perform friction stir welding. Further, in the conventional method for manufacturing a liquid-cooled jacket, the rotation center axis C of the rotation tool F is overlapped with the butt portion J10 and relatively moved.
特開2015-131321号公報Japanese Unexamined Patent Publication No. 2015-131321
 ここで、ジャケット本体101は複雑な形状となりやすく、例えば、4000系アルミニウム合金の鋳造材で形成し、封止体102のように比較的単純な形状のものは、1000系アルミニウム合金の展伸材で形成するというような場合がある。このように、アルミニウム合金の材種の異なる部材同士を接合して、液冷ジャケットを製造する場合がある。このような場合は、ジャケット本体101の方が封止体102よりも硬度が高くなることが一般的であるため、図15のように摩擦攪拌接合を行うと、攪拌ピンF2が封止体102側から受ける材料抵抗に比べて、ジャケット本体101側から受ける材料抵抗が大きくなる。そのため、回転ツールFの攪拌ピンF2によって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 Here, the jacket body 101 tends to have a complicated shape. For example, a jacket body 101 formed of a cast material of 4000 series aluminum alloy and a relatively simple shape such as a sealing body 102 is a wrought material of 1000 series aluminum alloy. In some cases, it is formed by. In this way, a liquid-cooled jacket may be manufactured by joining members of different grades of aluminum alloy. In such a case, the jacket body 101 generally has a higher hardness than the sealing body 102. Therefore, when friction stir welding is performed as shown in FIG. 15, the stirring pin F2 becomes the sealing body 102. The material resistance received from the jacket body 101 side is larger than the material resistance received from the side. Therefore, it becomes difficult to stir different grades in a well-balanced manner by the stirring pin F2 of the rotating tool F, and there is a problem that cavity defects occur in the plasticized region after joining and the joining strength decreases.
 また、図15に示すように、攪拌ピンF2を突合せ部J10に挿入する際、所定の深さとなるまで鉛直方向に攪拌ピンF2を押入するため、摩擦攪拌の開始位置における摩擦熱が過大となる。これにより、当該開始位置において、ジャケット本体101側の金属が封止体102側に混入しやすくなり、接合不良の一因となるという問題がある。 Further, as shown in FIG. 15, when the stirring pin F2 is inserted into the butt portion J10, the stirring pin F2 is pushed in in the vertical direction until it reaches a predetermined depth, so that the frictional heat at the start position of frictional stirring becomes excessive. .. As a result, at the start position, the metal on the jacket body 101 side is likely to be mixed into the sealing body 102 side, which causes a problem of contributing to poor joining.
 さらに、図15に示すように、攪拌ピンF2を突合せ部J10から離脱させる際、所定の深さから鉛直方向に攪拌ピンF2を引き抜くため、摩擦攪拌の終了位置における摩擦熱が過大となる。これにより、当該終了位置において、ジャケット本体101側の金属が封止体102側に混入しやすくなり、接合不良の一因となるという問題がある。 Further, as shown in FIG. 15, when the stirring pin F2 is separated from the butt portion J10, the stirring pin F2 is pulled out in the vertical direction from a predetermined depth, so that the frictional heat at the end position of frictional stirring becomes excessive. As a result, at the end position, the metal on the jacket body 101 side is likely to be mixed into the sealing body 102 side, which causes a problem of contributing to poor joining.
 このような観点から、本発明は、材種の異なるアルミニウム合金を好適に接合することができる液冷ジャケットの製造方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a method for manufacturing a liquid-cooled jacket capable of suitably joining aluminum alloys of different grades.
 前記課題を解決するために、第一の本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、前記攪拌ピンは、先細りのテーパがついており、前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、回転する前記攪拌ピンを前記設定移動ルートよりもさらに内側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸線を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする。 In order to solve the above problems, the first invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing an opening of the jacket body. A method for manufacturing a liquid-cooled jacket in which a jacket body and the sealing body are joined by frictional stirring. The jacket body is made of a first aluminum alloy, and the sealing body is made of a second aluminum alloy. The first aluminum alloy is a grade having a higher hardness than the second aluminum alloy, and the rotating tool used for friction stirring includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion. The stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening. A preparatory step of forming the first peripheral wall stepped portion having the above shape and forming the plate thickness of the sealing body so as to be larger than the height dimension of the first peripheral wall stepped portion, and the jacket body. By placing the sealing body, the first step side surface of the first peripheral wall step portion and the outer peripheral side surface of the sealing body are abutted to form the first abutting portion, and the first peripheral wall step portion is formed. The first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body, and the stirring pin is formed. The outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while slightly contacting the outer peripheral surface of the first peripheral wall step portion with the first step side surface of the first peripheral wall step portion. The main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and rubbing and stirring the first butt portion. After inserting the rotating stirring pin into the set start position further inside the set movement route, the rotation center axis of the rotation tool is moved to a position overlapping the set movement route to the predetermined depth. It is characterized in that the stirring pin is gradually pushed in until it becomes.
 かかる製造方法によれば、封止体と攪拌ピンとの摩擦熱によって第一突合せ部の主として封止体側の第二アルミニウム合金が攪拌されて塑性流動化され、第一突合せ部において段差側面と封止体の外周側面とを接合することができる。また、攪拌ピンの外周面をジャケット本体の第一段差側面にわずかに接触させるに留めるため、ジャケット本体から封止体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部においては主として封止体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールの回転中心軸線を設定移動ルートと重複する位置まで移動させつつ所定の深さとなるまで攪拌ピンを徐々に押入することにより、設定移動ルート上で摩擦熱が過大になるのを防ぐことができる。 According to such a manufacturing method, the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. In addition, by moving the rotation center axis of the rotation tool to a position that overlaps with the set movement route and gradually pushing the stirring pin until it reaches a predetermined depth, it is possible to prevent excessive frictional heat on the set movement route. be able to.
 本発明においては、前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことが好ましい。 In the present invention, the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. It is preferable that the second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. ..
 かかる製造方法によれば、回転ツールのショルダ部と周壁部との接触を避けつつ、攪拌ピンを深い位置まで挿入することができる。 According to such a manufacturing method, the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
 また、前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することが好ましい。 Further, it is preferable that the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
 かかる製造方法によれば、封止体への第一アルミニウム合金の混入を極力防ぎつつ、第二突合せ部の接合強度を高めることができる。 According to such a manufacturing method, it is possible to increase the joint strength of the second butt portion while preventing the first aluminum alloy from being mixed into the sealed body as much as possible.
 さらに、前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。 Further, in the main joining step, the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the stirring is performed at a speed higher than the predetermined rotation speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually reducing the rotation speed.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.
 前記課題を解決するために、第二の本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、前記攪拌ピンは、先細りのテーパがついており、前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ前記所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする。 In order to solve the above problems, the second invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing the opening of the jacket body. A method for manufacturing a liquid-cooled jacket in which a jacket body and the sealing body are joined by frictional stirring. The jacket body is made of a first aluminum alloy, and the sealing body is made of a second aluminum alloy. The first aluminum alloy is a grade having a higher hardness than the second aluminum alloy, and the rotating tool used for friction stirring includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion. The stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening. A preparatory step of forming the first peripheral wall stepped portion having the above shape and forming the plate thickness of the sealing body so as to be larger than the height dimension of the first peripheral wall stepped portion, and the jacket body. By placing the sealing body, the first step side surface of the first peripheral wall step portion and the outer peripheral side surface of the sealing body are abutted to form the first abutting portion, and the first peripheral wall step portion is formed. The first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body, and the stirring pin is formed. The outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while slightly contacting the outer peripheral surface of the first peripheral wall step portion with the first step side surface of the first peripheral wall step portion. The main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and rubbing and stirring the first butt portion. The stirring pin is inserted from the start position set on the set movement route, and the stirring pin is gradually pushed in until the predetermined depth is reached while moving in the traveling direction.
 かかる製造方法によれば、封止体と攪拌ピンとの摩擦熱によって第一突合せ部の主として封止体側の第二アルミニウム合金が攪拌されて塑性流動化され、第一突合せ部において段差側面と封止体の外周側面とを接合することができる。また、攪拌ピンの外周面をジャケット本体の第一段差側面にわずかに接触させるに留めるため、ジャケット本体から封止体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部においては主として封止体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを設定移動ルート上で進行方向に移動させつつ所定の深さとなるまで攪拌ピンを徐々に押入することにより、設定移動ルート上の一点で摩擦熱が過大になるのを防ぐことができる。 According to such a manufacturing method, the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. In addition, by gradually pushing the stirring pin until it reaches a predetermined depth while moving the rotation tool in the traveling direction on the set movement route, it is possible to prevent the frictional heat from becoming excessive at one point on the set movement route. it can.
 本発明においては、前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことが好ましい。 In the present invention, the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. It is preferable that the second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. ..
 かかる製造方法によれば、回転ツールのショルダ部と周壁部との接触を避けつつ、攪拌ピンを深い位置まで挿入することができる。 According to such a manufacturing method, the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
 また、前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することが好ましい。 Further, it is preferable that the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
 かかる製造方法によれば、封止体への第一アルミニウム合金の混入を極力防ぎつつ、第二突合せ部の接合強度を高めることができる。 According to such a manufacturing method, it is possible to increase the joint strength of the second butt portion while preventing the first aluminum alloy from being mixed into the sealed body as much as possible.
 さらに、前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。 Further, in the main joining step, the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is inserted in the main joining step, the stirring is performed at a speed higher than the predetermined rotation speed. It is preferable to insert the pin in a rotated state and move it to the set movement route while gradually reducing the rotation speed.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.
 前記課題を解決するために、第三の本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、前記攪拌ピンは、先細りのテーパがついており、前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルートよりもさらに内側に終了位置を設定し、前記第一突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを前記封止体から徐々に引き抜いて前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする。 In order to solve the above-mentioned problems, the third invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing the opening of the jacket body. A method for manufacturing a liquid-cooled jacket in which a jacket body and the sealing body are joined by friction stir welding. The jacket body is made of a first aluminum alloy, and the sealing body is made of a second aluminum alloy. The first aluminum alloy is a grade having a higher hardness than the second aluminum alloy, and the rotary tool used for friction stir welding includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion. The stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening. A preparatory step of forming the first peripheral wall stepped portion having the above shape and forming the plate thickness of the sealing body so as to be larger than the height dimension of the first peripheral wall stepped portion, and the jacket body. By placing the sealing body, the first stepped side surface of the first peripheral wall stepped portion and the outer peripheral side surface of the sealing body are abutted to form the first abutting portion, and the first peripheral wall stepped portion is formed. The first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body to form the second butt portion. The outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while the outer peripheral surface of the first peripheral wall stepped portion is slightly in contact with the first step side surface. The main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and frictionally agitating the first butt portion. In, the end position is set further inside the set movement route, and after friction stir welding with respect to the first butt portion, the stirring pin is gradually moved from the sealing body while moving the rotation tool to the end position. It is characterized in that the rotating tool is detached from the sealing body at the end position by pulling out the tool.
 かかる製造方法によれば、封止体と攪拌ピンとの摩擦熱によって第一突合せ部の主として封止体側の第二アルミニウム合金が攪拌されて塑性流動化され、第一突合せ部において段差側面と封止体の外周側面とを接合することができる。また、攪拌ピンの外周面をジャケット本体の第一段差側面にわずかに接触させるに留めるため、ジャケット本体から封止体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部においては主として封止体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを設定移動ルートと重複する位置から内側の終了位置まで移動させつつ先端側ピンを徐々に引き抜くことにより、設定移動ルート上で摩擦熱が過大になるのを防ぐことができる。 According to such a manufacturing method, the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. Further, by gradually pulling out the tip side pin while moving the rotation tool from the position overlapping with the set movement route to the inner end position, it is possible to prevent the frictional heat from becoming excessive on the set movement route.
 本発明においては、前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことが好ましい。 In the present invention, the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. It is preferable that the second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. ..
 かかる製造方法によれば、回転ツールのショルダ部と周壁部との接触を避けつつ、攪拌ピンを深い位置まで挿入することができる。 According to such a manufacturing method, the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
 また、前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することが好ましい。 Further, it is preferable that the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
 かかる製造方法によれば、封止体への第一アルミニウム合金の混入を極力防ぎつつ、第二突合せ部の接合強度を高めることができる。 According to such a manufacturing method, it is possible to increase the joint strength of the second butt portion while preventing the first aluminum alloy from being mixed into the sealed body as much as possible.
 さらに、前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることが好ましい。 Further, in the main joining step, the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is separated in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed. It is preferable to move it to the end position while raising it.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.
 前記課題を解決するために、第四の本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、前記攪拌ピンは、先細りのテーパがついており、前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記第一突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを前記封止体から徐々に引き抜いて前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする。 In order to solve the above-mentioned problems, the fourth invention is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body for sealing the opening of the jacket body. A method for manufacturing a liquid-cooled jacket in which a jacket body and the sealing body are joined by friction stir welding. The jacket body is made of a first aluminum alloy, and the sealing body is made of a second aluminum alloy. The first aluminum alloy is a grade having a higher hardness than the second aluminum alloy, and the rotary tool used for friction stir welding includes a shoulder portion and a stirring pin hanging from the lower end of the shoulder portion. The stirring pin has a tapered taper, and has a first step bottom surface on the inner peripheral edge of the peripheral wall portion, and a first step side surface that rises so as to spread from the first step bottom surface toward the opening. A preparatory step of forming the first peripheral wall stepped portion having the above shape and forming the plate thickness of the sealing body so as to be larger than the height dimension of the first peripheral wall stepped portion, and the jacket body. By placing the sealing body, the first stepped side surface of the first peripheral wall stepped portion and the outer peripheral side surface of the sealing body are abutted to form the first abutting portion, and the first peripheral wall stepped portion is formed. The first step bottom surface and the back surface of the sealing body are overlapped to form a second butt portion, and the stirring pin of the rotating tool is inserted into the sealing body to form the second butt portion. The outer peripheral surface of the sealing body is in contact with the surface of the sealing body while the lower end surface of the shoulder portion is in contact with the surface of the sealing body while the outer peripheral surface of the first peripheral wall stepped portion is slightly in contact with the first step side surface. The main joining step includes a main joining step of circling around the sealing body at a predetermined depth along a set movement route set inside the side surface and frictionally agitating the first butt portion. In, after setting the end position on the set movement route and friction stir welding to the first butt portion, the stirring pin is gradually pulled out from the sealing body while moving the rotation tool to the end position. It is characterized in that the rotating tool is detached from the sealing body at the ending position.
 かかる製造方法によれば、封止体と攪拌ピンとの摩擦熱によって第一突合せ部の主として封止体側の第二アルミニウム合金が攪拌されて塑性流動化され、第一突合せ部において段差側面と封止体の外周側面とを接合することができる。また、攪拌ピンの外周面をジャケット本体の第一段差側面にわずかに接触させるに留めるため、ジャケット本体から封止体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部においては主として封止体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを設定移動ルート上で移動させつつ先端側ピンを徐々に引き抜くことにより、設定移動ルート上の一点で摩擦熱が過大になるのを防ぐことができる。 According to such a manufacturing method, the second aluminum alloy mainly on the sealing body side of the first butt portion is agitated and plastically fluidized by the frictional heat between the sealing body and the stirring pin, and the first butt portion is sealed with the step side surface. It can be joined to the outer peripheral side surface of the body. Further, since the outer peripheral surface of the stirring pin is kept in contact with the side surface of the first step of the jacket body slightly, it is possible to minimize the mixing of the first aluminum alloy from the jacket body to the sealing body. As a result, in the first butt portion, the second aluminum alloy on the sealing body side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. Further, by gradually pulling out the tip side pin while moving the rotation tool on the set movement route, it is possible to prevent the frictional heat from becoming excessive at one point on the set movement route.
 本発明においては、前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うショルダ部の下端面を前記周壁部の端面よりも前記第二段差底面側に位置させて摩擦攪拌を行うことが好ましい。 In the present invention, the preparatory step includes a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening, and a second step side surface rising from the second step bottom surface toward the opening. A second peripheral wall step portion is further formed, and in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. It is preferable that the lower end surface is located closer to the bottom surface of the second step than the end surface of the peripheral wall portion to perform friction stir welding.
 かかる製造方法によれば、回転ツールのショルダ部と周壁部との接触を避けつつ、攪拌ピンを深い位置まで挿入することができる。 According to such a manufacturing method, the stirring pin can be inserted to a deep position while avoiding contact between the shoulder portion of the rotating tool and the peripheral wall portion.
 また、前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することが好ましい。 Further, it is preferable that the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion.
 かかる製造方法によれば、封止体への第一アルミニウム合金の混入を極力防ぎつつ、第二突合せ部の接合強度を高めることができる。 According to such a manufacturing method, it is possible to increase the joint strength of the second butt portion while preventing the first aluminum alloy from being mixed into the sealed body as much as possible.
 さらに、前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることが好ましい。 Further, in the main joining step, the rotation tool is rotated at a predetermined rotation speed to perform frictional stirring, and when the stirring pin is separated in the main joining step, the rotation speed is gradually increased from the predetermined rotation speed. It is preferable to move it to the end position while raising it.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stir welding can be performed more preferably.
 本発明に係る液冷ジャケットの製造方法によれば、材種の異なるアルミニウム合金を好適に接合することができる。 According to the method for manufacturing a liquid-cooled jacket according to the present invention, aluminum alloys of different grades can be suitably joined.
本発明の第一実施形態に係る液冷ジャケットを示す分解斜視図である。It is an exploded perspective view which shows the liquid-cooled jacket which concerns on 1st Embodiment of this invention. 第一実施形態に係る液冷ジャケットの製造方法の載置工程を示す断面図である。It is sectional drawing which shows the mounting process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの設定移動ルートを示す平面図である。It is a top view which shows the setting movement route of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程を示す平面図である。It is a top view which shows the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程の攪拌ピンの押入状態を示す断面図である。It is sectional drawing which shows the push-in state of the stirring pin in the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程を示す断面図である。It is sectional drawing which shows the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程を示す平面図である。It is a top view which shows the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程の攪拌ピンの離脱状態を示す断面図である。It is sectional drawing which shows the detached state of the stirring pin in the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程後を示す断面図である。It is sectional drawing which shows after the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 1st Embodiment. 本発明の第二実施形態に係る液冷ジャケットの製造方法の本接合工程を示す平面図である。It is a top view which shows the present joining process of the manufacturing method of the liquid-cooled jacket which concerns on 2nd Embodiment of this invention. 第二実施形態に係る液冷ジャケットの製造方法の本接合工程を示す平面図である。It is a top view which shows the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 2nd Embodiment. 第三実施形態に係る液冷ジャケットの製造方法の載置工程を示す断面図である。It is sectional drawing which shows the mounting process of the manufacturing method of the liquid-cooled jacket which concerns on 3rd Embodiment. 第三実施形態に係る液冷ジャケットの製造方法の本接合工程を示す断面図である。It is sectional drawing which shows the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 3rd Embodiment. 第三実施形態に係る液冷ジャケットの製造方法の本接合工程後を示す断面図である。It is sectional drawing which shows after the main joining process of the manufacturing method of the liquid-cooled jacket which concerns on 3rd Embodiment. 従来の液冷ジャケットの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conventional liquid-cooled jacket.
[第一実施形態]
 本発明の実施形態について、適宜図面を参照しながら説明する。第一実施形態に係る液冷ジャケット1は、図1に示すように、ジャケット本体2と封止体3とで構成されている。液冷ジャケット1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。ジャケット本体2と封止体3とは摩擦攪拌接合で一体化される。以下の説明における「表面」とは、「裏面」の反対側の面を意味する。
[First Embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 1, the liquid-cooled jacket 1 according to the first embodiment is composed of a jacket body 2 and a sealing body 3. The liquid-cooled jacket 1 is a device that circulates a fluid inside to cool an arranged heating element. The jacket body 2 and the sealing body 3 are integrated by friction stir welding. In the following description, the "front surface" means the surface opposite to the "back surface".
 ジャケット本体2は、底部10及び周壁部11で主に構成されている。ジャケット本体2は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。 The jacket body 2 is mainly composed of a bottom portion 10 and a peripheral wall portion 11. The jacket body 2 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a first aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy casting material such as JISH5302 ADC12 (Al—Si—Cu system) is used.
 底部10は、矩形を呈する板状部材である。周壁部11は、底部10の周縁部から矩形枠状に立ち上がる壁部である。底部10及び周壁部11で凹部13が形成されている。周壁部11の内周縁には第一周壁段差部12が形成されている。第一周壁段差部12は、第一段差底面12aと、第一段差底面12aから斜めに立ち上がる第一段差側面12bとで構成されている。図2に示すように、第一段差側面12bの傾斜角度βは、適宜設定すればよいが、例えば、本実施形態では図6に示す回転ツールFの攪拌ピンF2の傾斜角度αと同一になっている。 The bottom portion 10 is a plate-shaped member having a rectangular shape. The peripheral wall portion 11 is a wall portion that rises in a rectangular frame shape from the peripheral edge portion of the bottom portion 10. A recess 13 is formed in the bottom portion 10 and the peripheral wall portion 11. A first peripheral wall step portion 12 is formed on the inner peripheral edge of the peripheral wall portion 11. The first peripheral wall step portion 12 is composed of a first step bottom surface 12a and a first step side surface 12b that rises obliquely from the first step bottom surface 12a. As shown in FIG. 2, the inclination angle β of the first step side surface 12b may be appropriately set, but for example, in the present embodiment, it is the same as the inclination angle α of the stirring pin F2 of the rotation tool F shown in FIG. ing.
 なお、本実施形態では、周壁段差部、段差底面および段差側面は、一段ずつであるが、第三実施形態で、第二段差部、第二段差底面および第二段差側面が登場するために、本実施形態においても、「第一周壁段差部12」、「第一段差底面12a」、「第一段差側面12b」と称している。 In the present embodiment, the peripheral wall step portion, the step bottom surface and the step side surface are one step at a time, but in the third embodiment, the second step portion, the second step bottom surface and the second step side surface appear. Also in this embodiment, they are referred to as "first peripheral wall step portion 12", "first step bottom surface 12a", and "first step side surface 12b".
 なお、第一段差側面12bは、第一段差底面12aに対して垂直でもよい。また、本実施形態のジャケット本体2は一体形成されているが、例えば、周壁部11を分割構成としてシール部材で接合して一体化してもよい。 The first step side surface 12b may be perpendicular to the first step bottom surface 12a. Further, although the jacket body 2 of the present embodiment is integrally formed, for example, the peripheral wall portion 11 may be formed as a divided structure and joined by a seal member to be integrated.
 封止体3は、ジャケット本体2の開口部14を封止する部材である。封止体3は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、第一アルミニウム合金よりも硬度の低い材料である。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。 The sealing body 3 is a member that seals the opening 14 of the jacket body 2. The sealing body 3 is not particularly limited as long as it is a metal capable of friction stir welding, but in the present embodiment, it is formed mainly containing a second aluminum alloy. The second aluminum alloy is a material having a lower hardness than the first aluminum alloy. The second aluminum alloy is formed of, for example, an aluminum alloy wrought material such as JIS A1050, A1100, A6063.
 次に、本実施形態に係る液冷ジャケットの製造方法について説明する。本実施形態に係る液冷ジャケットの製造方法では、準備工程と、載置工程と、本接合工程とを行う。 Next, a method for manufacturing the liquid-cooled jacket according to the present embodiment will be described. In the method for manufacturing a liquid-cooled jacket according to the present embodiment, a preparation step, a mounting step, and a main joining step are performed.
 準備工程は、ジャケット本体2及び封止体3を準備する工程である。ジャケット本体2及び封止体3は、製造方法については特に制限されないが、ジャケット本体2は、例えば、ダイキャストで成形する。封止体3は、例えば押出成形により成形する。 The preparation process is a process of preparing the jacket body 2 and the sealing body 3. The jacket body 2 and the sealing body 3 are not particularly limited in terms of manufacturing method, but the jacket body 2 is molded by die casting, for example. The sealing body 3 is formed by, for example, extrusion molding.
 載置工程は、図2に示すように、ジャケット本体2に封止体3を載置する工程である。載置工程によって、封止体3の外周側面3cと第一周壁段差部12の第一段差側面12bとが突き合わされて第一突合せ部J1が形成される。第一段差側面12bは外側に傾斜しているため、第一突合せ部J1には断面V字状の隙間が形成される。第一突合せ部J1は、封止体3の周囲に沿って平面視矩形状に形成される。また、第一周壁段差部12の第一段差底面12aと、封止体3の裏面3bとが突き合わされて第二突合せ部J2が形成される。封止体3の板厚は、適宜設定すればよいが、本実施形態では第一段差側面12bの高さ寸法よりも大きくなっている。封止体3の表面3aは、ジャケット本体2の周壁部11の端面11aよりも上方に位置している。 The mounting step is a step of mounting the sealing body 3 on the jacket body 2 as shown in FIG. By the mounting step, the outer peripheral side surface 3c of the sealing body 3 and the first step side surface 12b of the first peripheral wall step portion 12 are abutted to form the first abutment portion J1. Since the first step side surface 12b is inclined outward, a gap having a V-shaped cross section is formed in the first butt portion J1. The first butt portion J1 is formed in a rectangular shape in a plan view along the periphery of the sealing body 3. Further, the first step bottom surface 12a of the first peripheral wall step portion 12 and the back surface 3b of the sealing body 3 are butted to form the second butted portion J2. The plate thickness of the sealing body 3 may be appropriately set, but in the present embodiment, it is larger than the height dimension of the first step side surface 12b. The surface 3a of the sealing body 3 is located above the end surface 11a of the peripheral wall portion 11 of the jacket body 2.
 図3に示すように、第一突合せ部J1よりも内側に「設定移動ルートL1」(一点鎖線)を設定する。設定移動ルートL1は、後記する本接合工程において、第一突合せ部J1を接合するために必要な回転ツールFの移動ルートである。後記するように、本実施形態では攪拌ピンF2を第一段差側面12bにわずかに接触させるため、設定移動ルートL1は、封止体3の外周側面3cよりも内側において、平面視矩形状に設定する。 As shown in FIG. 3, the "set movement route L1" (dashed line) is set inside the first butt portion J1. The set movement route L1 is a movement route of the rotation tool F necessary for joining the first butt portion J1 in the main joining step described later. As will be described later, in this embodiment, since the stirring pin F2 is slightly brought into contact with the first step side surface 12b, the set movement route L1 is set in a rectangular shape in a plan view inside the outer peripheral side surface 3c of the sealing body 3. To do.
 本接合工程は、図4,図6及び図7に示すように、回転ツールFを用いて第一突合せ部J1を摩擦攪拌接合する工程である。図4及び図7に示すように、本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から端面廻った中間点S2(図7参照)までの本区間と、中間点S2から終了位置EP1(図7参照)までの離脱区間の三つの区間を連続して摩擦攪拌する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、封止体3の表面3aにおいて、設定移動ルートL1よりも内側の位置に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分は、開始位置SP1から中間点S1に向かうに連れて徐々に設定移動ルートL1に沿うように湾曲している。なお、開始位置SP1と中間点S1とを結ぶ線分を直線状にしてもよい。この場合、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となるように開始位置SP1の位置を設定する。 As shown in FIGS. 4, 6 and 7, this joining step is a step of friction stir welding the first butt portion J1 using the rotary tool F. As shown in FIGS. 4 and 7, in this joining step, the intrusion section from the start position SP1 to the intermediate point S1 and the intermediate point S2 around the end face from the intermediate point S1 on the set movement route L1 (see FIG. 7). This section and the three sections of the detachment section from the intermediate point S2 to the end position EP1 (see FIG. 7) are continuously frictionally agitated. The intermediate points S1 and S2 are set on the set movement route L1. The start position SP1 is set at a position inside the set movement route L1 on the surface 3a of the sealing body 3. In the present embodiment, the line segment connecting the start position SP1 and the intermediate point S1 is gradually curved along the set movement route L1 from the start position SP1 toward the intermediate point S1. The line segment connecting the start position SP1 and the intermediate point S1 may be linear. In this case, the position of the start position SP1 is set so that the angle formed by the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 is an obtuse angle.
 図6に示すように、回転ツールFは、ショルダ部F1と、攪拌ピンF2とで構成されている。回転ツールFは、例えば工具鋼で形成されている。ショルダ部F1は、摩擦攪拌装置(図示省略)の回転軸に連結される部位である。ショルダ部F1は円柱状を呈し、ボルトが締結されるネジ孔(図示省略)が形成されている。 As shown in FIG. 6, the rotation tool F is composed of a shoulder portion F1 and a stirring pin F2. The rotary tool F is made of, for example, tool steel. The shoulder portion F1 is a portion connected to a rotation shaft of a friction stir device (not shown). The shoulder portion F1 has a columnar shape, and a screw hole (not shown) for fastening a bolt is formed.
 攪拌ピンF2は、ショルダ部F1から垂下しており、ショルダ部F1と同軸になっている。攪拌ピンF2はショルダ部F1から離間するにつれて先細りになっている。攪拌ピンF2の先端には平坦な平坦面F3を備えている。 The stirring pin F2 hangs down from the shoulder portion F1 and is coaxial with the shoulder portion F1. The stirring pin F2 is tapered as it is separated from the shoulder portion F1. A flat flat surface F3 is provided at the tip of the stirring pin F2.
 攪拌ピンF2の外周面には螺旋溝が刻設されている。本実施形態では、回転ツールFを右回転させるため、螺旋溝は、基端から先端に向かうにつれて左回りに形成されている。言い換えると、螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て左回りに形成されている。 A spiral groove is engraved on the outer peripheral surface of the stirring pin F2. In the present embodiment, in order to rotate the rotation tool F clockwise, the spiral groove is formed counterclockwise from the base end to the tip end. In other words, the spiral groove is formed counterclockwise when viewed from above when the spiral groove is traced from the base end to the tip end.
 なお、回転ツールFを左回転させる場合は、螺旋溝を基端から先端に向かうにつれて右回りに形成することが好ましい。言い換えると、この場合の螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て右回りに形成されている。螺旋溝をこのように設定することで、摩擦攪拌の際に塑性流動化した金属が螺旋溝によって攪拌ピンF2の先端側に導かれる。これにより、被接合金属部材(ジャケット本体2及び封止体3)の外部に溢れ出る金属の量を少なくすることができる。 When rotating the rotation tool F counterclockwise, it is preferable to form the spiral groove clockwise from the base end to the tip end. In other words, the spiral groove in this case is formed clockwise when viewed from above when the spiral groove is traced from the base end to the tip end. By setting the spiral groove in this way, the metal plastically fluidized during friction stir welding is guided to the tip end side of the stirring pin F2 by the spiral groove. As a result, the amount of metal that overflows to the outside of the metal member to be joined (jacket body 2 and sealing body 3) can be reduced.
 本接合工程の押入区間では、図4に示すように、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、右回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで移動させる。この際、図5(図4を攪拌ピンF2の進行方向後方側から見た断面図であり、攪拌ピンF2の移動状態を示した図である)に示すように、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。「所定の深さ」とは、設定移動ルートL1上の中間点S1から端面廻って中間点S2までの本区間において、攪拌ピンF2を差し込む深さをいう。 In the closet section of the main joining process, as shown in FIG. 4, friction stir welding is performed from the start position SP1 to the intermediate point S1. In the closet section, the stirring pin F2 rotated clockwise is inserted into the start position SP1 and moved to the intermediate point S1. At this time, as shown in FIG. 5 (FIG. 4 is a cross-sectional view seen from the rear side of the stirring pin F2 in the traveling direction and shows the moving state of the stirring pin F2), at least the intermediate point S1 is reached. The stirring pin F2 is gradually pushed in so as to reach the preset "predetermined depth". That is, instead of keeping the rotation tool F in one place, the rotation tool F is gradually lowered while being moved to the set movement route L1. The "predetermined depth" means the depth at which the stirring pin F2 is inserted in this section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 around the end face.
 中間点S1に達したらそのまま本区間の摩擦攪拌接合に移行する。図4及び図6に示すように、本区間では、攪拌ピンF2の回転中心軸線Cと設定移動ルートL1とが重なるように回転ツールFを移動させる。このとき、ジャケット本体2は、第一段差側面12bが傾斜しているので、攪拌ピンF2がジャケット本体2と大きく接触するのを回避でき、第一段差側面12bにわずかに接触させることができる。本区間では、攪拌ピンF2の「所定の深さ」を、攪拌ピンF2の先端の平坦面F3が段第一差底面12aにわずかに接触する程度に設定する。なお、攪拌ピンF2の「所定の深さ」は、適宜設定すればよく、例えば、攪拌ピンF2が第一段差底面12aに達しない位置に設定してもよい。 When the intermediate point S1 is reached, the process shifts to friction stir welding in this section as it is. As shown in FIGS. 4 and 6, in this section, the rotation tool F is moved so that the rotation center axis C of the stirring pin F2 and the set movement route L1 overlap. At this time, since the first step side surface 12b of the jacket body 2 is inclined, it is possible to prevent the stirring pin F2 from making large contact with the jacket body 2 and to slightly contact the first step side surface 12b. In this section, the “predetermined depth” of the stirring pin F2 is set so that the flat surface F3 at the tip of the stirring pin F2 slightly contacts the step first difference bottom surface 12a. The "predetermined depth" of the stirring pin F2 may be appropriately set, and may be set, for example, at a position where the stirring pin F2 does not reach the bottom surface 12a of the first step.
 本接合工程の本区間では、図6に示すように、第一段差側面12bに攪拌ピンF2の外周面がわずかに接触するように設定移動ルートL1を設定している。このとき、少なくとも攪拌ピンF2の外周面と周壁部11との接触により、周壁部11側の第一アルミニウム合金がわずかに削り取られ、第一アルミニウム合金が封止体3側に混入する。前記「所定の深さ」で設定移動ルートL1を移動すると、回転ツールFのショルダ部F1の下端面が封止体3の表面3aに接触する。このとき、回転ツールFのショルダ部F1の下端面は、周壁部11の端面11aには接触していない。ここで、第一段差側面12bに対する攪拌ピンF2の外周面の接触代をオフセット量Nとする。本実施形態のように、攪拌ピンF2の平坦面F3を第一周壁段差部12の第一段差底面12aよりも深く挿入し、かつ、攪拌ピンF2の外周面を第一段差側面12bに接触させる場合は、オフセット量Nを、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 In this section of the main joining process, as shown in FIG. 6, the set movement route L1 is set so that the outer peripheral surface of the stirring pin F2 slightly contacts the first step side surface 12b. At this time, at least by the contact between the outer peripheral surface of the stirring pin F2 and the peripheral wall portion 11, the first aluminum alloy on the peripheral wall portion 11 side is slightly scraped off, and the first aluminum alloy is mixed in the sealing body 3 side. When the set movement route L1 is moved at the “predetermined depth”, the lower end surface of the shoulder portion F1 of the rotation tool F comes into contact with the surface 3a of the sealing body 3. At this time, the lower end surface of the shoulder portion F1 of the rotation tool F is not in contact with the end surface 11a of the peripheral wall portion 11. Here, the contact allowance of the outer peripheral surface of the stirring pin F2 with respect to the first step side surface 12b is set to the offset amount N. As in the present embodiment, the flat surface F3 of the stirring pin F2 is inserted deeper than the first step bottom surface 12a of the first peripheral wall step portion 12, and the outer peripheral surface of the stirring pin F2 is in contact with the first step side surface 12b. The offset amount N is set between 0 <N ≦ 1.0 mm, preferably between 0 <N ≦ 0.85 mm, and more preferably between 0 <N ≦ 0.65 mm. Set.
 攪拌ピンF2の外周面と第一段差側面12bとが接触しないように設定すると、第一突合せ部J1の接合強度が低くなる。また、攪拌ピンF2の外周面と第一段差側面12bとのオフセット量Nが1.0mmを超えるとジャケット本体2の第一アルミニウム合金が、封止体3側に大量に混入して接合不良となるおそれがある。 If the outer peripheral surface of the stirring pin F2 and the first step side surface 12b are set so as not to come into contact with each other, the joint strength of the first butt portion J1 becomes low. Further, when the offset amount N between the outer peripheral surface of the stirring pin F2 and the first step side surface 12b exceeds 1.0 mm, a large amount of the first aluminum alloy of the jacket body 2 is mixed into the sealing body 3 side, resulting in poor bonding. There is a risk of becoming.
 図7に示すように、回転ツールFを封止体3の廻りに一周させたら、塑性化領域Wの始端と終端とを重複させ、攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。本接合工程の離脱区間では、図8に示すように、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に上方に移動させて、終了位置EP1で封止体3から攪拌ピンF2を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引き抜いていく(上昇させていく)。終了位置EP1は、終了位置EP1と中間点S2とを結ぶ線分が、中間点S2から終了位置EP1に向かうに連れて徐々に設定移動ルートL1との傾斜角度が大きくなるように湾曲している(図7参照)。なお、終了位置EP1と中間点S2とを結ぶ線分を直線状にしてもよい。この場合、終了位置EP1と中間点S2とを結ぶ線分と設定移動ルートL1とのなす角度が鈍角となるように終了位置EP1の位置を設定する。回転ツールFの移動軌跡には塑性化領域Wが形成される。 As shown in FIG. 7, when the rotating tool F is made to go around the sealing body 3, the start end and the end end of the plasticized region W are overlapped, and when the stirring pin F2 reaches the intermediate point S2, the separation section is entered as it is. Transition. In the detachment section of the main joining step, as shown in FIG. 8, the stirring pin F2 is gradually moved upward from the intermediate point S2 to the end position EP1, and the stirring pin F2 is stirred from the sealing body 3 at the end position EP1. Detach pin F2. That is, the rotation tool F is gradually pulled out (raised) while being moved to the end position EP1 without staying in one place. The end position EP1 is curved so that the line segment connecting the end position EP1 and the intermediate point S2 gradually increases the inclination angle with the set movement route L1 from the intermediate point S2 toward the end position EP1. (See FIG. 7). The line segment connecting the end position EP1 and the intermediate point S2 may be a straight line. In this case, the position of the end position EP1 is set so that the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W is formed in the movement locus of the rotation tool F.
 図9に示すように、塑性化領域Wは、第一突合せ部J1および第二突合せ部J2を超えてジャケット本体2に達するように形成されている。塑性化領域Wは、封止体3側が高く、ジャケット本体2側が低くなっており、塑性化領域Wの表面に傾斜面が形成されている。塑性化領域Wの封止体3側の上端部は、封止体3とショルダ部F1とが接触した部分において封止体3側に突出している。 As shown in FIG. 9, the plasticized region W is formed so as to extend beyond the first butt portion J1 and the second butt portion J2 and reach the jacket body 2. The plasticized region W is high on the sealing body 3 side and low on the jacket body 2 side, and an inclined surface is formed on the surface of the plasticized region W. The upper end portion of the plasticized region W on the sealing body 3 side protrudes toward the sealing body 3 at the portion where the sealing body 3 and the shoulder portion F1 are in contact with each other.
 以上説明した本実施形態における液冷ジャケットの製造方法によれば、封止体3と攪拌ピンF2との摩擦熱によって第一突合せ部J1の主として封止体3側の第二アルミニウム合金が攪拌されて塑性流動化され、第一突合せ部J1において第一段差側面12bと封止体3の外周側面3cとを接合することができる。また、攪拌ピンF2の外周面をジャケット本体2の第一段差側面12bにわずかに接触させるに留めるため、ジャケット本体2から封止体3への第一アルミニウム合金の混入を極力少なくすることができる。これにより、第一突合せ部J1においては主として封止体3側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、攪拌ピンF2の回転中心軸線Cに対して一方側と他方側で、攪拌ピンF2が受ける材料抵抗の不均衡を極力少なくすることができる。これにより、塑性流動材がバランス良く摩擦攪拌されるため、接合強度の低下を抑制することができる。また、封止体3の板厚を大きくすることにより、接合部の金属不足を防止することができる。 According to the method for manufacturing a liquid-cooled jacket in the present embodiment described above, the second aluminum alloy mainly on the sealing body 3 side of the first butt portion J1 is stirred by the frictional heat between the sealing body 3 and the stirring pin F2. It is plastically fluidized, and the first step side surface 12b and the outer peripheral side surface 3c of the sealing body 3 can be joined at the first butt portion J1. Further, since the outer peripheral surface of the stirring pin F2 is kept slightly in contact with the first step side surface 12b of the jacket body 2, the mixing of the first aluminum alloy from the jacket body 2 into the sealing body 3 can be minimized. .. As a result, in the first butt portion J1, the second aluminum alloy on the sealing body 3 side is mainly frictionally agitated, so that a decrease in joint strength can be suppressed. That is, in this joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis C of the stirring pin F2 can be minimized. As a result, the plastic fluid material is frictionally agitated in a well-balanced manner, so that a decrease in joint strength can be suppressed. Further, by increasing the plate thickness of the sealing body 3, it is possible to prevent a metal shortage at the joint portion.
 また、本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
 同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから攪拌ピンF2を徐々に上昇させて離脱させることにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
 これらにより、設定移動ルートL1上で摩擦熱が過大となり、ジャケット本体2から封止体3へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。
Further, in the closet section of the main joining process, the set movement route is gradually pushed in until the stirring pin F2 reaches a predetermined depth while moving the rotation tool F from the start position SP1 to a position overlapping the set movement route L1. It is possible to prevent the rotation tool F from stopping on L1 and causing the frictional heat to become excessive.
Similarly, in the detachment section of the main joining step, the set movement route L1 is separated by gradually raising the stirring pin F2 from a predetermined depth while moving the rotation tool F from the set movement route L1 to the end position EP1. It is possible to prevent the rotation tool F from stopping on the top and excessive frictional heat.
As a result, it is possible to prevent the frictional heat from becoming excessive on the set movement route L1 and the first aluminum alloy from being excessively mixed from the jacket body 2 to the sealing body 3 to cause poor bonding.
 また、攪拌ピンF2を第一段差側面12bにわずかに接触させた状態で摩擦攪拌接合を行うことにより、第一突合せ部J1及び第二突合せ部J2を確実に接合することができる。また、第一段差側面12bと攪拌ピンF2とをわずかに接触させるに留めるため、ジャケット本体2から封止体3への第一アルミニウム合金の混入を極力防ぐことができる。 Further, by performing friction stir welding with the stirring pin F2 slightly in contact with the first step side surface 12b, the first butt portion J1 and the second butt portion J2 can be reliably joined. Further, since the first step side surface 12b and the stirring pin F2 are kept in slight contact with each other, it is possible to prevent the first aluminum alloy from being mixed into the sealing body 3 from the jacket body 2 as much as possible.
 また、本接合工程において、開始位置SP1の位置は、適宜設定すればよいが、開始位置SP1と中間点S1とを結ぶ線分(回転ツールFの移動軌跡)を、開始位置SP1から中間点S1に向かうに連れて徐々に設定移動ルートL1に沿うように湾曲させたことにより、中間点S1で回転ツールFの移動速度が低下することなくスムーズに本区間に移行する。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより摩擦熱が過大となることを防ぐことができる。 Further, in the main joining step, the position of the start position SP1 may be appropriately set, but the line segment (movement locus of the rotation tool F) connecting the start position SP1 and the intermediate point S1 is set from the start position SP1 to the intermediate point S1. By gradually curving along the set movement route L1 toward the direction of, the movement speed of the rotation tool F does not decrease at the intermediate point S1 and the section smoothly shifts to this section. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set movement route L1.
 また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域Wのうち、ジャケット本体2側がシアー側となり、封止体3側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。ジャケット本体2側がシアー側となるように設定することで、第一突合せ部J1の周囲における攪拌ピンF2による攪拌作用が高まり、第一突合せ部J1における温度上昇が期待でき、第一突合せ部J1において第一段差側面12bと封止体3の外周側面3cとをより確実に接合することができる。 Further, in the main joining step of the present embodiment, the rotation direction and the traveling direction of the rotation tool F may be appropriately set, but the jacket body 2 side of the plasticized region W formed in the movement locus of the rotation tool F is sheer. The rotation direction and the traveling direction of the rotation tool F were set so as to be on the side and the sealing body 3 side was on the flow side. By setting the jacket body 2 side to be the shear side, the stirring action by the stirring pin F2 around the first butt portion J1 is enhanced, and the temperature rise in the first butt portion J1 can be expected. The first step side surface 12b and the outer peripheral side surface 3c of the sealing body 3 can be more reliably joined.
 なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative speed of the outer circumference of the rotating tool with respect to the jointed portion is the value obtained by adding the magnitude of the moving speed to the magnitude of the tangential velocity on the outer circumference of the rotating tool. .. On the other hand, the flow side (Retreating side) refers to the side where the relative speed of the rotating tool with respect to the jointed portion becomes low due to the rotation of the rotating tool in the direction opposite to the moving direction of the rotating tool.
 また、ジャケット本体2の第一アルミニウム合金は、封止体3の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、液冷ジャケット1の耐久性を高めることができる。また、ジャケット本体2の第一アルミニウム合金をアルミニウム合金鋳造材とし、封止体3の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl-Si-Cu系アルミニウム合金鋳造材とすることにより、ジャケット本体2の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、加工性、熱伝導性を高めることができる。 Further, the first aluminum alloy of the jacket body 2 is a material having a higher hardness than the second aluminum alloy of the sealing body 3. Thereby, the durability of the liquid-cooled jacket 1 can be enhanced. Further, it is preferable that the first aluminum alloy of the jacket body 2 is an aluminum alloy casting material and the second aluminum alloy of the sealing body 3 is an aluminum alloy wrought material. By using an Al—Si—Cu based aluminum alloy casting material such as JIS H5302 ADC12 as the first aluminum alloy, the castability, strength, machinability, etc. of the jacket body 2 can be improved. Further, by using, for example, JIS A1000 series or A6000 series as the second aluminum alloy, processability and thermal conductivity can be improved.
 また、本接合工程においては、本接合工程で第一突合せ部J1の全周を摩擦攪拌接合できるため、液冷ジャケットの気密性及び水密性を高めることができる。また、例えば、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうように離脱工程を行ってもよい。つまり、本接合工程によって形成された塑性化領域Wの始端部分と終端部分の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 Further, in the main joining step, since the entire circumference of the first butt portion J1 can be friction-stir welded in the main joining step, the airtightness and watertightness of the liquid-cooled jacket can be improved. Further, for example, at the end portion of the main joining step, the detaching step may be performed so that the rotation tool F completely passes through the intermediate point S1 and then heads toward the end position EP1. That is, the airtightness and watertightness can be further improved by overlapping each end of the start end portion and the end end portion of the plasticized region W formed by this joining step.
 また、攪拌ピンF2の外周面の傾斜角度αと第一段差側面12bの傾斜角度βとを同一(平行)に設定することにより、第一段差側面12bの高さ方向の全体に亘って均一に攪拌ピンF2を接触させることができる。これにより、バランス良く摩擦攪拌接合を行うことができる。 Further, by setting the inclination angle α of the outer peripheral surface of the stirring pin F2 and the inclination angle β of the first step side surface 12b to be the same (parallel), the inclination angle β of the first step side surface 12b is made uniform over the entire height direction. The stirring pin F2 can be brought into contact with the stirring pin F2. As a result, friction stir welding can be performed in a well-balanced manner.
 また、本接合工程では、回転ツールFの攪拌ピンF2の基端側を露出した状態で摩擦攪拌を行うため、摩擦攪拌装置に作用する負荷を軽減することができる。 Further, in this joining step, since the friction stir is performed with the base end side of the stirring pin F2 of the rotary tool F exposed, the load acting on the friction stir device can be reduced.
 また、本接合工程の本区間では、回転ツールFのショルダ部F1の下端面が封止体3の表面3aに接触しているので、塑性流動材が、ショルダ部F1の下端面に押さえられ封止体3の表面に流出しない。したがって、塑性流動材を、第一突合せ部J1側に流し、隙間に充填することができるとともに、バリの発生を抑制することができる。 Further, in this section of the main joining step, since the lower end surface of the shoulder portion F1 of the rotary tool F is in contact with the surface 3a of the sealing body 3, the plastic fluid material is pressed by the lower end surface of the shoulder portion F1 and sealed. It does not flow out to the surface of the stop body 3. Therefore, the plastic fluid can be flowed to the first butt portion J1 side to fill the gap, and the generation of burrs can be suppressed.
 なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1、中間点S1~S2間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 In this joining step, the rotation speed of the rotation tool F may be constant, but may be variable. In the indentation section of the main joining step, if the rotation speed of the rotation tool F at the start position SP1 is V1 and the rotation speed of the rotation tool F between the intermediate points S1 and S2 is V2, V1> V2 may be satisfied. The rotation speed V2 is a preset constant rotation speed in the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced in the closet section to shift to the main section.
 また、本接合工程の離脱区間において、中間点S1~S2間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転数を上げながら封止体3から回転ツールFを離脱させてもよい。回転ツールFを封止体3に押し入れる際又は封止体3から離脱させる際に、前記のように設定することで、押入工程又は離脱工程時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。押入工程又は離脱工程時に当該回転ツールFの回転速度を可変させてもよいことは、本接合工程でも他実施形態でも同様である。 Further, if the rotation speed of the rotation tool F between the intermediate points S1 and S2 is V2 and the rotation speed of the rotation tool F at the end position EP1 is V3 in the separation section of the main joining process, V3> V2. Good. That is, after shifting to the detachment section, the rotation tool F may be detached from the sealing body 3 while gradually increasing the rotation speed toward the end position EP1. By setting as described above when the rotary tool F is pushed into the sealing body 3 or separated from the sealing body 3, the small pressing force during the pushing step or the separating step can be supplemented by the rotation speed. Therefore, friction stir welding can be preferably performed. The fact that the rotation speed of the rotation tool F may be changed during the push-in step or the release step is the same in this joining step and in other embodiments.
[第二実施形態]
 次に、本発明の第二実施形態に係る液冷ジャケットの製造方法について説明する。第二実施形態では、図10及び図11に示すように、本接合工程における開始位置SP2及び終了位置EP2の位置が第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second Embodiment]
Next, a method for manufacturing a liquid-cooled jacket according to the second embodiment of the present invention will be described. In the second embodiment, as shown in FIGS. 10 and 11, the positions of the start position SP2 and the end position EP2 in the main joining step are different from those of the first embodiment. In the second embodiment, the parts different from the first embodiment will be mainly described.
 第二実施形態に係る液冷ジャケットの製造では、準備工程と、載置工程と、本接合工程と、を行う。準備工程及び載置工程は、第一実施形態と同一である。 In the production of the liquid-cooled jacket according to the second embodiment, the preparation step, the mounting step, and the main joining step are performed. The preparation step and the placement step are the same as those in the first embodiment.
 図10に示すように、本実施形態の本接合工程では、開始位置SP2を設定移動ルートL1上で中間点S1よりも上流側に設定する。また、終了位置EP2を設定移動ルートL1上で中間点S2よりも下流側に設定する。 As shown in FIG. 10, in the main joining process of the present embodiment, the start position SP2 is set on the set movement route L1 on the upstream side of the intermediate point S1. Further, the end position EP2 is set on the set movement route L1 on the downstream side of the intermediate point S2.
 本接合工程では、開始位置SP2から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から中間点S2までの本区間と、中間点S2から終了位置EP2までの離脱区間の三つの区間を連続して摩擦攪拌する。 In this joining process, there are three sections: a push-in section from the start position SP2 to the intermediate point S1, a main section from the intermediate point S1 to the intermediate point S2 on the set movement route L1, and a detachment section from the intermediate point S2 to the end position EP2. Friction stir welding is performed continuously in one section.
 第一本接合工程の押入区間では、図10に示すように、開始位置SP2から中間点S1までの摩擦攪拌を行う。押入区間では、右回転させた攪拌ピンF2を開始位置SP2に挿入し、中間点S1まで移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。 In the closet section of the first main joining process, friction stir welding is performed from the start position SP2 to the intermediate point S1 as shown in FIG. In the closet section, the stirring pin F2 rotated clockwise is inserted into the start position SP2 and moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" by at least reaching the intermediate point S1.
 中間点S1に達したらそのまま本区間の摩擦攪拌接合に移行する。図10に示すように、本区間では、攪拌ピンF2の回転中心軸線(図示せず)と設定移動ルートL1とが重なるように回転ツールFを移動させる。攪拌ピンF2と第一段差側面12bとの接触代、攪拌ピンF2の挿入深さは第一実施形態と同一である。 When the intermediate point S1 is reached, the process shifts to friction stir welding in this section as it is. As shown in FIG. 10, in this section, the rotation tool F is moved so that the rotation center axis (not shown) of the stirring pin F2 and the set movement route L1 overlap. The contact allowance between the stirring pin F2 and the first step side surface 12b and the insertion depth of the stirring pin F2 are the same as those in the first embodiment.
 攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP2に向かうまでの間に攪拌ピンF2を徐々に上方に移動させて、設定移動ルートL1上に設定された終了位置EP2で封止体3から攪拌ピンF2を離脱させる。 When the stirring pin F2 reaches the intermediate point S2, it shifts to the departure section as it is. In the detachment section, the stirring pin F2 is gradually moved upward from the intermediate point S2 toward the ending position EP2, and the stirring pin F2 is moved from the sealing body 3 at the ending position EP2 set on the set movement route L1. To leave.
 以上説明した第二実施形態に係る液冷ジャケットの製造方法によっても第一実施形態と略同等の効果を奏することができる。さらに、第二実施形態に係る本接合工程の押入区間では、回転ツールFを設定移動ルート上で移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。また、第二実施形態に係る本接合工程の離脱区間では、回転ツールFを設定移動ルート上で移動させつつ攪拌ピンF2を徐々に離脱させることにより、設定移動ルートL1上の一点で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。第二実施形態のように本接合工程における開始位置SP2、終了位置EP2は、設定移動ルートL1上に設定してもよい。 The liquid-cooled jacket manufacturing method according to the second embodiment described above can also achieve substantially the same effect as that of the first embodiment. Further, in the push-in section of the main joining step according to the second embodiment, the stirring pin F2 is gradually pushed in until the depth reaches a predetermined depth while moving the rotation tool F on the set movement route, whereby the rotation tool F is moved on the set movement route L1. It is possible to prevent the rotation tool F from stopping at one point and excessive frictional heat. Further, in the detachment section of the main joining step according to the second embodiment, the rotation tool F is moved on the set movement route and the stirring pin F2 is gradually detached, so that the rotation tool F is at one point on the set movement route L1. Can be prevented from stopping and the frictional heat becoming excessive. As in the second embodiment, the start position SP2 and the end position EP2 in the main joining step may be set on the set movement route L1.
[第三実施形態]
 次に、本発明の第三実施形態に係る液冷ジャケットの製造方法について説明する。本実施形態に係る液冷ジャケットの製造方法でも、準備工程と、載置工程と、本接合工程と、を行う。載置工程は第一実施形態と同一である。
[Third Embodiment]
Next, a method for manufacturing the liquid-cooled jacket according to the third embodiment of the present invention will be described. Also in the method for manufacturing a liquid-cooled jacket according to the present embodiment, the preparation step, the mounting step, and the main joining step are performed. The mounting process is the same as that of the first embodiment.
 第三実施形態では、図12に示すように、準備工程において、ジャケット本体2の第一周壁段差部12の上側に、第二周壁段差部15をさらに形成したことが第一実施形態と相違する。第三実施形態では、第一実施形態と相違する部分を中心に説明する。第二周壁段差部15は、第一段差側面12bの上端から開口部14外側に延びる第二段差底面15aと、第二段差底面15aから開口部14に向かって立ち上がる第二段差側面15bと、を有している。第二段差底面15aは、回転ツールFの攪拌ピンF2を所定の深さに挿入した際に、ショルダ部F1底面が接触しない位置に形成されている。第二段差側面15bは、回転ツールFを設定移動ルートL1上で移動させる際に、ショルダ部F1の外周面が接触しない位置に形成されている。準備工程では、前記構成のジャケット本体2を、例えば、ダイキャストで成形する。 The third embodiment is different from the first embodiment in that, as shown in FIG. 12, in the preparation step, the second peripheral wall step portion 15 is further formed on the upper side of the first peripheral wall step portion 12 of the jacket body 2. To do. In the third embodiment, the parts different from the first embodiment will be mainly described. The second peripheral wall step portion 15 includes a second step bottom surface 15a extending from the upper end of the first step side surface 12b to the outside of the opening 14 and a second step side surface 15b rising from the second step bottom surface 15a toward the opening 14. Have. The second step bottom surface 15a is formed at a position where the bottom surface of the shoulder portion F1 does not come into contact when the stirring pin F2 of the rotation tool F is inserted to a predetermined depth. The second step side surface 15b is formed at a position where the outer peripheral surface of the shoulder portion F1 does not come into contact when the rotation tool F is moved on the set movement route L1. In the preparatory step, the jacket body 2 having the above configuration is molded by die casting, for example.
 本接合工程の本区間では、図13に示すように、第一段差側面12bに攪拌ピンF2の外周面がわずかに接触するように設定移動ルートL1を設定している。また、本接合工程の本区間では、回転ツールFのショルダ部F1の底面が封止体3の表面3aに接触するように挿入深さを設定する。ここで、回転ツールFのショルダ部F1は、第二周壁段差部15に内側に位置して回転している。このとき、ショルダ部F1の下端面は、第二段差側面15bよりも内側となる第二段差底面15a側に位置するとともに、第二段差底面15aから所定距離離間し、ショルダ部F1の外周面は、第二段差側面15bの近傍に位置して接触していない。この状態で回転ツールFを設定移動ルートL1に沿って封止体3の廻りに一周させたら離間区間に移行する。離間区間は、第一実施形態と同様であるので、説明を省略する。回転ツールFの移動軌跡には塑性化領域Wが形成される。 In this section of the main joining step, as shown in FIG. 13, the set movement route L1 is set so that the outer peripheral surface of the stirring pin F2 slightly contacts the first step side surface 12b. Further, in this section of the main joining step, the insertion depth is set so that the bottom surface of the shoulder portion F1 of the rotating tool F comes into contact with the surface 3a of the sealing body 3. Here, the shoulder portion F1 of the rotation tool F is located inside the second peripheral wall step portion 15 and rotates. At this time, the lower end surface of the shoulder portion F1 is located on the side of the second step bottom surface 15a, which is inside the second step side surface 15b, and is separated from the second step bottom surface 15a by a predetermined distance. , It is located near the second step side surface 15b and is not in contact with it. In this state, when the rotation tool F is made to go around the sealing body 3 along the set movement route L1, the rotation tool F shifts to the separated section. Since the separated section is the same as that of the first embodiment, the description thereof will be omitted. A plasticized region W is formed in the movement locus of the rotation tool F.
 図14に示すように、塑性化領域Wは、第一突合せ部J1および第二突合せ部J2を超えてジャケット本体2に達するように形成されている。塑性化領域Wは、封止体3側が高く、ジャケット本体2側が低くなっており、塑性化領域Wの表面に傾斜面が形成されている。塑性化領域Wの封止体3側の上端部は、封止体3とショルダ部F1とが接触した部分において封止体3側に突出している。塑性化領域Wの周壁部11側の上端部は、第二周壁段差部15の空間において周壁部11側に突出している。 As shown in FIG. 14, the plasticized region W is formed so as to extend beyond the first butt portion J1 and the second butt portion J2 and reach the jacket body 2. The plasticized region W is high on the sealing body 3 side and low on the jacket body 2 side, and an inclined surface is formed on the surface of the plasticized region W. The upper end portion of the plasticized region W on the sealing body 3 side protrudes toward the sealing body 3 at the portion where the sealing body 3 and the shoulder portion F1 are in contact with each other. The upper end of the plasticized region W on the peripheral wall portion 11 side projects toward the peripheral wall portion 11 in the space of the second peripheral wall step portion 15.
 以上説明した第三実施形態に係る液冷ジャケットの製造方法によっても第一実施形態と略同等の効果を奏することができる。特に、第一実施形態と同様に、回転ツールFのショルダ部F1の下端面が封止体3の表面3aに接触しているので、塑性流動材が、ショルダ部F1の下端面に押さえられ封止体3の表面に流出しない。したがって、塑性流動材を、第一突合せ部J1側に流し、隙間に充填することができるとともに、バリの発生を抑制することができる。 The liquid-cooled jacket manufacturing method according to the third embodiment described above can also achieve substantially the same effect as that of the first embodiment. In particular, as in the first embodiment, since the lower end surface of the shoulder portion F1 of the rotary tool F is in contact with the surface 3a of the sealing body 3, the plastic fluid material is pressed by the lower end surface of the shoulder portion F1 and sealed. It does not flow out to the surface of the stop body 3. Therefore, the plastic fluid can be flowed to the first butt portion J1 side to fill the gap, and the generation of burrs can be suppressed.
 さらに、第三実施形態においては、ショルダ部F1の下端面が、第二周壁段差部15を上側から押さえているので、塑性流動材が、周壁部11の表面に流出しない。したがって、塑性流動材を、第一突合せ部J1側に流し、隙間に充填することができるとともに、バリの発生を抑制することができる。また、ショルダ部F1は、第二周壁段差部15と接触していないので、回転ツールFの回転負荷を増加させることはない。つまり、第二周壁段差部15を設けることで、回転ツールFと周壁部11との接触を避けつつ、攪拌ピンF2を深い位置まで挿入することができる。これにより、接合強度を高めることができる。 Further, in the third embodiment, since the lower end surface of the shoulder portion F1 presses the second peripheral wall step portion 15 from above, the plastic fluid does not flow out to the surface of the peripheral wall portion 11. Therefore, the plastic fluid can be flowed to the first butt portion J1 side to fill the gap, and the generation of burrs can be suppressed. Further, since the shoulder portion F1 is not in contact with the second peripheral wall step portion 15, the rotational load of the rotating tool F is not increased. That is, by providing the second peripheral wall step portion 15, the stirring pin F2 can be inserted to a deep position while avoiding contact between the rotating tool F and the peripheral wall portion 11. Thereby, the joint strength can be increased.
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。前記実施形態では、封止体3の表面3aは、ジャケット本体2の周壁部11の端面11aよりも上方に位置しているが、これに限定されるものではない。封止体3の表面3aとジャケット本体2の周壁部11の端面11aを同じ高さとしてもよい。 Although the embodiments of the present invention have been described above, the design can be appropriately changed within a range not contrary to the gist of the present invention. In the above embodiment, the surface 3a of the sealing body 3 is located above the end surface 11a of the peripheral wall portion 11 of the jacket body 2, but the present invention is not limited to this. The surface 3a of the sealing body 3 and the end surface 11a of the peripheral wall portion 11 of the jacket body 2 may have the same height.
 1   液冷ジャケット
 2   ジャケット本体
 3   封止体
 3a  (封止体の)表面
 11  周壁部
 12  第一周壁段差部
 12a 第一段差底面
 12b 第一段差側面
 14  開口部
 15  第二周壁段差部
 15a 第二段差底面
 15b 第二段差側面
 F   回転ツール
 F1  ショルダ部
 F2  攪拌ピン
 J1  第一突合せ部
 J2  第二突合せ部
 L1  設定移動ルート
 SP1 開始位置
 S1  中間点
 S2  中間点
 EP1 終了位置
 SP2 開始位置
 EP2 終了位置
 W   塑性化領域
1 Liquid-cooled jacket 2 Jacket body 3 Sealing body 3a (of the sealing body) Surface 11 Peripheral wall part 12 First peripheral wall stepped part 12a First step bottom surface 12b First step side surface 14 Opening 15 Second peripheral wall stepped part 15a No. Two step bottom surface 15b Second step side surface F Rotation tool F1 Shoulder part F2 Stirring pin J1 First butt part J2 Second butt part L1 Set movement route SP1 Start position S1 Midpoint S2 Midpoint EP1 End position SP2 Start position EP2 End position W Plasticization region

Claims (16)

  1.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、
     前記攪拌ピンは、先細りのテーパがついており、
     前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、
     前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、回転する前記攪拌ピンを前記設定移動ルートよりもさらに内側に設定した開始位置に挿入した後、前記回転ツールの回転中心軸線を前記設定移動ルートと重複する位置まで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする液冷ジャケットの製造方法。
    A liquid that is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion and a sealing body that seals an opening of the jacket body, and joins the jacket body and the sealing body by friction stir welding. It ’s a method of manufacturing cold jackets.
    The jacket body is made of a first aluminum alloy, the sealant is made of a second aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stir welding includes a shoulder portion and a stirring pin that hangs down from the lower end of the shoulder portion.
    The stirring pin has a tapered taper.
    A first peripheral wall step portion having a first step bottom surface and a first step side surface that rises so as to spread from the first step bottom surface toward the opening is formed on the inner peripheral edge of the peripheral wall portion. At the same time, a preparatory step of forming the thickness of the sealing body so as to be larger than the height dimension of the stepped portion of the first peripheral wall.
    By placing the sealing body on the jacket body, the first stepped side surface of the first peripheral wall stepped portion and the outer peripheral side surface of the sealing body are abutted to form the first butt portion, and the first butt portion is formed. A mounting process in which the bottom surface of the first step of the one-round wall step portion and the back surface of the sealing body are overlapped to form the second butt portion.
    The stirring pin of the rotating tool is inserted into the sealing body, and the outer peripheral surface of the stirring pin is slightly brought into contact with the first step side surface of the first peripheral wall step portion, while being under the shoulder portion. With the end face in contact with the surface of the sealing body, the sealing body is made to go around the sealing body at a predetermined depth along a set movement route set inside the outer peripheral side surface of the sealing body. Including the main joining step of rubbing and stirring the first butt portion.
    In the main joining step, after inserting the rotating stirring pin into the set start position further inside the set movement route, while moving the rotation center axis of the rotation tool to a position overlapping the set movement route. A method for manufacturing a liquid-cooled jacket, which comprises gradually pushing in the stirring pin until the predetermined depth is reached.
  2.  前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、
     前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことを特徴とする請求項1に記載の液冷ジャケットの製造方法。
    In the preparatory step, a second peripheral wall step portion having a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening and a second step side surface rising from the second step bottom surface toward the opening. Further form,
    The liquid cooling according to claim 1, wherein in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. How to make a jacket.
  3.  前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することを特徴とする請求項1又は請求項2に記載の液冷ジャケットの製造方法。 Claim 1 or claim 2 is characterized in that the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion. The method for manufacturing a liquid-cooled jacket described in 1.
  4.  前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項1に記載の液冷ジャケットの製造方法。
    In the main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
    When the stirring pin is inserted in the main joining step, the stirring pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the stirring pin is moved to the set movement route while gradually reducing the rotation speed. The method for manufacturing a liquid-cooled jacket according to claim 1.
  5.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、
     前記攪拌ピンは、先細りのテーパがついており、
     前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、
     前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ前記所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする液冷ジャケットの製造方法。
    A liquid that is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion and a sealing body that seals an opening of the jacket body, and joins the jacket body and the sealing body by friction stir welding. It ’s a method of manufacturing cold jackets.
    The jacket body is made of a first aluminum alloy, the sealant is made of a second aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stir welding includes a shoulder portion and a stirring pin that hangs down from the lower end of the shoulder portion.
    The stirring pin has a tapered taper.
    A first peripheral wall step portion having a first step bottom surface and a first step side surface that rises so as to spread from the first step bottom surface toward the opening is formed on the inner peripheral edge of the peripheral wall portion. At the same time, a preparatory step of forming the thickness of the sealing body so as to be larger than the height dimension of the stepped portion of the first peripheral wall.
    By placing the sealing body on the jacket body, the first stepped side surface of the first peripheral wall stepped portion and the outer peripheral side surface of the sealing body are abutted to form the first butt portion, and the first butt portion is formed. A mounting process in which the bottom surface of the first step of the one-round wall step portion and the back surface of the sealing body are overlapped to form the second butt portion.
    The stirring pin of the rotating tool is inserted into the sealing body, and the outer peripheral surface of the stirring pin is slightly brought into contact with the first step side surface of the first peripheral wall step portion, while being under the shoulder portion. With the end face in contact with the surface of the sealing body, the sealing body is made to go around the sealing body at a predetermined depth along a set movement route set inside the outer peripheral side surface of the sealing body. Including the main joining step of rubbing and stirring the first butt portion.
    A liquid characterized in that the stirring pin is inserted from a start position set on the set movement route in the main joining step, and the stirring pin is gradually pushed in until the predetermined depth is reached while moving in the traveling direction. How to make a cold jacket.
  6.  前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、
     前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことを特徴とする請求項5に記載の液冷ジャケットの製造方法。
    In the preparatory step, a second peripheral wall step portion having a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening and a second step side surface rising from the second step bottom surface toward the opening. Further form,
    The liquid cooling according to claim 5, wherein in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. How to make a jacket.
  7.  前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することを特徴とする請求項5又は請求項6に記載の液冷ジャケットの製造方法。 Claim 5 or claim 6 is characterized in that the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion. The method for manufacturing a liquid-cooled jacket described in 1.
  8.  前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項5に記載の液冷ジャケットの製造方法。
    In the main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
    When the stirring pin is inserted in the main joining step, the stirring pin is inserted in a state of being rotated at a speed higher than the predetermined rotation speed, and the stirring pin is moved to the set movement route while gradually reducing the rotation speed. The method for manufacturing a liquid-cooled jacket according to claim 5, wherein the liquid-cooled jacket is manufactured.
  9.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、
     前記攪拌ピンは、先細りのテーパがついており、
     前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、
     前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルートよりもさらに内側に終了位置を設定し、前記第一突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを前記封止体から徐々に引き抜いて前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする液冷ジャケットの製造方法。
    A liquid that is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion and a sealing body that seals an opening of the jacket body, and joins the jacket body and the sealing body by friction stir welding. It ’s a method of manufacturing cold jackets.
    The jacket body is made of a first aluminum alloy, the sealant is made of a second aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stir welding includes a shoulder portion and a stirring pin that hangs down from the lower end of the shoulder portion.
    The stirring pin has a tapered taper.
    A first peripheral wall step portion having a first step bottom surface and a first step side surface that rises so as to spread from the first step bottom surface toward the opening is formed on the inner peripheral edge of the peripheral wall portion. At the same time, a preparatory step of forming the thickness of the sealing body so as to be larger than the height dimension of the stepped portion of the first peripheral wall.
    By placing the sealing body on the jacket body, the first stepped side surface of the first peripheral wall stepped portion and the outer peripheral side surface of the sealing body are abutted to form the first butt portion, and the first butt portion is formed. A mounting process in which the bottom surface of the first step of the one-round wall step portion and the back surface of the sealing body are overlapped to form the second butt portion.
    The stirring pin of the rotating tool is inserted into the sealing body, and the outer peripheral surface of the stirring pin is slightly brought into contact with the first step side surface of the first peripheral wall step portion, while being under the shoulder portion. With the end face in contact with the surface of the sealing body, the sealing body is made to go around the sealing body at a predetermined depth along a set movement route set inside the outer peripheral side surface of the sealing body. Including the main joining step of rubbing and stirring the first butt portion.
    In the main joining step, the end position is set further inside than the set movement route, and after friction stir welding with respect to the first butt portion, the stirring pin is sealed while moving the rotation tool to the end position. A method for manufacturing a liquid-cooled jacket, which comprises gradually pulling out from a stationary body to separate the rotating tool from the sealing body at the end position.
  10.  前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、
     前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことを特徴とする請求項9に記載の液冷ジャケットの製造方法。
    In the preparatory step, a second peripheral wall step portion having a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening and a second step side surface rising from the second step bottom surface toward the opening. Further form,
    The liquid cooling according to claim 9, wherein in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. How to make a jacket.
  11.  前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することを特徴とする請求項9又は請求項10に記載の液冷ジャケットの製造方法。 9. or 10. The predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion. The method for manufacturing a liquid-cooled jacket described in 1.
  12.  前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項9に記載の液冷ジャケットの製造方法。
    In the main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
    The method for manufacturing a liquid-cooled jacket according to claim 9, wherein when the stirring pin is detached in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed. ..
  13.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールは、ショルダ部と、前記ショルダ部の下端から垂下する攪拌ピンとを備え、
     前記攪拌ピンは、先細りのテーパがついており、
     前記周壁部の内周縁に、第一段差底面と、当該第一段差底面から前記開口部に向かって広がるように傾斜して立ち上がる第一段差側面と、を有する第一周壁段差部を形成するとともに、前記封止体の板厚を、前記第一周壁段差部の高さ寸法よりも大きくなるように形成する準備工程と、
     前記ジャケット本体に前記封止体を載置することにより前記第一周壁段差部の前記第一段差側面と前記封止体の外周側面とを突き合わせて第一突合せ部を形成するとともに、前記第一周壁段差部の第一段差底面と前記封止体の裏面とを重ね合わせて第二突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンを前記封止体に挿入し、前記攪拌ピンの外周面を前記第一周壁段差部の前記第一段差側面にわずかに接触させつつ、前記ショルダ部の下端面を前記封止体の表面に接触させた状態で、前記封止体の外周側面よりも内側に設定された設定移動ルートに沿って所定の深さで前記封止体の廻りに一周させて前記第一突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記第一突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを前記封止体から徐々に引き抜いて前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする液冷ジャケットの製造方法。
    A liquid that is composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion and a sealing body that seals an opening of the jacket body, and joins the jacket body and the sealing body by friction stir welding. It ’s a method of manufacturing cold jackets.
    The jacket body is made of a first aluminum alloy, the sealant is made of a second aluminum alloy, and the first aluminum alloy is a grade having a higher hardness than the second aluminum alloy.
    The rotary tool used for friction stir welding includes a shoulder portion and a stirring pin that hangs down from the lower end of the shoulder portion.
    The stirring pin has a tapered taper.
    A first peripheral wall step portion having a first step bottom surface and a first step side surface that rises so as to spread from the first step bottom surface toward the opening is formed on the inner peripheral edge of the peripheral wall portion. At the same time, a preparatory step of forming the thickness of the sealing body so as to be larger than the height dimension of the stepped portion of the first peripheral wall.
    By placing the sealing body on the jacket body, the first stepped side surface of the first peripheral wall stepped portion and the outer peripheral side surface of the sealing body are abutted to form the first butt portion, and the first butt portion is formed. A mounting process in which the bottom surface of the first step of the one-round wall step portion and the back surface of the sealing body are overlapped to form the second butt portion.
    The stirring pin of the rotating tool is inserted into the sealing body, and the outer peripheral surface of the stirring pin is slightly brought into contact with the first step side surface of the first peripheral wall step portion, while being under the shoulder portion. With the end face in contact with the surface of the sealing body, the sealing body is made to go around the sealing body at a predetermined depth along a set movement route set inside the outer peripheral side surface of the sealing body. Including the main joining step of rubbing and stirring the first butt portion.
    In the main joining step, an end position is set on the set movement route, and after friction stir welding with respect to the first butt portion, the stirring pin is moved from the sealing body while moving the rotation tool to the end position. A method for manufacturing a liquid-cooled jacket, which comprises gradually pulling out the rotary tool from the sealing body at the end position.
  14.  前記準備工程では、前記第一段差側面の上端から開口部外側に延びる第二段差底面と、前記第二段差底面から前記開口部に向かって立ち上がる第二段差側面と、を有する第二周壁段差部をさらに形成し、
     前記本接合工程では、前記ショルダ部の下端面を前記第二段差側面よりも内側となる前記第二段差底面側に位置させて摩擦攪拌を行うことを特徴とする請求項13に記載の液冷ジャケットの製造方法。
    In the preparatory step, a second peripheral wall step portion having a second step bottom surface extending from the upper end of the first step side surface to the outside of the opening and a second step side surface rising from the second step bottom surface toward the opening. Further form,
    The liquid cooling according to claim 13, wherein in the main joining step, the lower end surface of the shoulder portion is positioned on the bottom surface side of the second step, which is inside the side surface of the second step, and friction stirring is performed. How to make a jacket.
  15.  前記本接合工程の前記所定の深さは、前記攪拌ピンが前記第一周壁段差部の前記第一段差底面にわずかに接触する位置に設定することを特徴とする請求項13又は請求項14に記載の液冷ジャケットの製造方法。 13. Claim 13 or claim 14, wherein the predetermined depth of the main joining step is set at a position where the stirring pin slightly contacts the bottom surface of the first step of the first peripheral wall step portion. The method for manufacturing a liquid-cooled jacket described in 1.
  16.  前記本接合工程では、所定の回転速度で前記回転ツールを回転させて摩擦攪拌を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項13に記載の液冷ジャケットの製造方法。
    In the main joining step, the rotary tool is rotated at a predetermined rotation speed to perform friction stir welding.
    The method for manufacturing a liquid-cooled jacket according to claim 13, wherein when the stirring pin is detached in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed. ..
PCT/JP2020/006342 2019-12-16 2020-02-18 Method for manufacturing liquid cooling jacket WO2021124594A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021565322A JP7272465B2 (en) 2019-12-16 2020-02-18 Liquid cooling jacket manufacturing method
CN202080085935.8A CN114786862A (en) 2019-12-16 2020-02-18 Method for manufacturing liquid cooling jacket

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-226471 2019-12-16
JP2019-226472 2019-12-16
JP2019226472 2019-12-16
JP2019226471 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021124594A1 true WO2021124594A1 (en) 2021-06-24

Family

ID=76478732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006342 WO2021124594A1 (en) 2019-12-16 2020-02-18 Method for manufacturing liquid cooling jacket

Country Status (3)

Country Link
JP (1) JP7272465B2 (en)
CN (1) CN114786862A (en)
WO (1) WO2021124594A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method
WO2016072211A1 (en) * 2014-11-05 2016-05-12 日本軽金属株式会社 Method of manufacturing liquid-cooled jacket and liquid-cooled jacket
WO2019193779A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193779A (en) * 2009-02-25 2010-09-09 Kobe Univ Retro factor having variant integrase
JP5418023B2 (en) * 2009-07-03 2014-02-19 日本軽金属株式会社 Lid joining method
US9095927B2 (en) * 2011-08-19 2015-08-04 Nippon Light Metal Company, Ltd. Friction stir welding method
CN105899321B (en) * 2014-01-14 2018-10-02 日本轻金属株式会社 The manufacturing method of liquid-cooled jacket
US20180207745A1 (en) * 2015-07-23 2018-07-26 Nippon Light Metal Company, Ltd. Joining method and method for manufacturing heat sink
CN108472762B (en) * 2016-04-11 2020-07-14 日本轻金属株式会社 Joining method, method for manufacturing hollow container, and method for manufacturing liquid-cooled jacket
JP6766956B2 (en) * 2017-04-18 2020-10-14 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
WO2018207386A1 (en) * 2017-05-11 2018-11-15 日本軽金属株式会社 Joining method
JP6885262B2 (en) * 2017-08-22 2021-06-09 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
JP2019038009A (en) * 2017-08-24 2019-03-14 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method
WO2016072211A1 (en) * 2014-11-05 2016-05-12 日本軽金属株式会社 Method of manufacturing liquid-cooled jacket and liquid-cooled jacket
WO2019193779A1 (en) * 2018-04-02 2019-10-10 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Also Published As

Publication number Publication date
CN114786862A (en) 2022-07-22
JPWO2021124594A1 (en) 2021-06-24
JP7272465B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
JP6885263B2 (en) How to manufacture a liquid-cooled jacket
JP6766956B2 (en) How to manufacture a liquid-cooled jacket
WO2020017094A1 (en) Method for manufacturing liquid-cooled jacket
JP6885262B2 (en) How to manufacture a liquid-cooled jacket
JP7003862B2 (en) How to manufacture a liquid-cooled jacket
JP7003861B2 (en) How to manufacture a liquid-cooled jacket
JP6828675B2 (en) How to manufacture a liquid-cooled jacket
JP7020562B2 (en) How to manufacture a liquid-cooled jacket
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
WO2021124594A1 (en) Method for manufacturing liquid cooling jacket
JP2020131263A (en) Liquid-cooled jacket manufacturing method
JP2020175395A (en) Manufacturing method for liquid-cooled jacket
WO2020261597A1 (en) Method for manufacturing heat exchanger
JP2021112757A (en) Manufacturing method for liquid-cooled jacket
WO2020213197A1 (en) Method for manufacturing liquid-cooled jacket
WO2020170488A1 (en) Method for manufacturing liquid-cooled jacket
JP2020131262A (en) Liquid-cooled jacket manufacturing method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
WO2020213185A1 (en) Method for manufacturing liquid cooling jacket
JP2021065914A (en) Liquid-cooled jacket manufacturing method
JP2021074736A (en) Liquid-cooled jacket manufacturing method
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
WO2021145000A1 (en) Method for manufacturing liquid cooling jacket
JP2021065915A (en) Liquid-cooled jacket manufacturing method
JP2021112755A (en) Manufacturing method of liquid-cooled jacket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902564

Country of ref document: EP

Kind code of ref document: A1