JP2021074746A - Die for powder molding, and method of manufacturing the same - Google Patents

Die for powder molding, and method of manufacturing the same Download PDF

Info

Publication number
JP2021074746A
JP2021074746A JP2019202897A JP2019202897A JP2021074746A JP 2021074746 A JP2021074746 A JP 2021074746A JP 2019202897 A JP2019202897 A JP 2019202897A JP 2019202897 A JP2019202897 A JP 2019202897A JP 2021074746 A JP2021074746 A JP 2021074746A
Authority
JP
Japan
Prior art keywords
cylinder portion
powder molding
shrink
molding die
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019202897A
Other languages
Japanese (ja)
Inventor
聖 鶴田
Hijiri Tsuruta
聖 鶴田
伸一 廣野
Shinichi Hirono
伸一 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2019202897A priority Critical patent/JP2021074746A/en
Publication of JP2021074746A publication Critical patent/JP2021074746A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Presses And Accessory Devices Thereof (AREA)

Abstract

To provide a die for powder molding, which is hardly broken by the powder molding under high pressure and which can be inhibited from being broken due to a delayed crack.SOLUTION: A die for powder molding comprises: an inside cylinder part; an intermediate cylinder part that is shrinkage-fitted into the outer periphery of the inside cylinder part; and an outside cylinder part that is shrinkage-fitted into the outer periphery of the intermediate cylinder part. The shrinkage fit ratio of the intermediate cylinder part to the inside cylinder part is set to be a first shrinkage fit ratio, and the shrinkage fit ratio of the outside cylinder part to the intermediate cylinder part is set to be a second shrinkage fit ratio. In this case, the first shrinkage fit ratio is higher than the second shrinkage fit ratio, and the second shrinkage fit ratio is 0.15% or more and less than 0.25%.SELECTED DRAWING: Figure 2

Description

本開示は、粉末成形用ダイ、及び粉末成形用ダイの製造方法に関する。 The present disclosure relates to a powder molding die and a method for manufacturing a powder molding die.

特許文献1は、内環と、内環の外周に焼き嵌めされた外環とを備える段付きダイを開示する。粉末成形時、ダイに加わる内部圧力により引張応力が発生することで、ダイが破損し得る。特に、成形用粉末が充填される空間を構成するダイの内周面近傍が破損し得る。特許文献1では、内環に発生する引張応力を打ち消す圧縮応力を予め内環に付与している。具体的には、特許文献1では、内環に対する外環の焼嵌め率を、0.12%以上0.25%以下に設定している。 Patent Document 1 discloses a stepped die including an inner ring and an outer ring that is shrink-fitted on the outer periphery of the inner ring. During powder molding, the die may be damaged due to the generation of tensile stress due to the internal pressure applied to the die. In particular, the vicinity of the inner peripheral surface of the die constituting the space filled with the molding powder may be damaged. In Patent Document 1, a compressive stress that cancels the tensile stress generated in the inner ring is previously applied to the inner ring. Specifically, in Patent Document 1, the shrinkage fitting ratio of the outer ring to the inner ring is set to 0.12% or more and 0.25% or less.

特開2015−182124号公報Japanese Unexamined Patent Publication No. 2015-182124

従来よりも高圧力で粉末成形した場合であっても、ダイの破損を防止できることが望まれる。粉末成形時の圧力が高いほど、内環に発生する引張応力も大きくなる。そのため、高圧力で粉末成形する場合、予め内環に付与する圧縮応力も大きくする必要がある。上記圧縮応力を大きくするには、内環に対する外環の焼嵌め率を大きくすることが挙げられる。 It is desired that the die can be prevented from being damaged even when powdered at a higher pressure than before. The higher the pressure during powder molding, the greater the tensile stress generated in the inner ring. Therefore, when powder molding is performed at high pressure, it is necessary to increase the compressive stress applied to the inner ring in advance. In order to increase the compressive stress, it is possible to increase the shrinkage fitting ratio of the outer ring with respect to the inner ring.

一方で、ダイに加工孔を設けることがある。加工孔には、例えば、ダイの温度を調整する媒体が通る。ダイに加工孔を備える場合、内環に付与する圧縮応力が大き過ぎると、その応力に起因して、加工孔を起点にダイに置き割れが発生するおそれがある。 On the other hand, the die may be provided with a machined hole. For example, a medium for adjusting the temperature of the die passes through the machined hole. When the die is provided with a machined hole, if the compressive stress applied to the inner ring is too large, the die may be placed from the machined hole as a starting point and crack may occur due to the stress.

そこで、本開示は、高圧力での粉末成形に対して破損し難く、かつ置き割れによる破損を抑制できる粉末成形用ダイを提供することを目的の一つとする。また、本開示は、高圧力での粉末成形に対して破損し難く、かつ置き割れによる破損を抑制できる粉末成形用ダイが得られる粉末成形用ダイの製造方法を提供することを目的の一つとする。 Therefore, one of the purposes of the present disclosure is to provide a powder molding die that is not easily damaged by powder molding at high pressure and can suppress damage due to cracking. Another object of the present disclosure is to provide a method for manufacturing a powder molding die, which can obtain a powder molding die that is not easily damaged by powder molding at high pressure and can suppress damage due to cracking. To do.

本開示の粉末成形用ダイは、
内側筒部と、
前記内側筒部の外周に焼嵌めされた中間筒部と、
前記中間筒部の外周に焼嵌めされた外側筒部とを備え、
前記内側筒部に対する前記中間筒部の焼嵌め率を第一の焼嵌め率とし、前記中間筒部に対する前記外側筒部の焼嵌め率を第二の焼嵌め率とするとき、
前記第一の焼嵌め率が前記第二の焼嵌め率よりも大きく、
前記第二の焼嵌め率が0.15%以上0.25%未満である。
The powder molding die of the present disclosure is
Inner cylinder and
An intermediate cylinder portion that is shrink-fitted on the outer circumference of the inner cylinder portion, and
An outer cylinder portion that is shrink-fitted on the outer circumference of the intermediate cylinder portion is provided.
When the shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is defined as the first shrink fit ratio and the shrink fit ratio of the outer cylinder portion with respect to the intermediate cylinder portion is defined as the second shrink fit ratio.
The first shrink-fitting rate is larger than the second shrink-fitting rate,
The second shrink fit ratio is 0.15% or more and less than 0.25%.

本開示の粉末成形用ダイの製造方法は、
内側筒部、中間筒部、及び外側筒部を準備する工程と、
前記内側筒部の外周に前記中間筒部を焼き嵌めし、前記内側筒部と前記中間筒部とを一体物とする工程と、
前記一体物の外周に前記外側筒部を焼嵌めする工程とを備え、
前記内側筒部に対する前記中間筒部の焼嵌め率を第一の焼嵌め率とし、前記一体物に対する前記外側筒部の焼嵌め率を第二の焼嵌め率とするとき、
前記第一の焼嵌め率を前記第二の焼嵌め率よりも大きく設定すると共に、前記第二の焼嵌め率を0.15%以上0.25%未満に設定する。
The method for producing the powder molding die of the present disclosure is as follows.
The process of preparing the inner cylinder, intermediate cylinder, and outer cylinder, and
A step of shrink-fitting the intermediate cylinder portion to the outer circumference of the inner cylinder portion and integrating the inner cylinder portion and the intermediate cylinder portion.
A step of shrink-fitting the outer cylinder portion to the outer periphery of the integrated object is provided.
When the shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is defined as the first shrink fit ratio and the shrink fit ratio of the outer cylinder portion with respect to the integrated object is defined as the second shrink fit ratio.
The first shrink-fitting rate is set to be larger than the second shrink-fitting rate, and the second shrink-fitting rate is set to 0.15% or more and less than 0.25%.

本開示の粉末成形用ダイは、高圧力での粉末成形に対して破損し難く、かつ置き割れによる破損を抑制できる。また、本開示の粉末成形用ダイの製造方法は、高圧力での粉末成形に対して破損し難く、かつ置き割れによる破損を抑制できる粉末成形用ダイが得られる。 The powder molding die of the present disclosure is not easily damaged by powder molding at high pressure, and can suppress damage due to cracking. Further, the method for producing a powder molding die of the present disclosure provides a powder molding die that is not easily damaged by powder molding at high pressure and can suppress damage due to cracking.

図1は、実施形態の粉末成形用ダイを示す概略平面図である。FIG. 1 is a schematic plan view showing a powder molding die of the embodiment. 図2は、実施形態の粉末成形用ダイを示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the powder molding die of the embodiment. 図3は、実施形態の粉末成形用ダイに備わる内側筒部を示す概略斜視図である。FIG. 3 is a schematic perspective view showing an inner cylinder portion provided in the powder molding die of the embodiment.

[本開示の実施形態の説明]
最初に本開示の実施形態の内容を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.

(1)本開示に係る粉末成形用ダイは、
内側筒部と、
前記内側筒部の外周に焼嵌めされた中間筒部と、
前記中間筒部の外周に焼嵌めされた外側筒部とを備え、
前記内側筒部に対する前記中間筒部の焼嵌め率を第一の焼嵌め率とし、前記中間筒部に対する前記外側筒部の焼嵌め率を第二の焼嵌め率とするとき、
前記第一の焼嵌め率が前記第二の焼嵌め率よりも大きく、
前記第二の焼嵌め率が0.15%以上0.25%未満である。
(1) The powder molding die according to the present disclosure is
Inner cylinder and
An intermediate cylinder portion that is shrink-fitted on the outer circumference of the inner cylinder portion, and
An outer cylinder portion that is shrink-fitted on the outer circumference of the intermediate cylinder portion is provided.
When the shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is defined as the first shrink fit ratio and the shrink fit ratio of the outer cylinder portion with respect to the intermediate cylinder portion is defined as the second shrink fit ratio.
The first shrink-fitting rate is larger than the second shrink-fitting rate,
The second shrink fit ratio is 0.15% or more and less than 0.25%.

本開示の粉末成形用ダイは、内側筒部、中間筒部、及び外側筒部による三層構造で構成される。粉末成形用ダイが三層構造で構成されることで、内側筒部に対する中間筒部の第一の焼嵌め率と、中間筒部に対する外側筒部の第二の焼嵌め率とを異ならせることができる。具体的には、第一の焼嵌め率を第二の焼嵌め率よりも大きくできる。第一の焼嵌め率が第二の焼嵌め率よりも大きいことで、内側筒部に付与する圧縮応力を大きくできる一方で、外側筒部に発生する圧縮応力を所定値以下に設定できる。内側筒部に付与する圧縮応力を大きくできることで、粉末成形時の圧力を高くすることができる。粉末成形時に粉末成形用ダイに発生する引張応力は、主に内側筒部の内周面近傍に発生するからである。粉末成形時に粉末成形用ダイに加わる内部圧力は、内側筒部に付与された圧縮応力によって緩和される。 The powder molding die of the present disclosure has a three-layer structure consisting of an inner cylinder portion, an intermediate cylinder portion, and an outer cylinder portion. Since the powder molding die has a three-layer structure, the first shrink-fitting ratio of the intermediate cylinder with respect to the inner cylinder and the second shrink-fitting ratio of the outer cylinder with respect to the intermediate cylinder are different. Can be done. Specifically, the first shrink fit rate can be made larger than the second shrink fit rate. Since the first shrink fit ratio is larger than the second shrink fit ratio, the compressive stress applied to the inner cylinder portion can be increased, while the compressive stress generated in the outer cylinder portion can be set to a predetermined value or less. By increasing the compressive stress applied to the inner cylinder, the pressure during powder molding can be increased. This is because the tensile stress generated in the powder molding die during powder molding is mainly generated in the vicinity of the inner peripheral surface of the inner cylinder portion. The internal pressure applied to the powder molding die during powder molding is relieved by the compressive stress applied to the inner cylinder portion.

外側筒部に発生する圧縮応力は、主に第二の焼嵌め率に起因するものである。第二の焼嵌め率が0.25%未満であることで、外側筒部に発生する圧縮応力を所定値以下に設定できる。外側筒部に発生する圧縮応力を所定値以下に設定できることで、粉末成形用ダイに置き割れが発生することを抑制できる。特に外側筒部に加工孔を設けた場合であっても、加工孔を起点に粉末成形用ダイに置き割れが発生することを抑制できる。一方、第二の焼嵌め率が0.15%以上であることで、中間筒部の外周に外側筒部を適切に焼嵌めできる。 The compressive stress generated in the outer cylinder portion is mainly due to the second shrinkage fitting ratio. When the second shrinkage fitting ratio is less than 0.25%, the compressive stress generated in the outer cylinder portion can be set to a predetermined value or less. By setting the compressive stress generated in the outer cylinder portion to a predetermined value or less, it is possible to suppress the occurrence of cracks on the powder molding die. In particular, even when a machined hole is provided in the outer cylinder portion, it is possible to suppress the occurrence of cracks by placing the machined hole on the powder molding die as a starting point. On the other hand, when the second shrink fit ratio is 0.15% or more, the outer cylinder portion can be appropriately shrink fit on the outer circumference of the intermediate cylinder portion.

以上より、本開示の粉末成形用ダイは、高圧力の粉末成形に対して破損し難く、かつ置き割れによる破損を抑制できる。 From the above, the powder molding die of the present disclosure is not easily damaged by high pressure powder molding, and can suppress damage due to cracking.

(2)本開示の粉末成形用ダイの一例として、
前記第一の焼嵌め率は、0.25%以上0.35%未満である形態が挙げられる。
(2) As an example of the powder molding die of the present disclosure,
The first shrink fit ratio may be 0.25% or more and less than 0.35%.

第一の焼嵌め率が0.25%以上であることで、内側筒部に付与する圧縮応力を従来よりも大きくできる。第一の焼嵌め率が大き過ぎると、焼嵌め時に亀裂が発生するおそれがある。よって、第一の焼嵌め率が0.35%未満であることで、焼嵌め時の亀裂を抑制できる。 When the first shrink fit ratio is 0.25% or more, the compressive stress applied to the inner cylinder portion can be made larger than before. If the first shrink fit ratio is too large, cracks may occur during shrink fit. Therefore, when the first shrink-fitting rate is less than 0.35%, cracks at the time of shrink-fitting can be suppressed.

(3)本開示の粉末成形用ダイの一例として、
前記内側筒部は、
下パンチが嵌め込まれる第一の内周面と、
上パンチが嵌め込まれる第二の内周面と、
前記第一の内周面と前記第二の内周面とをつなぐ段差面とを備える形態が挙げられる。
(3) As an example of the powder molding die of the present disclosure,
The inner cylinder portion
The first inner peripheral surface into which the lower punch is fitted,
The second inner surface on which the upper punch is fitted, and
An example includes a form including a stepped surface connecting the first inner peripheral surface and the second inner peripheral surface.

内側筒部に段差面を備える場合、粉末成形時に粉末成形用ダイに発生する引張応力は、第二の内周面又は第一の内周面と段差面とで構成される角部に集中し易い。本開示の粉末成形用ダイは、上述したように、内側筒部に予め付与される圧縮応力が大きい。よって、上記角部に引張応力が集中したとしても、粉末成形用ダイが破損することを抑制し易い。 When the inner cylinder portion is provided with a stepped surface, the tensile stress generated in the powder molding die during powder molding is concentrated on the second inner peripheral surface or the corner portion composed of the first inner peripheral surface and the stepped surface. easy. As described above, the powder molding die of the present disclosure has a large compressive stress applied to the inner cylinder portion in advance. Therefore, even if the tensile stress is concentrated on the corner portion, it is easy to prevent the powder molding die from being damaged.

(4)本開示の粉末成形用ダイの一例として、
前記中間筒部及び前記外側筒部は、前記粉末成形用ダイの温度を調整する媒体が流通する加工孔を備え、
前記加工孔は、
前記粉末成形用ダイの軸方向に沿って設けられる縦孔と、
前記縦孔に交差する方向に設けられる横孔とを備え、
前記縦孔は、前記外側筒部に設けられ、
前記横孔は、前記外側筒部及び前記中間筒部に設けられる形態が挙げられる。
(4) As an example of the powder molding die of the present disclosure,
The intermediate cylinder portion and the outer cylinder portion are provided with processing holes through which a medium for adjusting the temperature of the powder molding die flows.
The machined hole is
Vertical holes provided along the axial direction of the powder molding die, and
It is provided with a horizontal hole provided in a direction intersecting the vertical hole.
The vertical hole is provided in the outer cylinder portion and is provided.
Examples of the lateral hole include a form provided in the outer cylinder portion and the intermediate cylinder portion.

中間筒部及び外側筒部に加工孔を備えることで、粉末成形用ダイの温度を調整することができる。例えば、粉末成形時の圧力を高くすると、粉末成形用ダイの温度が高くなる。そこで、加工孔に冷媒を流すことで、粉末成形用ダイの高温化を抑制できる。 By providing the intermediate cylinder portion and the outer cylinder portion with processing holes, the temperature of the powder molding die can be adjusted. For example, when the pressure during powder molding is increased, the temperature of the powder molding die becomes higher. Therefore, by flowing the refrigerant through the processing holes, it is possible to suppress the temperature rise of the powder molding die.

粉末成形用ダイに加工孔を設ける場合、縦孔と横孔との交差箇所を起点に置き割れが発生し易い。本開示の粉末成形用ダイは、上述したように、外側筒部に発生する圧縮応力を所定値以下に設定できる。よって、上記交差箇所が外側筒部に設けられることで、上記交差箇所を起点に置き割れが発生することを抑制し易い。 When a machined hole is provided in the powder molding die, cracks are likely to occur by placing the intersection of the vertical hole and the horizontal hole as the starting point. In the powder molding die of the present disclosure, as described above, the compressive stress generated in the outer cylinder portion can be set to a predetermined value or less. Therefore, since the intersection is provided on the outer cylinder portion, it is easy to prevent the occurrence of cracks by placing the intersection as the starting point.

(5)本開示の粉末成形用ダイの一例として、
前記中間筒部と前記外側筒部とは、同種の材質で構成されている形態が挙げられる。
(5) As an example of the powder molding die of the present disclosure,
Examples thereof include a form in which the intermediate cylinder portion and the outer cylinder portion are made of the same type of material.

中間筒部と外側筒部とが同種の材質で構成されていることで、中間筒部と外側筒部の機械的特性や熱的特性を同じ又は近似させることができる。上記各特性が同じ又は近似していることで、粉末成形用ダイの製造時において、中間筒部の外周に外側筒部を焼嵌めする工程を行い易い。また、粉末成形用ダイの使用時における機械的特性や熱的特性のばらつきを小さくし易い。 Since the intermediate cylinder and the outer cylinder are made of the same material, the mechanical and thermal characteristics of the intermediate cylinder and the outer cylinder can be the same or similar. When the above characteristics are the same or similar, it is easy to perform a step of shrink-fitting the outer cylinder portion to the outer circumference of the intermediate cylinder portion at the time of manufacturing the powder molding die. In addition, it is easy to reduce variations in mechanical properties and thermal properties when using a powder molding die.

(6)本開示の粉末成形用ダイの一例として、
前記外側筒部の厚さは、前記中間筒部の厚さよりも厚い形態が挙げられる。
(6) As an example of the powder molding die of the present disclosure,
The thickness of the outer cylinder portion may be thicker than the thickness of the intermediate cylinder portion.

外側筒部の厚さと、焼嵌めによって外側筒部に作用する圧縮応力との関係について、焼嵌め率を一定としたとき、外側筒部の厚さが厚いほど圧縮応力が小さくなり、外側筒部の厚さが薄いほど圧縮応力が大きくなる傾向にある。よって、中間筒部と外側筒部の合計厚さを一定としたとき、外側筒部の厚さが中間筒部の厚さよりも厚いことで、外側筒部の圧縮応力を所定値以下に設定し易い。 Regarding the relationship between the thickness of the outer cylinder and the compressive stress acting on the outer cylinder due to shrink fitting, when the shrink fit ratio is constant, the thicker the outer cylinder, the smaller the compressive stress, and the outer cylinder The thinner the thickness, the larger the compressive stress tends to be. Therefore, when the total thickness of the intermediate cylinder and the outer cylinder is constant, the thickness of the outer cylinder is thicker than the thickness of the intermediate cylinder, so that the compressive stress of the outer cylinder is set to a predetermined value or less. easy.

(7)本開示に係る粉末成形用ダイの製造方法は、
内側筒部、中間筒部、及び外側筒部を準備する工程と、
前記内側筒部の外周に前記中間筒部を焼き嵌めし、前記内側筒部と前記中間筒部とを一体物とする工程と、
前記一体物の外周に前記外側筒部を焼嵌めする工程とを備え、
前記内側筒部に対する前記中間筒部の焼嵌め率を第一の焼嵌め率とし、前記一体物に対する前記外側筒部の焼嵌め率を第二の焼嵌め率とするとき、
前記第一の焼嵌め率を前記第二の焼嵌め率よりも大きく設定すると共に、前記第二の焼嵌め率を0.15%以上0.25%未満に設定する。
(7) The method for manufacturing a powder molding die according to the present disclosure is as follows.
The process of preparing the inner cylinder, intermediate cylinder, and outer cylinder, and
A step of shrink-fitting the intermediate cylinder portion to the outer circumference of the inner cylinder portion and integrating the inner cylinder portion and the intermediate cylinder portion.
A step of shrink-fitting the outer cylinder portion to the outer periphery of the integrated object is provided.
When the shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is defined as the first shrink fit ratio and the shrink fit ratio of the outer cylinder portion with respect to the integrated object is defined as the second shrink fit ratio.
The first shrink-fitting rate is set to be larger than the second shrink-fitting rate, and the second shrink-fitting rate is set to 0.15% or more and less than 0.25%.

本開示の粉末成形用ダイの製造方法は、内側筒部、中間筒部、及び外側筒部による三層構造の粉末成形用ダイを製造する。粉末成形用ダイを三層構造で構成することで、内側筒部に対する中間筒部の第一の焼嵌め率と、内側筒部に中間筒部を焼嵌めした一体物に対する外側筒部の第二の焼嵌め率とを異ならせることができる。具体的には、第一の焼嵌め率を第二の焼嵌め率よりも大きくできる。第一の焼嵌め率が第二の焼嵌め率よりも大きいことで、内側筒部に付与する圧縮応力を大きくできる一方で、外側筒部に発生する圧縮応力を所定値以下に設定できる。内側筒部に発生する圧縮応力を大きくできることで、粉末成形時の圧力を高くすることができる。粉末成形時に粉末成形用ダイに発生する引張応力は、主に内側筒部の内周面近傍に発生するからである。粉末成形時に粉末成形用ダイに加わる内部圧力は、内側筒部に付与された圧縮応力によって緩和される。 The method for manufacturing a powder molding die of the present disclosure is to manufacture a powder molding die having a three-layer structure consisting of an inner cylinder portion, an intermediate cylinder portion, and an outer cylinder portion. By forming the powder molding die with a three-layer structure, the first shrink-fitting ratio of the intermediate cylinder with respect to the inner cylinder and the second shrink-fitting of the outer cylinder with respect to the integral body obtained by shrink-fitting the intermediate cylinder with the inner cylinder. It is possible to make the shrinkage fitting rate of. Specifically, the first shrink fit rate can be made larger than the second shrink fit rate. Since the first shrink fit ratio is larger than the second shrink fit ratio, the compressive stress applied to the inner cylinder portion can be increased, while the compressive stress generated in the outer cylinder portion can be set to a predetermined value or less. By increasing the compressive stress generated in the inner cylinder, the pressure during powder molding can be increased. This is because the tensile stress generated in the powder molding die during powder molding is mainly generated in the vicinity of the inner peripheral surface of the inner cylinder portion. The internal pressure applied to the powder molding die during powder molding is relieved by the compressive stress applied to the inner cylinder portion.

外側筒部に発生する圧縮応力は、主に第二の焼嵌め率に起因するものである。第二の焼嵌め率を0.25%未満とすることで、外側筒部に発生する圧縮応力を所定値以下に設定できる。外側筒部に発生する圧縮応力を所定値以下に設定できることで、粉末成形用ダイに置き割れが発生することを抑制できる。特に外側筒部に加工孔を設けた場合であっても、加工孔を起点に粉末成形用ダイに置き割れが発生することを抑制できる。一方、第二の焼嵌め率を0.15%以上とすることで、内側筒部に中間筒部を焼嵌めした一体物の外周に外側筒部を適切に焼嵌めできる。 The compressive stress generated in the outer cylinder portion is mainly due to the second shrinkage fitting ratio. By setting the second shrinkage fitting ratio to less than 0.25%, the compressive stress generated in the outer cylinder portion can be set to a predetermined value or less. By setting the compressive stress generated in the outer cylinder portion to a predetermined value or less, it is possible to suppress the occurrence of cracks on the powder molding die. In particular, even when a machined hole is provided in the outer cylinder portion, it is possible to suppress the occurrence of cracks by placing the machined hole on the powder molding die as a starting point. On the other hand, by setting the second shrink fit ratio to 0.15% or more, the outer cylinder portion can be appropriately shrink fit to the outer periphery of the integral body in which the intermediate cylinder portion is shrink fit into the inner cylinder portion.

以上より、本開示の粉末成形用ダイの製造方法は、高圧力の粉末成形に対して破損し難く、かつ置き割れによる破損を抑制できる。 From the above, the method for producing a powder molding die of the present disclosure is less likely to be damaged by high pressure powder molding and can suppress damage due to cracking.

[本開示の実施形態の詳細]
本開示の実施形態の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は、同一名称物を示す。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of Embodiments of the present disclosure]
Details of the embodiments of the present disclosure will be described below with reference to the drawings. The same reference numerals in the figures indicate the same names. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

<粉末成形用ダイ>
図1から図3を参照して、実施形態の粉末成形用ダイ1を説明する。粉末成形用ダイ1は、内側筒部2と、内側筒部2の外側に設けられる外側筒部4とを備える。実施形態の粉末成形用ダイ1は、内側筒部2と外側筒部4との間に設けられる中間筒部3を備える点を特徴の一つとする。具体的には、実施形態の粉末成形用ダイ1は、中間筒部3が内側筒部2の外周に焼嵌めされ、外側筒部4が中間筒部3の外周に焼嵌めされている点を特徴の一つとする。また、実施形態の粉末成形用ダイ1は、内側筒部2に対する中間筒部3の焼嵌め率が、中間筒部3に対する外側筒部4の焼嵌め率よりも大きい点を特徴の一つとする。更に、実施形態の粉末成形用ダイ1は、中間筒部3に対する外側筒部4の焼嵌め率が0.15%以上0.25%未満である点を特徴の一つとする。以下、粉末成形用ダイ1の詳細な構成を説明し、その後に粉末成形用ダイ1の製造方法を説明する。
<Die for powder molding>
The powder molding die 1 of the embodiment will be described with reference to FIGS. 1 to 3. The powder molding die 1 includes an inner cylinder portion 2 and an outer cylinder portion 4 provided on the outside of the inner cylinder portion 2. One of the features of the powder molding die 1 of the embodiment is that it includes an intermediate cylinder portion 3 provided between the inner cylinder portion 2 and the outer cylinder portion 4. Specifically, in the powder molding die 1 of the embodiment, the intermediate cylinder portion 3 is shrink-fitted to the outer periphery of the inner cylinder portion 2, and the outer cylinder portion 4 is shrink-fitted to the outer circumference of the intermediate cylinder portion 3. It is one of the features. Further, one of the features of the powder molding die 1 of the embodiment is that the shrinkage fit ratio of the intermediate cylinder portion 3 with respect to the inner cylinder portion 2 is larger than the shrink fit ratio of the outer cylinder portion 4 with respect to the intermediate cylinder portion 3. .. Further, the powder molding die 1 of the embodiment is characterized in that the shrinkage fitting ratio of the outer cylinder portion 4 with respect to the intermediate cylinder portion 3 is 0.15% or more and less than 0.25%. Hereinafter, the detailed configuration of the powder molding die 1 will be described, and then a method for manufacturing the powder molding die 1 will be described.

図1は、粉末成形用ダイ1の軸方向に沿って見た概略平面図である。図1では、説明の便宜上、中間筒部3及び外側筒部4に備わる加工孔5を点線で示す。図2は、図1に示す(II)−(II)切断線で切断した概略断面図である。 FIG. 1 is a schematic plan view of the powder molding die 1 as viewed along the axial direction. In FIG. 1, for convenience of explanation, the machined holes 5 provided in the intermediate cylinder portion 3 and the outer cylinder portion 4 are shown by dotted lines. FIG. 2 is a schematic cross-sectional view cut along the (II)-(II) cutting line shown in FIG.

〔内側筒部〕
内側筒部2は、図2に示すように、下パンチ8及び上パンチ9が嵌め込まれる貫通孔20を備える。貫通孔20は、第一の内周面21と、第二の内周面22と、段差面23とで構成される。第一の内周面21は、下パンチ8が嵌め込まれる。第二の内周面22は、上パンチ9が嵌め込まれる。段差面23は、第一の内周面21と第二の内周面22とをつなぐ。段差面23は、第一の内周面21及び第二の内周面22に交差する単一の平面で構成される。本例の段差面23は、第一の内周面21及び第二の内周面22の双方に対して直交する方向に延びる平面で構成される。貫通孔20のうち、下パンチ8の上面と、第一の内周面21と、第二の内周面22と、段差面23とで構成される空間が、成形用粉末が充填されるキャビティ200である。キャビティ200に充填された成形用粉末100が上パンチ9で押圧されることで、段差面を有する粉末成形体が得られる。
[Inner cylinder]
As shown in FIG. 2, the inner cylinder portion 2 includes a through hole 20 into which the lower punch 8 and the upper punch 9 are fitted. The through hole 20 is composed of a first inner peripheral surface 21, a second inner peripheral surface 22, and a stepped surface 23. The lower punch 8 is fitted into the first inner peripheral surface 21. The upper punch 9 is fitted into the second inner peripheral surface 22. The step surface 23 connects the first inner peripheral surface 21 and the second inner peripheral surface 22. The stepped surface 23 is composed of a single plane intersecting the first inner peripheral surface 21 and the second inner peripheral surface 22. The stepped surface 23 of this example is composed of a plane extending in a direction orthogonal to both the first inner peripheral surface 21 and the second inner peripheral surface 22. Of the through holes 20, the space formed by the upper surface of the lower punch 8, the first inner peripheral surface 21, the second inner peripheral surface 22, and the stepped surface 23 is a cavity filled with molding powder. It is 200. By pressing the molding powder 100 filled in the cavity 200 with the upper punch 9, a powder molded body having a stepped surface can be obtained.

本例では、貫通孔20のうち、第一の内周面21で構成される第一の領域210は、図3に示すように、貫通孔20の軸方向と直交する平面で切断した断面形状が円形状である。また、貫通孔20のうち、第二の内周面22で構成される第二の領域220は、図3に示すように、貫通孔20の軸方向と直交する平面で切断した断面形状が矩形状である。第一の領域210及び第二の領域220における上記断面形状は、適宜選択できる。例えば、第一の領域210及び第二の領域220における上記断面形状は、径の異なる円形状同士であることが挙げられる。また、第一の領域210における上記断面形状が円形状であり、第二の領域220における上記断面形状が楕円形状であることが挙げられる。第一の領域210における上記断面形状と第二の領域220における上記断面形状とは、上述した組み合わせが逆であってもよい。 In this example, of the through hole 20, the first region 210 composed of the first inner peripheral surface 21 has a cross-sectional shape cut along a plane orthogonal to the axial direction of the through hole 20, as shown in FIG. Is circular. Further, in the through hole 20, the second region 220 composed of the second inner peripheral surface 22 has a rectangular cross-sectional shape cut by a plane orthogonal to the axial direction of the through hole 20, as shown in FIG. The shape. The cross-sectional shape in the first region 210 and the second region 220 can be appropriately selected. For example, the cross-sectional shapes in the first region 210 and the second region 220 may be circular shapes having different diameters. Further, the cross-sectional shape in the first region 210 is circular, and the cross-sectional shape in the second region 220 is elliptical. The combination described above may be reversed between the cross-sectional shape in the first region 210 and the cross-sectional shape in the second region 220.

内側筒部2の厚さは、次のように考えられる。内側筒部2において、内側筒部2の中心軸を中心とし、中心から最も径方向外方に位置する第二の内周面22を通る円を仮想円P2とする。図1に仮想円P2を二点鎖線で示す。この仮想円P2と内側筒部2の外周面との間の長さを内側筒部2の厚さt2とする。内側筒部2の厚さt2は、3mm以上40mm以下であることが挙げられる。内側筒部2の厚さt2が3mm以上であることで、内側筒部2の外周に中間筒部3を焼嵌める際に亀裂が発生することを抑制し易い。一方、内側筒部2の厚さt2が40mm以下であることで、内側筒部2の大型化を抑制でき、ひいては粉末成形用ダイ1の大型化を抑制できる。内側筒部2の厚さt2は、更に3mm以上30mm以下、特に5mm以上20mm以下であることが挙げられる。 The thickness of the inner cylinder portion 2 is considered as follows. In the inner cylinder portion 2, a circle centered on the central axis of the inner cylinder portion 2 and passing through the second inner peripheral surface 22 located most radially outward from the center is referred to as a virtual circle P2. FIG. 1 shows the virtual circle P2 as a chain double-dashed line. The length between the virtual circle P2 and the outer peripheral surface of the inner cylinder portion 2 is defined as the thickness t2 of the inner cylinder portion 2. The thickness t2 of the inner cylinder portion 2 is 3 mm or more and 40 mm or less. When the thickness t2 of the inner cylinder portion 2 is 3 mm or more, it is easy to suppress the occurrence of cracks when the intermediate cylinder portion 3 is shrink-fitted on the outer circumference of the inner cylinder portion 2. On the other hand, when the thickness t2 of the inner cylinder portion 2 is 40 mm or less, the increase in size of the inner cylinder portion 2 can be suppressed, and the increase in size of the powder molding die 1 can be suppressed. The thickness t2 of the inner cylinder portion 2 may be further 3 mm or more and 30 mm or less, particularly 5 mm or more and 20 mm or less.

内側筒部2は、超硬合金で構成されることが挙げられる。超硬合金としては、WC−Co系合金、WC−TiC−Co系合金等が挙げられる。 The inner cylinder portion 2 may be made of cemented carbide. Examples of cemented carbide include WC-Co-based alloys and WC-TiC-Co-based alloys.

〔中間筒部〕
中間筒部3は、図1及び図2に示すように、内側筒部2の外周に焼嵌めされている。内側筒部2に対する中間筒部3の焼嵌め率については後述する。
[Intermediate cylinder]
As shown in FIGS. 1 and 2, the intermediate tubular portion 3 is shrink-fitted on the outer periphery of the inner tubular portion 2. The shrinkage fitting ratio of the intermediate cylinder portion 3 with respect to the inner cylinder portion 2 will be described later.

中間筒部3は、図1及び図2に示すように、加工孔5を備える。本例では、中間筒部3は、二つの加工孔5を備える。中間筒部3における加工孔5は、横孔55,56を備える。横孔55,56は、中間筒部3の外周面と内周面とを貫通する。横孔55,56は、図1に示すように、中間筒部3の周方向のずれた位置に設けられている。また、横孔55,56は、図2に示すように、中間筒部3の軸方向のずれた位置に設けられている。中間筒部3は、図2に示すように、内周面に螺旋溝57を備える。螺旋溝57は、二つの横孔55,56をつなぐように設けられている。横孔55,56及び螺旋溝57は、後述する外側筒部4に備わる加工孔5と繋がっている。 As shown in FIGS. 1 and 2, the intermediate cylinder portion 3 includes a machined hole 5. In this example, the intermediate cylinder portion 3 includes two machined holes 5. The machined hole 5 in the intermediate cylinder portion 3 includes lateral holes 55 and 56. The lateral holes 55 and 56 penetrate the outer peripheral surface and the inner peripheral surface of the intermediate tubular portion 3. As shown in FIG. 1, the lateral holes 55 and 56 are provided at positions shifted in the circumferential direction of the intermediate cylinder portion 3. Further, as shown in FIG. 2, the lateral holes 55 and 56 are provided at positions shifted in the axial direction of the intermediate cylinder portion 3. As shown in FIG. 2, the intermediate cylinder portion 3 is provided with a spiral groove 57 on the inner peripheral surface. The spiral groove 57 is provided so as to connect the two lateral holes 55 and 56. The lateral holes 55, 56 and the spiral groove 57 are connected to a machined hole 5 provided in the outer tubular portion 4, which will be described later.

図1に示す中間筒部3の厚さt3は、5mm以上40mm以下であることが挙げられる。中間筒部3の厚さt3が5mm以上であることで、中間筒部3の外周に外側筒部4を焼嵌める際に亀裂が発生することを抑制し易い。一方、中間筒部3の厚さt3が40mm以下であることで、中間筒部3の大型化を抑制でき、ひいては粉末成形用ダイ1の大型化を抑制できる。中間筒部3の厚さt3は、更に5mm以上30mm以下、特に10mm以上25mm以下であることが挙げられる。 The thickness t3 of the intermediate cylinder portion 3 shown in FIG. 1 is 5 mm or more and 40 mm or less. When the thickness t3 of the intermediate cylinder portion 3 is 5 mm or more, it is easy to suppress the occurrence of cracks when the outer cylinder portion 4 is shrink-fitted on the outer circumference of the intermediate cylinder portion 3. On the other hand, when the thickness t3 of the intermediate cylinder portion 3 is 40 mm or less, it is possible to suppress the increase in size of the intermediate cylinder portion 3, and thus the increase in size of the powder molding die 1. The thickness t3 of the intermediate cylinder portion 3 may be further 5 mm or more and 30 mm or less, particularly 10 mm or more and 25 mm or less.

中間筒部3は、焼入れ鋼で構成されることが挙げられる。 The intermediate cylinder portion 3 may be made of hardened steel.

〔外側筒部〕
外側筒部4は、図1及び図2に示すように、中間筒部3の外周に焼嵌めされている。中間筒部3に対する外側筒部4の焼嵌め率については後述する。
[Outer cylinder]
As shown in FIGS. 1 and 2, the outer tubular portion 4 is shrink-fitted on the outer periphery of the intermediate tubular portion 3. The shrinkage fitting ratio of the outer tubular portion 4 with respect to the intermediate tubular portion 3 will be described later.

外側筒部4は、図1及び図2に示すように、加工孔5を備える。本例では、外側筒部4は、二つの加工孔5を備える。外側筒部4における加工孔5は、縦孔51,52と横孔53,54とを備える。縦孔51,52は、外側筒部4の軸方向に沿って設けられている。横孔53,54は、縦孔51,52に交差する方向に設けられている。本例の横孔53,54は、縦孔51,52に直交する方向に設けられている。加工孔5は、図2の右側に位置する縦孔51と横孔53とが連通しており、図2の左側に位置する縦孔52と横孔54とが連通している。図2の右側に位置する縦孔51及び横孔53からなる加工孔5と、図2の左側に位置する縦孔52及び横孔54からなる加工孔5とは、図1に示すように、外側筒部4の周方向のずれた位置に設けられている。また、図2の右側に位置する縦孔51及び横孔53からなる加工孔5と、図2の左側に位置する縦孔52及び横孔54からなる加工孔5とは、図2に示すように、外側筒部4の軸方向にずれた位置に設けられている。横孔53,54は、外側筒部4の外周面と内周面とを貫通する。横孔53,54は、中間筒部3に外側筒部4が焼き嵌められた状態において、中間筒部3の横孔55,56に連通する。横孔53,54における外側筒部4の外周面側の端部は、止めねじ59によって閉塞されている。 The outer tubular portion 4 includes a machined hole 5 as shown in FIGS. 1 and 2. In this example, the outer tubular portion 4 includes two machined holes 5. The machined hole 5 in the outer tubular portion 4 includes vertical holes 51 and 52 and horizontal holes 53 and 54. The vertical holes 51 and 52 are provided along the axial direction of the outer tubular portion 4. The horizontal holes 53 and 54 are provided in a direction intersecting the vertical holes 51 and 52. The horizontal holes 53 and 54 of this example are provided in a direction orthogonal to the vertical holes 51 and 52. In the machined hole 5, the vertical hole 51 and the horizontal hole 53 located on the right side of FIG. 2 communicate with each other, and the vertical hole 52 and the horizontal hole 54 located on the left side of FIG. 2 communicate with each other. As shown in FIG. 1, the machined hole 5 composed of the vertical hole 51 and the horizontal hole 53 located on the right side of FIG. 2 and the machined hole 5 composed of the vertical hole 52 and the horizontal hole 54 located on the left side of FIG. The outer tubular portion 4 is provided at a position shifted in the circumferential direction. Further, the machined hole 5 composed of the vertical hole 51 and the horizontal hole 53 located on the right side of FIG. 2 and the machined hole 5 composed of the vertical hole 52 and the horizontal hole 54 located on the left side of FIG. 2 are as shown in FIG. Is provided at a position deviated in the axial direction of the outer tubular portion 4. The lateral holes 53 and 54 penetrate the outer peripheral surface and the inner peripheral surface of the outer tubular portion 4. The lateral holes 53 and 54 communicate with the lateral holes 55 and 56 of the intermediate tubular portion 3 in a state where the outer tubular portion 4 is shrink-fitted into the intermediate tubular portion 3. The ends of the outer tubular portions 4 on the outer peripheral surface side of the lateral holes 53 and 54 are closed by the set screws 59.

中間筒部3及び外側筒部4に備わる加工孔5には、粉末成形用ダイ1の温度を調整する媒体が流通する。媒体としては、粉末成形用ダイ1を冷却する冷媒が挙げられる。冷媒としては、冷却水が挙げられる。また、媒体としては、粉末成形用ダイ1を温める高温流体が挙げられる。高温流体としては、温風や温水が挙げられる。 A medium for adjusting the temperature of the powder molding die 1 flows through the processing holes 5 provided in the intermediate cylinder portion 3 and the outer cylinder portion 4. Examples of the medium include a refrigerant that cools the powder molding die 1. Examples of the refrigerant include cooling water. Further, as the medium, a high temperature fluid for heating the powder molding die 1 can be mentioned. Examples of the high temperature fluid include hot air and hot water.

本例の粉末成形用ダイ1は、冷却水が循環されている。冷却水は、図2の右側に位置する縦孔51から粉末成形用ダイ1に供給され、縦孔51及び横孔53,55を流れ、中間筒部3の内周面まで導かれる。中間筒部3の内周面まで導かれた冷却水は、螺旋溝57を流れて、図2の左側に位置する横孔56まで導かれる。その後、図2の左側に位置する横孔56,54及び縦孔52を流れて、縦孔52から粉末成形用ダイ1の外部に排出される。粉末成形時の圧力を高くすると、粉末成形用ダイ1の温度が高くなる。そこで、粉末成形用ダイ1に冷却水を循環させることで、粉末成形用ダイ1の高温化を抑制できる。なお、本例の粉末成形用ダイ1において、内側筒部2は、冷却水等が通る加工孔を備えない。 Cooling water is circulated in the powder molding die 1 of this example. The cooling water is supplied to the powder molding die 1 from the vertical hole 51 located on the right side of FIG. 2, flows through the vertical hole 51 and the horizontal holes 53 and 55, and is guided to the inner peripheral surface of the intermediate cylinder portion 3. The cooling water guided to the inner peripheral surface of the intermediate cylinder portion 3 flows through the spiral groove 57 and is guided to the lateral hole 56 located on the left side of FIG. After that, it flows through the horizontal holes 56, 54 and the vertical holes 52 located on the left side of FIG. 2, and is discharged from the vertical holes 52 to the outside of the powder molding die 1. When the pressure during powder molding is increased, the temperature of the powder molding die 1 becomes higher. Therefore, by circulating the cooling water through the powder molding die 1, it is possible to suppress the temperature rise of the powder molding die 1. In the powder molding die 1 of this example, the inner cylinder portion 2 does not have a processed hole through which cooling water or the like passes.

粉末成形用ダイ1は、上記媒体が流通する加工孔5とは別に、ヒータを配置可能な孔を設けてもよい。 The powder molding die 1 may be provided with a hole into which a heater can be arranged, in addition to the processing hole 5 through which the medium is distributed.

図1に示す外側筒部4の厚さt4は、10mm以上60mm以下であることが挙げられる。ここで、外側筒部4の厚さと、焼嵌めによって外側筒部4に作用する圧縮応力との関係について、焼嵌め率を一定としたとき、外側筒部4の厚さが厚いほど圧縮応力が小さくなり、外側筒部4の厚さが薄いほど圧縮応力が大きくなる傾向にある。よって、外側筒部4の厚さt4が10mm以上であることで、外側筒部4に発生する圧縮応力を所定値以下に設定し易い。一方、外側筒部4の厚さt4が60mm以下であることで、外側筒部4の大型化を抑制でき、ひいては粉末成形用ダイ1の大型化を抑制できる。外側筒部4の厚さt4は、更に20mm以上60mm以下、特に20mm以上50mm以下であることが挙げられる。 The thickness t4 of the outer tubular portion 4 shown in FIG. 1 is 10 mm or more and 60 mm or less. Here, regarding the relationship between the thickness of the outer cylinder portion 4 and the compressive stress acting on the outer cylinder portion 4 by shrink fitting, when the shrink fit ratio is constant, the thicker the thickness of the outer cylinder portion 4, the higher the compressive stress. As the size becomes smaller and the thickness of the outer cylinder portion 4 becomes thinner, the compressive stress tends to increase. Therefore, when the thickness t4 of the outer cylinder portion 4 is 10 mm or more, it is easy to set the compressive stress generated in the outer cylinder portion 4 to a predetermined value or less. On the other hand, when the thickness t4 of the outer cylinder portion 4 is 60 mm or less, it is possible to suppress the increase in size of the outer cylinder portion 4, and thus the increase in size of the powder molding die 1. The thickness t4 of the outer tubular portion 4 is further 20 mm or more and 60 mm or less, particularly 20 mm or more and 50 mm or less.

外側筒部4の厚さt4は、中間筒部3の厚さt3よりも厚いことが挙げられる。外側筒部4の厚さと、焼嵌めによって外側筒部4に作用する圧縮応力との関係について、上述したように、焼嵌め率を一定としたとき、外側筒部4の厚さが厚いほど圧縮応力が小さくなる傾向にある。よって、中間筒部3と外側筒部4の合計厚さを一定としたとき、外側筒部4の厚さt4が中間筒部3の厚さt3よりも厚いことで、外側筒部4の圧縮応力を所定値以下に設定し易い。中間筒部3と外側筒部4の合計厚さを一定としたとき、外側筒部4の厚さt4は、中間筒部3の厚さt3の1.2倍以上5.0倍以下であることが挙げられる。外側筒部4の厚さt4が中間筒部3の厚さt3の1.2倍以上であることで、外側筒部4の圧縮応力を所定値以下に設定し易い。一方、外側筒部4の厚さt4が中間筒部3の厚さt3の5.0倍以下であることで、中間筒部3の厚さt3を適切な厚さとでき、中間筒部3の外周に外側筒部4を焼嵌める際に亀裂が発生することを抑制し易い。外側筒部4の厚さt4は、中間筒部3の厚さt3の更に1.5倍以上4.0倍以下、特に1.5倍以上3.0倍以下であることが挙げられる。 The thickness t4 of the outer tubular portion 4 may be thicker than the thickness t3 of the intermediate tubular portion 3. Regarding the relationship between the thickness of the outer cylinder 4 and the compressive stress acting on the outer cylinder 4 by shrink fitting, as described above, when the shrink fitting ratio is constant, the thicker the outer cylinder 4, the more compression is performed. The stress tends to be small. Therefore, when the total thickness of the intermediate cylinder 3 and the outer cylinder 4 is constant, the thickness t4 of the outer cylinder 4 is thicker than the thickness t3 of the intermediate cylinder 3, so that the outer cylinder 4 is compressed. It is easy to set the stress below a predetermined value. When the total thickness of the intermediate cylinder portion 3 and the outer cylinder portion 4 is constant, the thickness t4 of the outer cylinder portion 4 is 1.2 times or more and 5.0 times or less of the thickness t3 of the intermediate cylinder portion 3. Can be mentioned. Since the thickness t4 of the outer cylinder portion 4 is 1.2 times or more the thickness t3 of the intermediate cylinder portion 3, the compressive stress of the outer cylinder portion 4 can be easily set to a predetermined value or less. On the other hand, since the thickness t4 of the outer cylinder portion 4 is 5.0 times or less of the thickness t3 of the intermediate cylinder portion 3, the thickness t3 of the intermediate cylinder portion 3 can be made an appropriate thickness, and the thickness of the intermediate cylinder portion 3 can be adjusted to an appropriate thickness. It is easy to prevent cracks from occurring when the outer cylinder portion 4 is shrink-fitted to the outer periphery. The thickness t4 of the outer cylinder portion 4 is 1.5 times or more and 4.0 times or less, particularly 1.5 times or more and 3.0 times or less of the thickness t3 of the intermediate cylinder portion 3.

外側筒部4は、焼入れ鋼で構成されることが挙げられる。中間筒部3と外側筒部4とは、同種の材質で構成されていることが挙げられる。中間筒部3と外側筒部4とが同種の材質で構成されていることで、中間筒部3と外側筒部4の機械的特性や熱的特性を同じ又は近似させることができる。上記各特性が同じ又は近似していることで、粉末成形用ダイ1の製造時において、中間筒部3の外周に外側筒部4を焼嵌めする工程を行い易い。また、粉末成形用ダイ1の使用時における機械的特性や熱的特性のばらつきを小さくし易い。 The outer tubular portion 4 may be made of hardened steel. It can be mentioned that the intermediate cylinder portion 3 and the outer cylinder portion 4 are made of the same kind of material. Since the intermediate cylinder portion 3 and the outer cylinder portion 4 are made of the same material, the mechanical characteristics and the thermal characteristics of the intermediate cylinder portion 3 and the outer cylinder portion 4 can be the same or similar. When the above characteristics are the same or similar, it is easy to perform the step of shrink-fitting the outer cylinder portion 4 to the outer circumference of the intermediate cylinder portion 3 at the time of manufacturing the powder molding die 1. In addition, it is easy to reduce variations in mechanical properties and thermal properties when the powder molding die 1 is used.

外側筒部4は、図1及び図2に示すように、外周面から径方向外方に突出する鍔部40を備える。鍔部40は、外側筒部4の全周にわたって設けられている。鍔部40は、ダイプレート7と係合する。粉末成形用ダイ1を用いて粉末成形体を成形する場合、成形後の粉末成形体は、粉末成形用ダイ1をダイプレート7と共に下降させ、固定状態の下パンチ8で相対的に粉末成形体を突き上げるようにして型抜きが行われる。粉末成形用ダイ1の下降を行い易くするため、粉末成形用ダイ1の下方スペースには、粉末成形用ダイ1を支持する支持物を配置し難い。よって、本例の粉末成形用ダイ1は、外側筒部4における鍔部40によってダイプレート7に支持されている。 As shown in FIGS. 1 and 2, the outer tubular portion 4 includes a flange portion 40 that projects radially outward from the outer peripheral surface. The collar portion 40 is provided over the entire circumference of the outer tubular portion 4. The collar portion 40 engages with the die plate 7. When the powder molded body is molded using the powder molding die 1, the powder molded body after molding is a relatively powder molded body with the powder molding die 1 lowered together with the die plate 7 and the lower punch 8 in the fixed state. Die-cutting is performed by pushing up. In order to facilitate the lowering of the powder molding die 1, it is difficult to arrange a support for supporting the powder molding die 1 in the space below the powder molding die 1. Therefore, the powder molding die 1 of this example is supported by the die plate 7 by the flange portion 40 in the outer tubular portion 4.

〔焼嵌め率〕
実施形態の粉末成形用ダイ1は、内側筒部2に対する中間筒部3の焼嵌め率が、中間筒部3に対する外側筒部4の焼嵌め率よりも大きい。内側筒部2に対する中間筒部3の焼嵌め率を第一の焼嵌め率と呼ぶ。また、中間筒部3に対する外側筒部4の焼嵌め率を第二の焼嵌め率と呼ぶ。
[Burning rate]
In the powder molding die 1 of the embodiment, the shrinkage fit ratio of the intermediate cylinder portion 3 with respect to the inner cylinder portion 2 is larger than the shrink fit ratio of the outer cylinder portion 4 with respect to the intermediate cylinder portion 3. The shrink-fitting ratio of the intermediate cylinder portion 3 with respect to the inner cylinder portion 2 is called the first shrink-fitting ratio. Further, the shrink fit ratio of the outer cylinder portion 4 with respect to the intermediate cylinder portion 3 is referred to as a second shrink fit ratio.

ここで、焼嵌め率は、以下の式で表される。
焼嵌め率={(d−D)/d}×100
上記式中のdは、隣り合う筒部のうち、内側に位置する筒部の外径である。上記式中のDは、隣り合う筒部のうち、外側に位置する筒部の内径である。
Here, the shrink fit ratio is expressed by the following equation.
Shrink fit rate = {(d-D) / d} x 100
In the above formula, d is the outer diameter of the cylinder portion located inside among the adjacent cylinder portions. D in the above formula is the inner diameter of the cylinder portion located on the outer side of the adjacent cylinder portions.

≪第一の焼嵌め率≫
第一の焼嵌め率は、内側筒部2の外径をd2、中間筒部3の内径をD3とするとき、以下の式で表される。
第一の焼嵌め率={(d2−D3)/d2}×100
≪First shrink fit rate≫
The first shrink fit ratio is expressed by the following equation when the outer diameter of the inner cylinder portion 2 is d2 and the inner diameter of the intermediate cylinder portion 3 is D3.
First shrink fit rate = {(d2-D3) / d2} x 100

上記式で表される第一の焼嵌め率は、0.25%以上0.35%未満であることが挙げられる。第一の焼嵌め率が0.25%以上であることで、内側筒部2に付与する圧縮応力を従来よりも大きくできる。第一の焼嵌め率が大き過ぎると、焼嵌め時に亀裂が発生するおそれがある。よって、第一の焼嵌め率が0.35%未満であることで、焼嵌め時の亀裂を抑制できる。第一の焼嵌め率は、更に0.28%以上0.33%以下、特に0.30%以上0.33%以下であることが挙げられる。 The first shrink-fitting ratio represented by the above formula is 0.25% or more and less than 0.35%. When the first shrink fit ratio is 0.25% or more, the compressive stress applied to the inner cylinder portion 2 can be made larger than before. If the first shrink fit ratio is too large, cracks may occur during shrink fit. Therefore, when the first shrink-fitting rate is less than 0.35%, cracks at the time of shrink-fitting can be suppressed. The first shrink-fitting rate may be further 0.28% or more and 0.33% or less, particularly 0.30% or more and 0.33% or less.

≪第二の焼嵌め率≫
第二の焼嵌め率は、中間筒部3の外径をd3、外側筒部4の内径をD4とするとき、以下の式で表される。
第二の焼嵌め率={(d3−D4)/d3}×100
≪Second shrink fit rate≫
The second shrink fit ratio is expressed by the following equation, where the outer diameter of the intermediate cylinder portion 3 is d3 and the inner diameter of the outer cylinder portion 4 is D4.
Second shrink fit rate = {(d3-D4) / d3} x 100

上記式で表される第二の焼嵌め率は、0.15%以上0.25%未満である。第二の焼嵌め率が0.25%未満であることで、外側筒部4に発生する圧縮応力を所定値以下に設定できる。よって、第二の焼嵌め率が0.25%未満であることで、外側筒部4に加工孔5を設けたとしても、加工孔5を起点に粉末成形用ダイ1に置き割れが発生することを抑制できる。一方、第二の焼嵌め率が0.15%以上であることで、中間筒部3の外周に外側筒部4を適切に焼嵌めできる。第二の焼嵌め率は、更に0.15%以上0.22%以下、特に0.18%以上0.22%以下であることが挙げられる。 The second shrink fit ratio represented by the above formula is 0.15% or more and less than 0.25%. When the second shrinkage fitting ratio is less than 0.25%, the compressive stress generated in the outer cylinder portion 4 can be set to a predetermined value or less. Therefore, since the second shrink fit ratio is less than 0.25%, even if the outer cylinder portion 4 is provided with the machined hole 5, the powder molding die 1 is placed from the machined hole 5 as a starting point and cracks occur. Can be suppressed. On the other hand, when the second shrink fit ratio is 0.15% or more, the outer cylinder portion 4 can be appropriately shrink fit on the outer periphery of the intermediate cylinder portion 3. The second shrink-fitting rate may be further 0.15% or more and 0.22% or less, particularly 0.18% or more and 0.22% or less.

<粉末成形用ダイの製造方法>
実施形態の粉末成形用ダイの製造方法は、準備工程と、第一の焼嵌め工程と、第二の焼嵌め工程とを備える。
<Manufacturing method of powder molding die>
The method for producing a powder molding die of the embodiment includes a preparatory step, a first shrink-fitting step, and a second shrink-fitting step.

〔準備工程〕
準備工程では、上述した内側筒部2、中間筒部3、及び外側筒部4を準備する。このとき、内側筒部2、中間筒部3、及び外側筒部4は、第一の焼嵌め率及び第二の焼嵌め率が所望の値となるような寸法のものを適宜準備する。
[Preparation process]
In the preparation step, the inner cylinder portion 2, the intermediate cylinder portion 3, and the outer cylinder portion 4 described above are prepared. At this time, the inner cylinder portion 2, the intermediate cylinder portion 3, and the outer cylinder portion 4 are appropriately prepared with dimensions such that the first shrink fit ratio and the second shrink fit ratio are desired values.

〔第一の焼嵌め工程〕
第一の焼嵌め工程では、内側筒部2の外周に中間筒部3を焼嵌めする。第一の焼嵌め工程によって、内側筒部2の外周に中間筒部3が焼嵌めされた一体物が得られる。第一の焼嵌め工程における焼嵌め率を第一の焼嵌め率とする。第一の焼嵌め率は、0.25%以上0.35%未満とすることが挙げられる。第一の焼嵌め率を0.25%以上とすることで、内側筒部2に付与する圧縮応力を従来よりも大きくできる。第一の焼嵌め率を大きくし過ぎると、焼嵌め時に亀裂が発生するおそれがある。よって、第一の焼嵌め率を0.35%未満とすることで、焼嵌め時の亀裂を抑制できる。第一の焼嵌め率は、更に0.28%以上0.33%以下、特に0.30%以上0.33%以下とすることが挙げられる。
[First shrink fitting process]
In the first shrink-fitting step, the intermediate cylinder portion 3 is shrink-fitted on the outer circumference of the inner cylinder portion 2. By the first shrink-fitting step, an integral product in which the intermediate cylinder portion 3 is shrink-fitted on the outer periphery of the inner cylinder portion 2 is obtained. The shrink fit rate in the first shrink fit step is defined as the first shrink fit rate. The first shrink-fitting rate may be 0.25% or more and less than 0.35%. By setting the first shrink fit ratio to 0.25% or more, the compressive stress applied to the inner cylinder portion 2 can be made larger than before. If the first shrink fit ratio is made too large, cracks may occur during shrink fit. Therefore, by setting the first shrink fit ratio to less than 0.35%, cracks during shrink fit can be suppressed. The first shrink-fitting rate may be further set to 0.28% or more and 0.33% or less, particularly 0.30% or more and 0.33% or less.

〔第二の焼嵌め工程〕
第二の焼嵌め工程では、第一の焼嵌め工程によって得られた一体物の外周に外側筒部4を焼嵌めする。第二の焼嵌め工程によって、上記一体物の外周に外側筒部4が焼嵌めされた粉末成形用ダイ1が得られる。第二の焼嵌め工程における焼嵌め率を第二の焼嵌め率とする。第二の焼嵌め率は、第一の焼嵌め率よりも小さく設定する。言い換えると、第一の焼嵌め率は、第二の焼嵌め率よりも大きく設定する。第二の焼嵌め率は、0.15%以上0.25%未満とする。第二の焼嵌め率を0.25%未満とすることで、外側筒部4に発生する圧縮応力を所定値以下に設定できる。よって、第二の焼嵌め率を0.25%未満とすることで、外側筒部4に加工孔5を設けたとしても、加工孔5を起点に粉末成形用ダイ1に置き割れが発生することを抑制できる。一方、第二の焼嵌め率を0.15%以上とすることで、内側筒部2の外周に中間筒部3を焼嵌めした一体物の外周に外側筒部4を適切に焼嵌めできる。第二の焼嵌め率は、更に0.15%以上0.22%以下、特に0.18%以上0.22%以下とすることが挙げられる。
[Second shrink fitting process]
In the second shrink-fitting step, the outer cylinder portion 4 is shrink-fitted to the outer periphery of the integral product obtained by the first shrink-fitting step. By the second shrink-fitting step, a powder molding die 1 in which the outer cylinder portion 4 is shrink-fitted on the outer periphery of the one piece is obtained. The shrink fit rate in the second shrink fit step is defined as the second shrink fit rate. The second shrink fit rate is set smaller than the first shrink fit rate. In other words, the first shrink fit rate is set higher than the second shrink fit rate. The second shrink fit ratio is 0.15% or more and less than 0.25%. By setting the second shrinkage fitting ratio to less than 0.25%, the compressive stress generated in the outer cylinder portion 4 can be set to a predetermined value or less. Therefore, by setting the second shrink fit ratio to less than 0.25%, even if the outer cylinder portion 4 is provided with the machined hole 5, the powder molding die 1 is placed from the machined hole 5 as a starting point and cracks occur. Can be suppressed. On the other hand, by setting the second shrink fit ratio to 0.15% or more, the outer cylinder portion 4 can be appropriately shrink fit to the outer periphery of the integral body in which the intermediate cylinder portion 3 is shrink-fitted to the outer circumference of the inner cylinder portion 2. The second shrink-fitting rate may be further set to 0.15% or more and 0.22% or less, particularly 0.18% or more and 0.22% or less.

<成形用粉末>
上述した粉末成形用ダイ1は、軟磁性粉末を含む成形用粉末100を用いて粉末成形体を成形する際に利用される。
<Powder for molding>
The powder molding die 1 described above is used when molding a powder molded product using a molding powder 100 containing a soft magnetic powder.

軟磁性粉末は、軟磁性粒子の集合体で構成される。軟磁性粒子は、鉄を50質量%以上含有するものが挙げられる。具体的には、軟磁性粒子は、純鉄又は鉄基合金からなる。ここでの純鉄とは、純度が99%以上、即ち鉄(Fe)の含有量が99質量%以上のものである。ここでの鉄基合金は、添加元素を含み、残部がFe及び不可避不純物からなるものである。鉄基合金は、一種又は二種以上の添加元素を含む。添加元素は、例えば、ケイ素(Si)、アルミニウム(Al)などが挙げられる。鉄基合金の具体例として、Fe−Si系合金、Fe−Al系合金、Fe−N系合金、Fe−Ni系合金、Fe−C系合金、Fe−B系合金、Fe−Co系合金、Fe−P系合金、Fe−Ni−Co系合金、及びFe−Al−Si系合金などが挙げられる。 The soft magnetic powder is composed of an aggregate of soft magnetic particles. Examples of the soft magnetic particles include those containing 50% by mass or more of iron. Specifically, the soft magnetic particles are made of pure iron or an iron-based alloy. The pure iron here has a purity of 99% or more, that is, an iron (Fe) content of 99% by mass or more. The iron-based alloy here contains an additive element, and the balance is composed of Fe and unavoidable impurities. Iron-based alloys contain one or more additive elements. Examples of the additive element include silicon (Si) and aluminum (Al). Specific examples of iron-based alloys include Fe-Si alloys, Fe-Al alloys, Fe-N alloys, Fe-Ni alloys, Fe-C alloys, Fe-B alloys, and Fe-Co alloys. Examples thereof include Fe-P-based alloys, Fe-Ni-Co-based alloys, and Fe-Al-Si-based alloys.

軟磁性粉末を構成する各軟磁性粒子は、表面に絶縁被覆を備えることが挙げられる。軟磁性粒子の表面に絶縁被覆を備えることで、軟磁性粉末自体の渦電流損失を低減し易く、低損失な粉末成形体が得られる。絶縁被覆は、金属元素を1種以上含む酸化物、窒化物、炭化物等の金属酸化物、金属窒化物、金属炭化物等で構成することができる。金属元素としては、例えば、鉄、アルミニウム、カルシウム、マンガン、亜鉛、マグネシウム、バナジウム、クロム、バリウム、ストロンチウム及び希土類元素等が挙げられる。また、絶縁被覆は、例えば、リン化合物、ケイ素化合物、ジルコニウム化合物及びアルミニウム化合物から選択される1種以上の化合物で構成しても良い。その他、絶縁被覆は、金属塩化合物、例えば、リン酸金属塩化合物、ホウ酸金属塩化合物、ケイ酸金属塩化合物、チタン酸金属塩化合物等で構成しても良い。リン酸金属塩化合物は、代表的には、リン酸鉄やリン酸マンガン、リン酸亜鉛、リン酸カルシウム等が挙げられる。 Each soft magnetic particle constituting the soft magnetic powder may have an insulating coating on the surface. By providing an insulating coating on the surface of the soft magnetic particles, it is easy to reduce the eddy current loss of the soft magnetic powder itself, and a low-loss powder molded product can be obtained. The insulating coating can be composed of an oxide containing one or more kinds of metal elements, a metal oxide such as a nitride or a carbide, a metal nitride, a metal carbide or the like. Examples of the metal element include iron, aluminum, calcium, manganese, zinc, magnesium, vanadium, chromium, barium, strontium, rare earth elements and the like. Further, the insulating coating may be composed of, for example, one or more compounds selected from a phosphorus compound, a silicon compound, a zirconium compound and an aluminum compound. In addition, the insulating coating may be composed of a metal salt compound, for example, a metal phosphate compound, a metal borate compound, a metal silicate compound, a metal titanate compound, or the like. Typical examples of the metal phosphate compound include iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate and the like.

絶縁被覆の厚さは、10nm以上1μm以下であることが挙げられる。絶縁被覆の厚さが10nm以上であることで、軟磁性粒子間の絶縁を確保し易い。一方、絶縁被覆の厚さが1μm以下であることで、絶縁被覆の存在により、粉末成形体における軟磁性粉末の含有割合の低下を抑制できる。絶縁被覆の厚さは、更に10nm以上200nm以下、特に10nm以上100nm以下であることが挙げられる。 The thickness of the insulating coating is 10 nm or more and 1 μm or less. When the thickness of the insulating coating is 10 nm or more, it is easy to secure the insulation between the soft magnetic particles. On the other hand, when the thickness of the insulating coating is 1 μm or less, the presence of the insulating coating can suppress a decrease in the content ratio of the soft magnetic powder in the powder molded product. The thickness of the insulating coating is further 10 nm or more and 200 nm or less, particularly 10 nm or more and 100 nm or less.

成形用粉末100には、潤滑剤を含有させることができる。潤滑剤を含有することで、粉末成形時の摩擦を低減できる。粉末成形時の摩擦を低減できることで、粉末成形用ダイ1を用いた金型から粉末成形体を抜き出し易く、表面性状に優れる粉末成形体が得られる。また、潤滑剤を含有することで、成形性を向上できる。成形性を向上できることで、寸法精度に優れる粉末成形体が得られる。潤滑剤は、例えば、ステアリン酸リチウム、ステアリン酸亜鉛などの金属石鹸、ステアリン酸アミド等の脂肪酸アミド、エチレンビスステアリン酸アミド等の高級脂肪酸アミドといった有機物、窒化硼素やグラファイト等の無機物などが挙げられる。 The molding powder 100 can contain a lubricant. By containing a lubricant, friction during powder molding can be reduced. Since the friction during powder molding can be reduced, the powder molded body can be easily extracted from the mold using the powder molding die 1, and a powder molded body having excellent surface properties can be obtained. Further, by containing a lubricant, moldability can be improved. By improving the moldability, a powder molded product having excellent dimensional accuracy can be obtained. Examples of the lubricant include metal soaps such as lithium stearate and zinc stearate, fatty acid amides such as stearic acid amides, organic substances such as higher fatty acid amides such as ethylene bisstearic acid amides, and inorganic substances such as boron nitride and graphite. ..

<効果>
実施形態の粉末成形用ダイ1は、内側筒部2、中間筒部3、及び外側筒部4による三層構造で構成される。粉末成形用ダイ1が三層構造で構成されることで、内側筒部2に対する中間筒部3の第一の焼嵌め率を、中間筒部3に対する外側筒部4の第二の焼嵌め率よりも大きくできる。第一の焼嵌め率が第二の焼嵌め率よりも大きいことで、内側筒部2に付与する圧縮応力を大きくできる一方で、外側筒部4に発生する圧縮応力を所定値以下に設定できる。
<Effect>
The powder molding die 1 of the embodiment has a three-layer structure consisting of an inner cylinder portion 2, an intermediate cylinder portion 3, and an outer cylinder portion 4. Since the powder molding die 1 has a three-layer structure, the first shrink fit ratio of the intermediate cylinder portion 3 with respect to the inner cylinder portion 2 and the second shrink fit ratio of the outer cylinder portion 4 with respect to the intermediate cylinder portion 3. Can be larger than. Since the first shrink fit ratio is larger than the second shrink fit ratio, the compressive stress applied to the inner cylinder portion 2 can be increased, while the compressive stress generated in the outer cylinder portion 4 can be set to a predetermined value or less. ..

粉末成形時に粉末成形用ダイ1に発生する引張応力は、主に内側筒部2の内周面近傍に発生する。特に、内側筒部2に段差面23を備える場合、上記引張応力は、第二の内周面22と段差面23とで構成される角部に集中し易い。実施形態の粉末成形用ダイ1は、内側筒部2に付与される圧縮応力を大きくできる。そのため、引張応力が集中して割れ易い上記角部を備える場合であっても、粉末成形時の圧力を高くすることができる。 The tensile stress generated in the powder molding die 1 during powder molding is mainly generated in the vicinity of the inner peripheral surface of the inner cylinder portion 2. In particular, when the inner cylinder portion 2 is provided with the stepped surface 23, the tensile stress tends to be concentrated on the corner portion composed of the second inner peripheral surface 22 and the stepped surface 23. The powder molding die 1 of the embodiment can increase the compressive stress applied to the inner cylinder portion 2. Therefore, even when the corner portion where tensile stress is concentrated and easily cracked is provided, the pressure at the time of powder molding can be increased.

一方で、外側筒部4に発生する圧縮応力を所定値以下に設定できることで、外側筒部4に加工孔5を設けることができる。外側筒部4に加工孔5を設ける場合、加工孔5を構成する縦孔51,52と横孔53,54との交差箇所を起点に置き割れが発生し易い。実施形態の粉末成形用ダイ1は、第二の焼嵌め率が0.15%以上0.25%未満であることで、外側筒部4に発生する圧縮応力が所定値以下である。そのため、置き割れの起点となり得る上記交差箇所を外側筒部4に設けることで、加工孔5を起点に粉末成形用ダイ1に置き割れが発生することを抑制できる。 On the other hand, since the compressive stress generated in the outer cylinder portion 4 can be set to a predetermined value or less, the machined hole 5 can be provided in the outer cylinder portion 4. When the machined hole 5 is provided in the outer cylinder portion 4, cracks are likely to occur by placing the intersection of the vertical holes 51, 52 and the horizontal holes 53, 54 constituting the machined hole 5 as the starting point. In the powder molding die 1 of the embodiment, the second shrinkage fitting ratio is 0.15% or more and less than 0.25%, so that the compressive stress generated in the outer cylinder portion 4 is not more than a predetermined value. Therefore, by providing the above-mentioned intersection that can be the starting point of cracking in the outer tubular portion 4, it is possible to suppress the occurrence of cracking in the powder molding die 1 starting from the machined hole 5.

粉末成形用ダイ1に加工孔5を備えることで、粉末成形用ダイ1の温度を調整することができる。具体的には、粉末成形用ダイ1を冷却することができ、粉末成形用ダイ1の高温化を抑制できる。粉末成形時の圧力を高くすると、粉末成形用ダイ1の温度が高くなる。粉末成形用ダイ1の温度が高くなると、成形用粉末100に潤滑剤が含まれる場合、潤滑剤が軟化し、潤滑剤の機能を発揮しないおそれがある。潤滑剤が機能しないと、軟磁性粒子同士が接触し、軟磁性粒子の表面に設けられる絶縁被覆が破壊され易い。よって、粉末成形用ダイ1を冷却できることで、潤滑剤の機能を保持することができ、絶縁被覆の破壊を抑制できる。そうすることで、低損失な粉末成形体を得易い。 By providing the processing hole 5 in the powder molding die 1, the temperature of the powder molding die 1 can be adjusted. Specifically, the powder molding die 1 can be cooled, and the temperature rise of the powder molding die 1 can be suppressed. When the pressure during powder molding is increased, the temperature of the powder molding die 1 becomes higher. When the temperature of the powder molding die 1 becomes high, when the molding powder 100 contains a lubricant, the lubricant may be softened and the function of the lubricant may not be exhibited. If the lubricant does not function, the soft magnetic particles come into contact with each other, and the insulating coating provided on the surface of the soft magnetic particles is easily destroyed. Therefore, since the powder molding die 1 can be cooled, the function of the lubricant can be maintained and the destruction of the insulating coating can be suppressed. By doing so, it is easy to obtain a low-loss powder molded product.

[試験例1]
試験例1では、各種の粉末成形用ダイを用いて粉末成形した際に、粉末成形用ダイに作用する応力分布を解析した。つまり、試験例1では、粉末成形による圧力が付与された状態の粉末成形用ダイに作用する応力分布を解析した。以下、各種の粉末成形用ダイの条件、及び解析の条件を説明し、その後に解析結果について説明する。
[Test Example 1]
In Test Example 1, the stress distribution acting on the powder molding die when powder molding was performed using various powder molding dies was analyzed. That is, in Test Example 1, the stress distribution acting on the powder molding die under the pressure of powder molding was analyzed. Hereinafter, the conditions of various powder molding dies and the analysis conditions will be described, and then the analysis results will be described.

・試料No.1
試料No.1の粉末成形用ダイは、内側筒部、中間筒部、及び外側筒部による三層構造で構成される。内側筒部は、図3に図示する内側筒部2である。内側筒部の内周面は、第一の内周面と、第二の内周面と、段差面とを備える。第一の内周面は、下パンチが嵌め込まれる側に位置する。第二の内周面は、上パンチが嵌め込まれる側に位置する。中間筒部及び外側筒部は、図1及び図2に図示する中間筒部3及び外側筒部4である。中間筒部及び外側筒部は、加工孔を備える。加工孔における縦孔と横孔との交差箇所は、外側筒部に設けられる。内側筒部の厚さt2は、15mmである。中間筒部の厚さt3は、16mmである。外側筒部の厚さt4は、29mmである。内側筒部は、超硬合金で構成される。中間筒部及び外側筒部は、同一組成の焼入れ鋼で構成される。応力分布の解析は、各材料の上記寸法及び所定の物理特性を設定して行う。この点は他の試料及び後述する試験例2においても同様である。
-Sample No. 1
Sample No. The powder molding die No. 1 is composed of a three-layer structure consisting of an inner cylinder portion, an intermediate cylinder portion, and an outer cylinder portion. The inner cylinder portion is the inner cylinder portion 2 shown in FIG. The inner peripheral surface of the inner cylinder portion includes a first inner peripheral surface, a second inner peripheral surface, and a stepped surface. The first inner peripheral surface is located on the side where the lower punch is fitted. The second inner peripheral surface is located on the side where the upper punch is fitted. The intermediate cylinder portion and the outer cylinder portion are the intermediate cylinder portion 3 and the outer cylinder portion 4 shown in FIGS. 1 and 2. The intermediate cylinder portion and the outer cylinder portion are provided with machined holes. The intersection of the vertical hole and the horizontal hole in the machined hole is provided in the outer tubular portion. The thickness t2 of the inner cylinder portion is 15 mm. The thickness t3 of the intermediate cylinder portion is 16 mm. The thickness t4 of the outer cylinder portion is 29 mm. The inner cylinder is made of cemented carbide. The intermediate cylinder and the outer cylinder are made of hardened steel having the same composition. The stress distribution is analyzed by setting the above dimensions and predetermined physical characteristics of each material. This point is the same for other samples and Test Example 2 described later.

試料No.1の粉末成形用ダイは、内側筒部の外周に中間筒部が焼嵌めされ、その中間筒部の外周に外側筒部が焼嵌めされる。内側筒部に対する中間筒部の第一の焼嵌め率は、0.35%である。また、内側筒部に中間筒部を焼嵌めした一体物に対する外側筒部の第二の焼嵌め率は、0.25%である。各焼嵌め率は、表1に示す。 Sample No. In the powder molding die of No. 1, the intermediate cylinder portion is shrink-fitted on the outer circumference of the inner cylinder portion, and the outer cylinder portion is shrink-fitted on the outer circumference of the intermediate cylinder portion. The first shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is 0.35%. Further, the second shrink-fitting ratio of the outer cylinder portion with respect to the integral body in which the intermediate cylinder portion is shrink-fitted to the inner cylinder portion is 0.25%. Each shrink fit ratio is shown in Table 1.

・試料No.2
試料No.2の粉末成形用ダイは、試料No.1の粉末成形用ダイに対して、第一の焼嵌め率及び第二の焼嵌め率が異なる。第一の焼嵌め率は、0.30%である。第二の焼嵌め率は、0.20%である。それ以外の条件は、試料No.1と同じである。
-Sample No. 2
Sample No. The powder molding die of No. 2 has a sample No. The first shrink-fitting rate and the second shrink-fitting rate are different from those of the powder molding die 1. The first shrink fit rate is 0.30%. The second shrink fit rate is 0.20%. Other conditions are the sample No. Same as 1.

・試料No.3
試料No.3の粉末成形用ダイは、試料No.2の粉末成形用ダイに対して、加工孔の位置が異なる。試料No.3の粉末成形用ダイは、試料No.2の粉末成形用ダイに対して、外側筒部に設けられる縦孔が2mm径方向外側に位置し、止めねじが嵌め込まれる穴が2mm浅い。それ以外の条件は、試料No.2と同じである。
-Sample No. 3
Sample No. The powder molding die of No. 3 has a sample No. The positions of the machined holes are different from those of the powder molding die of 2. Sample No. The powder molding die of No. 3 has a sample No. With respect to the powder molding die No. 2, the vertical hole provided in the outer cylinder portion is located on the outer side in the radial direction by 2 mm, and the hole into which the set screw is fitted is 2 mm shallower. Other conditions are the sample No. Same as 2.

・試料No.4
試料No.4の粉末成形用ダイは、試料No.3の粉末成形用ダイに対して、第一の焼嵌め率及び第二の焼嵌め率が異なる。また、試料No.4の粉末成形用ダイは、試料No.3の粉末成形用ダイに対して、中間筒部及び外側筒部の厚さが異なる。第一の焼嵌め率は、0.31%である。第二の焼嵌め率は、0.19%である。中間筒部の厚さt3は、15mmである。外側筒部の厚さt4は、30mmである。それ以外の条件は、試料No.3と同じである。
-Sample No. 4
Sample No. The powder molding die of No. 4 has a sample No. The first shrink-fitting rate and the second shrink-fitting rate are different from those of the powder molding die of 3. In addition, sample No. The powder molding die of No. 4 has a sample No. The thickness of the intermediate cylinder portion and the outer cylinder portion is different from that of the powder molding die of 3. The first shrink fit rate is 0.31%. The second shrink fit rate is 0.19%. The thickness t3 of the intermediate cylinder portion is 15 mm. The thickness t4 of the outer cylinder portion is 30 mm. Other conditions are the sample No. Same as 3.

・試料No.10
試料No.10の粉末成形用ダイは、内側筒部及び外側筒部による二層構造で構成される。内側筒部は、試料No.1と同様である。外側筒部は、加工孔と螺旋溝とを備える。外側筒部は、加工孔における縦孔と横孔との交差箇所を備える。外側筒部の内周面には、横孔同士をつなぐ螺旋溝が設けられている。内側筒部の厚さは、15mmである。外側筒部の厚さは、45mmである。内側筒部は、超硬合金で構成される。外側筒部は、焼入れ鋼で構成される。この超硬合金及び焼入れ鋼の組成は、試料No.1と同じである。
-Sample No. 10
Sample No. The powder molding die of 10 has a two-layer structure consisting of an inner cylinder portion and an outer cylinder portion. The inner cylinder is the sample No. Same as 1. The outer tubular portion includes a machined hole and a spiral groove. The outer tubular portion includes an intersection of a vertical hole and a horizontal hole in a machined hole. A spiral groove connecting the lateral holes is provided on the inner peripheral surface of the outer tubular portion. The thickness of the inner cylinder portion is 15 mm. The thickness of the outer cylinder portion is 45 mm. The inner cylinder is made of cemented carbide. The outer cylinder is made of hardened steel. The composition of this cemented carbide and hardened steel is described in Sample No. Same as 1.

試料No.10の粉末成形用ダイは、内側筒部の外周に外側筒部が焼嵌めされる。内側筒部に対する外側筒部の焼嵌め率は、0.35%である。 Sample No. In the powder molding die No. 10, the outer cylinder portion is shrink-fitted on the outer circumference of the inner cylinder portion. The shrink fit ratio of the outer cylinder portion with respect to the inner cylinder portion is 0.35%.

各試料の粉末成形用ダイを用いて粉末成形した際に、粉末成形用ダイに作用する応力分布を、CAE(Computer Aided Engineering)により解析した。粉末成形時の成形圧力は、14ton/cm(約1372MPa)とする。粉末成形用ダイ以外の金型の構成は、全て同じである。この解析結果から、各筒部における特定箇所に発生する最大主応力を算出した。以下では、単に応力と言うことがある。内側筒部における特定箇所は、第二の内周面と段差面とで構成される角部とした。中間筒部における特定箇所は、中間筒部の軸方向の下側に位置する横孔と螺旋溝との交差箇所とした。外側筒部における特定箇所は、縦孔と横孔との交差箇所とした。各筒部における特定箇所に発生する最大主応力を表1に示す。 The stress distribution acting on the powder molding die when powder molding was performed using the powder molding die of each sample was analyzed by CAE (Computer Aided Engineering). The molding pressure at the time of powder molding is 14 ton / cm 2 (about 1372 MPa). The configurations of the dies other than the powder molding die are all the same. From this analysis result, the maximum principal stress generated at a specific location in each cylinder was calculated. In the following, it may be simply referred to as stress. The specific portion of the inner cylinder portion was a corner portion composed of a second inner peripheral surface and a stepped surface. The specific location in the intermediate cylinder is the intersection of the lateral hole located on the lower side in the axial direction of the intermediate cylinder and the spiral groove. The specific location on the outer cylinder was the intersection of the vertical hole and the horizontal hole. Table 1 shows the maximum principal stress generated at a specific location in each cylinder.

Figure 2021074746
Figure 2021074746

まず、内側筒部の応力について説明する。試料No.10の粉末成形用ダイは、内側筒部の応力が987MPaと大きい。試料No.10の粉末成形用ダイにおいて、内側筒部の応力が大きいのは、粉末成形用ダイが内側筒部及び外側筒部による二層構造で構成されており、内側筒部に成形圧力が集中したからと考えられる。特に、試料No.10の粉末成形用ダイは、外側筒部の厚さが45mmと厚いことから剛性が高く、成形圧力が外側筒部に分散され難いからと考えられる。つまり、粉末成形用ダイを内側筒部及び外側筒部による二層構造で構成し、内側筒部に対する外側筒部の焼嵌め率を大きくしただけでは、粉末成形時に内側筒部に加わる内部圧力を低減し難いと考えられる。内側筒部の応力が大きいと、粉末成形時に内側筒部に亀裂等の破損が生じるおそれがある。 First, the stress of the inner cylinder portion will be described. Sample No. In the powder molding die No. 10, the stress of the inner cylinder portion is as large as 987 MPa. Sample No. In the 10 powder molding dies, the stress of the inner cylinder portion is large because the powder molding die is composed of a two-layer structure consisting of an inner cylinder portion and an outer cylinder portion, and the molding pressure is concentrated on the inner cylinder portion. it is conceivable that. In particular, sample No. It is considered that the powder molding die of No. 10 has high rigidity because the thickness of the outer cylinder portion is as thick as 45 mm, and it is difficult for the molding pressure to be dispersed in the outer cylinder portion. That is, if the powder molding die is composed of a two-layer structure consisting of an inner cylinder portion and an outer cylinder portion and the shrinkage fitting ratio of the outer cylinder portion with respect to the inner cylinder portion is increased, the internal pressure applied to the inner cylinder portion during powder molding is applied. It is considered difficult to reduce. If the stress of the inner cylinder portion is large, the inner cylinder portion may be damaged such as cracks during powder molding.

試料No.1から試料No.4の粉末成形用ダイは、試料No.10の粉末成形用ダイに比較して、内側筒部の応力が小さい。試料No.1から試料No.4の粉末成形用ダイにおいて、内側筒部の応力が小さいのは、粉末成形用ダイが内側筒部、中間筒部、及び外側筒部による三層構造で構成されているからと考えられる。粉末成形用ダイが三層構造の筒部で構成されていることで、成形圧力が各筒部に分散されたと考えられる。特に、試料No.1の粉末成形用ダイは、試料No.2から試料No.4に比較して、内側筒部の応力が小さい。試料No.1の粉末成形用ダイは、第一の焼嵌め率が大きいからと考えられる。つまり、試料No.1の粉末成形用ダイは、粉末成形時に内側筒部に加わる内部圧力を第一の焼嵌めによる応力で効果的に緩和できたと考えられる。 Sample No. Sample No. 1 to sample No. The powder molding die of No. 4 has a sample No. The stress of the inner cylinder portion is smaller than that of the powder molding die of 10. Sample No. Sample No. 1 to sample No. It is considered that the reason why the stress of the inner cylinder portion is small in the powder molding die of No. 4 is that the powder molding die is composed of a three-layer structure consisting of an inner cylinder portion, an intermediate cylinder portion, and an outer cylinder portion. It is considered that the molding pressure was dispersed in each cylinder portion because the powder molding die was composed of the cylinder portion having a three-layer structure. In particular, sample No. The powder molding die of No. 1 is the sample No. From sample No. 2 Compared with 4, the stress of the inner cylinder portion is smaller. Sample No. It is considered that the powder molding die of No. 1 has a large first shrink-fitting ratio. That is, the sample No. It is considered that the powder molding die No. 1 was able to effectively relieve the internal pressure applied to the inner cylinder portion during powder molding by the stress due to the first shrink fitting.

次に、外側筒部の応力について説明する。試料No.2から試料No.4の粉末成形用ダイは、試料No.10及び試料No.1の粉末成形用ダイに比較して、外側筒部の応力が小さい。試料No.2から試料No.4の粉末成形用ダイにおいて、外側筒部の応力が小さいのは、第二の焼嵌め率が0.15%以上0.25%未満を満たすことで、外側筒部の応力を所定値以下に設定できたとからと考えられる。外側筒部の応力が小さいことで、外側筒部に縦孔と横孔との交差箇所が設けられたとしても、この交差箇所を起点に置き割れが発生することを防止できると考えられる。粉末成形用ダイに発生し得る置き割れについては、試験例2で説明する。 Next, the stress of the outer cylinder portion will be described. Sample No. From sample No. 2 The powder molding die of No. 4 has a sample No. 10 and sample No. Compared with the powder molding die of No. 1, the stress of the outer cylinder portion is small. Sample No. From sample No. 2 In the powder molding die of No. 4, the stress of the outer cylinder portion is small because the second shrinkage fitting ratio satisfies 0.15% or more and less than 0.25%, so that the stress of the outer cylinder portion is reduced to a predetermined value or less. It is thought that it was possible to set it. It is considered that since the stress of the outer cylinder portion is small, even if the outer cylinder portion is provided with the intersection of the vertical hole and the horizontal hole, it is possible to prevent the occurrence of cracks by placing the intersection as the starting point. The cracks that may occur in the powder molding die will be described in Test Example 2.

[試験例2]
試験例1で説明した試料No.1から試料No.4及び試料No.10の各粉末成形用ダイについて、成形圧力を加えていない無負荷時に、粉末成形用ダイに作用する応力分布を解析した。つまり、試験例2では、焼嵌めによって付与された応力のみを有する粉末成形用ダイの応力分布を解析した。解析方法は、試験例1と同様である。試験例2において、中間筒部及び外側筒部における特定箇所に発生する最大主応力を表2に示す。各筒部の特定箇所は、試験例1と同様である。
[Test Example 2]
Sample No. described in Test Example 1. Sample No. 1 to sample No. 4 and sample No. For each of the 10 powder molding dies, the stress distribution acting on the powder molding dies when no molding pressure was applied was analyzed. That is, in Test Example 2, the stress distribution of the powder forming die having only the stress applied by shrink fitting was analyzed. The analysis method is the same as in Test Example 1. Table 2 shows the maximum principal stress generated at a specific location in the intermediate cylinder portion and the outer cylinder portion in Test Example 2. The specific location of each cylinder is the same as in Test Example 1.

Figure 2021074746
Figure 2021074746

試料No.10の粉末成形用ダイは、外側筒部の応力が1356MPaと大きい。試料No.10の粉末成形用ダイにおいて、外側筒部の応力が大きいのは、粉末成形用ダイが内側筒部及び外側筒部による二層構造で構成されており、内側筒部に対する外側筒部の焼嵌め率が0.35%と大きいからと考えられる。また、試料No.1の粉末成形用ダイも、外側筒部の応力が1551MPaと大きい。試料No.1の粉末成形用ダイにおいて、外側筒部の応力が大きいのは、第二の焼嵌め率が0.25%と大きいからと考えられる。外側筒部の応力が大きいと、外側筒部に設けられる縦孔と横孔との交差箇所を起点に、粉末成形用ダイに置き割れが発生するおそれがある。 Sample No. In the powder molding die No. 10, the stress of the outer cylinder portion is as large as 1356 MPa. Sample No. In the 10 powder molding dies, the stress of the outer cylinder portion is large because the powder molding die has a two-layer structure consisting of an inner cylinder portion and an outer cylinder portion, and the outer cylinder portion is shrink-fitted to the inner cylinder portion. It is considered that the rate is as large as 0.35%. In addition, sample No. The powder molding die of No. 1 also has a large stress of 1551 MPa in the outer cylinder portion. Sample No. It is considered that the reason why the stress of the outer cylinder portion is large in the powder molding die of No. 1 is that the second shrinkage fitting ratio is as large as 0.25%. If the stress of the outer cylinder portion is large, the powder molding die may be placed and cracked starting from the intersection of the vertical hole and the horizontal hole provided in the outer cylinder portion.

試料No.2から試料No.4の粉末成形用ダイは、試料No.10及び試料No.1の粉末成形用ダイに比較して、外側筒部の応力が小さい。試料No.2から試料No.4の粉末成形用ダイにおいて、外側筒部の応力が小さいのは、第二の焼嵌め率が0.15%以上0.25%未満を満たすことで、外側筒部の応力を所定値以下に設定できたとからと考えられる。特に、試料No.3の粉末成形用ダイは、試料No.2の粉末成形用ダイに比較して、外側筒部の応力が更に小さい。試料No.3の粉末成形用ダイは、試料No.2に対して、外側筒部の加工孔の位置を変更したことで交差箇所の応力を緩和できたからと考えられる。また、試料No.4の粉末成形用ダイは、試料No.3の粉末成形用ダイに比較して、内側筒部の応力が同等であり、外側筒部の応力が更に小さい。試料No.4の粉末成形用ダイは、試料No.3に対して、第二の焼嵌め率が小さいからと考えられる。 Sample No. From sample No. 2 The powder molding die of No. 4 has a sample No. 10 and sample No. Compared with the powder molding die of No. 1, the stress of the outer cylinder portion is small. Sample No. From sample No. 2 In the powder molding die of No. 4, the stress of the outer cylinder portion is small because the second shrinkage fitting ratio satisfies 0.15% or more and less than 0.25%, so that the stress of the outer cylinder portion is reduced to a predetermined value or less. It is thought that it was possible to set it. In particular, sample No. The powder molding die of No. 3 has a sample No. Compared with the powder molding die of No. 2, the stress of the outer cylinder portion is further smaller. Sample No. The powder molding die of No. 3 has a sample No. On the other hand, it is considered that the stress at the intersection could be relaxed by changing the position of the machined hole in the outer cylinder. In addition, sample No. The powder molding die of No. 4 has a sample No. Compared with the powder molding die of No. 3, the stress of the inner cylinder portion is the same, and the stress of the outer cylinder portion is further smaller. Sample No. The powder molding die of No. 4 has a sample No. It is considered that the second shrinkage fitting rate is smaller than that of 3.

以上より、粉末成形用ダイが内側筒部、中間筒部、及び外側筒部による三層構造で構成されており、第一の焼嵌め率が特定の範囲を満たすことで、内側筒部に大きな応力を付与できることがわかる。また、粉末成形用ダイが内側筒部、中間筒部、及び外側筒部による三層構造で構成されており、第二の焼嵌め率が特定の範囲を満たすことで、外側筒部の応力を所定値以下に設定できることがわかる。 From the above, the powder molding die is composed of a three-layer structure consisting of an inner cylinder portion, an intermediate cylinder portion, and an outer cylinder portion, and when the first shrink fit ratio satisfies a specific range, the inner cylinder portion is large. It can be seen that stress can be applied. Further, the powder molding die is composed of a three-layer structure consisting of an inner cylinder portion, an intermediate cylinder portion, and an outer cylinder portion, and the stress of the outer cylinder portion is reduced by satisfying the second shrinkage fitting ratio within a specific range. It can be seen that it can be set to a predetermined value or less.

1 粉末成形用ダイ
2 内側筒部
20 貫通孔
21 第一の内周面、22 第二の内周面、23 段差面
200 キャビティ、210 第一の領域、220 第二の領域
3 中間筒部
4 外側筒部
40 鍔部
5 加工孔
51,52 縦孔
53,54,55,56 横孔
57 螺旋溝
59 止めねじ
7 ダイプレート、8 下パンチ、9 上パンチ
100 成形用粉末
P2 仮想円
t2,t3,t4 厚さ
1 Powder molding die 2 Inner cylinder part 20 Through hole 21 First inner peripheral surface, 22 Second inner peripheral surface, 23 Stepped surface 200 Cavity, 210 First area, 220 Second area 3 Intermediate cylinder part 4 Outer cylinder 40 Brim 5 Machining hole 51, 52 Vertical hole 53, 54, 55, 56 Horizontal hole 57 Spiral groove 59 Set screw 7 Die plate, 8 Lower punch, 9 Upper punch 100 Molding powder P2 Virtual circle t2, t3 , T4 thickness

Claims (7)

内側筒部と、
前記内側筒部の外周に焼嵌めされた中間筒部と、
前記中間筒部の外周に焼嵌めされた外側筒部とを備え、
前記内側筒部に対する前記中間筒部の焼嵌め率を第一の焼嵌め率とし、前記中間筒部に対する前記外側筒部の焼嵌め率を第二の焼嵌め率とするとき、
前記第一の焼嵌め率が前記第二の焼嵌め率よりも大きく、
前記第二の焼嵌め率が0.15%以上0.25%未満である、
粉末成形用ダイ。
Inner cylinder and
An intermediate cylinder portion that is shrink-fitted on the outer circumference of the inner cylinder portion, and
An outer cylinder portion that is shrink-fitted on the outer circumference of the intermediate cylinder portion is provided.
When the shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is defined as the first shrink fit ratio and the shrink fit ratio of the outer cylinder portion with respect to the intermediate cylinder portion is defined as the second shrink fit ratio.
The first shrink-fitting rate is larger than the second shrink-fitting rate,
The second shrink fit ratio is 0.15% or more and less than 0.25%.
Die for powder molding.
前記第一の焼嵌め率は、0.25%以上0.35%未満である請求項1に記載の粉末成形用ダイ。 The powder molding die according to claim 1, wherein the first shrink fitting ratio is 0.25% or more and less than 0.35%. 前記内側筒部は、
下パンチが嵌め込まれる第一の内周面と、
上パンチが嵌め込まれる第二の内周面と、
前記第一の内周面と前記第二の内周面とをつなぐ段差面とを備える請求項1又は請求項2に記載の粉末成形用ダイ。
The inner cylinder portion
The first inner peripheral surface into which the lower punch is fitted,
The second inner surface on which the upper punch is fitted, and
The powder molding die according to claim 1 or 2, further comprising a stepped surface connecting the first inner peripheral surface and the second inner peripheral surface.
前記中間筒部及び前記外側筒部は、前記粉末成形用ダイの温度を調整する媒体が流通する加工孔を備え、
前記加工孔は、
前記粉末成形用ダイの軸方向に沿って設けられる縦孔と、
前記縦孔に交差する方向に設けられる横孔とを備え、
前記縦孔は、前記外側筒部に設けられ、
前記横孔は、前記外側筒部及び前記中間筒部に設けられる請求項1から請求項3のいずれか1項に記載の粉末成形用ダイ。
The intermediate cylinder portion and the outer cylinder portion are provided with processing holes through which a medium for adjusting the temperature of the powder molding die flows.
The machined hole is
Vertical holes provided along the axial direction of the powder molding die, and
It is provided with a horizontal hole provided in a direction intersecting the vertical hole.
The vertical hole is provided in the outer cylinder portion and is provided.
The powder molding die according to any one of claims 1 to 3, wherein the lateral hole is provided in the outer cylinder portion and the intermediate cylinder portion.
前記中間筒部と前記外側筒部とは、同種の材質で構成されている請求項1から請求項4のいずれか1項に記載の粉末成形用ダイ。 The powder molding die according to any one of claims 1 to 4, wherein the intermediate cylinder portion and the outer cylinder portion are made of the same material. 前記外側筒部の厚さは、前記中間筒部の厚さよりも厚い請求項1から請求項5のいずれか1項に記載の粉末成形用ダイ。 The powder molding die according to any one of claims 1 to 5, wherein the thickness of the outer cylinder portion is thicker than the thickness of the intermediate cylinder portion. 内側筒部、中間筒部、及び外側筒部を準備する工程と、
前記内側筒部の外周に前記中間筒部を焼き嵌めし、前記内側筒部と前記中間筒部とを一体物とする工程と、
前記一体物の外周に前記外側筒部を焼嵌めする工程とを備え、
前記内側筒部に対する前記中間筒部の焼嵌め率を第一の焼嵌め率とし、前記一体物に対する前記外側筒部の焼嵌め率を第二の焼嵌め率とするとき、
前記第一の焼嵌め率を前記第二の焼嵌め率よりも大きく設定すると共に、前記第二の焼嵌め率を0.15%以上0.25%未満に設定する、
粉末成形用ダイの製造方法。
The process of preparing the inner cylinder, intermediate cylinder, and outer cylinder, and
A step of shrink-fitting the intermediate cylinder portion to the outer circumference of the inner cylinder portion and integrating the inner cylinder portion and the intermediate cylinder portion.
A step of shrink-fitting the outer cylinder portion to the outer periphery of the integrated object is provided.
When the shrink fit ratio of the intermediate cylinder portion with respect to the inner cylinder portion is defined as the first shrink fit ratio and the shrink fit ratio of the outer cylinder portion with respect to the integrated object is defined as the second shrink fit ratio.
The first shrink-fitting rate is set to be larger than the second shrink-fitting rate, and the second shrink-fitting rate is set to 0.15% or more and less than 0.25%.
A method for manufacturing a die for powder molding.
JP2019202897A 2019-11-08 2019-11-08 Die for powder molding, and method of manufacturing the same Pending JP2021074746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202897A JP2021074746A (en) 2019-11-08 2019-11-08 Die for powder molding, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202897A JP2021074746A (en) 2019-11-08 2019-11-08 Die for powder molding, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2021074746A true JP2021074746A (en) 2021-05-20

Family

ID=75899516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202897A Pending JP2021074746A (en) 2019-11-08 2019-11-08 Die for powder molding, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2021074746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230877A1 (en) 2021-04-27 2022-11-03 三菱マテリアル株式会社 Heat sink, and heat sink integrated-type insulating circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230877A1 (en) 2021-04-27 2022-11-03 三菱マテリアル株式会社 Heat sink, and heat sink integrated-type insulating circuit board

Similar Documents

Publication Publication Date Title
JP6228633B1 (en) Dust core, stator core and stator
KR102351841B1 (en) Method of manufacturing sintered parts
JP5415821B2 (en) Substantially cylindrical powder molded body and powder molding die apparatus
JP2013213580A (en) Sintered bearing
JP2009120918A (en) Method for producing sintered component
JP2021074746A (en) Die for powder molding, and method of manufacturing the same
KR102375656B1 (en) Method for manufacturing sintered component and sintered component
EP3663020B1 (en) Method for manufacturing sintered component, and sintered component
JP6152002B2 (en) Method for producing a green compact
JP4887178B2 (en) Mold for molding
JP2007287848A (en) Magnetic core and its manufacturing method
JP2018021224A (en) Manufacturing method of powder compact
KR101322300B1 (en) Method for manufacturing a engine piston combined with a sintered insert ring for the diesel engine
JPWO2019044467A1 (en) Manufacturing method of dust core and raw material powder for dust core
JP6331558B2 (en) Die for powder molding
JP2011157612A (en) Method for producing sintered component
JP6573245B2 (en) Sintered part manufacturing method and sintered part
TWI594824B (en) Mold for manufacturing ring-shaped nd-fe-b magnet and manufacturing method thereof
RU2052319C1 (en) Method of making mouth ring for glass molding machine
JPH0525591A (en) Wire for piston ring and its manufacture
JP2009266929A (en) Powder magnetic core and its manufacturing method
JP2006315028A (en) Method for compacting powder-compacting body, powder-compacted body and sintered machine part
JPH0434804B2 (en)
RU2574925C2 (en) Assembly of shrouded casting mould, casting assembly of borehole tool, method of manufacturing of borehole tool casting, method of manufacturing of cast assembly of borehole tool
JP5537865B2 (en) Powder molding method