JP2021076575A - 3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成方法および装置 - Google Patents
3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成方法および装置 Download PDFInfo
- Publication number
- JP2021076575A JP2021076575A JP2020049395A JP2020049395A JP2021076575A JP 2021076575 A JP2021076575 A JP 2021076575A JP 2020049395 A JP2020049395 A JP 2020049395A JP 2020049395 A JP2020049395 A JP 2020049395A JP 2021076575 A JP2021076575 A JP 2021076575A
- Authority
- JP
- Japan
- Prior art keywords
- image
- refractive index
- dimensional
- cell
- molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000013135 deep learning Methods 0.000 title claims abstract description 62
- 238000003368 label free method Methods 0.000 title abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 64
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims description 26
- 238000000605 extraction Methods 0.000 claims description 14
- 238000013527 convolutional neural network Methods 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 4
- 239000003550 marker Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 11
- 210000004027 cell Anatomy 0.000 description 148
- 238000010586 diagram Methods 0.000 description 19
- 238000010186 staining Methods 0.000 description 17
- 238000002372 labelling Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000003325 tomography Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 238000001000 micrograph Methods 0.000 description 6
- 230000000877 morphologic effect Effects 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 5
- 210000003463 organelle Anatomy 0.000 description 4
- 238000004043 dyeing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/45—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10064—Fluorescence image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/20—Indexing scheme for editing of 3D models
- G06T2219/2012—Colour editing, changing, or manipulating; Use of colour codes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Software Systems (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Computer Graphics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Geometry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Quality & Reliability (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
Abstract
【解決手段】一実施形態に係る3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成装置は、観察しようとする細胞に対して3次元屈折率映像を測定する3次元屈折率細胞映像測定部、および前記3次元屈折率映像の測定値をディープラーニングアルゴリズムに入力して細胞の3次元染色分子細胞映像を出力する3次元屈折率と染色分子映像転換部を含んで構成されてよい。
【選択図】図1
Description
110:3次元屈折率細胞映像測定部
120:3次元屈折率と染色分子映像転換部
Claims (10)
- 3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成装置であって、
観察しようとする細胞に対して3次元屈折率映像を測定する3次元屈折率細胞映像測定部、および
前記3次元屈折率映像の測定値をディープラーニングアルゴリズムに入力して細胞の3次元染色分子細胞映像を出力する3次元屈折率と染色分子映像転換部
を含む、3次元分子像生成装置。 - 前記3次元屈折率細胞映像測定部は、
観察しようとする前記細胞がスライドの上に置かれているか塗布された形態で前記3次元屈折率映像を撮影する、
請求項1に記載の3次元分子像生成装置。 - 前記3次元屈折率細胞映像測定部は、
一度に撮影することのできる領域よりも前記細胞の観察領域が大きい場合、一度に撮影可能な3次元屈折率映像を撮影する3次元映像パッチ撮影部、および
一度に撮影した前記3次元屈折率映像を結合して3次元屈折率スライドイメージを生成する映像パッチ結合部
を含む、請求項1に記載の3次元分子像生成装置。 - 前記3次元屈折率と染色分子映像転換部は、
前記細胞の3次元屈折率映像パッチを生成する3次元パッチ抽出部、
前記ディープラーニングアルゴリズムに基づいて前記3次元屈折率映像パッチを3次元標識分子映像パッチに変換する、3次元屈折率と染色分子パッチ転換部、および
変換された前記3次元標識分子映像パッチを1つの映像として併合する分子パッチ結合部
を含む、請求項1に記載の3次元分子像生成装置。 - 前記3次元パッチ抽出部は、
映像の外郭領域の値の消失を防ぐためにパディング過程を実行する映像パディング部、
前記パディング過程を経た、パディングされた映像から細胞領域を抽出する細胞領域抽出部、および
前記パディングされた映像の細胞領域からパッチをサンプリングして前記細胞の3次元屈折率映像パッチを生成する3次元屈折率パッチサンプリング部
を含む、請求項4に記載の3次元分子像生成装置。 - 前記3次元屈折率と染色分子パッチ転換部は、
各前記細胞の3次元屈折率映像パッチを、3次元屈折率情報に基づいて学習された畳み込みニューラルネットワークを活用して前記3次元標識分子映像パッチに変換する、
請求項4に記載の3次元分子像生成装置。 - 前記分子パッチ結合部は、
重複する領域に対して再構成された映像の連続性を保障するために、パッチの中心からの距離による線形または非線形加重値を掛けて加え、パディング領域の除去後、最終的には1つの標識分子に対する前記細胞の3次元染色分子細胞映像を生成する、
請求項4に記載の3次元分子像生成装置。 - 前記3次元屈折率と染色分子映像転換部は、
各標識分子から予め設定された数以上のサンプルを測定した後、前記ディープラーニングアルゴリズムを活用して前記3次元屈折率と染色分子映像転換モデルを構築する前記3次元屈折率と染色分子映像転換モデル生成部
を含み、
前記3次元屈折率と染色分子映像転換モデルに基づき、特定の標識分子が確保された細胞に対応する3次元屈折率映像を測定して前記細胞の3次元染色分子細胞映像を生成する、
請求項1に記載の3次元分子像生成装置。 - 3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成方法であって、
観察しようとする細胞に対して3次元屈折率映像を測定する段階、および
前記3次元屈折率映像の測定値をディープラーニングアルゴリズムに入力して細胞の3次元染色分子細胞映像を出力する段階
を含む、3次元分子像生成方法。 - 前記細胞の3次元染色分子細胞映像を出力する段階は、
各標識分子から予め設定された数以上のサンプルを測定した後、前記ディープラーニングアルゴリズムを活用して3次元屈折率と染色分子映像転換モデルを構築する段階
を含み、
前記3次元屈折率と染色分子映像転換モデルに基づき、特定の標識分子が確保された細胞に対応する3次元屈折率映像を測定して前記細胞の3次元染色分子細胞映像を生成する、
請求項9に記載の3次元分子像生成方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190139992A KR102302333B1 (ko) | 2019-11-05 | 2019-11-05 | 3차원 굴절률 영상과 딥러닝을 활용한 비표지 방식의 3차원 분자 영상 생성 방법 및 장치 |
KR10-2019-0139992 | 2019-11-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021076575A true JP2021076575A (ja) | 2021-05-20 |
JP7122769B2 JP7122769B2 (ja) | 2022-08-22 |
Family
ID=69844543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020049395A Active JP7122769B2 (ja) | 2019-11-05 | 2020-03-19 | 3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成方法および装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11450062B2 (ja) |
EP (1) | EP3819874A1 (ja) |
JP (1) | JP7122769B2 (ja) |
KR (1) | KR102302333B1 (ja) |
CN (1) | CN112782165B (ja) |
WO (1) | WO2021091027A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023175862A1 (ja) * | 2022-03-17 | 2023-09-21 | 株式会社エビデント | 屈折率分布生成装置、屈折率分布生成方法、屈折率分布生成システム及び記録媒体 |
WO2023175860A1 (ja) * | 2022-03-17 | 2023-09-21 | 株式会社エビデント | 標本画像生成装置、標本画像生成方法、標本画像生成システム及び記録媒体 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115273077B (zh) * | 2021-12-09 | 2023-06-30 | 首都医科大学附属北京天坛医院 | 细胞模型构建方法、计算机设备及存储介质 |
FR3131417B1 (fr) * | 2021-12-28 | 2024-06-28 | Commissariat Energie Atomique | Correction d'artefacts de reconstructions tomographiques par reseaux de neurones |
KR102659201B1 (ko) * | 2022-05-30 | 2024-04-22 | 주식회사 토모큐브 | Ai 기술 기반의 3차원 굴절률 현미경 영상 분해능 개선 시스템 및 방법 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281405A (ja) * | 1996-04-17 | 1997-10-31 | Olympus Optical Co Ltd | 顕微鏡システム |
JP2002531840A (ja) * | 1998-12-01 | 2002-09-24 | イェダ リサーチ アンド デベロップメント カンパニー リミテッド | コンピュータを使用した適応画像形成装置及び方法 |
JP2009014939A (ja) * | 2007-07-03 | 2009-01-22 | Olympus Corp | 顕微鏡システム、そのvs画像生成方法、プログラム |
JP2013507612A (ja) * | 2009-10-12 | 2013-03-04 | ベンタナ メディカル システムズ, インコーポレイテッド | 高められた病理学的決定のための複数モダリティコントラストおよび明視野コンテキスト表現、および組織内の複数検体検出 |
JP2017529574A (ja) * | 2014-09-22 | 2017-10-05 | ナノライブ・エスエイNanolive SA | 顕微鏡 |
JP2018206260A (ja) * | 2017-06-08 | 2018-12-27 | 国立大学法人 筑波大学 | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム |
WO2019013960A1 (en) * | 2017-07-11 | 2019-01-17 | Siemens Healthcare Diagnostics Inc. | METHODS AND SYSTEMS FOR LEARNING BASED IMAGE EDGE IMPROVEMENT FOR HIGHER SAMPLE TUBE CIRCLES |
WO2019032723A1 (en) * | 2017-08-09 | 2019-02-14 | Allen Institute | IMAGE PROCESSING SYSTEMS, DEVICES, AND METHODS FOR GENERATING AN IMAGE HAVING PREDICTIVE MARKING |
JP2019045540A (ja) * | 2017-08-30 | 2019-03-22 | 学校法人 埼玉医科大学 | 画像処理装置、画像処理方法、画像処理プログラム |
WO2019060141A1 (en) * | 2017-09-19 | 2019-03-28 | Siemens Healthcare Diagnostics Inc. | VIRTUAL COLORING OF CELLS IN DIGITAL HOLOGRAPHIC MICROSCOPY IMAGES USING GENERATIVE ANTAGONIST NETWORKS |
JP2020144012A (ja) * | 2019-03-06 | 2020-09-10 | 学校法人 埼玉医科大学 | 染色画像推定器学習装置、画像処理装置、染色画像推定器学習方法、画像処理方法、染色画像推定器学習プログラム、及び、画像処理プログラム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6522775B2 (en) * | 2001-03-28 | 2003-02-18 | Alan C. Nelson | Apparatus and method for imaging small objects in a flow stream using optical tomography |
CN1231786C (zh) * | 2003-06-03 | 2005-12-14 | 暨南大学 | 可产生三维立体图像的光学空间滤波方法 |
KR101927852B1 (ko) * | 2016-06-10 | 2018-12-13 | 주식회사 토모큐브 | 3차원 굴절률 토모그램과 딥러닝을 이용한 비염색 비표지 세포 종류 구분 방법 및 장치 |
KR101865624B1 (ko) * | 2016-06-10 | 2018-06-11 | 주식회사 토모큐브 | 파면 제어기를 이용한 초고속 3차원 굴절률 영상 촬영 및 형광 구조화 조도 현미경 시스템 및 이를 이용한 방법 |
CN109564617B (zh) * | 2016-06-13 | 2023-09-26 | 纳诺利弗股份有限公司 | 表征和成像微观物体的方法 |
JP2019135939A (ja) * | 2018-02-07 | 2019-08-22 | 澁谷工業株式会社 | 細胞カウント方法および細胞カウント装置ならびに細胞培養方法 |
AU2019240057A1 (en) * | 2018-03-20 | 2020-10-08 | Lumacyte, LLC | Advanced biophysical and biochemical cellular monitoring and quantification using laser force cytology |
CN112106061A (zh) * | 2018-03-30 | 2020-12-18 | 加利福尼亚大学董事会 | 使用深度学习对未标记荧光图像进行数字染色的方法和系统 |
US11392830B2 (en) * | 2018-04-13 | 2022-07-19 | The Regents Of The University Of California | Devices and methods employing optical-based machine learning using diffractive deep neural networks |
KR101977067B1 (ko) * | 2018-08-24 | 2019-05-10 | 주식회사 뷰노 | 심층 신경망 기반 특징 추출을 통하여 진단 맵을 재구축하는 방법 및 이를 이용한 장치 |
CN109884018B (zh) * | 2019-03-22 | 2020-09-18 | 华中科技大学 | 一种基于神经网络的亚微米级无透镜显微成像方法及系统 |
CN110378473B (zh) * | 2019-07-26 | 2021-12-21 | 清华大学 | 基于深度学习和随机图案的相位层析方法及装置 |
-
2019
- 2019-11-05 KR KR1020190139992A patent/KR102302333B1/ko active IP Right Grant
-
2020
- 2020-03-03 WO PCT/KR2020/002979 patent/WO2021091027A1/ko active Application Filing
- 2020-03-13 EP EP20163081.1A patent/EP3819874A1/en not_active Ceased
- 2020-03-19 US US16/823,453 patent/US11450062B2/en active Active
- 2020-03-19 JP JP2020049395A patent/JP7122769B2/ja active Active
- 2020-03-26 CN CN202010221423.1A patent/CN112782165B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281405A (ja) * | 1996-04-17 | 1997-10-31 | Olympus Optical Co Ltd | 顕微鏡システム |
JP2002531840A (ja) * | 1998-12-01 | 2002-09-24 | イェダ リサーチ アンド デベロップメント カンパニー リミテッド | コンピュータを使用した適応画像形成装置及び方法 |
JP2009014939A (ja) * | 2007-07-03 | 2009-01-22 | Olympus Corp | 顕微鏡システム、そのvs画像生成方法、プログラム |
JP2013507612A (ja) * | 2009-10-12 | 2013-03-04 | ベンタナ メディカル システムズ, インコーポレイテッド | 高められた病理学的決定のための複数モダリティコントラストおよび明視野コンテキスト表現、および組織内の複数検体検出 |
JP2017529574A (ja) * | 2014-09-22 | 2017-10-05 | ナノライブ・エスエイNanolive SA | 顕微鏡 |
JP2018206260A (ja) * | 2017-06-08 | 2018-12-27 | 国立大学法人 筑波大学 | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム |
WO2019013960A1 (en) * | 2017-07-11 | 2019-01-17 | Siemens Healthcare Diagnostics Inc. | METHODS AND SYSTEMS FOR LEARNING BASED IMAGE EDGE IMPROVEMENT FOR HIGHER SAMPLE TUBE CIRCLES |
WO2019032723A1 (en) * | 2017-08-09 | 2019-02-14 | Allen Institute | IMAGE PROCESSING SYSTEMS, DEVICES, AND METHODS FOR GENERATING AN IMAGE HAVING PREDICTIVE MARKING |
JP2019045540A (ja) * | 2017-08-30 | 2019-03-22 | 学校法人 埼玉医科大学 | 画像処理装置、画像処理方法、画像処理プログラム |
WO2019060141A1 (en) * | 2017-09-19 | 2019-03-28 | Siemens Healthcare Diagnostics Inc. | VIRTUAL COLORING OF CELLS IN DIGITAL HOLOGRAPHIC MICROSCOPY IMAGES USING GENERATIVE ANTAGONIST NETWORKS |
JP2020144012A (ja) * | 2019-03-06 | 2020-09-10 | 学校法人 埼玉医科大学 | 染色画像推定器学習装置、画像処理装置、染色画像推定器学習方法、画像処理方法、染色画像推定器学習プログラム、及び、画像処理プログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023175862A1 (ja) * | 2022-03-17 | 2023-09-21 | 株式会社エビデント | 屈折率分布生成装置、屈折率分布生成方法、屈折率分布生成システム及び記録媒体 |
WO2023175860A1 (ja) * | 2022-03-17 | 2023-09-21 | 株式会社エビデント | 標本画像生成装置、標本画像生成方法、標本画像生成システム及び記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
US20210134054A1 (en) | 2021-05-06 |
CN112782165A (zh) | 2021-05-11 |
KR102302333B1 (ko) | 2021-09-16 |
KR20210054183A (ko) | 2021-05-13 |
CN112782165B (zh) | 2024-09-20 |
US11450062B2 (en) | 2022-09-20 |
WO2021091027A1 (ko) | 2021-05-14 |
EP3819874A1 (en) | 2021-05-12 |
JP7122769B2 (ja) | 2022-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021076575A (ja) | 3次元屈折率映像とディープラーニングを活用したラベルフリー方式の3次元分子像生成方法および装置 | |
Jo et al. | Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning | |
Baek et al. | Intensity-based holographic imaging via space-domain Kramers–Kronig relations | |
Horstmeyer et al. | Diffraction tomography with Fourier ptychography | |
Horstmeyer et al. | Standardizing the resolution claims for coherent microscopy | |
Lee et al. | Single-exposure quantitative phase imaging in color-coded LED microscopy | |
Astratov et al. | Roadmap on Label‐Free Super‐Resolution Imaging | |
Jolivet et al. | Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology | |
KR102246439B1 (ko) | 기계학습 알고리즘을 활용한 신속한 3차원 단층촬영의 정규화 방법 및 장치 | |
KR20170140473A (ko) | 3차원 굴절률 토모그램과 딥러닝을 이용한 비염색 비표지 세포 종류 구분 방법 및 장치 | |
Li et al. | Photonic-dispersion neural networks for inverse scattering problems | |
Krauze et al. | 3D scattering microphantom sample to assess quantitative accuracy in tomographic phase microscopy techniques | |
Chen et al. | A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope | |
Stockton et al. | Tomographic single pixel spatial frequency projection imaging | |
Lin et al. | Phase distribution analysis of tissues based on the off-axis digital holographic hybrid reconstruction algorithm | |
Chang et al. | 3D single-shot ptychography with highly tilted illuminations | |
Strasser et al. | Direct measurement of individual optical forces in ensembles of trapped particles | |
Drobczyński et al. | Real-time force measurement in double wavelength optical tweezers | |
He et al. | Full Poincaré polarimetry enabled through physical inference | |
Běhal et al. | Developing a reliable holographic flow cyto-tomography apparatus by optimizing the experimental layout and computational processing | |
El Mallahi et al. | Separation of overlapped particles in digital holographic microscopy | |
CN102539381B (zh) | 基于微离轴显微干涉投影的折射率层析装置 | |
Wen et al. | Phase retrieval with dynamic linear combination in multiple intensity measurements | |
Unger et al. | Versatile inversion tool for phaseless optical diffraction tomography | |
Maire et al. | Experimental inversion of optical diffraction tomography data with a nonlinear algorithm in the multiple scattering regime |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220225 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220719 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7122769 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |