JP2021074717A - Deoxidant, manufacturing method of deoxidant, deoxidant package and food package - Google Patents

Deoxidant, manufacturing method of deoxidant, deoxidant package and food package Download PDF

Info

Publication number
JP2021074717A
JP2021074717A JP2021014345A JP2021014345A JP2021074717A JP 2021074717 A JP2021074717 A JP 2021074717A JP 2021014345 A JP2021014345 A JP 2021014345A JP 2021014345 A JP2021014345 A JP 2021014345A JP 2021074717 A JP2021074717 A JP 2021074717A
Authority
JP
Japan
Prior art keywords
oxygen
inorganic particulate
oxygen scavenger
hydrophilic inorganic
granulated product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021014345A
Other languages
Japanese (ja)
Other versions
JP7238913B2 (en
Inventor
萌 石井
Moe Ishii
萌 石井
絵美子 村井
Emiko Murai
絵美子 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2021014345A priority Critical patent/JP7238913B2/en
Publication of JP2021074717A publication Critical patent/JP2021074717A/en
Application granted granted Critical
Publication of JP7238913B2 publication Critical patent/JP7238913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Packages (AREA)

Abstract

To achieve further enhancement of oxygen absorptive performance regarding a granular deoxidant using an organic oxygen absorption composition, especially further enhancement of oxygen absorptive performance.SOLUTION: There is provided deoxidant which is a powder containing a composite particle having a granulated article containing an oxygen absorption composition carried by a carrier consisting of an alkaline compound, and a hydrophilic inorganic particulate material adhered to a surface of the granulated article, and the oxygen absorption composition contains an oxygen absorption material, and liquid agent containing t a transition metallic compound.SELECTED DRAWING: None

Description

本発明は、脱酸素剤及びその製造方法に関する。本発明はまた、脱酸素剤を含む脱酸素剤包装体及び食品包装体に関する。 The present invention relates to an oxygen scavenger and a method for producing the same. The present invention also relates to an oxygen scavenger package containing an oxygen scavenger and a food package.

食品の長期保存のために、食品包装容器内に脱酸素剤が封入されることがある。脱酸素剤は、酸化による品質劣化や、細菌や微生物の増殖を抑える手段として酸素を吸収・除去するものである。脱酸素剤に求められる特性としては、酸素吸収能力の他に、安全性、低コスト性、取り扱い易さなどが優れていることが求められる。それらの特性を満たす事ができる優れた材料として、鉄粉が使用されて来た。しかしながら、特に食品包装工程において金属探知機が導入される様になったため、鉄粉が使用できなくなる場合がでてきた。そのため、金属探知機によって検知されない有機系材料の脱酸素剤が使用されるようになった。鉄粉の優れた酸素吸収性に近づけるため、有機材料からなる脱酸素剤および有機材料と多孔質材料からなる粒状の材料などを組み合わせた形態の脱酸素剤が各種提案されている。 Oxygen scavengers may be encapsulated in food packaging for long-term storage of food. Oxygen scavengers absorb and remove oxygen as a means of suppressing quality deterioration due to oxidation and the growth of bacteria and microorganisms. In addition to the oxygen absorption capacity, the oxygen scavenger is required to have excellent safety, low cost, and ease of handling. Iron powder has been used as an excellent material that can satisfy these characteristics. However, since metal detectors have been introduced especially in the food packaging process, iron powder may not be used in some cases. Therefore, oxygen scavengers made of organic materials that are not detected by metal detectors have come to be used. In order to approach the excellent oxygen absorption of iron powder, various oxygen scavengers in the form of a combination of an organic material and a granular material made of a porous material have been proposed.

例えば、特許文献1には、上記問題点を解決するため、グリセリンを主剤としフェノール類を含有する脱酸素剤において、フェノール類にt−ブチルヒドロキノンを用いる脱酸素剤が開示されている。これにより、酸素吸収性能の大幅な向上を図れ、安価かつ食品衛生上安全で実用性に優れた金属探知機にかけても検知されない脱酸素剤を提供している。 For example, Patent Document 1 discloses an oxygen scavenger containing glycerin as a main component and phenols, in which t-butylhydroquinone is used as the phenols, in order to solve the above problems. As a result, the oxygen absorption performance can be significantly improved, and an oxygen scavenger that is inexpensive, safe in terms of food hygiene, and has excellent practicality and is not detected even by a metal detector is provided.

また、特許文献2には、有機物が主剤の脱酸素剤において、脱酸素溶液を含浸させるケイ酸カルシウムの細孔容積が大きく、かつ比表面積の大きいものを用いると、酸素吸収量を鉄並みに増加させることができることを見出し、比表面積10m/g以上、かつ細孔容積3.0cc/g以上のケイ酸カルシウムに、酸素吸収性液体を含浸させている。これにより、酸素吸収性能の大幅な向上を図っている。 Further, in Patent Document 2, when an oxygen scavenger whose main agent is an organic substance and which has a large pore volume and a large specific surface area of calcium silicate impregnated with a deoxidizing solution is used, the amount of oxygen absorbed is comparable to that of iron. It was found that it can be increased , and calcium silicate having a specific surface area of 10 m 2 / g or more and a pore volume of 3.0 cc / g or more is impregnated with an oxygen-absorbing liquid. As a result, the oxygen absorption performance is greatly improved.

また、特許文献3には、水および水分により膨潤する膨潤剤を含有する脱酸素剤組成物を加圧成形して固形の脱酸素剤組成物とし、整粒して粒状品とした後、これに疎水性の滑沢剤を混合することで流動性を向上させた脱酸素剤組成物の製造法が開示され、この滑沢剤が、疎水性シリカ、ステアリン酸マグネシウムまたはステアリン酸カルシウムであることが開示されている。 Further, in Patent Document 3, an oxygen scavenger composition containing a swelling agent that swells with water and water is pressure-molded to obtain a solid oxygen scavenger composition, and the granules are sized to obtain a granular product. A method for producing an oxygen scavenger composition having improved fluidity by mixing a hydrophobic lubricant with a lubricant is disclosed, and the lubricant may be hydrophobic silica, magnesium stearate or calcium stearate. It is disclosed.

しかしながら、これらの技術によって得られる有機材料系の脱酸素剤による酸素吸収能力は必ずしも十分であるとは言えず、更なる性能の向上が求められている。 However, the oxygen absorption capacity of the organic material-based oxygen scavenger obtained by these techniques is not always sufficient, and further improvement in performance is required.

特許第3541859号公報Japanese Patent No. 3541859 特開2003−144112号公報Japanese Unexamined Patent Publication No. 2003-144112 特許第4821692号公報Japanese Patent No. 4821692

上記の事情に鑑み、本発明の課題は、有機系酸素吸収組成物を使用した粒状の脱酸素剤に関して、酸素吸収能力の更なる向上を図ることにある。 In view of the above circumstances, an object of the present invention is to further improve the oxygen absorption capacity of a granular oxygen scavenger using an organic oxygen absorption composition.

本発明の一側面は、アルカリ性化合物からなる担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、造粒物の表面に付着している親水性無機粒子状物質と、を備える複数の複合粒子を含む粉体である脱酸素剤を提供する。 One aspect of the present invention is a granulated product containing a carrier made of an alkaline compound and an oxygen absorbing composition supported on the carrier, and a hydrophilic inorganic particulate matter adhering to the surface of the granulated product. To provide an oxygen scavenger which is a powder containing a plurality of composite particles comprising.

本発明の別の側面は、アルカリ性化合物からなる担持体、及び前記担持体に担持された酸素吸収組成物を含む複数の造粒物からなる造粒物粉体と親水性無機粒子状物質とを混ぜ合わせることにより、前記造粒物の表面に前記親水性無機粒子状物質を付着させて、前記造粒物及び前記親水性無機粒子状物質を含む粉体である脱酸素剤を得る工程を備える、脱酸素剤を製造する方法に関する。 Another aspect of the present invention is a support made of an alkaline compound, and a granulated powder made of a plurality of granules containing an oxygen absorbing composition supported on the support, and a hydrophilic inorganic particulate matter. The present invention comprises a step of adhering the hydrophilic inorganic particulate matter to the surface of the granulated product by mixing to obtain a deoxidizer which is a powder containing the granulated product and the hydrophilic inorganic particulate matter. , Concerning a method of producing a deoxidizer.

酸素吸収組成物が、酸素吸収物質を含む液剤、及び遷移金属化合物を含有する。 The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance and a transition metal compound.

酸素吸収組成物を含む造粒物の表面に親水性無機粒子状物質を付着させることにより、酸素吸収物質が本来有する酸素吸収性が発揮されて、改善された酸素吸収能力を有する脱酸素剤が得られる。 By adhering a hydrophilic inorganic particulate substance to the surface of the granulated product containing the oxygen absorbing composition, the oxygen absorbing property inherent in the oxygen absorbing substance is exhibited, and an oxygen scavenger having an improved oxygen absorbing ability can be obtained. can get.

本発明はまた、上記脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備える、脱酸素剤包装体を提供する。本発明さらに、この脱酸素剤包装体と、脱酸素剤包装体が封入された食品包装容器と、を備える、食品包装体を提供する。 The present invention also provides an oxygen scavenger package comprising the oxygen scavenger and a breathable packaging material containing the oxygen scavenger. The present invention Further provides a food package including the oxygen scavenger package and a food package container in which the oxygen scavenger package is enclosed.

そこで、上記の課題を解決する手段として、本発明の請求項1に記載の発明は、アルカリ性化合物から成る担持体に担持された酸素吸収組成物を含む造粒物と、その造粒物の表面に付着している親水性無機粒子状物質と、を備えた複合粒子を含む粉体である脱酸素剤であって、酸素吸収組成物が酸素吸収物質を含む液剤と遷移金属化合物を含有し、
前記親水性無機粒子状物質が、150μm以下の平均粒径を有することを特徴とする脱酸素剤である。
Therefore, as a means for solving the above-mentioned problems, the invention according to claim 1 of the present invention is a granulated product containing an oxygen absorbing composition supported on a carrier made of an alkaline compound, and the surface of the granulated product. An oxygen scavenger that is a powder containing composite particles comprising a hydrophilic inorganic particulate substance adhering to the oxygen scavenger, wherein the oxygen absorbing composition contains a liquid agent containing the oxygen absorbing substance and a transition metal compound .
The hydrophilic inorganic particulate matter is an oxygen scavenger characterized by having an average particle size of 150 μm or less.

また、請求項2に記載の発明は、前記親水性無機粒子状物質が、0.5mL/g以上の細孔容積を有することを特徴とする請求項1に記載の脱酸素剤である。 The invention according to claim 2 is the oxygen scavenger according to claim 1 , wherein the hydrophilic inorganic particulate matter has a pore volume of 0.5 mL / g or more.

また、請求項3に記載の発明は、前記親水性無機粒子状物質の量が、前記造粒物100質量部に対して0.1〜30質量部であることを特徴とする請求項1または2に記載の脱酸素剤である。 The invention according to claim 3 is characterized in that the amount of the hydrophilic inorganic particulate matter is 0.1 to 30 parts by mass with respect to 100 parts by mass of the granulated product. The deoxidizer according to 2.

また、請求項4に記載の発明は、前記複合粒子の質量が、前記複合粒子1個当たり0.3〜10.0mgであることを特徴とする請求項1〜3のいずれかに記載の脱酸素剤である。 The invention according to claim 4 is the desorption according to any one of claims 1 to 3 , wherein the mass of the composite particles is 0.3 to 10.0 mg per composite particle. It is an oxygen agent.

また、請求項5に記載の発明は、前記造粒物の表面に付着している前記親水性無機粒子状物質が、厚み1mm以下の層を形成していることを特徴とする請求項1〜4のいずれかに記載の脱酸素剤である。 The invention according to claim 5 is characterized in that the hydrophilic inorganic particulate matter adhering to the surface of the granulated product forms a layer having a thickness of 1 mm or less . The oxygen scavenger according to any one of 4.

また、請求項6に記載の発明は、前記親水性無機粒子状物質が、前記複合粒子の表面をエネルギー分散型X線分析によって元素分析したときに前記担持体、前記酸素吸収物質又は前記遷移金属化合物に含まれる元素が検出されるように、前記造粒物の表面に付着している、請求項1〜5のいずれか一項に記載の脱酸素剤である。 Further, in the invention according to claim 6, when the hydrophilic inorganic particulate substance is elementally analyzed on the surface of the composite particle by energy dispersive X-ray analysis, the carrier, the oxygen absorbing substance or the transition metal. The deoxidizer according to any one of claims 1 to 5 , which is attached to the surface of the granulated product so that an element contained in the compound can be detected.

また、請求項7に記載の発明は、アルカリ性化合物から成る酸素吸収物質担持体に担持された酸素吸収組成物を含む複数の造粒物からなる造粒物粉体を得る工程と、前記造粒物
粉体と複数の親水性無機粒子状物質とを混ぜ合わせることにより、前記造粒物の表面に前記親水性無機粒子状物質を付着させて、前記造粒物及び前記親親水性無機粒子状物質を含む粉体である脱酸素剤を得る工程とを備え、前記酸素吸収組成物が、酸素吸収物質を含む液剤、及び遷移金属化合物を含有しており、前記親水性無機粒子状物質が、150μm以下の平均粒径を有する脱酸素剤の製造方法である。
The invention according to claim 7 is a step of obtaining a granulated product powder composed of a plurality of granulated materials containing an oxygen absorbing composition supported on an oxygen absorbing substance carrier made of an alkaline compound, and the granulation. By mixing the product powder and a plurality of hydrophilic inorganic particulate substances , the hydrophilic inorganic particulate substance is adhered to the surface of the granulated product, and the granulated product and the pro- hydrophilic inorganic particulate matter are formed. The oxygen absorbing composition comprises a liquid agent containing an oxygen absorbing substance and a transition metal compound, and the hydrophilic inorganic particulate substance comprises a step of obtaining a deoxidizing agent which is a powder containing a substance. This is a method for producing a deoxidizer having an average particle size of 150 μm or less.

また、請求項8に記載の発明は、前記親水性無機粒子状物質が、0.5mL/g以上の細孔容積を有することを特徴とする請求項7に記載の脱酸素剤の製造方法である。 The invention according to claim 8 is the method for producing an oxygen scavenger according to claim 7 , wherein the hydrophilic inorganic particulate matter has a pore volume of 0.5 mL / g or more. is there.

また、請求項9に記載の発明は、前記造粒物に付着される前記親水性無機粒子状物質の量が、造粒物の質量100質量部に対して0.1〜30質量部であることを特徴とする請求項7または8に記載の脱酸素剤の製造方法である。 Further, in the invention according to claim 9, the amount of the hydrophilic inorganic particulate matter adhering to the granulated product is 0.1 to 30 parts by mass with respect to 100 parts by mass by mass of the granulated product. The method for producing an oxygen scavenger according to claim 7 or 8.

また、請求項10に記載の発明は、請求項1〜6のいずれかに記載の前記脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備えることを特徴とする脱酸素剤包装体である。 The invention according to claim 10 is characterized by comprising the oxygen scavenger according to any one of claims 1 to 6 and a breathable packaging material containing the oxygen scavenger. It is an agent package.

また、請求項11に記載の発明は、請求項10に記載の前記脱酸素剤包装体と、該脱酸素剤包装体が封入された食品包装容器と、を備えることを特徴とする食品包装体である。 The invention according to claim 11 is characterized by comprising the oxygen scavenger package according to claim 10 and a food packaging container in which the oxygen scavenger package is enclosed. Is.

本発明は、改善された酸素吸収能力を有する粉体状の脱酸素剤を提供することができる。 The present invention can provide a powdered oxygen scavenger with improved oxygen absorption capacity.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

本発明の脱酸素剤について説明する。 The oxygen scavenger of the present invention will be described.

本発明の脱酸素剤は、アルカリ性化合物から成る担持体に担持された酸素吸収組成物を含む造粒物と、その造粒物の表面に付着している親水性無機粒子状物質と、を備えた複合粒子を含む粉体である脱酸素剤である。 The oxygen scavenger of the present invention comprises a granulated product containing an oxygen absorbing composition supported on a carrier made of an alkaline compound, and a hydrophilic inorganic particulate substance adhering to the surface of the granulated product. It is an oxygen scavenger that is a powder containing composite particles.

本発明の脱酸素剤は、酸素吸収組成物が酸素吸収物質を含む液剤と遷移金属化合物を含有することを特徴とする粉体である。 The oxygen scavenger of the present invention is a powder characterized in that the oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance and a transition metal compound.

ここで「粉体」は多数の粒子状物質から構成され、全体として流動性を維持している集合体を意味する。全体として粒子状物質同士が互いに固着して単一の固形錠剤を形成したもの自体は粉体に含まれない。本実施形態に係る脱酸素剤に含まれる複合粒子の数は、例えば、脱酸素剤1g当たり、10個以上10000個以下であってもよい。 Here, "powder" means an aggregate composed of a large number of particulate matter and maintaining fluidity as a whole. As a whole, the powder itself does not contain the particulate matter formed by sticking to each other to form a single solid tablet. The number of composite particles contained in the oxygen scavenger according to the present embodiment may be, for example, 10 or more and 10000 or less per 1 g of the oxygen scavenger.

脱酸素剤の粉体を構成する個々の複合粒子の質量は、複合粒子1個当たり0.3mg以上、又は0.5mg以上であってもよく、10.0mg以下、又は7.0mg以下であってもよい。複合粒子がこのように微小であると、より高い酸素吸収能力が得られる傾向がある。 The mass of each composite particle constituting the powder of the oxygen scavenger may be 0.3 mg or more, 0.5 mg or more, or 10.0 mg or less, or 7.0 mg or less per composite particle. You may. Such fine particles of composite particles tend to provide higher oxygen absorption capacity.

担持体は、酸素吸収組成物を担持できるアルカリ性化合物からなる粒子であればよい。通常、担持体に酸素吸収組成物を含浸することで、酸素吸収組成物が担持体に担持される。アルカリ性化合物は、水に溶解したときにアルカリ性の水溶液を形成する化合物である。酸素吸収物質が水酸基を持つ場合、水酸基をアルカリ性化合物がイオン化させることで、酸素吸収反応が活性化される。アルカリ性化合物は、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、第三リン酸塩、又は第二リン酸塩であってもよい。 The carrier may be particles made of an alkaline compound capable of supporting the oxygen absorbing composition. Usually, the oxygen absorbing composition is supported on the carrier by impregnating the carrier with the oxygen absorbing composition. An alkaline compound is a compound that forms an alkaline aqueous solution when dissolved in water. When the oxygen absorbing substance has a hydroxyl group, the oxygen absorption reaction is activated by ionizing the hydroxyl group with an alkaline compound. The alkaline compound may be a hydroxide, carbonate, bicarbonate, tertiary phosphate, or secondary phosphate of an alkali metal or alkaline earth metal.

アルカリ性化合物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化ラジウム、炭酸リチウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、第三リン酸ナトリウム、第三リン酸カリウム、第二リン酸ナトリウム、及び第二リン酸カリウムからなる群より選ばれる1種以上の化合物であってもよい。 Alkaline compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, radium hydroxide, lithium carbonate, sodium carbonate, Selected from the group consisting of calcium carbonate, magnesium carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydrogen carbonate, sodium tertiary phosphate, potassium tertiary phosphate, sodium secondary phosphate, and potassium secondary phosphate. It may be one or more compounds.

酸素吸収組成物は、酸素吸収物質を含む液剤、及び遷移金属化合物を含有する。 The oxygen absorbing composition contains a liquid preparation containing an oxygen absorbing substance and a transition metal compound.

酸素吸収物質を含む液剤は、常温(例えば5〜35℃)で液状の酸素吸収物質であってもよいし、液状又は固体の酸素吸収物質を含む溶液であってもよい。酸素吸収物質は、酸素吸収組成物の主剤であり、酸素を吸収する物質である。酸素吸収物質は、例えば、それ自身が酸化することによって酸素を消費し、酸素を吸収する化合物であってもよい。本実施形態では、常温で液状、又は溶媒へ溶解した状態の酸素吸収物質を用いることができる。このような酸素吸収物質は、例えば、グリセリン、1,2−グリコール、及び糖アルコールからなる群から選ばれる1種以上の化合物である。1,2−グリコールの具体例としては、エチレングリコール、及びプロピレングリコールが挙げられる。糖アルコールの具体例としては、エリスリトール、アラビトール、キシリトール、アドニトール、マンニトール、及びソルビトールが挙げられる。液剤が酸素吸収物質の溶液であるとき、酸素吸収物質が溶解する溶媒としては、例えば、水;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、第2級ブタノール、第3級ブタノール及び第3級アミルアルコール等の低級脂肪族アルコール;エチレングリコール、プロピレングリコール及びトリメチレングリコール等のグリコール;並びにフェノールが挙げられる。酸素吸収物質はこれらを単独でも、複数組み合わせても用いることができる。 The liquid agent containing the oxygen absorbing substance may be a liquid oxygen absorbing substance at room temperature (for example, 5 to 35 ° C.), or may be a solution containing a liquid or solid oxygen absorbing substance. The oxygen absorbing substance is the main agent of the oxygen absorbing composition and is a substance that absorbs oxygen. The oxygen absorbing substance may be, for example, a compound that consumes oxygen by oxidizing itself and absorbs oxygen. In this embodiment, an oxygen absorbing substance that is liquid at room temperature or dissolved in a solvent can be used. Such an oxygen absorbing substance is, for example, one or more compounds selected from the group consisting of glycerin, 1,2-glycol, and sugar alcohol. Specific examples of 1,2-glycol include ethylene glycol and propylene glycol. Specific examples of sugar alcohols include erythritol, arabitol, xylitol, adonitol, mannitol, and sorbitol. When the liquid agent is a solution of an oxygen absorbing substance, the solvent in which the oxygen absorbing substance is dissolved includes, for example, water; methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, secondary butanol, and the like. Lower aliphatic alcohols such as tertiary butanol and tertiary amyl alcohol; glycols such as ethylene glycol, propylene glycol and trimethylene glycol; and phenols. The oxygen absorbing substance may be used alone or in combination of two or more.

酸素吸収物質の量は、担持体の質量100.0質量部に対して、通常20.0〜55.0質量部であり、25.0〜50.0質量部であってもよい。酸素吸収物質の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。 The amount of the oxygen absorbing substance is usually 20.0 to 55.0 parts by mass and may be 25.0 to 50.0 parts by mass with respect to 100.0 parts by mass of the mass of the carrier. When the amount of the oxygen absorbing substance is within these ranges, it tends to be easy to obtain an oxygen scavenger having an appropriate oxygen absorbing capacity.

酸素吸収物質は、酸素を吸収する反応に水を必要とする場合がある。このため、酸素吸収物質自身が常温で液体であっても、必要に応じて水を液剤に添加することができる。必要に応じて添加される水の量は、酸素吸収物質100.0質量部に対して、通常0.0〜80.0質量部であり、20.0〜60.0質量部であってもよい。水の量は、担持体100.0質量部に対して、通常0.0〜25.0質量部であり、5.0〜20.0質量部であってもよい。 Oxygen scavengers may require water for the reaction to absorb oxygen. Therefore, even if the oxygen absorbing substance itself is a liquid at room temperature, water can be added to the liquid agent as needed. The amount of water added as needed is usually 0.0 to 80.0 parts by mass with respect to 100.0 parts by mass of the oxygen absorbing substance, even if it is 20.0 to 60.0 parts by mass. Good. The amount of water is usually 0.0 to 25.0 parts by mass and may be 5.0 to 20.0 parts by mass with respect to 100.0 parts by mass of the carrier.

遷移金属化合物は、遷移金属元素を含む化合物であり、酸素吸収物質の酸素吸収反応を促進するために添加される。遷移金属化合物は、酸素吸収組成物の状態では、酸素吸収物質を含む液剤に溶解していることが多い。遷移金属元素の具体例としては、鉄、コバルト、ニッケル、銅、亜鉛、及びマンガンが挙げられる。遷移金属化合物は、例えば、遷移金属のハロゲン化物、硫酸塩、硝酸塩、リン酸塩、炭酸塩、有機酸塩、酸化物、水酸化物、又はキレート化合物であってもよい。遷移金属化合物は、遷移金属元素を含む複塩であってもよい。遷移金属化合物は、塩化銅(I)、塩化銅(II)、硫酸銅(II)、水酸化銅(II)、酸化銅(I)、酸化銅(II)、塩化マンガン、硝酸マンガン、炭酸マンガン、及び塩化ニッケルからなる群より選ばれる1種以上の化合物であってもよい。 The transition metal compound is a compound containing a transition metal element, and is added to promote the oxygen absorption reaction of the oxygen absorbing substance. In the state of the oxygen absorbing composition, the transition metal compound is often dissolved in a liquid agent containing an oxygen absorbing substance. Specific examples of transition metal elements include iron, cobalt, nickel, copper, zinc, and manganese. The transition metal compound may be, for example, a halide, sulfate, nitrate, phosphate, carbonate, organic acid salt, oxide, hydroxide, or chelate compound of the transition metal. The transition metal compound may be a double salt containing a transition metal element. Transition metal compounds include copper (I) chloride, copper (II) chloride, copper (II) sulfate, copper (II) hydroxide, copper (I) oxide, copper (II) oxide, manganese chloride, manganese nitrate, and manganese carbonate. , And one or more compounds selected from the group consisting of nickel chloride.

遷移金属化合物の量は、担持体の質量100.0質量部に対して、通常2.5〜20.
0質量部であり、7.5〜15.0質量部であってもよい。遷移金属化合物の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。
The amount of the transition metal compound is usually 2.5 to 20. With respect to 100.0 parts by mass of the mass of the carrier.
It is 0 parts by mass and may be 7.5 to 15.0 parts by mass. When the amount of the transition metal compound is within these ranges, it tends to be easy to obtain an oxygen scavenger having an appropriate oxygen absorption capacity.

酸素吸収組成物は、造粒物が容易に形成できるように、バインダーを更に含有していてもよい。バインダーの具体例としては、アラビアゴム、ポリビニルアルコール、アルギン酸ナトリウム、ゼラチン及びセルロースが挙げられる。バインダーの量は、担持体の質量100質量部に対して、通常0.0〜8.0質量部であり、2.5〜5.5質量部であってもよい。 The oxygen absorbing composition may further contain a binder so that the granulated product can be easily formed. Specific examples of the binder include gum arabic, polyvinyl alcohol, sodium alginate, gelatin and cellulose. The amount of the binder is usually 0.0 to 8.0 parts by mass and may be 2.5 to 5.5 parts by mass with respect to 100 parts by mass of the carrier.

酸素吸収組成物は、必要によりその他の物質を更に含有していてもよい。その他の物質としては、例えば、カテコール系化合物が挙げられる。その他の物質の量は、担持体の質量100.0質量部に対して、通常、8.0質量部以下程度である。 The oxygen absorption composition may further contain other substances, if necessary. Examples of other substances include catechol compounds. The amount of other substances is usually about 8.0 parts by mass or less with respect to 100.0 parts by mass of the mass of the carrier.

無機粒子状物質が付着する前の造粒物の粒径(最大幅)は、特に制限されないが、例えば0.3〜8.0mm、又は0.3mm以上5.0mm未満であってもよい。 The particle size (maximum width) of the granulated product before the inorganic particulate matter adheres is not particularly limited, but may be, for example, 0.3 to 8.0 mm, or 0.3 mm or more and less than 5.0 mm.

担持体及び酸素吸収組成物から構成される造粒物は、担持体と、酸素吸収組成物を構成する成分とを含む混合物を造粒することにより、得ることができる。酸素吸収組成物を構成する各成分は、一括して混合してもよいし、別々に混合してもよい。混合するための混合機は、特に限定されるものではなく、例えば、円筒型、V型等の容器回転型混合機であってもよいし、リボン型、水平スクリュー型、バドル型、遊星運動型等の容器固定型混合機であってもよい。造粒は、例えば所定の開孔を有するスクリーンを用いた押出し造粒法によって行うことができる。 The granulated product composed of the carrier and the oxygen absorbing composition can be obtained by granulating a mixture containing the carrier and the components constituting the oxygen absorbing composition. The components constituting the oxygen absorption composition may be mixed together or separately. The mixer for mixing is not particularly limited, and may be, for example, a container rotary type mixer such as a cylindrical type or a V type, a ribbon type, a horizontal screw type, a paddle type, or a planetary motion type. It may be a container fixed type mixer such as. Granulation can be performed, for example, by an extrusion granulation method using a screen having a predetermined opening.

親水性無機粒子状物質は、親水性の無機物質を主成分として含む非水溶性の粒子である。親水性無機粒子状物質は、その全体質量を基準として、通常、50質量%以上の親水性の無機物質を含む。親水性の無機物質としては、例えば、親水性二酸化ケイ素、ケイ酸カルシウム水和物、酸化マグネシウム、及びケイ酸アルミニウムが挙げられる。 The hydrophilic inorganic particulate matter is a water-insoluble particle containing a hydrophilic inorganic substance as a main component. The hydrophilic inorganic particulate matter usually contains 50% by mass or more of the hydrophilic inorganic substance based on the total mass thereof. Hydrophilic inorganic substances include, for example, hydrophilic silicon dioxide, calcium silicate hydrate, magnesium oxide, and aluminum silicate.

親水性無機粒子状物質の平均粒径が、150μm以下であってもよい。親水性無機粒子状物質の平均粒径が150μm以下であることにより、脱酸素剤の酸素吸収能力を改善することができる。造粒物の表面には、通常、微細な凹凸が形成されており、小さい粒径の無機粒子状物質は、造粒物表面の凹部に入り込み易い。このことが結果的に造粒物の表面積を大幅に増加させることになり、酸素吸収能力向上に寄与すると考えられる。同様の観点から、親水性無機粒子状物質の平均粒径は、100μm以下、又は50μm以下であってもよい。平均粒径の下限は、特に制限されないが、ナノサイズの粒子状物質では価格が上がることと、皮膚表面から人体へ取り込まれてしまうために取扱が難しくなることから、例えば、0.1μm以上であってもよい。ここでの平均粒径は、レーザー回析法により測定される2次粒子の体積平均径の値である。 The average particle size of the hydrophilic inorganic particulate matter may be 150 μm or less. When the average particle size of the hydrophilic inorganic particulate matter is 150 μm or less, the oxygen absorption capacity of the oxygen scavenger can be improved. Fine irregularities are usually formed on the surface of the granulated product, and an inorganic particulate matter having a small particle size easily enters the recesses on the surface of the granulated product. As a result, the surface area of the granulated product is significantly increased, which is considered to contribute to the improvement of the oxygen absorption capacity. From the same viewpoint, the average particle size of the hydrophilic inorganic particulate matter may be 100 μm or less, or 50 μm or less. The lower limit of the average particle size is not particularly limited, but it is difficult to handle because the price of nano-sized particulate matter increases and it is taken into the human body from the skin surface. Therefore, for example, it is 0.1 μm or more. There may be. The average particle size here is a value of the volume average diameter of the secondary particles measured by the laser diffraction method.

親水性無機粒子状物質の細孔容積が、0.5mL/g以上であってもよい。親水性無機粒子状物質の細孔容積が0.5mL/gであることにより、脱酸素剤の酸素吸収能力を改善することができる。大きな細孔容積を有する親水性無機粒子状物質は、造粒物表面近傍の酸素吸収組成物を吸収し易いと考えられる。酸素吸収組成物(特に酸素吸収物質)が親水性無機粒子状物質に吸収されると、酸素吸収物質と環境下の酸素と接触する面積が増え、その結果、酸素吸収能力が向上すると推察される。150μm以下の平均粒径と、0.5mL/g以上の細孔容積の組み合わせが、酸素吸収能力向上のために特に有効である。 The pore volume of the hydrophilic inorganic particulate matter may be 0.5 mL / g or more. When the pore volume of the hydrophilic inorganic particulate matter is 0.5 mL / g, the oxygen absorption capacity of the oxygen scavenger can be improved. It is considered that the hydrophilic inorganic particulate matter having a large pore volume easily absorbs the oxygen absorbing composition near the surface of the granulated product. When the oxygen absorbing composition (particularly the oxygen absorbing substance) is absorbed by the hydrophilic inorganic particulate matter, it is presumed that the area of contact between the oxygen absorbing substance and oxygen in the environment increases, and as a result, the oxygen absorbing capacity is improved. .. A combination of an average particle size of 150 μm or less and a pore volume of 0.5 mL / g or more is particularly effective for improving the oxygen absorption capacity.

同様の観点から、親水性無機粒子状物質の細孔容積は、0.8mL/g以上、又は1.2mL/g以上であってもよい。細孔容積の上限は、特に制限されないが、例えば、10.0mL/g以下であってもよい。ここでの細孔容積は、窒素吸着法又は水銀圧入法により測定される値である。窒素吸着法又は水銀圧入法のうち少なくともいずれか一方の方法で測定される細孔容積が上記数値範囲内であればよい。 From the same viewpoint, the pore volume of the hydrophilic inorganic particulate matter may be 0.8 mL / g or more, or 1.2 mL / g or more. The upper limit of the pore volume is not particularly limited, but may be, for example, 10.0 mL / g or less. The pore volume here is a value measured by a nitrogen adsorption method or a mercury intrusion method. The pore volume measured by at least one of the nitrogen adsorption method and the mercury intrusion method may be within the above numerical range.

親水性無機粒子状物質の比表面積が、50〜1000m/g、又は100〜400m/gであってもよい。親水性無機粒子状物質の比表面積がこれら数値範囲内にあることにより、脱酸素剤の酸素吸収能力をより一層改善することができる傾向がある。ここでの比表面積は、窒素吸着法又は水源圧入法により測定される値である。窒素吸着法又は水源圧入法のうち少なくともいずれか一方の方法で測定される比表面積が上記数値範囲内であればよい。 The specific surface area of the hydrophilic inorganic particulate matter, 50~1000m 2 / g, or 100~400m may be 2 / g. When the specific surface area of the hydrophilic inorganic particulate matter is within these numerical ranges, the oxygen absorption capacity of the oxygen scavenger tends to be further improved. The specific surface area here is a value measured by a nitrogen adsorption method or a water source press-fitting method. The specific surface area measured by at least one of the nitrogen adsorption method and the water source press-fitting method may be within the above numerical range.

親水性無機粒子状物質が酸素吸収組成物を吸収し易い性質を有することが、脱酸素剤の酸素吸収能力向上に寄与し得る。親水性無機粒子状物質が酸素吸収組成物を吸収する程度は、親水性無機粒子状物質の吸液量によって評価することができる。この吸液量は、酸素吸収組成物を構成する酸素吸収物質を含む液剤及び遷移金属化合物からなる試験液を親水性無機粒子状物質の粉末に吸液させる方法により、測定される。吸液量測定用の試験液は、酸素吸収物質を含む液剤、及び遷移金属化合物を、酸素吸収組成物における質量比と同じ質量比で含む。この方法で測定される吸液量(親水性無機粒子状物質1g当たりの、吸液された試験液の質量)が、2.0g/g以上であると、高い酸素吸収能力が得られる傾向がある。同様の観点から、この吸液量は2.5g/g以上、又は3.0g/g以上であってもよい。吸液量の上限は、特に制限されないが、例えば20.0g/g以下であってもよい。吸液量の測定方法の詳細は、後述の実施例において説明される。 The property that the hydrophilic inorganic particulate matter easily absorbs the oxygen absorption composition can contribute to the improvement of the oxygen absorption capacity of the oxygen scavenger. The degree to which the hydrophilic inorganic particulate matter absorbs the oxygen absorbing composition can be evaluated by the amount of liquid absorbed by the hydrophilic inorganic particulate matter. The amount of liquid absorbed is measured by a method of absorbing a test solution composed of a liquid agent containing an oxygen absorbing substance and a transition metal compound constituting the oxygen absorbing composition into a powder of hydrophilic inorganic particulate matter. The test solution for measuring the amount of absorbed liquid contains a liquid agent containing an oxygen absorbing substance and a transition metal compound in the same mass ratio as the mass ratio in the oxygen absorbing composition. When the amount of liquid absorbed (mass of the absorbed test liquid per 1 g of hydrophilic inorganic particulate matter) measured by this method is 2.0 g / g or more, high oxygen absorption capacity tends to be obtained. is there. From the same viewpoint, the amount of liquid absorbed may be 2.5 g / g or more, or 3.0 g / g or more. The upper limit of the amount of liquid absorbed is not particularly limited, but may be, for example, 20.0 g / g or less. Details of the method for measuring the amount of liquid absorbed will be described in Examples described later.

以上例示した平均粒径、細孔容積、比表面積及び吸液量を有する親水性無機粒子状物質は、通常の方法によって製造することが可能であり、市販品の中から適宜選択して入手することもできる。 The hydrophilic inorganic particulate matter having the average particle size, pore volume, specific surface area and liquid absorption as exemplified above can be produced by a usual method, and can be appropriately selected and obtained from commercially available products. You can also do it.

造粒物の表面に付着している親水性無機粒子状物質の量(付着量)は、造粒物の質量100.0質量部に対して、0.1質量部以上、0.5質量部以上、1.0質量部以上、2.0質量部以上又は3.0質量部以上であってもよい。親水性無機粒子状物質の量がこれらの範囲内にあると、脱酸素剤の適切な酸素吸収能力が得られ易い。造粒物の表面に付着している親水性無機粒子状物質の量の上限は、特に制限されないが、造粒性等の観点から、30質量部以下、15.0質量部以下、10.0質量部以下又は8.0質量部以下であってもよい。造粒物に付着していない単独の親水性無機粒子状物質が、脱酸素剤の粒子と混在していることがあり得るが、単独の親水性無機粒子状物質の量は上記付着量に含まれない。 The amount (adhesion amount) of the hydrophilic inorganic particulate substance adhering to the surface of the granulated product is 0.1 part by mass or more and 0.5 part by mass with respect to 100.0 parts by mass of the mass of the granulated product. As mentioned above, it may be 1.0 part by mass or more, 2.0 part by mass or more, or 3.0 part by mass or more. When the amount of the hydrophilic inorganic particulate matter is within these ranges, it is easy to obtain an appropriate oxygen absorption capacity of the oxygen scavenger. The upper limit of the amount of hydrophilic inorganic particulate matter adhering to the surface of the granulated product is not particularly limited, but from the viewpoint of granulation property and the like, 30 parts by mass or less, 15.0 parts by mass or less, 10.0 It may be less than a part by mass or less than 8.0 parts by mass. A single hydrophilic inorganic particulate matter that is not attached to the granules may be mixed with the particles of the oxygen scavenger, but the amount of the single hydrophilic inorganic particulate matter is included in the above adhesion amount. I can't.

脱酸素剤は、担持体及び酸素吸収組成物を含む複数の造粒物を含む造粒物粉体と複数の親水性無機粒子状物質とを混ぜ合わせることにより、造粒物の表面に親水性無機粒子状物質を付着させる工程を備える製造方法によって、得ることができる。造粒物粉体と親水性無機粒子状物質とが全体として混ぜ合わせられた混合粉体を形成することにより、個々の造粒物の表面に複数の親水性無機粒子状物質が付着する。例えば、造粒物と、親水性無機粒子状物質とを混合し、得られた混合物を振とうすることにより、造粒物に親水性無機粒子状物質を付着させることができる。 The oxygen scavenger is hydrophilic on the surface of the granulated product by mixing a granulated product powder containing a plurality of granulated products containing a carrier and an oxygen absorbing composition and a plurality of hydrophilic inorganic particulate matter. It can be obtained by a production method including a step of adhering an inorganic particulate matter. By forming a mixed powder in which the granulated product powder and the hydrophilic inorganic particulate matter as a whole are mixed, a plurality of hydrophilic inorganic particulate matter adheres to the surface of each granulated product. For example, the hydrophilic inorganic particulate matter can be attached to the granulated product by mixing the granulated product and the hydrophilic inorganic particulate matter and shaking the obtained mixture.

上記のような粉体同士を混ぜ合わせる方法により造粒物に付着した親水性無機粒子状物質は、比較的薄い層を形成しており、この点で、本実施形態の脱酸素剤の形態は、例えば打錠成形によって得られた外郭部を有する錠剤とは一般に異なる。具体的には、造粒物の表面に付着している親水性無機粒子状物質は、厚み1.0mm以下、又は0.7mm以下の層を形成し得る。親水性無機粒子状物質の層が薄いことは、複合粒子の表面をエネルギ
ー分散型X線分析(EDX分析)によって元素分析したときに、造粒物を構成する材料(酸素吸収物質、アルカリ性化合物又は遷移金属化合物)に含まれる元素が検出されることから、確認することもできる。一般に、本実施形態に係る脱酸素剤の場合、造粒物を構成する材料に含まれる少なくとも1種の元素が、0.05原子数%以上、又は0.10原子数%以上の濃度で検出されることが多い。一方、造粒物を内包するある程度の厚さの外郭部が打錠成形によって形成されている場合、造粒物を構成する材料の元素がEDX分析によって実質的に検出されることはない。
The hydrophilic inorganic particulate matter adhering to the granulated product by the method of mixing the powders as described above forms a relatively thin layer, and in this respect, the form of the oxygen scavenger of the present embodiment is , For example, it is generally different from a tablet having an outer shell obtained by tableting. Specifically, the hydrophilic inorganic particulate matter adhering to the surface of the granulated product can form a layer having a thickness of 1.0 mm or less or 0.7 mm or less. The thin layer of hydrophilic inorganic particulate matter means that when the surface of the composite particle is elementally analyzed by energy dispersive X-ray analysis (EDX analysis), the material (oxygen absorber, alkaline compound or Since the element contained in the transition metal compound) is detected, it can be confirmed. Generally, in the case of the oxygen scavenger according to the present embodiment, at least one element contained in the material constituting the granulated product is detected at a concentration of 0.05 atomic number% or more or 0.10 atomic number% or more. Often done. On the other hand, when the outer shell portion having a certain thickness containing the granulated product is formed by tableting, the elements of the material constituting the granulated product are not substantially detected by the EDX analysis.

一実施形態に係る脱酸素包装体は、上記の実施形態に係る脱酸素剤と、この脱酸素剤を収容した通気性包材とから主として構成され得る。通気性包材は、当該技術分野で通常用いられるものから適宜選択することができる。通気性包材の具体例としては、有孔プラスチックフィルム、不織布、マイクロポーラスフィルム、紙又はこれらの組み合わせからなる基材よって形成された袋体が挙げられる。この脱酸素剤包装体は、例えば、各種の食品包装容器の中に収容して、食品の鮮度維持等の目的で使用することができる。 The oxygen scavenger package according to one embodiment may be mainly composed of the oxygen scavenger according to the above embodiment and a breathable packaging material containing the oxygen scavenger. The breathable packaging material can be appropriately selected from those commonly used in the art. Specific examples of the breathable packaging material include a bag formed of a perforated plastic film, a non-woven fabric, a microporous film, paper, or a base material made of a combination thereof. This oxygen scavenger package can be stored in various food packaging containers, for example, and used for the purpose of maintaining the freshness of food.

一実施形態に係る食品包装体は、上記脱酸素剤包装体と、この脱酸素剤包装体が封入された食品包装容器とを備える。食品包装容器は、食品包装の分野で通常用いられるものから適宜選択することができ、密封可能な容器が好適である。食品包装容器としては、袋体、深絞り包装体、トレイ包装体、ストレッチ包装体等が挙げられる。 The food packaging according to the embodiment includes the oxygen scavenger packaging and a food packaging container in which the oxygen scavenger packaging is enclosed. The food packaging container can be appropriately selected from those usually used in the field of food packaging, and a sealable container is preferable. Examples of the food packaging container include a bag body, a deeply squeezed package body, a tray package body, a stretch package body and the like.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

<実施例1〜5および比較例1>
1.造粒物
まず造粒物について説明する。
<Examples 1 to 5 and Comparative Example 1>
1. 1. Granulated product First, the granulated product will be described.

表1に示す原料を密封状態で均一に混合して、水酸化カルシウムと、水酸化カルシウムに担持された酸素吸収物質としてグリセリンを使用し、遷移金属塩として硫酸銅(ll)を含有する酸素吸収組成物及びバインダーとしてセルロースを使用して混合物を得た。得られた混合物を、スクリーン孔径1.0mmφ、開孔率22.6%のスクリーンを設けた押出し造粒機により造粒し、顆粒状の造粒物を得た。表1に各原料の配合量を質量部で示す。 The raw materials shown in Table 1 are uniformly mixed in a sealed state, calcium hydroxide and glycerin are used as the oxygen absorbing substance supported on the calcium hydroxide, and oxygen absorption containing copper sulfate (ll) as the transition metal salt. A mixture was obtained using cellulose as the composition and binder. The obtained mixture was granulated by an extrusion granulator provided with a screen having a screen pore diameter of 1.0 mmφ and an aperture ratio of 22.6% to obtain a granular granulated product. Table 1 shows the blending amount of each raw material by mass.

Figure 2021074717
Figure 2021074717

2.親水性の無機粒子状物質
次に、親水性の無機粒子状物質について説明する。
2. Hydrophilic Inorganic Particulate Matter Next, the hydrophilic inorganic particulate matter will be described.

まず、以下の親水性無機粒子状物質を準備した。それぞれ、実施例1〜5においてそれぞれで使用した無機粒子状物質である。 First, the following hydrophilic inorganic particulate matter was prepared. These are the inorganic particulate matter used in Examples 1 to 5, respectively.

<親水性二酸化ケイ素(SiO)粒子>
・サイロページ720(富士シリシア化学製)
・NIPGEL AZ−200(東ソー・シリカ製)
・NIPGEL AY−6A3(東ソー・シリカ製)
<非晶質ケイ酸カルシウム水和物(CaO・mSiO・nHO)粒子>
・フローライト(富田製薬製)
・非晶質ケイ酸カルシウム開発品
表2に、実施例1〜5で使用した無機粒子状物質の成分、製品名、各無機粒子状物質の
付着量、吸液量、平均粒径、比表面積及び細孔容積を示す。なお、平均粒径はレーザー回析法による体積平均径の測定値である。比表面積及び細孔容積は、二酸化ケイ素粒子に関しては窒素吸着法による測定値であり、ケイ酸カルシウム水和物粒子に関しては水銀圧入法による測定値である。なお、表2における比較例1は、造粒物を無機粒子状物質によって被覆せず、そのまま脱酸素剤として用いた例である。
<Hydrophilic silicon dioxide (SiO 2 ) particles>
・ Silo page 720 (manufactured by Fuji Silysia Chemical)
・ NIPGEL AZ-200 (manufactured by Tosoh Silica)
・ NIPGEL AY-6A3 (manufactured by Tosoh Silica)
<Amorphous calcium silicate hydrate (CaO, mSiO 2 , nH 2 O) particles>
・ Fluorite (manufactured by Tomita Pharmaceutical Co., Ltd.)
-Amorphous calcium silicate developed product Table 2 shows the components of the inorganic particulate matter used in Examples 1 to 5, the product name, the amount of each inorganic particulate matter attached, the amount of liquid absorbed, the average particle size, and the specific surface area. And the pore volume. The average particle size is a measured value of the volume average diameter by the laser diffraction method. The specific surface area and pore volume are measured values by the nitrogen adsorption method for silicon dioxide particles and measured by the mercury intrusion method for calcium silicate hydrate particles. In addition, Comparative Example 1 in Table 2 is an example in which the granulated product was not coated with the inorganic particulate matter and was used as it was as an oxygen scavenger.

Figure 2021074717
Figure 2021074717

無機粒子状物質の吸液量は、以下の手順で測定した。
(1)グリセリン、硫酸銅(II)及び水を50:15:20の質量比で混合して、試験液を準備する。
(2)所定量の無機粒子状物質に対して試験液を少量ずつ滴下しながら、無機粒子状物質を薬さじでこねる。粉末状の無機粒子状物質が試験液を吸収しながら1つの塊となる限界までに滴下した試験液の量(限界量)を記録する。試験液の滴下量が無機粒子状物質の限界量を超えると、無機粒子状物質が試験液を吸収できなくなり、1つの塊が崩れてスラリー状になる。
(3)以下の式により、吸液量を計算する。
The amount of liquid absorbed by the inorganic particulate matter was measured by the following procedure.
(1) Glycerin, copper (II) sulfate and water are mixed at a mass ratio of 50:15:20 to prepare a test solution.
(2) Knead the inorganic particulate matter with a spatula while dropping the test solution little by little on a predetermined amount of the inorganic particulate matter. Record the amount (limit amount) of the test solution dropped to the limit where the powdered inorganic particulate matter absorbs the test solution and becomes one lump. When the amount of the test liquid dropped exceeds the limit amount of the inorganic particulate matter, the inorganic particulate matter cannot absorb the test liquid, and one lump collapses into a slurry.
(3) The amount of liquid absorbed is calculated by the following formula.

吸液量[g/g]=試験液の限界量[g]/無機粒子状物質の質量[g]
3.脱酸素剤の作製
各種無機粒子状物質0.9gを、酸素バリア性の袋に入れた。そこに、30gの造粒物を入れ、袋をヒートシールした。袋を振るって、無機粒子状物質によって造粒物が被覆された脱酸素剤を形成させた。袋を開け、内部の空気を追い出すように再びヒートシールして、脱酸素剤を保管した。
Liquid absorption [g / g] = limit amount of test solution [g] / mass of inorganic particulate matter [g]
3. 3. Preparation of oxygen scavenger 0.9 g of various inorganic particulate matter was placed in an oxygen barrier bag. 30 g of granulated product was put therein, and the bag was heat-sealed. The bag was shaken to form an oxygen scavenger whose granules were coated with an inorganic particulate matter. The bag was opened and heat-sealed again to expel the air inside, and the oxygen scavenger was stored.

4.エネルギー分散型X線分析(EDX分析)
実施例1の脱酸素剤の表面を、加速電圧20kV、分析時間100秒(ライブタイム)の条件のEDX分析により分析した。その結果、造粒物を構成する硫酸銅に由来するCu元素が1.06原子数%の濃度で検出された。このことから、親水性無機粒子状物質が造粒物の表面に非常に薄く付着していることが確認された。同様の酸素吸収組成物からなる中心部と外郭部を有する錠剤を作成し、その表面をEDX分析により分析したところ、Cu元素は検出されなかった。
4. Energy dispersive X-ray analysis (EDX analysis)
The surface of the oxygen scavenger of Example 1 was analyzed by EDX analysis under the conditions of an acceleration voltage of 20 kV and an analysis time of 100 seconds (live time). As a result, Cu element derived from copper sulfate constituting the granulated product was detected at a concentration of 1.06 atomic number%. From this, it was confirmed that the hydrophilic inorganic particulate matter adhered very thinly to the surface of the granulated product. When a tablet having a central part and an outer part made of the same oxygen absorbing composition was prepared and the surface thereof was analyzed by EDX analysis, no Cu element was detected.

5.酸素吸収能力
脱酸素剤2.0gを、有孔包材によって形成された袋(縦60mm、横60mm)に収納し、脱酸素剤包装体を作製した。有孔包材として、ポリエチレンテレフタレート/ポリエチレン/紙/ポリエチレンから構成される積層材料に、直径0.2mmの孔をマトリクス状に3mmピッチで形成した通気性有孔フィルムを用いた。脱酸素剤包装体を、ショ糖44%水溶液を浸した脱脂綿(水分活性0.95)とともに、ガスバリア性の袋の中に入れた。袋を密封し、その中に空気500mLを注入してから、袋を25℃の雰囲気に放置した。24時間、及び48時間後の袋内の酸素濃度を測定した。酸素濃度が低いことは、酸素吸収能力が高いことを意味する。
5. Oxygen Absorption Capacity 2.0 g of oxygen scavenger was stored in a bag (length 60 mm, width 60 mm) formed of a perforated packaging material to prepare an oxygen scavenger package. As the perforated packaging material, a breathable perforated film in which holes having a diameter of 0.2 mm were formed in a matrix at a pitch of 3 mm was used in a laminated material composed of polyethylene terephthalate / polyethylene / paper / polyethylene. The oxygen scavenger package was placed in a gas barrier bag together with absorbent cotton (water activity 0.95) soaked with a 44% aqueous solution of sucrose. The bag was sealed, 500 mL of air was injected into it, and then the bag was left in an atmosphere of 25 ° C. The oxygen concentration in the bag after 24 hours and 48 hours was measured. A low oxygen concentration means a high oxygen absorption capacity.

6.結果
表2は、無機粒子状物質の特性、造粒物と無機粒子状物質の組み合わせ、及び酸素吸収能力の評価結果を示す。比較例は、造粒物を無機粒子状物質によって被覆せず、そのまま脱酸素剤として用いた例である。酸素吸収速度の欄には48時間以内に袋内の酸素濃度が0%になれば効果あり(○)、0%にならなければ効果なし(×)と記載した。親水性無機粒子状物質を多孔質の担持体に担持させた実施例1〜5の脱酸素剤は、優れた酸素吸収能力を示すことが確認された。
6. Results Table 2 shows the evaluation results of the characteristics of the inorganic particulate matter, the combination of the granulated product and the inorganic particulate matter, and the oxygen absorption capacity. A comparative example is an example in which the granulated product is not coated with an inorganic particulate matter and is used as it is as an oxygen scavenger. In the column of oxygen absorption rate, it is described that if the oxygen concentration in the bag reaches 0% within 48 hours, it is effective (◯), and if it does not reach 0%, it is not effective (x). It was confirmed that the oxygen scavengers of Examples 1 to 5 in which the hydrophilic inorganic particulate matter was supported on the porous carrier showed excellent oxygen absorption capacity.

Claims (11)

アルカリ性化合物から成る担持体に担持された酸素吸収組成物を含む造粒物と、その造粒物の表面に付着している親水性無機粒子状物質と、を備えた複合粒子を含む粉体である脱酸素剤であって、酸素吸収組成物が酸素吸収物質を含む液剤と遷移金属化合物を含有し、
前記親水性無機粒子状物質が、150μm以下の平均粒径を有することを特徴とする脱酸素剤。
A powder containing composite particles comprising a granule containing an oxygen absorbing composition supported on a carrier made of an alkaline compound and a hydrophilic inorganic particulate substance adhering to the surface of the granulated product. An oxygen scavenger in which the oxygen absorbing composition contains a liquid containing an oxygen absorbing substance and a transition metal compound .
An oxygen scavenger, wherein the hydrophilic inorganic particulate matter has an average particle size of 150 μm or less.
前記親水性無機粒子状物質が、0.5mL/g以上の細孔容積を有することを特徴とする請求項1に記載の脱酸素剤。 The oxygen scavenger according to claim 1 , wherein the hydrophilic inorganic particulate matter has a pore volume of 0.5 mL / g or more. 前記親水性無機粒子状物質の量が、前記造粒物100質量部に対して0.1〜30質量部であることを特徴とする請求項1または2に記載の脱酸素剤。 The oxygen scavenger according to claim 1 or 2 , wherein the amount of the hydrophilic inorganic particulate matter is 0.1 to 30 parts by mass with respect to 100 parts by mass of the granulated product. 前記複合粒子の質量が、前記複合粒子1個当たり0.3〜10.0mgであることを特徴とする請求項1〜3のいずれかに記載の脱酸素剤。 The oxygen scavenger according to any one of claims 1 to 3 , wherein the mass of the composite particles is 0.3 to 10.0 mg per composite particle. 前記造粒物の表面に付着している前記親水性無機粒子状物質が、厚み1mm以下の層を形成していることを特徴とする請求項1〜4のいずれかに記載の脱酸素剤。 The oxygen scavenger according to any one of claims 1 to 4, wherein the hydrophilic inorganic particulate matter adhering to the surface of the granulated product forms a layer having a thickness of 1 mm or less. 前記親水性無機粒子状物質が、前記複合粒子の表面をエネルギー分散型X線分析によって元素分析したときに前記担持体、前記酸素吸収物質又は前記遷移金属化合物に含まれる元素が検出されるように、前記造粒物の表面に付着している、請求項1〜5のいずれか一項に記載の脱酸素剤。 When the hydrophilic inorganic particulate substance is elementally analyzed on the surface of the composite particle by energy dispersive X-ray analysis, the element contained in the carrier, the oxygen absorbing substance or the transition metal compound is detected. The deoxidizer according to any one of claims 1 to 5 , which is attached to the surface of the granulated product. アルカリ性化合物から成る酸素吸収物質担持体に担持された酸素吸収組成物を含む複数の造粒物からなる造粒物粉体を得る工程と、前記造粒物粉体と複数の親水性無機粒子状物質とを混ぜ合わせることにより、前記造粒物の表面に前記親水性無機粒子状物質を付着させて、前記造粒物及び前記親親水性無機粒子状物質を含む粉体である脱酸素剤を得る工程とを備え、前記酸素吸収組成物が、酸素吸収物質を含む液剤、及び遷移金属化合物を含有しており、前記親水性無機粒子状物質が、150μm以下の平均粒径を有する脱酸素剤の製造方法。 A step of obtaining a granulated product powder composed of a plurality of granules containing an oxygen absorbing composition supported on an oxygen absorbing substance carrier composed of an alkaline compound, and a step of obtaining the granulated product powder and a plurality of hydrophilic inorganic particles. By mixing with a substance , the hydrophilic inorganic particulate substance is adhered to the surface of the granulated product to obtain a deoxidizer which is a powder containing the granulated product and the prohydrophilic inorganic particulate substance. The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance and a transition metal compound, and the hydrophilic inorganic granular material is a deoxidizing agent having an average particle size of 150 μm or less. Manufacturing method. 前記親水性無機粒子状物質が、0.5mL/g以上の細孔容積を有することを特徴とする請求項7に記載の脱酸素剤の製造方法。 The method for producing an oxygen scavenger according to claim 7 , wherein the hydrophilic inorganic particulate matter has a pore volume of 0.5 mL / g or more. 前記造粒物に付着される前記親水性無機粒子状物質の量が、造粒物の質量100質量部に対して0.1〜30質量部であることを特徴とする請求項7または8に記載の脱酸素剤の製造方法。 According to claim 7 or 8, the amount of the hydrophilic inorganic particulate matter adhering to the granulated product is 0.1 to 30 parts by mass with respect to 100 parts by mass of the granulated product. The method for producing an oxygen scavenger according to the above. 請求項1〜6のいずれかに記載の前記脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備えることを特徴とする脱酸素剤包装体。 An oxygen scavenger package comprising the oxygen scavenger according to any one of claims 1 to 6 and a breathable packaging material containing the oxygen scavenger. 請求項10に記載の前記脱酸素剤包装体と、該脱酸素剤包装体が封入された食品包装容器と、を備えることを特徴とする食品包装体。 A food packaging body comprising the oxygen scavenger packaging according to claim 10 and a food packaging container in which the oxygen scavenger packaging is enclosed.
JP2021014345A 2021-02-01 2021-02-01 Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package Active JP7238913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014345A JP7238913B2 (en) 2021-02-01 2021-02-01 Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014345A JP7238913B2 (en) 2021-02-01 2021-02-01 Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016181443A Division JP6834282B2 (en) 2016-09-16 2016-09-16 Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package

Publications (2)

Publication Number Publication Date
JP2021074717A true JP2021074717A (en) 2021-05-20
JP7238913B2 JP7238913B2 (en) 2023-03-14

Family

ID=75897277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014345A Active JP7238913B2 (en) 2021-02-01 2021-02-01 Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package

Country Status (1)

Country Link
JP (1) JP7238913B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354477A (en) * 1999-06-14 2000-12-26 Mitsubishi Gas Chem Co Inc Packed material of microwave-resistant oxygen scavenger
JP2003038143A (en) * 2001-07-26 2003-02-12 Mitsubishi Gas Chem Co Inc Deoxidization agent composition
JP2003144113A (en) * 2001-11-15 2003-05-20 Mitsubishi Gas Chem Co Inc Free-oxygen absorber
JP2003144112A (en) * 2001-11-07 2003-05-20 Mitsubishi Gas Chem Co Inc Free-oxygen absorber composition
JP2008221065A (en) * 2007-03-09 2008-09-25 Tokiwa Sangyo:Kk Organic oxygen absorbent
JP2017225953A (en) * 2016-06-24 2017-12-28 凸版印刷株式会社 Oxygen scavenger and manufacturing method thereof
JP6834282B2 (en) * 2016-09-16 2021-02-24 凸版印刷株式会社 Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354477A (en) * 1999-06-14 2000-12-26 Mitsubishi Gas Chem Co Inc Packed material of microwave-resistant oxygen scavenger
JP2003038143A (en) * 2001-07-26 2003-02-12 Mitsubishi Gas Chem Co Inc Deoxidization agent composition
JP2003144112A (en) * 2001-11-07 2003-05-20 Mitsubishi Gas Chem Co Inc Free-oxygen absorber composition
JP2003144113A (en) * 2001-11-15 2003-05-20 Mitsubishi Gas Chem Co Inc Free-oxygen absorber
JP2008221065A (en) * 2007-03-09 2008-09-25 Tokiwa Sangyo:Kk Organic oxygen absorbent
JP2017225953A (en) * 2016-06-24 2017-12-28 凸版印刷株式会社 Oxygen scavenger and manufacturing method thereof
JP6834282B2 (en) * 2016-09-16 2021-02-24 凸版印刷株式会社 Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package

Also Published As

Publication number Publication date
JP7238913B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6020757B1 (en) Oxygen scavenger and method for producing the same
JP6759755B2 (en) Oxygen scavenger and its manufacturing method
EP4173691A1 (en) Oxygen scavenger composition and method for producing same
JP7363099B2 (en) Oxygen scavenger composition and method for producing the same
JP6275197B2 (en) Oxygen scavenger and method for producing the same
JP6759754B2 (en) Oxygen scavenger and its manufacturing method
JP6834282B2 (en) Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package
JP7020270B2 (en) Oxygen scavenger and oxygen scavenger packaging, as well as food packaging
JP7238913B2 (en) Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package
JP4453797B2 (en) Oxygen absorber composition
JP2021167217A (en) Oxygen scavenger package and food package
JP7459595B2 (en) Oxygen scavenger composition
JP2021183309A (en) Deoxidant, production method of the same, deoxidant package and food product package
JP7326840B2 (en) oxygen scavenger
JP7286946B2 (en) Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JP2021186691A (en) Deoxidizer, deoxidizer package, and food package
JP7286947B2 (en) Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JP2021041306A (en) Oxygen absorber, oxygen absorber package and food package
JP2021030145A (en) Deoxidizer, deoxidizer package and food package
JP2020168608A (en) Deoxidation agent
JP7230437B2 (en) Method for inspecting oxygen absorption performance of oxygen absorber, method for manufacturing oxygen absorber, oxygen absorber, oxygen absorber package, and food package
JPH0321148B2 (en)
JP6879445B2 (en) Oxygen scavenger composition
JP2022185384A (en) Deoxidant with antibacterial
JP7310534B2 (en) Oxygen absorber and its manufacturing method, oxygen absorber package, food package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150