WO2020170488A1 - Method for manufacturing liquid-cooled jacket - Google Patents

Method for manufacturing liquid-cooled jacket Download PDF

Info

Publication number
WO2020170488A1
WO2020170488A1 PCT/JP2019/036351 JP2019036351W WO2020170488A1 WO 2020170488 A1 WO2020170488 A1 WO 2020170488A1 JP 2019036351 W JP2019036351 W JP 2019036351W WO 2020170488 A1 WO2020170488 A1 WO 2020170488A1
Authority
WO
WIPO (PCT)
Prior art keywords
jacket
sealing body
stirring pin
stirring
main joining
Prior art date
Application number
PCT/JP2019/036351
Other languages
French (fr)
Japanese (ja)
Inventor
堀 久司
伸城 瀬尾
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019030894A external-priority patent/JP2020131263A/en
Priority claimed from JP2019030893A external-priority patent/JP2020131262A/en
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2020170488A1 publication Critical patent/WO2020170488A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Definitions

  • the present invention relates to a method for manufacturing a liquid cooling jacket.
  • Patent Document 1 discloses a method for manufacturing a liquid cooling jacket.
  • FIG. 20 is a sectional view showing a conventional method for manufacturing a liquid cooling jacket.
  • a butt portion J10 formed by abutting the step side surface 101c provided on the step portion of the aluminum alloy jacket body 101 and the side surface 102c of the aluminum alloy sealing body 102. Friction stir welding is performed.
  • only the stirring pin F2 of the rotary tool F is inserted into the abutting portion J10 to perform friction stir welding.
  • the rotation center axis Z of the rotary tool F is overlapped with the abutting portion J10 and relatively moved.
  • the jacket body 101 is likely to have a complicated shape, for example, it is formed of a cast material of 4000 series aluminum alloy, and a relatively simple shape such as the sealing body 102 is a wrought material of 1000 series aluminum alloy. There is a case where it is formed by. In this way, members having different aluminum alloy grades may be joined together to manufacture a liquid cooling jacket.
  • the hardness of the jacket body 101 is generally higher than that of the sealing body 102, when friction stir welding is performed as shown in FIG.
  • the material resistance received from the jacket body 101 side is larger than the material resistance received from the side. Therefore, it becomes difficult to stir different materials by the stirrer pin F2 of the rotary tool F in a well-balanced manner, and there is a problem that a cavity defect occurs in the plasticized region after joining and the joining strength decreases.
  • the present invention comprises a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body.
  • a method of manufacturing a liquid cooling jacket for joining the sealing body with friction stirring wherein the jacket body is formed of a first aluminum alloy, and the sealing body is formed of a second aluminum alloy,
  • the first aluminum alloy is a material having a hardness higher than that of the second aluminum alloy, and the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper, and the jacket body is sealed with the sealing material.
  • the stirring pin With the outer peripheral surface of the stirring pin slightly contacting the end surface of the peripheral wall portion, a predetermined depth along the set movement route set on the sealing body side with respect to the abutting portion.
  • a main joining step in which the abutting portion is frictionally stirred around the side surface of the sealing body by a single round, and in the main joining step, only the rotating stirring pin is further sealed than the set movement route. After the insertion at the start position set on the surface side of the stopper, the stirring pin is gradually pushed in until the predetermined depth is reached while moving the rotary tool to the set movement route.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method of manufacturing a liquid cooling jacket, which is joined by friction stirring wherein the jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • frictional heat between the sealing body and the stirring pin causes the second aluminum alloy mainly on the sealing body side of the butting portion to be stirred and plasticized, and the peripheral wall portion and the sealing body are joined at the butting portion. can do.
  • the outer peripheral surface of the stirring pin is only slightly contacted with the peripheral wall portion of the jacket body, it is possible to minimize mixing of the first aluminum alloy from the jacket body into the sealing body.
  • the second aluminum alloy on the sealing body side is mainly friction-stirred in the butted portion, so that the reduction in bonding strength can be suppressed.
  • the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. Therefore, it is preferable to perform frictional stirring on the set moving route.
  • the stirring pin and the peripheral wall can be brought into contact with each other in a well-balanced manner.
  • the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to insert the stirring pin in a state of being rotated at a high speed, and move the stirring pin to the set movement route while gradually decreasing the rotation speed.
  • the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable that the stirring pin is inserted at a high speed in a rotated state, and the rotating tool is pushed in while gradually lowering the rotating speed.
  • friction stirring can be performed more preferably.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method for manufacturing a liquid cooling jacket that is joined by friction stirring wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method for manufacturing a liquid cooling jacket that is joined by friction stirring wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • frictional heat between the jacket body and the stirring pin causes the second aluminum alloy mainly on the jacket body side of the butted portion to be agitated and plasticized, and the peripheral wall portion and the sealing body are joined at the butted portion. be able to.
  • the outer peripheral surface of the stirring pin is only slightly contacted with the sealing body, the mixing of the first aluminum alloy from the sealing body into the jacket body can be minimized.
  • the second aluminum alloy on the jacket body side is mainly friction-stirred in the abutting portion, so that the reduction in joint strength can be suppressed.
  • the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. It is preferable to perform frictional stirring on the set moving route in this state.
  • the stirring pin and the sealed body can be brought into contact with each other in a well-balanced manner.
  • the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable that the stirring pin is inserted while being rotated at a high speed, and is moved to the set movement route while gradually decreasing the rotation speed.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method for manufacturing a liquid cooling jacket that is joined by friction stirring wherein the jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method of manufacturing a liquid cooling jacket, which is joined by friction stirring wherein the jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • frictional heat between the sealing body and the stirring pin causes the second aluminum alloy mainly on the sealing body side of the butting portion to be stirred and plasticized, and the peripheral wall portion and the sealing body are joined at the butting portion. can do.
  • the outer peripheral surface of the stirring pin is only slightly contacted with the peripheral wall portion of the jacket body, it is possible to minimize mixing of the first aluminum alloy from the jacket body into the sealing body.
  • the second aluminum alloy on the sealing body side is mainly friction-stirred in the butted portion, so that the reduction in bonding strength can be suppressed.
  • the stirring pin is gradually removed while moving the rotary tool, it is possible to prevent the frictional heat from becoming excessive locally. As a result, it is possible to prevent the first aluminum alloy of the jacket body from being mixed into the sealing body side at the friction stir end position.
  • the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. Therefore, it is preferable to perform frictional stirring on the set moving route.
  • the stirring pin and the peripheral wall can be brought into contact with each other in a well-balanced manner.
  • the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion, and when the stirring pin is released in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to move to the end position while gradually increasing the rotation speed.
  • friction stirring can be performed more preferably.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method for manufacturing a liquid cooling jacket that is joined by friction stirring wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided.
  • a method for manufacturing a liquid cooling jacket that is joined by friction stirring wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body.
  • frictional heat between the jacket body and the stirring pin causes the second aluminum alloy mainly on the jacket body side of the butted portion to be agitated and plasticized, and the peripheral wall portion and the sealing body are joined at the butted portion. be able to.
  • the outer peripheral surface of the stirring pin is only slightly contacted with the sealing body, the mixing of the first aluminum alloy from the sealing body into the jacket body can be minimized.
  • the second aluminum alloy on the jacket body side is mainly friction-stirred in the abutting portion, so that the reduction in joint strength can be suppressed.
  • the stirring pin is gradually removed while moving the rotary tool, it is possible to prevent the frictional heat from becoming excessive locally. As a result, it is possible to prevent the first aluminum alloy of the sealing body from being mixed into the jacket body side at the end position of the friction stirring.
  • the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. It is preferable to perform frictional stirring on the set moving route in this state.
  • the stirring pin and the sealed body can be brought into contact with each other in a well-balanced manner.
  • the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is separated in the main joining step, the speed is higher than the predetermined rotation speed. It is preferable to move to the end position while gradually increasing the rotation speed.
  • friction stirring can be performed more preferably.
  • FIG. 1 It is an exploded perspective view showing a liquid cooling jacket concerning a first embodiment of the present invention. It is sectional drawing which shows the mounting process of the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment. It is a perspective view showing a set movement route concerning a first embodiment. It is a perspective view showing the main joining process of the manufacturing method of the liquid cooling jacket concerning a first embodiment. It is sectional drawing which looked at the starting position in the main joining process which concerns on 1st embodiment from the side. It is sectional drawing which looked at the pushing section in the main joining process which concerns on 1st embodiment from the side. It is the sectional view which looked at the midpoint S1 vicinity in the main joining process concerning a first embodiment from the back in the direction of movement.
  • FIG. 16 is a perspective view showing a state after the completion of the main joining step in the method for manufacturing a liquid cooling jacket according to the fourth embodiment. It is sectional drawing which shows the manufacturing method of the conventional liquid cooling jacket.
  • the liquid cooling jacket 1 is composed of a jacket body 2 and a sealing body 3.
  • the liquid cooling jacket 1 is a device that circulates a fluid inside to cool a heating element that is arranged.
  • the jacket body 2 and the sealing body 3 are integrated by friction stir welding.
  • the “front surface” in the following description means the surface opposite to the “rear surface”.
  • the jacket body 2 is mainly composed of a bottom portion 10 and a peripheral wall portion 11.
  • the jacket body 2 is formed mainly including the first aluminum alloy.
  • the first aluminum alloy for example, an aluminum alloy casting material such as JIS H5302 ADC12 (Al-Si-Cu system) is used.
  • the bottom part 10 is a rectangular plate-shaped member.
  • the peripheral wall portion 11 is a wall portion that stands up in a rectangular frame shape from the peripheral portion of the bottom portion 10. The corners of the peripheral wall portion 11 may be right angles, but in this embodiment, round chamfering is applied.
  • a concave portion 13 is formed by the bottom portion 10 and the peripheral wall portion 11.
  • the jacket body 2 of the present embodiment is integrally formed, for example, the peripheral wall portion 11 may be divided and joined by a seal member to be integrated.
  • the sealing body 3 is a plate-shaped member that seals the opening of the jacket body 2.
  • the corners of the sealing body 3 may be right angles, but in this embodiment, round chamfering is performed.
  • the sealing body 3 is not particularly limited as long as it is a metal capable of friction stirring, but in the present embodiment, the sealing body 3 is formed mainly containing a second aluminum alloy.
  • the second aluminum alloy is a material having a hardness lower than that of the first aluminum alloy.
  • the second aluminum alloy is formed of an wrought aluminum alloy such as JIS A1050, A1100, A6063, for example.
  • the preparation step is a step of preparing the jacket body 2 and the sealing body 3.
  • the jacket body 2 and the sealing body 3 are not particularly limited in terms of manufacturing method, but the jacket body 2 is formed by die casting, for example.
  • the sealing body 3 is formed by, for example, extrusion molding.
  • the placing step is a step of placing the sealing body 3 on the jacket body 2 as shown in FIG.
  • the end surface 11a of the peripheral wall portion 11 and the back surface 3b of the sealing body 3 are butted against each other to form the butted portion J1.
  • the butt portion J1 is formed in a rectangular shape in plan view along the periphery of the sealing body 3.
  • the side surface 11c of the peripheral wall portion 11 and the side surface 3c of the sealing body 3 are flush with each other.
  • the jacket body 2 and the sealing body 3 may be temporarily joined by welding, friction stirring, or the like.
  • the main joining step is a step of friction stir welding the butt portion J1 using the rotary tool F as shown in FIGS. 3 and 4.
  • the "set movement route L1" (dashed line) is set on the surface 3a side of the sealing body 3 with respect to the abutting portion J1.
  • the set movement route L1 is a movement route of the rotary tool F necessary for joining the abutting portion J1 in the main joining process described later.
  • the set movement route L1 will be described in detail later.
  • the rotary tool F is composed of a connecting portion F1 and a stirring pin F2.
  • the rotary tool F is made of, for example, tool steel.
  • the connecting portion F1 is a portion connected to a rotary shaft of a friction stirrer (not shown).
  • the connecting portion F1 has a cylindrical shape and has a screw hole (not shown) for fastening a bolt.
  • the stirring pin F2 hangs from the connecting portion F1 and is coaxial with the connecting portion F1.
  • the stirring pin F2 is tapered as it is separated from the connecting portion F1.
  • the tip of the stirring pin F2 is provided with a flat surface F3 (see FIG. 5).
  • a spiral groove is engraved on the outer peripheral surface of the stirring pin F2.
  • the spiral groove is formed in the clockwise direction from the base end toward the tip.
  • the spiral groove is formed clockwise when viewed from above when tracing the spiral groove from the base end toward the tip.
  • the spiral groove When rotating the rotary tool F to the right, it is preferable to form the spiral groove counterclockwise from the base end toward the tip.
  • the spiral groove in this case is formed counterclockwise when viewed from above when tracing the spiral groove from the base end to the tip.
  • Friction stir welding is continuously performed in the three separation sections from the end position EP1 to the end position EP1 (see FIG. 8).
  • the intermediate points S1 and S2 are set on the set movement route L1.
  • the start position SP1 is set on the side surface 3c of the sealing body 3 closer to the front surface 3a of the sealing body 3 than the set movement route L1.
  • the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 form an obtuse angle.
  • the rotation center axis Z of the rotary tool F is gradually inclined toward the sealing body 3 side when viewed from the rear in the traveling direction (see FIG. 7), and the intermediate point
  • the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to be parallel to each other.
  • the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to slightly contact with each other. Then, while maintaining the inclination angle of the rotary tool F, the friction stir welding of this section is directly performed.
  • the contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 is set, for example, in the range of 0 ⁇ N ⁇ 1.0 mm, preferably in the range of 0 ⁇ N ⁇ 0.85 mm. And more preferably 0 ⁇ N ⁇ 0.65 mm.
  • the set movement route L1 shows a locus through which the center F4 of the flat surface F3 passes. That is, the set movement route L1 is set such that the end surface 11a of the peripheral wall portion 11 and the outer peripheral surface of the stirring pin F2 are in parallel with each other in the circumferential direction of the abutting portion J1 while slightly contacting each other.
  • the rotation tool F is moved so that the center F4 of the flat surface F3 overlaps with the set movement route L1 when viewed from above (when viewed from the side surface 11c side).
  • the “predetermined depth” of the stirring pin F2 may be set appropriately, and is set, for example, in a range in which the plastic flow material does not flow into the recess 13.
  • the rotating tool F is maintained in the inclined state as shown in FIG. 7, and is rotated once along the set movement route L1.
  • the stirring tool F2 reaches the intermediate point S2 by rotating the rotating tool F once, the process directly shifts to the disengagement section.
  • the stirring pin F2 is gradually moved upward from the midpoint S2 to the end position EP1, and the stirring pin F2 is disengaged from the sealing body 3 at the end position EP1. Let That is, without rotating the rotary tool F at one place, the rotary tool F is gradually pulled out while being moved to the end position EP1.
  • the end position EP1 is set to a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle.
  • a plasticized region W1 is formed on the movement trajectory of the rotary tool F.
  • frictional heat between the sealing body 3 and the stirring pin F2 stirs the second aluminum alloy mainly on the sealing body 3 side of the abutting portion J1 to cause plasticity.
  • the back surface 3b of the sealing body 3 and the end surface 11a of the peripheral wall portion 11 can be joined at the abutting portion J1.
  • the outer peripheral surface of the stirring pin F2 is slightly contacted with the end surface 11a of the peripheral wall portion 11, the mixing of the first aluminum alloy from the jacket body 2 into the sealing body 3 can be minimized.
  • the second aluminum alloy on the side of the sealing body 3 is mainly friction-stirred in the abutting portion J1, so that the reduction in the bonding strength can be suppressed. That is, in the main joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis Z of the stirring pin F2 can be minimized.
  • the plastic flow material is friction-stirred in a well-balanced manner, so that a decrease in joint strength can be suppressed.
  • the stirring tool F2 is gradually pushed to a predetermined depth while moving the rotary tool F from the start position SP1 to a position overlapping with the set movement route L1, thereby setting the movement route. It is possible to prevent the frictional heat from becoming excessive by stopping the rotary tool F on L1.
  • the stirring tool F2 is gradually raised from a predetermined depth to be disengaged from the set movement route L1 while moving the rotary tool F from the set movement route L1 to the end position EP1. It is possible to prevent the frictional heat from becoming excessive by stopping the rotary tool F above. As a result, it is possible to prevent excessive frictional heat on the set movement route L1 and excessive mixing of the first aluminum alloy into the sealing body 3 from the jacket body 2 to cause a defective joint.
  • the positions of the start position SP1 and the end position EP1 may be set appropriately, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are By setting an obtuse angle, the moving speed of the rotary tool F at the intermediate points S1 and S2 can be smoothly shifted to the main section or the separation section without decreasing. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set moving route L1.
  • the rotary tool F may be moved from the start position SP1 to the set movement route L1 so that the trajectory of the rotary tool F draws an arc when viewed from above.
  • the rotary tool F may be moved from the set movement route L1 to the end position EP1 so that the trajectory of the rotary tool F draws an arc when viewed from above.
  • the rotation direction and the traveling direction of the rotary tool F may be set as appropriate, but in the plasticizing region W1 formed on the movement trajectory of the rotary tool F, the jacket body 2 side ( The rotating direction and the advancing direction of the rotary tool F were set so that the butt portion J1 side) became the shear side and the sealing body 3 side became the flow side.
  • the jacket body 2 side By setting the jacket body 2 side to be the sheer side, the stirring action by the stirring pin F2 around the abutting portion J1 is enhanced, and the temperature rise at the abutting portion J1 can be expected, and the sealing body 3 and the peripheral wall at the abutting portion J1 can be expected.
  • the part 11 can be joined more reliably.
  • the shear side means the side where the relative speed of the outer circumference of the rotary tool to the welded part is the value of the tangential speed on the outer circumference of the rotary tool plus the magnitude of the moving speed. ..
  • the flow side refers to the side where the relative speed of the rotary tool with respect to the welded portion becomes low due to the rotary tool rotating in the direction opposite to the moving direction of the rotary tool.
  • the first aluminum alloy of the jacket body 2 is a material having a higher hardness than the second aluminum alloy of the sealing body 3. Thereby, the durability of the liquid cooling jacket 1 can be improved. Further, it is preferable that the first aluminum alloy of the jacket body 2 is an aluminum alloy cast material and the second aluminum alloy of the sealing body 3 is an aluminum alloy wrought material. The castability, strength, machinability, etc. of the jacket body 2 can be enhanced by using an Al-Si-Cu based aluminum alloy cast material such as JIS H5302 ADC12 as the first aluminum alloy. Further, by making the second aluminum alloy, for example, JIS A1000 series or A6000 series, workability and thermal conductivity can be improved.
  • the detaching step is performed so that the rotary tool F completely passes through the intermediate point S1 and then moves toward the end position EP1. That is, the airtightness and the watertightness can be further improved by overlapping the respective ends of the plasticized region W1 formed by the main joining process.
  • the rotation speed of the rotary tool F may be constant, but may be variable.
  • V1>V2 may be satisfied.
  • the rotation speed V2 is a constant rotation speed set in advance on the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced within the push-in section to shift to the main section.
  • V3 may be V2>V2.
  • the rotary tool F may be disengaged from the sealing body 3 while gradually increasing the rotation speed toward the end position EP1.
  • a preparation process, a mounting process, and a main joining process are performed.
  • the preparation process and the placement process are the same as in the first embodiment.
  • the start position SP1 is set on the set movement route L1.
  • the push-in section from the start position SP1 to the intermediate point S1 the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 around the circumference, and the intermediate point S2 to the end position EP1 (FIG. 13). Friction stir continuously in the three sections of the separation section up to the reference).
  • the rotation center axis Z of the rotary tool F is gradually inclined toward the sealing body 3 side when viewed from the rear in the traveling direction (see FIG. 12), and the intermediate point
  • the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to be parallel to each other.
  • the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to slightly contact with each other. Then, while maintaining the inclination angle of the rotary tool F, the friction stir welding of this section is directly performed.
  • the contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 and the setting of the set movement route L1 are the same as those in the first embodiment.
  • the stirring pin F2 is gradually moved upward from the midpoint S2 to the end position EP1 and is sealed at the end position EP1 set on the set movement route L1.
  • the stirring pin F2 is removed from the stopper 3. Further, the inclination of the rotation center axis Z of the rotation tool F is gradually returned to the original position so that the rotation center axis Z and the side surface 3c of the sealing body 3 are perpendicular to each other at the end position EP1.
  • the effect similar to that of the first embodiment can be achieved by the method of manufacturing the liquid cooling jacket according to the second embodiment described above.
  • the start position SP1 and the end position EP1 in the main joining process may be set on the set movement route L1 as in the second embodiment.
  • the third embodiment mainly differs from the first embodiment in that the jacket body 2 is formed of a second aluminum alloy and the sealing body 3 is formed of a first aluminum alloy having a hardness higher than that of the second aluminum alloy. .. In this embodiment, points different from the first embodiment will be mainly described.
  • a preparation step, a mounting step, and a main joining step are performed.
  • the preparation process and the placement process are the same as in the first embodiment.
  • the rotating tool F rotated clockwise is inserted into the start position SP2, and friction stir welding is performed on the abutting portion J1.
  • the push-in section from the start position SP2 to the intermediate point S1 and the booklet from the intermediate point S1 on the set movement route L1 to the intermediate point S2 by making a round around the peripheral wall portion 11.
  • the section and three sections of the leaving section from the intermediate point S2 to the end position EP2 are continuously friction-stirred.
  • the set movement route L1 is set on the bottom portion 10 side of the abutting portion J1.
  • the start position SP2 is set on the side surface 11c of the peripheral wall portion 11 further on the bottom portion 10 side than the set movement route L1.
  • the intermediate points S1 and S2 are set on the set movement route L1.
  • the angle formed by the line segment connecting the start position SP2 and the intermediate point S1 and the set movement route L1 is set to be an obtuse angle.
  • the rotation center axis Z of the rotary tool F is gradually inclined to the bottom portion 10 side of the jacket body 2 when viewed from the rear in the traveling direction (see FIG. 16),
  • the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to be parallel to each other.
  • the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to slightly contact with each other. Then, with the inclination angle maintained, the friction stir welding in this section is directly performed.
  • the contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 and the setting movement route L1 are the same as those in the first embodiment.
  • the rotation tool F when viewed from above (when viewed from the side surface 11c side), the rotation tool F is placed so that the center F4 of the flat surface F3 overlaps the set movement route L1. To move.
  • the rotary tool F is rotated right so that the sealing body 3 is located on the left side in the traveling direction. That is, in the main joining process, the rotation direction and the traveling direction of the rotary tool F are set such that the butt portion J1 side is the shear side.
  • the rotary tool F is made to go around the peripheral wall portion 11 once, and when the stirring pin F2 passes the intermediate point S1 and reaches the intermediate point S2, it shifts to the leaving section as it is.
  • the stirring pin F2 is gradually moved upward from the midpoint S2 to the end position EP2, and the stirring pin F2 is disengaged from the sealing body 3 at the end position EP2.
  • the inclination of the rotation center axis Z of the rotation tool F is gradually returned to the original position so that the rotation center axis Z and the side surface 11c of the peripheral wall portion 11 are perpendicular to each other at the end position EP2.
  • the end position EP2 is set to a position where the angle formed by the line segment connecting the end position EP2 and the intermediate point S2 and the set movement route L1 is an obtuse angle.
  • a plasticized region W1 is formed on the movement trajectory of the rotary tool F.
  • the jacket body 2 may be formed of the second aluminum alloy and the sealing body 3 may be formed of the first aluminum alloy having a hardness higher than that of the second aluminum alloy.
  • the fourth embodiment is different from the third embodiment in that, as shown in FIGS. 18 and 19, both the start position SP2 and the end position EP2 in the main joining process are set on the set movement route L1.
  • the fourth embodiment will be described focusing on the parts different from the third embodiment.
  • the jacket body 2 is made of a second aluminum alloy and the sealing body 3 is made of a first aluminum alloy having a hardness higher than that of the second aluminum alloy.
  • the set movement route L1 is set closer to the bottom portion 10 side than the abutting portion J1 as in the third embodiment.
  • the start position SP2 is set on the set movement route L1.
  • the push-in section from the start position SP2 to the intermediate point S1 the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 around one round, and the intermediate point S2 to the end position EP2 (FIG. 19). Friction stir welding is continuously performed for the three sections of the separation section up to the reference).
  • the rotation center axis Z of the rotary tool F is gradually inclined toward the peripheral wall portion 11 when viewed from the rear in the traveling direction, and when the intermediate point S1 is reached.
  • the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to be parallel to each other. Further, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to slightly contact with each other.
  • the contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 and the setting of the set movement route L1 are the same as those in the third embodiment. Then, with the inclination angle maintained, the friction stir welding of this section is directly performed.
  • the effect similar to that of the third embodiment can be obtained by the method of manufacturing the liquid cooling jacket according to the fourth embodiment described above.
  • the start position SP2 and the end position EP2 in the main joining step may be set on the set movement route L1 as in the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention is characterized in including a main joining step in which, in a state such that only an agitation pin (F2) of a rotating tool (F) that rotates is inserted into a side surface (3c) of a sealing body (3) and the outer peripheral surface of the agitation pin (F2) is slightly brought into contact with the end surface of a peripheral wall part (11), one lap around the side surface of the sealing body (3) is completed at a prescribed depth along a set movement route (L1) that is set closer to the sealing body (3) than to an abutting part (J1) to perform friction stir welding on the abutting part (J1), the present invention also being characterized in that, in the main joining step, after only the rotating agitation pin (F2) is inserted at a start position (SP1) set closer to a surface (3a) of the sealing body (3) than to the set movement route (L1), the agitation pin (F2) is gradually pushed in to the prescribed depth while the rotating tool (F) is caused to move to the set movement route.

Description

液冷ジャケットの製造方法Liquid cooling jacket manufacturing method
 本発明は、液冷ジャケットの製造方法に関する。 The present invention relates to a method for manufacturing a liquid cooling jacket.
 例えば、特許文献1には、液冷ジャケットの製造方法が開示されている。図20は、従来の液冷ジャケットの製造方法を示す断面図である。従来の液冷ジャケットの製造方法では、アルミニウム合金製のジャケット本体101の段差部に設けられた段差側面101cと、アルミニウム合金製の封止体102の側面102cとを突き合わせて形成された突合せ部J10に対して摩擦攪拌接合を行うというものである。また、従来の液冷ジャケットの製造方法では、回転ツールFの攪拌ピンF2のみを突合せ部J10に挿入して摩擦攪拌接合を行っている。また、従来の液冷ジャケットの製造方法では、回転ツールFの回転中心軸Zを突合せ部J10に重ねて相対移動させるというものである。 For example, Patent Document 1 discloses a method for manufacturing a liquid cooling jacket. FIG. 20 is a sectional view showing a conventional method for manufacturing a liquid cooling jacket. In the conventional method of manufacturing a liquid cooling jacket, a butt portion J10 formed by abutting the step side surface 101c provided on the step portion of the aluminum alloy jacket body 101 and the side surface 102c of the aluminum alloy sealing body 102. Friction stir welding is performed. Further, in the conventional liquid cooling jacket manufacturing method, only the stirring pin F2 of the rotary tool F is inserted into the abutting portion J10 to perform friction stir welding. Further, in the conventional method for manufacturing a liquid cooling jacket, the rotation center axis Z of the rotary tool F is overlapped with the abutting portion J10 and relatively moved.
特開2015-131321号公報JP, 2005-131321, A
 ここで、ジャケット本体101は複雑な形状となりやすく、例えば、4000系アルミニウム合金の鋳造材で形成し、封止体102のように比較的単純な形状のものは、1000系アルミニウム合金の展伸材で形成するというような場合がある。このように、アルミニウム合金の材種の異なる部材同士を接合して、液冷ジャケットを製造する場合がある。このような場合は、ジャケット本体101の方が封止体102よりも硬度が高くなることが一般的であるため、図20のように摩擦攪拌接合を行うと、攪拌ピンF2が封止体102側から受ける材料抵抗に比べて、ジャケット本体101側から受ける材料抵抗が大きくなる。そのため、回転ツールFの攪拌ピンF2によって異なる材種をバランスよく攪拌することが困難となり、接合後の塑性化領域に空洞欠陥が発生し接合強度が低下するという問題がある。 Here, the jacket body 101 is likely to have a complicated shape, for example, it is formed of a cast material of 4000 series aluminum alloy, and a relatively simple shape such as the sealing body 102 is a wrought material of 1000 series aluminum alloy. There is a case where it is formed by. In this way, members having different aluminum alloy grades may be joined together to manufacture a liquid cooling jacket. In such a case, since the hardness of the jacket body 101 is generally higher than that of the sealing body 102, when friction stir welding is performed as shown in FIG. The material resistance received from the jacket body 101 side is larger than the material resistance received from the side. Therefore, it becomes difficult to stir different materials by the stirrer pin F2 of the rotary tool F in a well-balanced manner, and there is a problem that a cavity defect occurs in the plasticized region after joining and the joining strength decreases.
 また、図20に示すように、攪拌ピンF2を突合せ部J10に挿入する際、所定の深さとなるまで鉛直方向に攪拌ピンF2を押入するため、摩擦攪拌の開始位置における摩擦熱が過大となる。これにより、当該開始位置において、ジャケット本体101側の金属が封止体102側に混入しやすくなり、接合不良の一因となるという問題がある。 Further, as shown in FIG. 20, when the stirring pin F2 is inserted into the abutting portion J10, the stirring pin F2 is pushed vertically to a predetermined depth, so that the friction heat at the friction stir start position becomes excessive. .. As a result, at the starting position, the metal on the jacket body 101 side easily mixes into the sealing body 102 side, which causes a problem of defective bonding.
 また、攪拌ピンF2を突合せ部J10から離脱させる際、鉛直方向に攪拌ピンF2を引抜くため、摩擦攪拌の終了位置における摩擦熱が過大となる。これにより、当該終了位置において、ジャケット本体101側の金属が封止体102側に混入しやすくなり、接合不良の一因となるという問題がある。 Further, when the stirring pin F2 is separated from the abutting portion J10, the stirring pin F2 is pulled out in the vertical direction, so that the friction heat at the end position of the friction stirring becomes excessive. As a result, at the end position, the metal on the jacket body 101 side easily mixes into the sealing body 102 side, which causes a problem of defective bonding.
 このような観点から、本発明は、材種の異なるアルミニウム合金を好適に接合することができる液冷ジャケットの製造方法を提供することを課題とする。 From this point of view, it is an object of the present invention to provide a method for manufacturing a liquid cooling jacket capable of suitably joining aluminum alloys of different material types.
 前記課題を解決するために、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記封止体の表面側に設定した開始位置に挿入した後、前記回転ツールを前記設定移動ルートまで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする。 In order to solve the above-mentioned problems, the present invention comprises a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body. A method of manufacturing a liquid cooling jacket for joining the sealing body with friction stirring, wherein the jacket body is formed of a first aluminum alloy, and the sealing body is formed of a second aluminum alloy, The first aluminum alloy is a material having a hardness higher than that of the second aluminum alloy, and the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper, and the jacket body is sealed with the sealing material. A mounting step of forming an abutting portion by stacking an end surface of the peripheral wall portion and a back surface of the sealing body by mounting a stopper, and only the stirring pin of the rotating tool that rotates is the sealing body. Of the stirring pin, with the outer peripheral surface of the stirring pin slightly contacting the end surface of the peripheral wall portion, a predetermined depth along the set movement route set on the sealing body side with respect to the abutting portion. And a main joining step in which the abutting portion is frictionally stirred around the side surface of the sealing body by a single round, and in the main joining step, only the rotating stirring pin is further sealed than the set movement route. After the insertion at the start position set on the surface side of the stopper, the stirring pin is gradually pushed in until the predetermined depth is reached while moving the rotary tool to the set movement route.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ前記所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method of manufacturing a liquid cooling jacket, which is joined by friction stirring, wherein the jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion by overlapping, only the stirring pin of the rotating rotating tool is inserted into the side surface of the sealing body, With the outer peripheral surface of the stirring pin slightly contacting the end surface of the peripheral wall portion, a predetermined depth of the sealing body along a set movement route set on the sealing body side with respect to the abutting portion. A main joining step in which the butt portion is frictionally stirred around the side surface, and in the main joining step, the stirring pin is inserted from a start position set on the set movement route and moved in the traveling direction. The stirring pin is gradually pushed in until the predetermined depth is reached.
 かかる製造方法によれば、封止体と攪拌ピンとの摩擦熱によって突合せ部の主として封止体側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において周壁部と封止体とを接合することができる。また、攪拌ピンの外周面をジャケット本体の周壁部にわずかに接触させるに留めるため、ジャケット本体から封止体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として封止体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら所定の深さとなるまで攪拌ピンを徐々に押入することにより、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、摩擦攪拌の開始位置において、ジャケット本体の第一アルミニウム合金が封止体側に混入するのを防ぐことができる。 According to such a manufacturing method, frictional heat between the sealing body and the stirring pin causes the second aluminum alloy mainly on the sealing body side of the butting portion to be stirred and plasticized, and the peripheral wall portion and the sealing body are joined at the butting portion. can do. Further, since the outer peripheral surface of the stirring pin is only slightly contacted with the peripheral wall portion of the jacket body, it is possible to minimize mixing of the first aluminum alloy from the jacket body into the sealing body. As a result, the second aluminum alloy on the sealing body side is mainly friction-stirred in the butted portion, so that the reduction in bonding strength can be suppressed. Further, it is possible to prevent the frictional heat from becoming excessively large locally by gradually pushing the stirring pin while moving the rotary tool until it reaches a predetermined depth. As a result, it is possible to prevent the first aluminum alloy of the jacket body from mixing into the sealing body side at the friction stir start position.
 また、前記本接合工程では、前記攪拌ピンの外周面と前記周壁部の前記端面とが平行となるように、前記回転ツールの回転中心軸を前記周壁部の前記端面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことが好ましい。 In the main joining step, the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. Therefore, it is preferable to perform frictional stirring on the set moving route.
 かかる製造方法によれば、攪拌ピンと周壁部とをバランスよく接触させることができる。 According to this manufacturing method, the stirring pin and the peripheral wall can be brought into contact with each other in a well-balanced manner.
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記回転ツールを押入することが好ましい。
In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to insert the stirring pin in a state of being rotated at a high speed, and move the stirring pin to the set movement route while gradually decreasing the rotation speed.
In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable that the stirring pin is inserted at a high speed in a rotated state, and the rotating tool is pushed in while gradually lowering the rotating speed.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stirring can be performed more preferably.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりも前記ジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記ジャケット本体の底面側に設定した開始位置に挿入した後、前記回転ツールを前記設定移動ルートまで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method for manufacturing a liquid cooling jacket that is joined by friction stirring, wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion, thereby inserting only the stirring pin of the rotating rotary tool into the side surface of the jacket body, With the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body, a predetermined depth of the jacket main body along the set movement route set on the jacket main body side with respect to the abutting portion. A main joining step in which the abutting portion is frictionally stirred around the side surface, and in the main joining step, only the rotating stirring pin is set on the bottom side of the jacket body further than the set movement route. After the insertion at the starting position, the stirring tool is gradually pushed in until the predetermined depth is reached while moving the rotary tool to the set movement route.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりも前記ジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ前記所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method for manufacturing a liquid cooling jacket that is joined by friction stirring, wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion, thereby inserting only the stirring pin of the rotating rotary tool into the side surface of the jacket body, With the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body, a predetermined depth of the jacket main body along the set movement route set on the jacket main body side with respect to the abutting portion. A main joining step in which the butt portion is frictionally stirred around the side surface, and in the main joining step, the stirring pin is inserted from a start position set on the set movement route and moved in the traveling direction. The stirring pin is gradually pushed in until the predetermined depth is reached.
 かかる製造方法によれば、ジャケット本体と攪拌ピンとの摩擦熱によって突合せ部の主としてジャケット本体側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において周壁部と封止体とを接合することができる。また、攪拌ピンの外周面を封止体にわずかに接触させるに留めるため、封止体からジャケット本体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主としてジャケット本体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら所定の深さとなるまで攪拌ピンを徐々に押入することにより、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、摩擦攪拌の開始位置において、封止体の第一アルミニウム合金がジャケット本体側に混入するのを防ぐことができる。 According to this manufacturing method, frictional heat between the jacket body and the stirring pin causes the second aluminum alloy mainly on the jacket body side of the butted portion to be agitated and plasticized, and the peripheral wall portion and the sealing body are joined at the butted portion. be able to. Further, since the outer peripheral surface of the stirring pin is only slightly contacted with the sealing body, the mixing of the first aluminum alloy from the sealing body into the jacket body can be minimized. As a result, the second aluminum alloy on the jacket body side is mainly friction-stirred in the abutting portion, so that the reduction in joint strength can be suppressed. Further, it is possible to prevent the frictional heat from becoming excessively large locally by gradually pushing the stirring pin while moving the rotary tool until it reaches a predetermined depth. As a result, it is possible to prevent the first aluminum alloy of the sealing body from being mixed into the jacket body side at the friction stir start position.
 また、前記本接合工程では、前記攪拌ピンの外周面と前記封止体の前記裏面とが平行となるように、前記回転ツールの回転中心軸を前記封止体の前記裏面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことが好ましい。 In the main joining step, the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. It is preferable to perform frictional stirring on the set moving route in this state.
 かかる製造方法によれば、攪拌ピンと封止体とをバランスよく接触させることができる。 According to this manufacturing method, the stirring pin and the sealed body can be brought into contact with each other in a well-balanced manner.
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることが好ましい。 In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is inserted in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable that the stirring pin is inserted while being rotated at a high speed, and is moved to the set movement route while gradually decreasing the rotation speed.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルートよりもさらに前記封止体の表面側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method for manufacturing a liquid cooling jacket that is joined by friction stirring, wherein the jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion, by inserting only the stirring pin of the rotating rotary tool into the side surface of the sealing body, In a state in which the outer peripheral surface of the stirring pin is slightly contacted with the end surface of the peripheral wall portion, at a predetermined depth of the sealing body along a set movement route set on the sealing body side with respect to the abutting portion. A main joining step in which the butt portion is frictionally stirred around the side surface, and in the main joining step, an end position is set further on the surface side of the sealing body than the set movement route, After the friction stir welding to the butt portion, the stirring tool is gradually raised while moving the rotary tool to the end position, and the rotary tool is disengaged from the sealing body at the end position.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method of manufacturing a liquid cooling jacket, which is joined by friction stirring, wherein the jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion by overlapping, only the stirring pin of the rotating rotating tool is inserted into the side surface of the sealing body, With the outer peripheral surface of the stirring pin slightly contacting the end surface of the peripheral wall portion, a predetermined depth of the sealing body along a set movement route set on the sealing body side with respect to the abutting portion. A main joining step of friction stirring the butt portion by making a round around the side surface, in the main joining step, setting an end position on the set movement route, after friction stir welding on the butt portion, The stirring tool is gradually raised while moving the rotary tool to the end position, and the rotary tool is separated from the sealing body at the end position.
 かかる製造方法によれば、封止体と攪拌ピンとの摩擦熱によって突合せ部の主として封止体側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において周壁部と封止体とを接合することができる。また、攪拌ピンの外周面をジャケット本体の周壁部にわずかに接触させるに留めるため、ジャケット本体から封止体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主として封止体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら攪拌ピンを徐々に離脱させるため、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、摩擦攪拌の終了位置において、ジャケット本体の第一アルミニウム合金が封止体側に混入するのを防ぐことができる。 According to such a manufacturing method, frictional heat between the sealing body and the stirring pin causes the second aluminum alloy mainly on the sealing body side of the butting portion to be stirred and plasticized, and the peripheral wall portion and the sealing body are joined at the butting portion. can do. Further, since the outer peripheral surface of the stirring pin is only slightly contacted with the peripheral wall portion of the jacket body, it is possible to minimize mixing of the first aluminum alloy from the jacket body into the sealing body. As a result, the second aluminum alloy on the sealing body side is mainly friction-stirred in the butted portion, so that the reduction in bonding strength can be suppressed. Further, since the stirring pin is gradually removed while moving the rotary tool, it is possible to prevent the frictional heat from becoming excessive locally. As a result, it is possible to prevent the first aluminum alloy of the jacket body from being mixed into the sealing body side at the friction stir end position.
 また、前記本接合工程では、前記攪拌ピンの外周面と前記周壁部の前記端面とが平行となるように、前記回転ツールの回転中心軸を前記周壁部の前記端面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことが好ましい。 In the main joining step, the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. Therefore, it is preferable to perform frictional stirring on the set moving route.
 かかる製造方法によれば、攪拌ピンと周壁部とをバランスよく接触させることができる。 According to this manufacturing method, the stirring pin and the peripheral wall can be brought into contact with each other in a well-balanced manner.
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることが好ましい。 Further, in the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion, and when the stirring pin is released in the main joining step, the rotation speed is higher than the predetermined rotation speed. It is preferable to move to the end position while gradually increasing the rotation speed.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stirring can be performed more preferably.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりもジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルートよりもさらに前記ジャケット本体の底部側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記ジャケット本体から前記回転ツールを離脱させることを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method for manufacturing a liquid cooling jacket that is joined by friction stirring, wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion, thereby inserting only the stirring pin of the rotating rotary tool into the side surface of the jacket body, With the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body, a side surface of the jacket body at a predetermined depth along a set movement route set on the jacket body side with respect to the butting portion. A main joining step in which the abutting portion is friction-stirred by making one round around, and in the main joining step, an end position is set further on the bottom side of the jacket main body than the set movement route, and the abutting portion is After the friction stir welding with respect to, the stirring tool is gradually raised while moving the rotary tool to the end position, and the rotary tool is disengaged from the jacket body at the end position.
 また、本発明は、底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりも前記ジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記ジャケット本体から前記回転ツールを離脱させることを特徴とする。 Further, the present invention includes a jacket body having a bottom portion and a peripheral wall portion rising from a peripheral edge of the bottom portion, and a sealing body that seals an opening portion of the jacket body, and the jacket body and the sealing body are provided. A method for manufacturing a liquid cooling jacket that is joined by friction stirring, wherein the jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, and the first aluminum alloy is It is a material having a hardness higher than that of the second aluminum alloy, the outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to be tapered, and the sealing body is mounted on the jacket body. By placing the end face of the peripheral wall portion and the back surface of the sealing body to form a butt portion, thereby inserting only the stirring pin of the rotating rotary tool into the side surface of the jacket body, With the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body, a predetermined depth of the jacket main body along the set movement route set on the jacket main body side with respect to the abutting portion. A main joining step of friction stirring the butt portion by making a round around the side surface, in the main joining step, setting an end position on the set movement route, after friction stir welding on the butt portion, The stirring tool is gradually raised while moving the rotating tool to the end position, and the rotating tool is disengaged from the jacket body at the end position.
 かかる製造方法によれば、ジャケット本体と攪拌ピンとの摩擦熱によって突合せ部の主としてジャケット本体側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部において周壁部と封止体とを接合することができる。また、攪拌ピンの外周面を封止体にわずかに接触させるに留めるため、封止体からジャケット本体への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部においては主としてジャケット本体側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。また、回転ツールを移動させながら攪拌ピンを徐々に離脱させるため、局所的に摩擦熱が過大になるのを防ぐことができる。これにより、摩擦攪拌の終了位置において、封止体の第一アルミニウム合金がジャケット本体側に混入するのを防ぐことができる。 According to this manufacturing method, frictional heat between the jacket body and the stirring pin causes the second aluminum alloy mainly on the jacket body side of the butted portion to be agitated and plasticized, and the peripheral wall portion and the sealing body are joined at the butted portion. be able to. Further, since the outer peripheral surface of the stirring pin is only slightly contacted with the sealing body, the mixing of the first aluminum alloy from the sealing body into the jacket body can be minimized. As a result, the second aluminum alloy on the jacket body side is mainly friction-stirred in the abutting portion, so that the reduction in joint strength can be suppressed. Further, since the stirring pin is gradually removed while moving the rotary tool, it is possible to prevent the frictional heat from becoming excessive locally. As a result, it is possible to prevent the first aluminum alloy of the sealing body from being mixed into the jacket body side at the end position of the friction stirring.
 また、前記本接合工程では、前記攪拌ピンの外周面と前記封止体の前記裏面とが平行となるように、前記回転ツールの回転中心軸を前記封止体の前記裏面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことが好ましい。 In the main joining step, the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. It is preferable to perform frictional stirring on the set moving route in this state.
 かかる製造方法によれば、攪拌ピンと封止体とをバランスよく接触させることができる。 According to this manufacturing method, the stirring pin and the sealed body can be brought into contact with each other in a well-balanced manner.
 また、前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることが好ましい。 Further, in the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the abutting portion, and when the stirring pin is separated in the main joining step, the speed is higher than the predetermined rotation speed. It is preferable to move to the end position while gradually increasing the rotation speed.
 かかる製造方法によれば、摩擦攪拌をより好適に行うことができる。 According to such a manufacturing method, friction stirring can be performed more preferably.
 本発明に係る液冷ジャケットの製造方法によれば、材種の異なるアルミニウム合金を好適に接合することができる。 According to the method for manufacturing a liquid cooling jacket according to the present invention, it is possible to preferably join aluminum alloys having different grades.
本発明の第一実施形態に係る液冷ジャケットを示す分解斜視図である。It is an exploded perspective view showing a liquid cooling jacket concerning a first embodiment of the present invention. 第一実施形態に係る液冷ジャケットの製造方法の載置工程を示す断面図である。It is sectional drawing which shows the mounting process of the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment. 第一実施形態に係る設定移動ルートを示す斜視図である。It is a perspective view showing a set movement route concerning a first embodiment. 第一実施形態に係る液冷ジャケットの製造方法の本接合工程を示す斜視図である。It is a perspective view showing the main joining process of the manufacturing method of the liquid cooling jacket concerning a first embodiment. 第一実施形態に係る本接合工程における開始位置を側方から見た断面図である。It is sectional drawing which looked at the starting position in the main joining process which concerns on 1st embodiment from the side. 第一実施形態に係る本接合工程における押入区間を側方から見た断面図である。It is sectional drawing which looked at the pushing section in the main joining process which concerns on 1st embodiment from the side. 第一実施形態に係る本接合工程における中間点S1付近を進行方向後方から見た断面図である。It is the sectional view which looked at the midpoint S1 vicinity in the main joining process concerning a first embodiment from the back in the direction of movement. 第一実施形態に係る本接合工程における終了後を示す斜視図である。It is a perspective view showing after the end in the main joining process concerning a first embodiment. 第一実施形態に係る本接合工程における離脱区間を側方から見た断面図である。It is sectional drawing which looked at the detachment|segmentation area|region in the main joining process which concerns on 1st embodiment from the side. 本発明の第二実施形態に係る液冷ジャケットの製造方法において、本接合工程を示す斜視図である。It is a perspective view which shows the main joining process in the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment of this invention. 第二実施形態に係る本接合工程における押入区間を側方から見た断面図である。It is sectional drawing which looked at the pushing section in the main joining process which concerns on 2nd embodiment from the side. 第二実施形態に係る本接合工程における中間点S1付近を進行方向後方から見た断面図である。It is sectional drawing which looked at the intermediate point S1 vicinity in the main joining process which concerns on 2nd embodiment from the advancing direction back. 第二実施形態に係る本接合工程における終了後を示す斜視図である。It is a perspective view showing after the end in the main joining process concerning a second embodiment. 第二実施形態に係る本接合工程における離脱区間を側方から見た断面図である。It is sectional drawing which looked at the leaving section in the main joining process which concerns on 2nd embodiment from the side. 本発明の第三実施形態に係る液冷ジャケットの製造方法において、本接合工程を示す斜視図である。It is a perspective view which shows this joining process in the manufacturing method of the liquid cooling jacket which concerns on 3rd embodiment of this invention. 第三実施形態に係る本接合工程を進行方向後方から見た断面図である。It is sectional drawing which looked at the main joining process which concerns on 3rd embodiment from the advancing direction back. 第三実施形態に係る本接合工程の終了後を示す斜視図である。It is a perspective view showing after the end of the main joining process concerning a third embodiment. 本発明の第四実施形態に係る液冷ジャケットの製造方法において、本接合工程を示す斜視図である。It is a perspective view which shows this joining process in the manufacturing method of the liquid cooling jacket which concerns on 4th embodiment of this invention. 第四実施形態に係る液冷ジャケットの製造方法において、本接合工程の終了後を示す斜視図である。FIG. 16 is a perspective view showing a state after the completion of the main joining step in the method for manufacturing a liquid cooling jacket according to the fourth embodiment. 従来の液冷ジャケットの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conventional liquid cooling jacket.
[第一実施形態]
 本発明の実施形態について、適宜図面を参照しながら説明する。第一実施形態に係る液冷ジャケット1は、図1に示すように、ジャケット本体2と封止体3とで構成されている。液冷ジャケット1は、内部に流体を流通させて、配置される発熱体を冷却する機器である。ジャケット本体2と封止体3とは摩擦攪拌接合で一体化される。以下の説明における「表面」とは、「裏面」の反対側の面を意味する。
[First embodiment]
Embodiments of the present invention will be described with reference to the drawings as appropriate. As shown in FIG. 1, the liquid cooling jacket 1 according to the first embodiment is composed of a jacket body 2 and a sealing body 3. The liquid cooling jacket 1 is a device that circulates a fluid inside to cool a heating element that is arranged. The jacket body 2 and the sealing body 3 are integrated by friction stir welding. The “front surface” in the following description means the surface opposite to the “rear surface”.
 ジャケット本体2は、底部10及び周壁部11で主に構成されている。ジャケット本体2は、本実施形態では第一アルミニウム合金を主に含んで形成されている。第一アルミニウム合金は、例えば、JISH5302 ADC12(Al-Si-Cu系)等のアルミニウム合金鋳造材を用いている。 The jacket body 2 is mainly composed of a bottom portion 10 and a peripheral wall portion 11. In the present embodiment, the jacket body 2 is formed mainly including the first aluminum alloy. As the first aluminum alloy, for example, an aluminum alloy casting material such as JIS H5302 ADC12 (Al-Si-Cu system) is used.
 底部10は、矩形を呈する板状部材である。周壁部11は、底部10の周縁部から矩形枠状に立ち上がる壁部である。周壁部11の角は直角でもよいが、本実施形態では丸面取り加工が施されている。底部10及び周壁部11で凹部13が形成されている。なお、本実施形態のジャケット本体2は一体形成されているが、例えば、周壁部11を分割構成としてシール部材で接合して一体化してもよい。 The bottom part 10 is a rectangular plate-shaped member. The peripheral wall portion 11 is a wall portion that stands up in a rectangular frame shape from the peripheral portion of the bottom portion 10. The corners of the peripheral wall portion 11 may be right angles, but in this embodiment, round chamfering is applied. A concave portion 13 is formed by the bottom portion 10 and the peripheral wall portion 11. Although the jacket body 2 of the present embodiment is integrally formed, for example, the peripheral wall portion 11 may be divided and joined by a seal member to be integrated.
 封止体3は、ジャケット本体2の開口部を封止する板状部材である。封止体3の角は直角でもよいが、本実施形態では丸面取り加工が施されている。封止体3は、摩擦攪拌可能な金属であれば特に制限されないが、本実施形態では第二アルミニウム合金を主に含んで形成されている。第二アルミニウム合金は、第一アルミニウム合金よりも硬度の低い材料である。第二アルミニウム合金は、例えば、JIS A1050,A1100,A6063等のアルミニウム合金展伸材で形成されている。 The sealing body 3 is a plate-shaped member that seals the opening of the jacket body 2. The corners of the sealing body 3 may be right angles, but in this embodiment, round chamfering is performed. The sealing body 3 is not particularly limited as long as it is a metal capable of friction stirring, but in the present embodiment, the sealing body 3 is formed mainly containing a second aluminum alloy. The second aluminum alloy is a material having a hardness lower than that of the first aluminum alloy. The second aluminum alloy is formed of an wrought aluminum alloy such as JIS A1050, A1100, A6063, for example.
 次に、本実施形態に係る液冷ジャケットの製造方法について説明する。本実施形態に係る液冷ジャケットの製造方法では、準備工程と、載置工程と、本接合工程とを行う。 Next, a method for manufacturing the liquid cooling jacket according to this embodiment will be described. In the method of manufacturing the liquid cooling jacket according to the present embodiment, a preparation step, a mounting step, and a main joining step are performed.
 準備工程は、ジャケット本体2及び封止体3を準備する工程である。ジャケット本体2及び封止体3は、製造方法については特に制限されないが、ジャケット本体2は、例えば、ダイキャストで成形する。封止体3は、例えば押出成形により成形する。 The preparation step is a step of preparing the jacket body 2 and the sealing body 3. The jacket body 2 and the sealing body 3 are not particularly limited in terms of manufacturing method, but the jacket body 2 is formed by die casting, for example. The sealing body 3 is formed by, for example, extrusion molding.
 載置工程は、図2に示すように、ジャケット本体2に封止体3を載置する工程である。載置工程によって、周壁部11の端面11aと、封止体3の裏面3bとが突き合わされて突合せ部J1が形成される。突合せ部J1は、封止体3の周囲に沿って平面視矩形状に形成される。周壁部11の側面11cと、封止体3の側面3cとは面一になる。なお、ジャケット本体2と封止体3とは溶接又は摩擦攪拌等により仮接合してもよい。 The placing step is a step of placing the sealing body 3 on the jacket body 2 as shown in FIG. By the mounting step, the end surface 11a of the peripheral wall portion 11 and the back surface 3b of the sealing body 3 are butted against each other to form the butted portion J1. The butt portion J1 is formed in a rectangular shape in plan view along the periphery of the sealing body 3. The side surface 11c of the peripheral wall portion 11 and the side surface 3c of the sealing body 3 are flush with each other. The jacket body 2 and the sealing body 3 may be temporarily joined by welding, friction stirring, or the like.
 本接合工程は、図3及び図4に示すように、回転ツールFを用いて突合せ部J1を摩擦攪拌接合する工程である。まず、突合せ部J1よりも封止体3の表面3a側に「設定移動ルートL1」(一点鎖線)を設定する。設定移動ルートL1は、後記する本接合工程において、突合せ部J1を接合するために必要な回転ツールFの移動ルートである。設定移動ルートL1については追って詳述する。 The main joining step is a step of friction stir welding the butt portion J1 using the rotary tool F as shown in FIGS. 3 and 4. First, the "set movement route L1" (dashed line) is set on the surface 3a side of the sealing body 3 with respect to the abutting portion J1. The set movement route L1 is a movement route of the rotary tool F necessary for joining the abutting portion J1 in the main joining process described later. The set movement route L1 will be described in detail later.
 図4に示すように、回転ツールFは、連結部F1と、攪拌ピンF2とで構成されている。回転ツールFは、例えば工具鋼で形成されている。連結部F1は、摩擦攪拌装置(図示省略)の回転軸に連結される部位である。連結部F1は円柱状を呈し、ボルトが締結されるネジ孔(図示省略)が形成されている。 As shown in FIG. 4, the rotary tool F is composed of a connecting portion F1 and a stirring pin F2. The rotary tool F is made of, for example, tool steel. The connecting portion F1 is a portion connected to a rotary shaft of a friction stirrer (not shown). The connecting portion F1 has a cylindrical shape and has a screw hole (not shown) for fastening a bolt.
 攪拌ピンF2は、連結部F1から垂下しており、連結部F1と同軸になっている。攪拌ピンF2は連結部F1から離間するにつれて先細りになっている。攪拌ピンF2の先端には平坦な平坦面F3(図5参照)を備えている。 The stirring pin F2 hangs from the connecting portion F1 and is coaxial with the connecting portion F1. The stirring pin F2 is tapered as it is separated from the connecting portion F1. The tip of the stirring pin F2 is provided with a flat surface F3 (see FIG. 5).
 攪拌ピンF2の外周面には螺旋溝が刻設されている。本実施形態では、回転ツールFを左回転させるため、螺旋溝は、基端から先端に向かうにつれて右回りに形成されている。言い換えると、螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て右回りに形成されている。 A spiral groove is engraved on the outer peripheral surface of the stirring pin F2. In this embodiment, since the rotary tool F is rotated counterclockwise, the spiral groove is formed in the clockwise direction from the base end toward the tip. In other words, the spiral groove is formed clockwise when viewed from above when tracing the spiral groove from the base end toward the tip.
 なお、回転ツールFを右回転させる場合は、螺旋溝を基端から先端に向かうにつれて左回りに形成することが好ましい。言い換えると、この場合の螺旋溝は、螺旋溝を基端から先端に向けてなぞると上から見て左回りに形成されている。螺旋溝をこのように設定することで、摩擦攪拌の際に塑性流動化した金属が螺旋溝によって攪拌ピンF2の先端側に導かれる。これにより、被接合金属部材(ジャケット本体2及び封止体3)の外部に溢れ出る金属の量を少なくすることができる。 When rotating the rotary tool F to the right, it is preferable to form the spiral groove counterclockwise from the base end toward the tip. In other words, the spiral groove in this case is formed counterclockwise when viewed from above when tracing the spiral groove from the base end to the tip. By setting the spiral groove in this way, the metal that has been plastically fluidized during frictional stirring is guided to the tip side of the stirring pin F2 by the spiral groove. This can reduce the amount of metal overflowing to the outside of the metal members to be joined (jacket body 2 and sealing body 3).
 図4に示すように、本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1(図8参照)までの離脱区間の三つの区間を連続して摩擦攪拌接合する。中間点S1,S2は、設定移動ルートL1上に設定されている。開始位置SP1は、封止体3の側面3cにおいて、設定移動ルートL1よりも封止体3の表面3a側に設定されている。本実施形態では、開始位置SP1と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となる位置に設定している。 As shown in FIG. 4, in the main joining process, the push-in section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2, and the intermediate point S2. Friction stir welding is continuously performed in the three separation sections from the end position EP1 to the end position EP1 (see FIG. 8). The intermediate points S1 and S2 are set on the set movement route L1. The start position SP1 is set on the side surface 3c of the sealing body 3 closer to the front surface 3a of the sealing body 3 than the set movement route L1. In this embodiment, the line segment connecting the start position SP1 and the intermediate point S1 and the set movement route L1 form an obtuse angle.
 本接合工程の押入区間では、図5及び図6に示すように、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、封止体3の側面3cに対して回転中心軸Zを垂直にしつつ、左回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで移動させる。この際、図6に示すように、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。 In the pushing section of the main joining process, as shown in FIGS. 5 and 6, friction stir from the start position SP1 to the intermediate point S1 is performed. In the pushing-in section, while the rotation center axis Z is perpendicular to the side surface 3c of the sealing body 3, the stirring pin F2 rotated counterclockwise is inserted into the start position SP1 and moved to the intermediate point S1. At this time, as shown in FIG. 6, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" until at least the intermediate point S1 is reached. That is, the rotary tool F is gradually lowered while being moved to the set movement route L1 without being left at one place.
 また、押入区間においては、回転ツールFを移動させつつ、進行方向後方から見た場合(図7参照)に回転ツールFの回転中心軸Zを封止体3側に徐々に傾斜させ、中間点S1に達した際に、攪拌ピンF2の外周面と周壁部11の端面11aとが平行となるように設定する。また、中間点S1に達した際に、攪拌ピンF2の外周面と周壁部11の端面11aとがわずかに接触するように設定する。そして、回転ツールFの傾斜角度を維持した状態で、そのまま本区間の摩擦攪拌接合に移行する。 In the pushing section, while rotating the rotary tool F, the rotation center axis Z of the rotary tool F is gradually inclined toward the sealing body 3 side when viewed from the rear in the traveling direction (see FIG. 7), and the intermediate point When S1 is reached, the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to be parallel to each other. Further, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to slightly contact with each other. Then, while maintaining the inclination angle of the rotary tool F, the friction stir welding of this section is directly performed.
 攪拌ピンF2の外周面と周壁部11の端面11aとの接触代(オフセット量)Nは、例えば、0<N≦1.0mmの間で設定し、好ましくは0<N≦0.85mmの間で設定し、より好ましくは0<N≦0.65mmの間で設定する。 The contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 is set, for example, in the range of 0<N≦1.0 mm, preferably in the range of 0<N≦0.85 mm. And more preferably 0<N≦0.65 mm.
 設定移動ルートL1は、図7に示すように、平坦面F3の中心F4が通過する軌跡を示している。つまり、設定移動ルートL1は、突合せ部J1の周方向において、周壁部11の端面11aと攪拌ピンF2の外周面とを平行にしつつ両者がわずかに接触するように設定されている。本区間においては、上方から見た場合(側面11c側から見た場合)に、平坦面F3の中心F4が、設定移動ルートL1と重なるように回転ツールFを移動させる。なお、攪拌ピンF2の「所定の深さ」は、適宜設定すればよく、例えば、塑性流動材が凹部13の内部に流入しない範囲で設定する。 As shown in FIG. 7, the set movement route L1 shows a locus through which the center F4 of the flat surface F3 passes. That is, the set movement route L1 is set such that the end surface 11a of the peripheral wall portion 11 and the outer peripheral surface of the stirring pin F2 are in parallel with each other in the circumferential direction of the abutting portion J1 while slightly contacting each other. In this section, the rotation tool F is moved so that the center F4 of the flat surface F3 overlaps with the set movement route L1 when viewed from above (when viewed from the side surface 11c side). The “predetermined depth” of the stirring pin F2 may be set appropriately, and is set, for example, in a range in which the plastic flow material does not flow into the recess 13.
 攪拌ピンF2の外周面と周壁部11の端面11aとが接触しないように設定すると、突合せ部J1の接合強度が低くなる。一方、攪拌ピンF2の外周面と周壁部11の端面11aとの接触代Nが1.0mmを超えるとジャケット本体2の第一アルミニウム合金が、封止体3側に大量に混入して接合不良となるおそれがある。 If the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set so as not to contact with each other, the joint strength of the abutting portion J1 becomes low. On the other hand, when the contact margin N between the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 exceeds 1.0 mm, a large amount of the first aluminum alloy of the jacket body 2 is mixed into the sealing body 3 side to cause a defective joint. May be
 本区間では、図7のように回転ツールFの傾斜状態を維持し、設定移動ルートL1に沿って一周させる。図8に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、図9に示すように、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に上方に移動させて、終了位置EP1で封止体3から攪拌ピンF2を離脱させる。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを終了位置EP1に移動させながら徐々に引抜いていく。また、回転ツールFの回転中心軸Zの傾斜を徐々に元に戻し、終了位置EP1では回転中心軸Zと封止体3の側面3cとが垂直となるようにする。終了位置EP1は、終了位置EP1と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域W1が形成される。 In this section, the rotating tool F is maintained in the inclined state as shown in FIG. 7, and is rotated once along the set movement route L1. As shown in FIG. 8, when the stirring tool F2 reaches the intermediate point S2 by rotating the rotating tool F once, the process directly shifts to the disengagement section. In the disengagement section, as shown in FIG. 9, the stirring pin F2 is gradually moved upward from the midpoint S2 to the end position EP1, and the stirring pin F2 is disengaged from the sealing body 3 at the end position EP1. Let That is, without rotating the rotary tool F at one place, the rotary tool F is gradually pulled out while being moved to the end position EP1. Further, the inclination of the rotation center axis Z of the rotation tool F is gradually returned to the original position so that the rotation center axis Z and the side surface 3c of the sealing body 3 are perpendicular to each other at the end position EP1. The end position EP1 is set to a position where the angle formed by the line segment connecting the end position EP1 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W1 is formed on the movement trajectory of the rotary tool F.
 以上説明した本実施形態における液冷ジャケットの製造方法によれば、封止体3と攪拌ピンF2との摩擦熱によって突合せ部J1の主として封止体3側の第二アルミニウム合金が攪拌されて塑性流動化され、突合せ部J1において封止体3の裏面3bと周壁部11の端面11aとを接合することができる。 According to the method for manufacturing the liquid cooling jacket in the present embodiment described above, frictional heat between the sealing body 3 and the stirring pin F2 stirs the second aluminum alloy mainly on the sealing body 3 side of the abutting portion J1 to cause plasticity. After being fluidized, the back surface 3b of the sealing body 3 and the end surface 11a of the peripheral wall portion 11 can be joined at the abutting portion J1.
 また、攪拌ピンF2の外周面を周壁部11の端面11aにわずかに接触させるに留めるため、ジャケット本体2から封止体3への第一アルミニウム合金の混入を極力少なくすることができる。これにより、突合せ部J1においては主として封止体3側の第二アルミニウム合金が摩擦攪拌されるため、接合強度の低下を抑制することができる。つまり、本接合工程では、攪拌ピンF2の回転中心軸Zに対して一方側と他方側で、攪拌ピンF2が受ける材料抵抗の不均衡を極力少なくすることができる。これにより、塑性流動材がバランス良く摩擦攪拌されるため、接合強度の低下を抑制することができる。 Further, since the outer peripheral surface of the stirring pin F2 is slightly contacted with the end surface 11a of the peripheral wall portion 11, the mixing of the first aluminum alloy from the jacket body 2 into the sealing body 3 can be minimized. As a result, the second aluminum alloy on the side of the sealing body 3 is mainly friction-stirred in the abutting portion J1, so that the reduction in the bonding strength can be suppressed. That is, in the main joining step, the imbalance of the material resistance received by the stirring pin F2 on one side and the other side with respect to the rotation center axis Z of the stirring pin F2 can be minimized. As a result, the plastic flow material is friction-stirred in a well-balanced manner, so that a decrease in joint strength can be suppressed.
 また、本接合工程の押入区間では、開始位置SP1から設定移動ルートL1と重複する位置まで回転ツールFを移動させつつ所定の深さとなるまで攪拌ピンF2を徐々に押入することにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
 同様に、本接合工程の離脱区間では、設定移動ルートL1から終了位置EP1まで回転ツールFを移動させつつ所定の深さから攪拌ピンF2を徐々に上昇させて離脱させることにより、設定移動ルートL1上で回転ツールFが停止して摩擦熱が過大になるのを防ぐことができる。
 これらにより、設定移動ルートL1上で摩擦熱が過大となり、ジャケット本体2から封止体3へ第一アルミニウム合金が過剰に混入して接合不良となるのを防ぐことができる。
Further, in the pushing section of the main joining process, the stirring tool F2 is gradually pushed to a predetermined depth while moving the rotary tool F from the start position SP1 to a position overlapping with the set movement route L1, thereby setting the movement route. It is possible to prevent the frictional heat from becoming excessive by stopping the rotary tool F on L1.
Similarly, in the disengagement section of the main joining step, the stirring tool F2 is gradually raised from a predetermined depth to be disengaged from the set movement route L1 while moving the rotary tool F from the set movement route L1 to the end position EP1. It is possible to prevent the frictional heat from becoming excessive by stopping the rotary tool F above.
As a result, it is possible to prevent excessive frictional heat on the set movement route L1 and excessive mixing of the first aluminum alloy into the sealing body 3 from the jacket body 2 to cause a defective joint.
 また、本接合工程において、開始位置SP1及び終了位置EP1の位置は適宜設定すればよいが、開始位置SP1と設定移動ルートL1とのなす角度、終了位置EP1と設定移動ルートL1とのなす角度が鈍角となるように設定することにより、中間点S1,S2で回転ツールFの移動速度が低下することなくスムーズに本区間又は離脱区間に移行することができる。これにより、設定移動ルートL1上で回転ツールFが停止又は移動速度が低下することにより、摩擦熱が過大となることを防ぐことができる。なお、上方から見て回転ツールFの軌跡が円弧を描くように開始位置SP1から設定移動ルートL1に回転ツールFを移動させてもよい。同様に、上方から見て回転ツールFの軌跡が円弧を描くように設定移動ルートL1から終了位置EP1に回転ツールFを移動させてもよい。 In the main joining process, the positions of the start position SP1 and the end position EP1 may be set appropriately, but the angle formed by the start position SP1 and the set movement route L1 and the angle formed by the end position EP1 and the set movement route L1 are By setting an obtuse angle, the moving speed of the rotary tool F at the intermediate points S1 and S2 can be smoothly shifted to the main section or the separation section without decreasing. As a result, it is possible to prevent the frictional heat from becoming excessive due to the rotation tool F stopping or the moving speed decreasing on the set moving route L1. The rotary tool F may be moved from the start position SP1 to the set movement route L1 so that the trajectory of the rotary tool F draws an arc when viewed from above. Similarly, the rotary tool F may be moved from the set movement route L1 to the end position EP1 so that the trajectory of the rotary tool F draws an arc when viewed from above.
 また、本実施形態の本接合工程では、回転ツールFの回転方向及び進行方向は適宜設定すればよいが、回転ツールFの移動軌跡に形成される塑性化領域W1のうち、ジャケット本体2側(突合せ部J1側)がシアー側となり、封止体3側がフロー側となるように回転ツールFの回転方向及び進行方向を設定した。ジャケット本体2側がシアー側となるように設定することで、突合せ部J1の周囲における攪拌ピンF2による攪拌作用が高まり、突合せ部J1における温度上昇が期待でき、突合せ部J1において封止体3と周壁部11とをより確実に接合することができる。 In the main joining step of the present embodiment, the rotation direction and the traveling direction of the rotary tool F may be set as appropriate, but in the plasticizing region W1 formed on the movement trajectory of the rotary tool F, the jacket body 2 side ( The rotating direction and the advancing direction of the rotary tool F were set so that the butt portion J1 side) became the shear side and the sealing body 3 side became the flow side. By setting the jacket body 2 side to be the sheer side, the stirring action by the stirring pin F2 around the abutting portion J1 is enhanced, and the temperature rise at the abutting portion J1 can be expected, and the sealing body 3 and the peripheral wall at the abutting portion J1 can be expected. The part 11 can be joined more reliably.
 なお、シアー側(Advancing side)とは、被接合部に対する回転ツールの外周の相対速度が、回転ツールの外周における接線速度の大きさに移動速度の大きさを加算した値となる側を意味する。一方、フロー側(Retreating side)とは、回転ツールの移動方向の反対方向に回転ツールが回動することで、被接合部に対する回転ツールの相対速度が低速になる側を言う。 The shear side (Advancing side) means the side where the relative speed of the outer circumference of the rotary tool to the welded part is the value of the tangential speed on the outer circumference of the rotary tool plus the magnitude of the moving speed. .. On the other hand, the flow side (Retreating side) refers to the side where the relative speed of the rotary tool with respect to the welded portion becomes low due to the rotary tool rotating in the direction opposite to the moving direction of the rotary tool.
 また、ジャケット本体2の第一アルミニウム合金は、封止体3の第二アルミニウム合金よりも硬度の高い材料になっている。これにより、液冷ジャケット1の耐久性を高めることができる。また、ジャケット本体2の第一アルミニウム合金をアルミニウム合金鋳造材とし、封止体3の第二アルミニウム合金をアルミニウム合金展伸材とすることが好ましい。第一アルミニウム合金を例えば、JISH5302 ADC12等のAl-Si-Cu系アルミニウム合金鋳造材とすることにより、ジャケット本体2の鋳造性、強度、被削性等を高めることができる。また、第二アルミニウム合金を例えば、JIS A1000系又はA6000系とすることにより、加工性、熱伝導性を高めることができる。 Also, the first aluminum alloy of the jacket body 2 is a material having a higher hardness than the second aluminum alloy of the sealing body 3. Thereby, the durability of the liquid cooling jacket 1 can be improved. Further, it is preferable that the first aluminum alloy of the jacket body 2 is an aluminum alloy cast material and the second aluminum alloy of the sealing body 3 is an aluminum alloy wrought material. The castability, strength, machinability, etc. of the jacket body 2 can be enhanced by using an Al-Si-Cu based aluminum alloy cast material such as JIS H5302 ADC12 as the first aluminum alloy. Further, by making the second aluminum alloy, for example, JIS A1000 series or A6000 series, workability and thermal conductivity can be improved.
 また、本接合工程においては、突合せ部J1の全周を摩擦攪拌接合できるため、液冷ジャケットの気密性及び水密性を高めることができる。また、本接合工程の終端部分において、回転ツールFが中間点S1を完全に通過してから終了位置EP1に向かうように離脱工程を行う。つまり、本接合工程によって形成された塑性化領域W1の各端部同士をオーバーラップさせることにより、より気密性及び水密性を高めることができる。 Also, in the main joining process, since the entire circumference of the butt portion J1 can be friction stir welded, the airtightness and watertightness of the liquid cooling jacket can be enhanced. Further, at the end portion of the main joining step, the detaching step is performed so that the rotary tool F completely passes through the intermediate point S1 and then moves toward the end position EP1. That is, the airtightness and the watertightness can be further improved by overlapping the respective ends of the plasticized region W1 formed by the main joining process.
 また、本接合工程では、回転ツールFの攪拌ピンF2の基端側を露出した状態で摩擦攪拌を行うため、摩擦攪拌装置に作用する負荷を軽減することができる。 Further, in the main joining process, since the friction stirring is performed with the base end side of the stirring pin F2 of the rotary tool F exposed, the load acting on the friction stirring device can be reduced.
 なお、本接合工程では、回転ツールFの回転速度を一定としてもよいが、可変させてもよい。本接合工程の押入区間において、開始位置SP1における回転ツールFの回転速度をV1とし、本区間における回転ツールFの回転速度をV2とすると、V1>V2としてもよい。回転速度のV2は、設定移動ルートL1における予め設定された一定の回転速度である。つまり、開始位置SP1では、回転速度を高く設定しておき、押入区間内で徐々に回転速度を低減させながら本区間に移行してもよい。 Incidentally, in the main joining process, the rotation speed of the rotary tool F may be constant, but may be variable. When the rotation speed of the rotary tool F at the starting position SP1 is V1 and the rotation speed of the rotary tool F is V2 in the main section in the push-in section of the main joining step, V1>V2 may be satisfied. The rotation speed V2 is a constant rotation speed set in advance on the set movement route L1. That is, at the start position SP1, the rotation speed may be set high, and the rotation speed may be gradually reduced within the push-in section to shift to the main section.
 また、第一本接合工程の離脱区間において、本区間における回転ツールFの回転速度をV2、終了位置EP1において離脱させるときの回転ツールFの回転速度をV3とすると、V3>V2としてもよい。つまり、離脱区間に移行したら、終了位置EP1に向けて徐々に回転速度を上げながら封止体3から回転ツールFを離脱させてもよい。回転ツールFを封止体3に押し入れる際又は封止体3から離脱させる際に、前記のように設定することで、押入工程又は離脱工程時における少ない押圧力を、回転速度で補うことができるため、摩擦攪拌を好適に行うことができる。 Further, in the disengagement section of the first main joining step, if the rotation speed of the rotary tool F in this section is V2 and the rotation speed of the rotary tool F when disengaging at the end position EP1 is V3, V3 may be V2>V2. In other words, after moving to the disengagement section, the rotary tool F may be disengaged from the sealing body 3 while gradually increasing the rotation speed toward the end position EP1. By setting as described above when the rotary tool F is pushed into the sealing body 3 or released from the sealing body 3, a small pressing force at the time of the pushing-in step or the releasing step can be compensated for by the rotation speed. Therefore, frictional stirring can be suitably performed.
[第二実施形態]
 次に、本発明の第二実施形態に係る液冷ジャケットの製造方法について説明する。第二実施形態では、図10~13に示すように、本接合工程における開始位置SP1及び終了位置EP1の位置をいずれも設定移動ルートL1上に設定する点で第一実施形態と相違する。第二実施形態では、第一実施形態と相違する部分を中心に説明する。
[Second embodiment]
Next, a method for manufacturing the liquid cooling jacket according to the second embodiment of the present invention will be described. The second embodiment is different from the first embodiment in that, as shown in FIGS. 10 to 13, both the start position SP1 and the end position EP1 in the main joining process are set on the set movement route L1. The second embodiment will be described focusing on the parts different from the first embodiment.
 第二実施形態に係る液冷ジャケットの製造では、準備工程と、載置工程と、本接合工程とを行う。準備工程及び載置工程は、第一実施形態と同一である。 In the manufacturing of the liquid cooling jacket according to the second embodiment, a preparation process, a mounting process, and a main joining process are performed. The preparation process and the placement process are the same as in the first embodiment.
 本接合工程では、図10に示すように、開始位置SP1を設定移動ルートL1上に設定する。本接合工程では、開始位置SP1から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP1(図13参照)までの離脱区間の三つの区間を連続して摩擦攪拌する。 In the main joining process, as shown in FIG. 10, the start position SP1 is set on the set movement route L1. In the main joining process, the push-in section from the start position SP1 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 around the circumference, and the intermediate point S2 to the end position EP1 (FIG. 13). Friction stir continuously in the three sections of the separation section up to the reference).
 押入区間では、図10及び図11に示すように、開始位置SP1から中間点S1までの摩擦攪拌を行う。押入区間では、封止体3の側面3cに対して回転中心軸Zを垂直となるようにしつつ、左回転させた攪拌ピンF2を開始位置SP1に挿入し、中間点S1まで移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。 In the pushing section, as shown in FIGS. 10 and 11, friction stir from the start position SP1 to the intermediate point S1 is performed. In the push-in section, the stirring pin F2 rotated counterclockwise is inserted into the start position SP1 while the rotation center axis Z is perpendicular to the side surface 3c of the sealing body 3 and moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" until at least the intermediate point S1 is reached.
 また、押入区間においては、回転ツールFを移動させつつ、進行方向後方から見た場合(図12参照)に回転ツールFの回転中心軸Zを封止体3側に徐々に傾斜させ、中間点S1に達した際に、攪拌ピンF2の外周面と周壁部11の端面11aとが平行となるように設定する。また、中間点S1に達した際に、攪拌ピンF2の外周面と周壁部11の端面11aとがわずかに接触するように設定する。そして、回転ツールFの傾斜角度を維持した状態で、そのまま本区間の摩擦攪拌接合に移行する。攪拌ピンF2の外周面と周壁部11の端面11aとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 In the pushing section, while rotating the rotary tool F, the rotation center axis Z of the rotary tool F is gradually inclined toward the sealing body 3 side when viewed from the rear in the traveling direction (see FIG. 12), and the intermediate point When S1 is reached, the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to be parallel to each other. Further, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 are set to slightly contact with each other. Then, while maintaining the inclination angle of the rotary tool F, the friction stir welding of this section is directly performed. The contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the end surface 11a of the peripheral wall portion 11 and the setting of the set movement route L1 are the same as those in the first embodiment.
 図13に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、図14に示すように、中間点S2から終了位置EP1に向かうまでの間に攪拌ピンF2を徐々に上方に移動させて、設定移動ルートL1上に設定された終了位置EP1で封止体3から攪拌ピンF2を離脱させる。また、回転ツールFの回転中心軸Zの傾斜を徐々に元に戻し、終了位置EP1では回転中心軸Zと封止体3の側面3cとが垂直となるようにする。 As shown in FIG. 13, when the stirring tool F2 reaches the intermediate point S2 by rotating the rotary tool F once, the process directly shifts to the disengagement section. In the disengagement section, as shown in FIG. 14, the stirring pin F2 is gradually moved upward from the midpoint S2 to the end position EP1 and is sealed at the end position EP1 set on the set movement route L1. The stirring pin F2 is removed from the stopper 3. Further, the inclination of the rotation center axis Z of the rotation tool F is gradually returned to the original position so that the rotation center axis Z and the side surface 3c of the sealing body 3 are perpendicular to each other at the end position EP1.
 以上説明した第二実施形態に係る液冷ジャケットの製造方法によっても第一実施形態と略同等の効果を奏することができる。第二実施形態のように本接合工程における開始位置SP1、終了位置EP1は、設定移動ルートL1上に設定してもよい。 The effect similar to that of the first embodiment can be achieved by the method of manufacturing the liquid cooling jacket according to the second embodiment described above. The start position SP1 and the end position EP1 in the main joining process may be set on the set movement route L1 as in the second embodiment.
[第三実施形態]
 次に、本発明の第三実施形態に係る液冷ジャケットの製造方法について説明する。第三実施形態では、ジャケット本体2を第二アルミニウム合金で形成し、封止体3を第二アルミニウム合金よりも硬度の高い第一アルミニウム合金で形成する点で主に第一実施形態と相違する。本実施形態では、第一実施形態と異なる点を中心に説明する。
[Third embodiment]
Next, a method for manufacturing the liquid cooling jacket according to the third embodiment of the present invention will be described. The third embodiment mainly differs from the first embodiment in that the jacket body 2 is formed of a second aluminum alloy and the sealing body 3 is formed of a first aluminum alloy having a hardness higher than that of the second aluminum alloy. .. In this embodiment, points different from the first embodiment will be mainly described.
 図15に示すように、第三実施形態に係る液冷ジャケットの製造方法では、準備工程と、載置工程と、本接合工程とを行う。準備工程及び載置工程は第一実施形態と同一である。本接合工程では、右回転させた回転ツールFを開始位置SP2に挿入し、突合せ部J1に対して摩擦攪拌接合を行う。 As shown in FIG. 15, in the liquid cooling jacket manufacturing method according to the third embodiment, a preparation step, a mounting step, and a main joining step are performed. The preparation process and the placement process are the same as in the first embodiment. In the main joining step, the rotating tool F rotated clockwise is inserted into the start position SP2, and friction stir welding is performed on the abutting portion J1.
 図15に示すように、本接合工程では、開始位置SP2から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から周壁部11の廻りを一周して中間点S2までの本区間と、中間点S2から終了位置EP2(図17参照)までの離脱区間の三つの区間を連続して摩擦攪拌する。 As shown in FIG. 15, in the main joining step, the push-in section from the start position SP2 to the intermediate point S1 and the booklet from the intermediate point S1 on the set movement route L1 to the intermediate point S2 by making a round around the peripheral wall portion 11. The section and three sections of the leaving section from the intermediate point S2 to the end position EP2 (see FIG. 17) are continuously friction-stirred.
 設定移動ルートL1は、突合せ部J1よりも底部10側に設定されている。開始位置SP2は、周壁部11の側面11cにおいて、設定移動ルートL1よりもさらに底部10側に設定されている。中間点S1,S2は、設定移動ルートL1上に設定されている。本実施形態では、開始位置SP2と中間点S1とを結ぶ線分と、設定移動ルートL1とのなす角度が鈍角となるように設定している。 The set movement route L1 is set on the bottom portion 10 side of the abutting portion J1. The start position SP2 is set on the side surface 11c of the peripheral wall portion 11 further on the bottom portion 10 side than the set movement route L1. The intermediate points S1 and S2 are set on the set movement route L1. In the present embodiment, the angle formed by the line segment connecting the start position SP2 and the intermediate point S1 and the set movement route L1 is set to be an obtuse angle.
 押入区間では、開始位置SP2から中間点S1までの摩擦攪拌を行う。押入区間では、周壁部11の側面11cに対して垂直となるように回転中心軸Zを設定しつつ、右回転させた攪拌ピンF2を開始位置SP2に挿入し、中間点S1まで移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。つまり、回転ツールFを一ヶ所に留まらせることなく、回転ツールFを設定移動ルートL1に移動させながら徐々に下降させていく。 In the push-in section, friction stir from the start position SP2 to the midpoint S1 is performed. In the push-in section, the rotation center axis Z is set to be perpendicular to the side surface 11c of the peripheral wall portion 11, the stirring pin F2 rotated clockwise is inserted into the start position SP2, and moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" until at least the intermediate point S1 is reached. That is, the rotary tool F is gradually lowered while being moved to the set movement route L1 without being left at one place.
 また、押入区間においては、回転ツールFを移動させつつ、進行方向後方から見た場合(図16参照)に回転ツールFの回転中心軸Zをジャケット本体2の底部10側に徐々に傾斜させ、中間点S1に達した際に、攪拌ピンF2の外周面と封止体3の裏面3bとが平行となるように設定する。また、中間点S1に達した際に、攪拌ピンF2の外周面と封止体3の裏面3bがわずかに接触するように設定する。そして、その傾斜角度を維持した状態で、そのまま本区間の摩擦攪拌接合に移行する。攪拌ピンF2の外周面と封止体3の裏面3bとの接触代(オフセット量)N及び設定移動ルートL1の設定は第一実施形態と同一である。 Further, in the pushing section, while rotating the rotary tool F, the rotation center axis Z of the rotary tool F is gradually inclined to the bottom portion 10 side of the jacket body 2 when viewed from the rear in the traveling direction (see FIG. 16), When the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to be parallel to each other. Further, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to slightly contact with each other. Then, with the inclination angle maintained, the friction stir welding in this section is directly performed. The contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 and the setting movement route L1 are the same as those in the first embodiment.
 図16及び図17に示すように、本区間では、上方から見た場合(側面11c側から見た場合)に、平坦面F3の中心F4が、設定移動ルートL1と重なるように回転ツールFを移動させる。本実施形態の本接合工程では、回転ツールFを右回転させ、進行方向左側に封止体3が位置するようにする。つまり、本接合工程では、突合せ部J1側がシアー側となるように回転ツールFの回転方向及び進行方向を設定する。 As shown in FIGS. 16 and 17, in this section, when viewed from above (when viewed from the side surface 11c side), the rotation tool F is placed so that the center F4 of the flat surface F3 overlaps the set movement route L1. To move. In the main joining step of the present embodiment, the rotary tool F is rotated right so that the sealing body 3 is located on the left side in the traveling direction. That is, in the main joining process, the rotation direction and the traveling direction of the rotary tool F are set such that the butt portion J1 side is the shear side.
 図17に示すように、回転ツールFを周壁部11の廻りに一周させて、攪拌ピンF2が中間点S1を通過して中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP2に向かうまでの間に攪拌ピンF2を徐々に上方に移動させて、終了位置EP2で封止体3から攪拌ピンF2を離脱させる。また、回転ツールFの回転中心軸Zの傾斜を徐々に元に戻し、終了位置EP2では回転中心軸Zと周壁部11の側面11cとが垂直となるようにする。終了位置EP2は、終了位置EP2と中間点S2とが結ぶ線分と設定移動ルートL1とでなす角度が鈍角となる位置に設定する。回転ツールFの移動軌跡には塑性化領域W1が形成される。 As shown in FIG. 17, the rotary tool F is made to go around the peripheral wall portion 11 once, and when the stirring pin F2 passes the intermediate point S1 and reaches the intermediate point S2, it shifts to the leaving section as it is. In the disengagement section, the stirring pin F2 is gradually moved upward from the midpoint S2 to the end position EP2, and the stirring pin F2 is disengaged from the sealing body 3 at the end position EP2. Further, the inclination of the rotation center axis Z of the rotation tool F is gradually returned to the original position so that the rotation center axis Z and the side surface 11c of the peripheral wall portion 11 are perpendicular to each other at the end position EP2. The end position EP2 is set to a position where the angle formed by the line segment connecting the end position EP2 and the intermediate point S2 and the set movement route L1 is an obtuse angle. A plasticized region W1 is formed on the movement trajectory of the rotary tool F.
 以上説明した第三実施形態に係る液冷ジャケットの製造方法においても、第一実施形態と略同等の効果を奏することができる。また、第三実施形態のように、ジャケット本体2を第二アルミニウム合金で形成し、封止体3を第二アルミニウム合金よりも硬度の高い第一アルミニウム合金で形成してもよい。 Also in the liquid cooling jacket manufacturing method according to the third embodiment described above, it is possible to achieve substantially the same effects as in the first embodiment. Further, as in the third embodiment, the jacket body 2 may be formed of the second aluminum alloy and the sealing body 3 may be formed of the first aluminum alloy having a hardness higher than that of the second aluminum alloy.
[第四実施形態]
 次に、本発明の第四実施形態に係る液冷ジャケットの製造方法について説明する。第四実施形態では、図18,19に示すように、本接合工程における開始位置SP2及び終了位置EP2の位置をいずれも設定移動ルートL1上に設定する点で第三実施形態と相違する。第四実施形態では、第三実施形態と相違する部分を中心に説明する。
[Fourth Embodiment]
Next, a method for manufacturing the liquid cooling jacket according to the fourth embodiment of the present invention will be described. The fourth embodiment is different from the third embodiment in that, as shown in FIGS. 18 and 19, both the start position SP2 and the end position EP2 in the main joining process are set on the set movement route L1. The fourth embodiment will be described focusing on the parts different from the third embodiment.
 第四実施形態に係る液冷ジャケットの製造では、準備工程と、載置工程と、本接合工程とを行う。準備工程及び載置工程は、第一実施形態と同一である。第四実施形態では、第三実施形態と同様に、ジャケット本体2を第二アルミニウム合金で形成し、封止体3を第二アルミニウム合金よりも硬度の高い第一アルミニウム合金で形成する。設定移動ルートL1は、第三実施形態と同様に突合せ部J1よりも底部10側に設定する。 In the manufacturing of the liquid cooling jacket according to the fourth embodiment, a preparation process, a mounting process, and a main bonding process are performed. The preparation process and the placement process are the same as in the first embodiment. In the fourth embodiment, as in the third embodiment, the jacket body 2 is made of a second aluminum alloy and the sealing body 3 is made of a first aluminum alloy having a hardness higher than that of the second aluminum alloy. The set movement route L1 is set closer to the bottom portion 10 side than the abutting portion J1 as in the third embodiment.
 本接合工程では、図18に示すように、開始位置SP2を設定移動ルートL1上に設定する。本接合工程では、開始位置SP2から中間点S1までの押入区間と、設定移動ルートL1上の中間点S1から一周廻って中間点S2までの本区間と、中間点S2から終了位置EP2(図19参照)までの離脱区間の三つの区間を連続して摩擦攪拌接合する。 In the main joining process, as shown in FIG. 18, the start position SP2 is set on the set movement route L1. In the main joining step, the push-in section from the start position SP2 to the intermediate point S1, the main section from the intermediate point S1 on the set movement route L1 to the intermediate point S2 around one round, and the intermediate point S2 to the end position EP2 (FIG. 19). Friction stir welding is continuously performed for the three sections of the separation section up to the reference).
 押入区間では、図18及び図19に示すように、開始位置SP2から中間点S1までの摩擦攪拌を行う。押入区間では、周壁部11の側面11cに対して回転中心軸Zを垂直となるようにしつつ、右回転させた攪拌ピンF2を開始位置SP2に挿入し、中間点S1まで移動させる。この際、少なくとも中間点S1に到達するまでに予め設定された「所定の深さ」に達するように攪拌ピンF2を徐々に押し入れていく。 In the pushing section, as shown in FIGS. 18 and 19, friction stir from the start position SP2 to the intermediate point S1 is performed. In the pushing section, the stirring pin F2 rotated right is inserted into the start position SP2 while the rotation center axis Z is perpendicular to the side surface 11c of the peripheral wall portion 11 and moved to the intermediate point S1. At this time, the stirring pin F2 is gradually pushed in so as to reach a preset "predetermined depth" until at least the intermediate point S1 is reached.
 また、押入区間においては、回転ツールFを移動させつつ、進行方向後方から見た場合に回転ツールFの回転中心軸Zを周壁部11側に徐々に傾斜させ、中間点S1に達した際に、攪拌ピンF2の外周面と封止体3の裏面3bとが平行となるように設定する。また、中間点S1に達した際に、攪拌ピンF2の外周面と封止体3の裏面3bとがわずかに接触するように設定する。攪拌ピンF2の外周面と封止体3の裏面3bとの接触代(オフセット量)N及び設定移動ルートL1の設定は第三実施形態と同一である。そして、その傾斜角度を維持した状態で、そのまま本区間の摩擦攪拌接合に移行する。 In the push-in section, while the rotary tool F is being moved, the rotation center axis Z of the rotary tool F is gradually inclined toward the peripheral wall portion 11 when viewed from the rear in the traveling direction, and when the intermediate point S1 is reached. The outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to be parallel to each other. Further, when the intermediate point S1 is reached, the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 are set to slightly contact with each other. The contact margin (offset amount) N between the outer peripheral surface of the stirring pin F2 and the back surface 3b of the sealing body 3 and the setting of the set movement route L1 are the same as those in the third embodiment. Then, with the inclination angle maintained, the friction stir welding of this section is directly performed.
 図19に示すように、回転ツールFを一周させて攪拌ピンF2が中間点S2に到達したら、そのまま離脱区間に移行する。離脱区間では、中間点S2から終了位置EP2に向かうまでの間に攪拌ピンF2を徐々に上方に移動させて、設定移動ルートL1上に設定された終了位置EP2で周壁部11から攪拌ピンF2を離脱させる。また、回転ツールFの回転中心軸Zの傾斜を徐々に元に戻し、終了位置EP2では回転中心軸Zと周壁部11の側面11cとが垂直となるようにする。 As shown in FIG. 19, when the stirring tool F2 reaches the intermediate point S2 by rotating the rotary tool F once, the process directly shifts to the disengagement section. In the disengagement section, the stirring pin F2 is gradually moved upward between the intermediate point S2 and the end position EP2, and the stirring pin F2 is moved from the peripheral wall portion 11 to the end position EP2 set on the set movement route L1. Let go. Further, the inclination of the rotation center axis Z of the rotation tool F is gradually returned to the original position so that the rotation center axis Z and the side surface 11c of the peripheral wall portion 11 are perpendicular to each other at the end position EP2.
 以上説明した第四実施形態に係る液冷ジャケットの製造方法によっても第三実施形態と略同等の効果を奏することができる。第四実施形態のように本接合工程における開始位置SP2及び終了位置EP2は、設定移動ルートL1上に設定してもよい。 The effect similar to that of the third embodiment can be obtained by the method of manufacturing the liquid cooling jacket according to the fourth embodiment described above. The start position SP2 and the end position EP2 in the main joining step may be set on the set movement route L1 as in the fourth embodiment.
 1    液冷ジャケット
 2    ジャケット本体
 3    封止体
 F    回転ツール
 F2   攪拌ピン
 F3   平坦面
 J1   突合せ部
 SP1  開始位置
 SP2  開始位置
 EP1  終了位置
 EP2  終了位置
 W1   塑性化領域
1 Liquid cooling jacket 2 Jacket body 3 Sealing body F Rotating tool F2 Stirring pin F3 Flat surface J1 Butt portion SP1 Starting position SP2 Starting position EP1 Ending position EP2 Ending position W1 Plasticizing region

Claims (24)

  1.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記封止体の表面側に設定した開始位置に挿入した後、前記回転ツールを前記設定移動ルートまで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotary tool is inserted into the side surface of the sealing body, and the outer peripheral surface of the stirring pin is slightly contacted with the end surface of the peripheral wall portion, and is sealed from the abutting portion. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the sealing body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, after inserting only the rotating stirring pin at a start position set on the front surface side of the sealing body further than the set movement route, while moving the rotary tool to the set movement route, A method for producing a liquid cooling jacket, characterized in that the stirring pin is gradually pushed in until a predetermined depth is reached.
  2.  前記本接合工程では、前記攪拌ピンの外周面と前記周壁部の前記端面とが平行となるように、前記回転ツールの回転中心軸を前記周壁部の前記端面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項1に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. The method for manufacturing a liquid cooling jacket according to claim 1, wherein friction stirring is performed on a set moving route.
  3.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項1又は請求項2に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    When the stirring pin is inserted in the main joining step, the stirring pin is inserted while being rotated at a speed higher than the predetermined rotation speed, and the rotation speed is gradually reduced to move to the set movement route. The method for manufacturing a liquid cooling jacket according to claim 1 or 2, characterized in that.
  4.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ前記所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotary tool is inserted into the side surface of the sealing body, and the outer peripheral surface of the stirring pin is slightly contacted with the end surface of the peripheral wall portion, and is sealed from the abutting portion. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the sealing body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, the stirring pin is inserted from a start position set on the set movement route, and the stirring pin is gradually pushed in until it reaches the predetermined depth while moving in the traveling direction. Liquid cooling jacket manufacturing method.
  5.  前記本接合工程では、前記攪拌ピンの外周面と前記周壁部の前記端面とが平行となるように、前記回転ツールの回転中心軸を前記周壁部の前記端面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項4に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. The method for producing a liquid cooling jacket according to claim 4, wherein friction stirring is performed on a set moving route.
  6.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記回転ツールを押入することを特徴とする請求項4又は請求項5に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    When inserting the stirring pin in the main joining step, the stirring pin may be inserted while being rotated at a speed higher than the predetermined rotation speed, and the rotation tool may be pushed in while gradually decreasing the rotation speed. The method for manufacturing a liquid cooling jacket according to claim 4 or claim 5, which is characterized in that.
  7.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりも前記ジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、回転する前記攪拌ピンのみを前記設定移動ルートよりもさらに前記ジャケット本体の底面側に設定した開始位置に挿入した後、前記回転ツールを前記設定移動ルートまで移動させつつ前記所定の深さとなるまで前記攪拌ピンを徐々に押入することを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotating tool is inserted into the side surface of the jacket body, and the jacket is positioned more than the abutting portion with the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the jacket body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, only the rotating stirring pin is inserted at a start position set on the bottom surface side of the jacket body further than the set movement route, and then the rotation tool is moved to the set movement route to set the predetermined distance. The method for producing a liquid cooling jacket, characterized in that the stirring pin is gradually pushed in until the depth of the liquid cooling jacket is reached.
  8.  前記本接合工程では、前記攪拌ピンの外周面と前記封止体の前記裏面とが平行となるように、前記回転ツールの回転中心軸を前記封止体の前記裏面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項7に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. The method for producing a liquid cooling jacket according to claim 7, wherein the friction stir on the set moving route is performed by.
  9.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記設定移動ルートまで移動させることを特徴とする請求項7又は請求項8に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    When the stirring pin is inserted in the main joining step, the stirring pin is inserted while being rotated at a speed higher than the predetermined rotation speed, and the rotation speed is gradually reduced to move to the set movement route. 9. The method for manufacturing a liquid cooling jacket according to claim 7 or claim 8.
  10.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりも前記ジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に設定した開始位置から前記攪拌ピンを挿入し、進行方向に移動させつつ前記所定の深さとなるまで徐々に前記攪拌ピンを押入することを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotating tool is inserted into the side surface of the jacket body, and the jacket is positioned more than the abutting portion with the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the jacket body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, the stirring pin is inserted from a start position set on the set movement route, and the stirring pin is gradually pushed in until it reaches the predetermined depth while moving in the traveling direction. Liquid cooling jacket manufacturing method.
  11.  前記本接合工程では、前記攪拌ピンの外周面と前記封止体の前記裏面とが平行となるように、前記回転ツールの回転中心軸を前記封止体の前記裏面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項10に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. The method for manufacturing a liquid cooling jacket according to claim 10, wherein the friction stir on the set moving route is performed by.
  12.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを挿入するとき、前記所定の回転速度よりも高い速度で前記攪拌ピンを回転させた状態で挿入し、徐々に回転速度を下げながら前記回転ツールを押入することを特徴とする請求項10又は請求項11に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    When inserting the stirring pin in the main joining step, the stirring pin may be inserted while being rotated at a speed higher than the predetermined rotation speed, and the rotation tool may be pushed in while gradually decreasing the rotation speed. The method for manufacturing a liquid cooling jacket according to claim 10, which is characterized in that.
  13.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルートよりもさらに前記封止体の表面側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotary tool is inserted into the side surface of the sealing body, and the outer peripheral surface of the stirring pin is slightly contacted with the end surface of the peripheral wall portion, and is sealed from the abutting portion. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the sealing body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, an end position is set further on the surface side of the sealing body than the set movement route, and after friction stir welding to the butt portion, the stirring is performed while moving the rotary tool to the end position. A method for manufacturing a liquid cooling jacket, characterized in that the pin is gradually raised to separate the rotary tool from the sealing body at the end position.
  14.  前記本接合工程では、前記攪拌ピンの外周面と前記周壁部の前記端面とが平行となるように、前記回転ツールの回転中心軸を前記周壁部の前記端面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項13に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. The method for manufacturing a liquid cooling jacket according to claim 13, wherein friction stirring is performed on a set movement route.
  15.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら終了位置まで移動させることを特徴とする請求項13又は請求項14に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    The liquid cooling jacket according to claim 13 or 14, wherein when the stirring pin is removed in the main joining step, the stirring pin is moved to an end position while gradually increasing the rotation speed from the predetermined rotation speed. Manufacturing method.
  16.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第一アルミニウム合金で形成されており、前記封止体は第二アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記封止体の側面に挿入し、前記攪拌ピンの外周面を前記周壁部の前記端面にわずかに接触させた状態で、前記突合せ部よりも封止体側に設定された設定移動ルートに沿って所定の深さで前記封止体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記封止体から前記回転ツールを離脱させることを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a first aluminum alloy, the sealing body is formed of a second aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotary tool is inserted into the side surface of the sealing body, and the outer peripheral surface of the stirring pin is slightly contacted with the end surface of the peripheral wall portion, and is sealed from the abutting portion. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the sealing body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, an end position is set on the set movement route, and after friction stir welding with respect to the butt portion, the stirring pin is gradually raised while moving the rotary tool to the end position, and the end position is increased. The method for manufacturing a liquid cooling jacket, characterized in that the rotating tool is detached from the sealing body.
  17.  前記本接合工程では、前記攪拌ピンの外周面と前記周壁部の前記端面とが平行となるように、前記回転ツールの回転中心軸を前記周壁部の前記端面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項16に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is inclined with respect to the end surface of the peripheral wall portion such that the outer peripheral surface of the stirring pin and the end surface of the peripheral wall portion are parallel to each other. The method for manufacturing a liquid cooling jacket according to claim 16, wherein friction stirring is performed on a set movement route.
  18.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項16又は請求項17に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    18. The liquid cooling according to claim 16 or 17, wherein when the stirring pin is detached in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed. Jacket manufacturing method.
  19.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりもジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルートよりもさらに前記ジャケット本体の底部側に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記ジャケット本体から前記回転ツールを離脱させることを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotating tool is inserted into the side surface of the jacket body, and the outer peripheral surface of the stirring pin is slightly contacted with the back surface of the sealing body, and the jacket body is positioned more than the abutting portion. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the jacket body at a predetermined depth along a set movement route set on the side,
    In the main joining step, an end position is set further on the bottom side of the jacket body than the set movement route, and after friction stir welding to the butt portion, the stirring pin is moved while moving the rotary tool to the end position. Is gradually raised to separate the rotary tool from the jacket body at the end position.
  20.  前記本接合工程では、前記攪拌ピンの外周面と前記封止体の前記裏面とが平行となるように、前記回転ツールの回転中心軸を前記封止体の前記裏面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項19に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. 20. The method for manufacturing a liquid cooling jacket according to claim 19, wherein the friction stir on the set moving route is performed by.
  21.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項19又は請求項20に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    The liquid cooling according to claim 19 or 20, wherein when the stirring pin is removed in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed. Jacket manufacturing method.
  22.  底部及び前記底部の周縁から立ち上がる周壁部を有するジャケット本体と、前記ジャケット本体の開口部を封止する封止体とで構成され、前記ジャケット本体と前記封止体とを摩擦攪拌で接合する液冷ジャケットの製造方法であって、
     前記ジャケット本体は第二アルミニウム合金で形成されており、前記封止体は第一アルミニウム合金で形成されており、前記第一アルミニウム合金は前記第二アルミニウム合金よりも硬度が高い材種であり、
     摩擦攪拌で用いる回転ツールの攪拌ピンの外周面は先細りとなるように傾斜しており、
     前記ジャケット本体に前記封止体を載置することにより前記周壁部の端面と前記封止体の裏面とを重ね合わせて突合せ部を形成する載置工程と、
     回転する前記回転ツールの前記攪拌ピンのみを前記ジャケット本体の側面に挿入し、前記攪拌ピンの外周面を前記封止体の前記裏面にわずかに接触させた状態で、前記突合せ部よりも前記ジャケット本体側に設定された設定移動ルートに沿って所定の深さで前記ジャケット本体の側面の廻りに一周させて前記突合せ部を摩擦攪拌する本接合工程と、を含み、
     前記本接合工程において、前記設定移動ルート上に終了位置を設定し、前記突合せ部に対する摩擦攪拌接合の後、前記回転ツールを前記終了位置に移動させつつ前記攪拌ピンを徐々に上昇させ前記終了位置で前記ジャケット本体から前記回転ツールを離脱させることを特徴とする液冷ジャケットの製造方法。
    Liquid composed of a jacket body having a bottom portion and a peripheral wall portion rising from the peripheral edge of the bottom portion, and a sealing body that seals the opening of the jacket body, and that joins the jacket body and the sealing body by friction stirring. A method of manufacturing a cold jacket,
    The jacket body is formed of a second aluminum alloy, the sealing body is formed of a first aluminum alloy, the first aluminum alloy is a material type having a higher hardness than the second aluminum alloy,
    The outer peripheral surface of the stirring pin of the rotary tool used for friction stirring is inclined so as to taper,
    A mounting step of forming an abutting portion by stacking the end surface of the peripheral wall portion and the back surface of the sealing body by mounting the sealing body on the jacket body.
    Only the stirring pin of the rotating rotating tool is inserted into the side surface of the jacket body, and the jacket is positioned more than the abutting portion with the outer peripheral surface of the stirring pin slightly contacting the back surface of the sealing body. A main joining step of friction-stirring the butt portion by making a turn around the side surface of the jacket body at a predetermined depth along a set movement route set on the body side,
    In the main joining step, an end position is set on the set movement route, and after friction stir welding with respect to the butt portion, the stirring pin is gradually raised while moving the rotary tool to the end position, and the end position is increased. The method for manufacturing a liquid cooling jacket, characterized in that the rotating tool is detached from the jacket body.
  23.  前記本接合工程では、前記攪拌ピンの外周面と前記封止体の前記裏面とが平行となるように、前記回転ツールの回転中心軸を前記封止体の前記裏面に対して傾斜させた状態で前記設定移動ルート上の摩擦攪拌を行うことを特徴とする請求項22に記載の液冷ジャケットの製造方法。 In the main joining step, the rotation center axis of the rotary tool is tilted with respect to the back surface of the sealing body so that the outer peripheral surface of the stirring pin and the back surface of the sealing body are parallel to each other. 23. The method for manufacturing a liquid cooling jacket according to claim 22, wherein the friction stir on the set moving route is performed by.
  24.  前記本接合工程では、所定の回転速度で前記攪拌ピンを回転させて前記突合せ部の摩擦攪拌接合を行い、
     前記本接合工程において前記攪拌ピンを離脱させるとき、前記所定の回転速度よりも徐々に回転速度を上げながら前記終了位置まで移動させることを特徴とする請求項22又は請求項23に記載の液冷ジャケットの製造方法。
    In the main joining step, the stirring pin is rotated at a predetermined rotation speed to perform friction stir welding of the butt portion,
    The liquid cooling according to claim 22 or 23, wherein when the stirring pin is detached in the main joining step, the stirring pin is moved to the end position while gradually increasing the rotation speed from the predetermined rotation speed. Jacket manufacturing method.
PCT/JP2019/036351 2019-02-22 2019-09-17 Method for manufacturing liquid-cooled jacket WO2020170488A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-030894 2019-02-22
JP2019030894A JP2020131263A (en) 2019-02-22 2019-02-22 Liquid-cooled jacket manufacturing method
JP2019030893A JP2020131262A (en) 2019-02-22 2019-02-22 Liquid-cooled jacket manufacturing method
JP2019-030893 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170488A1 true WO2020170488A1 (en) 2020-08-27

Family

ID=72144074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036351 WO2020170488A1 (en) 2019-02-22 2019-09-17 Method for manufacturing liquid-cooled jacket

Country Status (1)

Country Link
WO (1) WO2020170488A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279958A (en) * 2009-06-02 2010-12-16 Nippon Light Metal Co Ltd Method of manufacturing sealed container
JP2011011239A (en) * 2009-07-03 2011-01-20 Nippon Light Metal Co Ltd Lid joining method
JP2016087650A (en) * 2014-11-05 2016-05-23 日本軽金属株式会社 Liquid-cooled jacket and method of manufacturing liquid-cooled jacket
WO2018193639A1 (en) * 2017-04-18 2018-10-25 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279958A (en) * 2009-06-02 2010-12-16 Nippon Light Metal Co Ltd Method of manufacturing sealed container
JP2011011239A (en) * 2009-07-03 2011-01-20 Nippon Light Metal Co Ltd Lid joining method
JP2016087650A (en) * 2014-11-05 2016-05-23 日本軽金属株式会社 Liquid-cooled jacket and method of manufacturing liquid-cooled jacket
WO2018193639A1 (en) * 2017-04-18 2018-10-25 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket

Similar Documents

Publication Publication Date Title
WO2018193639A1 (en) Method for manufacturing liquid-cooled jacket
JP2019037987A (en) Manufacturing method of liquid-cooled jacket
JP7003862B2 (en) How to manufacture a liquid-cooled jacket
WO2019038938A1 (en) Liquid cooling jacket manufacturing method
WO2020017094A1 (en) Method for manufacturing liquid-cooled jacket
JP2019111548A (en) Manufacturing method for liquid-cooled jacket
JP2020175396A (en) Manufacturing method for liquid-cooled jacket
WO2020170488A1 (en) Method for manufacturing liquid-cooled jacket
JP7127618B2 (en) Heat exchanger manufacturing method
JP2020131263A (en) Liquid-cooled jacket manufacturing method
JP7020562B2 (en) How to manufacture a liquid-cooled jacket
WO2020213197A1 (en) Method for manufacturing liquid-cooled jacket
WO2020213195A1 (en) Method for manufacturing liquid-cooled jacket
JP7272465B2 (en) Liquid cooling jacket manufacturing method
JP7226254B2 (en) Liquid cooling jacket manufacturing method
JP2020175395A (en) Manufacturing method for liquid-cooled jacket
JP7003861B2 (en) How to manufacture a liquid-cooled jacket
JP7226241B2 (en) Liquid cooling jacket manufacturing method
JP2020131262A (en) Liquid-cooled jacket manufacturing method
JP7226242B2 (en) Liquid cooling jacket manufacturing method
WO2020188858A1 (en) Method of manufacturing liquid-cooled jacket
JP7140061B2 (en) Heat exchanger manufacturing method
JP7211342B2 (en) Heat exchanger manufacturing method
JP2020151720A (en) Manufacturing method of liquid-cooled jacket
JP2021112755A (en) Manufacturing method of liquid-cooled jacket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915969

Country of ref document: EP

Kind code of ref document: A1