JP2021183309A - Deoxidant, production method of the same, deoxidant package and food product package - Google Patents

Deoxidant, production method of the same, deoxidant package and food product package Download PDF

Info

Publication number
JP2021183309A
JP2021183309A JP2020089220A JP2020089220A JP2021183309A JP 2021183309 A JP2021183309 A JP 2021183309A JP 2020089220 A JP2020089220 A JP 2020089220A JP 2020089220 A JP2020089220 A JP 2020089220A JP 2021183309 A JP2021183309 A JP 2021183309A
Authority
JP
Japan
Prior art keywords
oxygen scavenger
mass
inorganic fine
fine particles
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020089220A
Other languages
Japanese (ja)
Other versions
JP7571392B2 (en
Inventor
萌 石井
Moe Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2020089220A priority Critical patent/JP7571392B2/en
Priority claimed from JP2020089220A external-priority patent/JP7571392B2/en
Publication of JP2021183309A publication Critical patent/JP2021183309A/en
Application granted granted Critical
Publication of JP7571392B2 publication Critical patent/JP7571392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Packages (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

To provide a granular deoxidant where oxygen absorption capacity is further improved.SOLUTION: A deoxidant is powders containing a plurality of composite particles having a granulated material including a porous carrier and an oxygen absorbing composition carried by the carrier and inorganic fine particles stuck on the surface of the granulated material. The oxygen absorbing composition contains glycerol, copper sulfate and an alkaline compound. The sedimentation rate of the composite particles in an aqueous solution containing glycerol and copper sulfate is 2 mm/s or more per one particle.SELECTED DRAWING: None

Description

本発明は、脱酸素剤及びその製造方法に関する。本発明はまた、脱酸素剤を含む脱酸素剤包装体及び食品包装体に関する。 The present invention relates to an oxygen scavenger and a method for producing the same. The present invention also relates to an oxygen scavenger package containing an oxygen scavenger and a food package.

食品の長期保存のために、食品包装容器内に脱酸素剤が封入されることがある。従来の一般的な脱酸素剤は、液状の酸素吸収物質が担持体とともに造粒された粒状物である(例えば、特許文献1〜3)。 Oxygen scavengers may be encapsulated in food packaging for long-term storage of food. Conventional general oxygen scavengers are granules in which a liquid oxygen absorbent substance is granulated together with a carrier (for example, Patent Documents 1 to 3).

特許第4821692号公報Japanese Patent No. 4821692 特開2003−144112号公報Japanese Unexamined Patent Publication No. 2003-144112 特許第3541859号公報Japanese Patent No. 3541859

本発明の主な目的は、粒状の脱酸素剤に関して、酸素吸収能力の更なる向上を図ることにある。 A main object of the present invention is to further improve the oxygen absorption capacity of a granular oxygen scavenger.

本発明の一側面は、多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、造粒物の表面に付着している無機微粒子、を備える複数の複合粒子を含む粉体である脱酸素剤であって、酸素吸収組成物が、グリセリン、硫酸銅、及びアルカリ性化合物を含み、複合粒子のグリセリンおよび硫酸銅を含有する水溶液中における沈降速度が1個当たり2mm/秒以上である脱酸素剤である。 One aspect of the present invention comprises a plurality of granulations, including a porous carrier and an oxygen absorbing composition carried on the carrier, and inorganic fine particles adhering to the surface of the granulation. An oxygen scavenger that is a powder containing composite particles, wherein the oxygen absorbing composition contains glycerin, copper sulfate, and an alkaline compound, and the precipitation rate of the composite particles in an aqueous solution containing glycerin and copper sulfate is one. It is an oxygen scavenger that is 2 mm / sec or more per second.

本発明の別の側面は、多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物に、無機微粒子を付着させて、グリセリンおよび硫酸銅を含有する水溶液中における沈降速度が1個当たり2mm/秒以上となるように複合粒子を形成する無機微粒子を付着させる工程を備える、脱酸素剤の製造方法である。 Another aspect of the present invention is in an aqueous solution containing glycerin and copper sulfate in which inorganic fine particles are attached to a granulated product containing a porous carrier and an oxygen absorbing composition supported on the carrier. This is a method for producing an oxygen scavenger, which comprises a step of adhering inorganic fine particles forming composite particles so that the sedimentation rate in each particle is 2 mm / sec or more.

酸素吸収組成物が、グリセリン、硫酸銅、及びアルカリ性化合物を含有し、複合粒子のグリセリンおよび硫酸銅を含有する水溶液中での沈降速度が、1個当たり2mm/秒以上となるように、造粒物の表面に無機微粒子を付着させることにより、グリセリンが本来有する酸素吸収性が発揮されて、改善された酸素吸収能力を有する脱酸素剤が得られる。 Granulation is performed so that the oxygen absorption composition contains glycerin, copper sulfate, and an alkaline compound, and the sedimentation rate of the composite particles in an aqueous solution containing glycerin and copper sulfate is 2 mm / sec or more per particle. By adhering the inorganic fine particles to the surface of an object, the oxygen absorption inherent in glycerin is exhibited, and an oxygen scavenger having an improved oxygen absorption capacity can be obtained.

本発明はまた、上記脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備える、脱酸素剤包装体を提供する。本発明はさらに、この脱酸素剤包装体と、脱酸素剤包装体が封入された食品包装容器と、を備える、食品包装体を提供する。 The present invention also provides an oxygen scavenger package comprising the oxygen scavenger and a breathable packaging material containing the oxygen scavenger. The present invention further provides a food package including the oxygen scavenger package and a food package container in which the oxygen scavenger package is enclosed.

本発明は、改善された酸素吸収能力を有する粒状の脱酸素剤を提供することができる。 The present invention can provide a granular oxygen scavenger with improved oxygen absorption capacity.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

一実施形態に係る脱酸素剤は、多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、造粒物の表面に付着している無機微粒子から主として構成される複合粒子である。 The oxygen scavenger according to one embodiment is mainly composed of a granulated product containing a porous carrier and an oxygen absorbing composition supported on the carrier, and inorganic fine particles adhering to the surface of the granulated product. It is a composite particle composed.

担持体は、酸素吸収組成物を担持できる多孔質粒子であればよい。通常、担持体に酸素吸収組成物を含浸させることで、担持体に担持される。担持体は、例えば、活性炭、ゼオライト粒子、ベントナイト粒子、活性アルミナ粒子、活性白土、ケイ酸カルシウム粒子、及び珪藻土から選ばれる。 The carrier may be any porous particles capable of supporting the oxygen absorbing composition. Usually, the carrier is supported by impregnating the carrier with an oxygen absorbing composition. The carrier is selected from, for example, activated carbon, zeolite particles, bentonite particles, activated alumina particles, activated clay, calcium silicate particles, and diatomaceous earth.

酸素吸収組成物は、グリセリン、硫酸銅、及びアルカリ性化合物を含有する。 The oxygen absorption composition contains glycerin, copper sulfate, and an alkaline compound.

グリセリンの量は、担持体の質量100質量部に対して、通常80〜200質量部であり、100〜180質量部であってもよい。グリセリンの量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。 The amount of glycerin is usually 80 to 200 parts by mass and may be 100 to 180 parts by mass with respect to 100 parts by mass of the carrier. When the amount of glycerin is within these ranges, it tends to be easy to obtain an oxygen scavenger having an appropriate oxygen absorption capacity.

酸素吸収反応には、水の存在が好ましい場合がある。そこで、グリセリン100質量部に対して、30〜85質量部の水、とくに30〜70質量部の水を添加してもよい。水の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。 The presence of water may be preferred for the oxygen absorption reaction. Therefore, 30 to 85 parts by mass of water, particularly 30 to 70 parts by mass of water may be added to 100 parts by mass of glycerin. When the amount of water is within these ranges, it tends to be easy to obtain an oxygen scavenger having an appropriate oxygen absorption capacity.

アルカリ性化合物は、水に溶解したときにアルカリ性の水溶液を形成する化合物である。グリセリンの水酸基をアルカリ性化合物がイオン化させることで、酸素吸収反応が活性化される。酸素吸収組成物の状態では、アルカリ性化合物の一部がグリセリンに溶解していることが多い。アルカリ性化合物は、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、第三リン酸塩、又は第二リン酸塩であってもよい。アルカリ性化合物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化ラジウム、炭酸リチウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、第三リン酸ナトリウム、第三リン酸カリウム、第二リン酸ナトリウム、及び第二リン酸カリウムからなる群より選ばれる1種以上の化合物であってもよい。 An alkaline compound is a compound that forms an alkaline aqueous solution when dissolved in water. The oxygen absorption reaction is activated by ionizing the hydroxyl group of glycerin with an alkaline compound. In the state of the oxygen absorption composition, a part of the alkaline compound is often dissolved in glycerin. The alkaline compound may be an alkali metal or alkaline earth metal hydroxide, carbonate, bicarbonate, tertiary phosphate, or secondary phosphate. Alkaline compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, radium hydroxide, lithium carbonate, sodium carbonate, Selected from the group consisting of calcium carbonate, magnesium carbonate, potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, lithium hydrogencarbonate, sodium tertiary phosphate, potassium tertiary phosphate, sodium secondary phosphate, and potassium secondary phosphate. It may be one or more compounds.

アルカリ性化合物の量は、担持体の質量100質量部に対して、通常100〜300質量部であり、150〜250質量部であってもよい。アルカリ性化合物の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。 The amount of the alkaline compound is usually 100 to 300 parts by mass and may be 150 to 250 parts by mass with respect to 100 parts by mass of the carrier. When the amount of the alkaline compound is within these ranges, it tends to be easy to obtain an oxygen scavenger having an appropriate oxygen absorption capacity.

硫酸銅は、グリセリンの酸素吸収反応を促進するために添加される。硫酸銅は、酸素吸収組成物の状態では、グリセリンに溶解していることが多い。硫酸銅は、銅の硫酸塩であればよく、無水物であっても5水和物であっても、その他の水和物であってもよい。また、酸化数によらず、硫酸銅(I)であっても、硫酸銅(II)であってもよい。 Copper sulphate is added to accelerate the oxygen absorption reaction of glycerin. Copper sulfate is often dissolved in glycerin in the state of an oxygen absorbing composition. The copper sulfate may be a sulfate of copper, and may be anhydrous, pentahydrate, or other hydrate. Further, it may be copper sulfate (I) or copper sulfate (II) regardless of the oxidation number.

硫酸銅の量は、無水物に換算してグリセリンの質量100質量部に対して、15〜30質量部であり、18〜26質量部であってもよい。遷移金属化合物の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。 The amount of copper sulfate is 15 to 30 parts by mass and may be 18 to 26 parts by mass with respect to 100 parts by mass of glycerin in terms of anhydride. When the amount of the transition metal compound is within these ranges, it tends to be easy to obtain an oxygen scavenger having an appropriate oxygen absorbing capacity.

担持体または酸素吸収組成物は、造粒物が容易に形成できるように、バインダーを含有していてもよい。バインダーの具体例としては、アラビアゴム、ポリビニルアルコール、アルギン酸ナトリウム、ゼラチン及びセルロースが挙げられる。バインダーの量は、担持体の質量100質量部に対して、通常0〜30質量部であり、10〜20質量部であってもよい。 The carrier or oxygen absorbing composition may contain a binder so that the granulated product can be easily formed. Specific examples of the binder include gum arabic, polyvinyl alcohol, sodium alginate, gelatin and cellulose. The amount of the binder is usually 0 to 30 parts by mass and may be 10 to 20 parts by mass with respect to 100 parts by mass of the carrier.

酸素吸収組成物は、その他の物質を更に含有していてもよい。その他の物質としては、例えば、カテコール系化合物が挙げられる。その他の物質の量は、担持体の質量100質量部に対して、通常、30質量部以下程度である。 The oxygen absorption composition may further contain other substances. Examples of other substances include catechol compounds. The amount of other substances is usually about 30 parts by mass or less with respect to 100 parts by mass of the carrier.

無機微粒子が付着する前の造粒物の粒径(最大幅)は、特に制限されないが、例えば0.3mm以上であってもよく、8.0mm以下、4.5mm以下、1.8mm以下、又は1.5mm以下であってもよい。造粒物の形状は、特に限定されないが、例えば円柱状や球状であってもよい。円柱状の造粒物の場合、その側面の長さは0.3mm以上であってもよく、4.5mm以下であってもよい。円柱状の底面の直径が、0.3mm以上であってもよく、1.8mm以下、又は1.5mm以下であってもよい。造粒物の粒径又はサイズが小さいと、より高い酸素吸収能力が得られる傾向がある。 The particle size (maximum width) of the granulated product before the inorganic fine particles adhere is not particularly limited, but may be, for example, 0.3 mm or more, 8.0 mm or less, 4.5 mm or less, 1.8 mm or less, Alternatively, it may be 1.5 mm or less. The shape of the granulated product is not particularly limited, but may be columnar or spherical, for example. In the case of a columnar granulated product, the length of the side surface thereof may be 0.3 mm or more and may be 4.5 mm or less. The diameter of the bottom surface of the columnar column may be 0.3 mm or more, 1.8 mm or less, or 1.5 mm or less. Smaller particle sizes or sizes of granules tend to provide higher oxygen absorption capacity.

担持体及び酸素吸収組成物から構成される造粒物は、担持体と、酸素吸収組成物を構成する成分を含む混合物を造粒することにより、得ることができる。酸素吸収組成物を構成する各成分は、一括して混合してもよいし、別々に混合してもよい。混合するための混合機は、特に限定されるものではなく、例えば、円筒型、V型等の容器回転型混合機であってもよいし、リボン型、水平スクリュー型、バドル型、遊星運動型等の容器固定型混合機であってもよい。 The granulated product composed of the carrier and the oxygen absorbing composition can be obtained by granulating a mixture containing the carrier and the components constituting the oxygen absorbing composition. The components constituting the oxygen absorption composition may be mixed together or separately. The mixer for mixing is not particularly limited, and may be, for example, a container rotary type mixer such as a cylindrical type or a V type, a ribbon type, a horizontal screw type, a paddle type, or a planetary motion type. It may be a container fixed type mixer such as.

造粒物は、例えば、押出造粒、攪拌造粒、流動層造粒、転動造粒、又は圧縮造粒によって造粒することにより、得ることができる。押出造粒は、例えば、所定の開孔を有するスクリーンを用いて行うことができる。押出造粒によって得られる造粒物は、円柱状であることが多い。 The granulated product can be obtained by, for example, granulation by extrusion granulation, stirring granulation, fluidized bed granulation, rolling granulation, or compression granulation. Extrusion granulation can be performed, for example, using a screen having a predetermined opening. The granulated product obtained by extrusion granulation is often columnar.

無機微粒子は、無機物質を主成分として含む非水溶性の粒子である。無機微粒子は、その全体質量を基準として、通常、50質量部以上の無機物質を含む。無機物質は、例えば、二酸化ケイ素、ケイ酸カルシウム水和物、酸化マグネシウム、からなる群より選ばれる少なくとも1種であってもよい。無機微粒子を造粒物表面に付着させることで、造粒物の表面積を拡大させ、酸素吸収性能の向上を図ることができる。 Inorganic fine particles are water-insoluble particles containing an inorganic substance as a main component. The inorganic fine particles usually contain 50 parts by mass or more of inorganic substances based on the total mass thereof. The inorganic substance may be at least one selected from the group consisting of, for example, silicon dioxide, calcium silicate hydrate, and magnesium oxide. By adhering the inorganic fine particles to the surface of the granulated product, the surface area of the granulated product can be expanded and the oxygen absorption performance can be improved.

造粒物に付着させた無機微粒子の、酸素吸収組成物を吸収する速度が大きいほど、造粒物内部に含まれる酸素吸収組成物を、無機微粒子の方に素早く移行させることができ、より酸素吸収性能を向上させることができる。この酸素吸収組成物を吸収する速度は、無機微粒子とグリセリンおよび硫酸銅を含有する水溶液との親和性により決定される。 The higher the rate at which the oxygen absorbing composition of the inorganic fine particles attached to the granulated product is absorbed, the faster the oxygen absorbing composition contained inside the granulated product can be transferred to the inorganic fine particles, and the more oxygen there is. Absorption performance can be improved. The rate at which the oxygen absorbing composition is absorbed is determined by the affinity between the inorganic fine particles and the aqueous solution containing glycerin and copper sulfate.

無機微粒子と前記水溶液の親和性は、複合粒子の前記水溶液への沈降速度として捉えることができる。無機微粒子を付着しない造粒物は、前記水溶液に比べて密度が低く、かつ造粒物表面と前記水溶液との親和性が低いことでため沈降しない。一方、前記水溶液と親和性の高い無機微粒子を、造粒物の表面に付着させた複合粒子は、表面の無機微粒子が該水溶液を吸収し複合粒子が重くなることで沈降する。無機微粒子と前記水溶液の親和性が高いほど、該水溶液を吸収する速度が速いため沈降速度が速くなる。この親和性を、沈降速度を用いて評価することで、酸素吸収速度を評価することができる。 The affinity between the inorganic fine particles and the aqueous solution can be grasped as the sedimentation rate of the composite particles in the aqueous solution. The granulated product to which the inorganic fine particles do not adhere has a lower density than the aqueous solution, and the affinity between the surface of the granulated product and the aqueous solution is low, so that the granulated product does not settle. On the other hand, in the composite particles in which the inorganic fine particles having a high affinity with the aqueous solution are attached to the surface of the granulated product, the inorganic fine particles on the surface absorb the aqueous solution and the composite particles become heavy and settle. The higher the affinity between the inorganic fine particles and the aqueous solution, the faster the absorption rate of the aqueous solution and the faster the sedimentation rate. By evaluating this affinity using the sedimentation rate, the oxygen absorption rate can be evaluated.

前記水溶液の濃度は、グリセリン100重量部に対して、硫酸銅の量は、無水物に換算して15〜30質量部であり、18〜26質量部であってもよい。更に、水の量は、グリセリン100質量部に対して、30〜85質量部であり、30〜70質量部であってもよい。前記水溶液の濃度が、造粒物に含まれる酸素吸収組成物の濃度と同じであることが好ましい。前記水溶液と酸素吸収組成物の濃度が同じであると、酸素吸収組成物の無機微粒子部への移行のし易さをより正確に定量することができる。 The concentration of the aqueous solution is 15 to 30 parts by mass in terms of anhydrate with respect to 100 parts by mass of glycerin, and the amount of copper sulfate may be 18 to 26 parts by mass. Further, the amount of water is 30 to 85 parts by mass and may be 30 to 70 parts by mass with respect to 100 parts by mass of glycerin. It is preferable that the concentration of the aqueous solution is the same as the concentration of the oxygen absorbing composition contained in the granulated product. When the concentration of the aqueous solution and the oxygen absorbing composition are the same, the ease of transfer of the oxygen absorbing composition to the inorganic fine particle portion can be quantified more accurately.

複合粒子の沈降速度は、複合粒子1個当たり2mm/秒以上であると、高い酸素吸収能力が得られる傾向がある。同様の観点から、複合粒子1個当たりの沈降速度は、2.5mm/秒以上、5mm/秒以上、又は10mm/秒以上であってもよい。沈降速度の上限は、特に制限されない。また、複合粒子の質量は、例えば、1個当たり0.3〜10.0mgとすることができる。 When the sedimentation rate of the composite particles is 2 mm / sec or more per composite particle, a high oxygen absorption capacity tends to be obtained. From the same viewpoint, the sedimentation rate per composite particle may be 2.5 mm / sec or more, 5 mm / sec or more, or 10 mm / sec or more. The upper limit of the settling speed is not particularly limited. Further, the mass of the composite particles can be, for example, 0.3 to 10.0 mg per particle.

複合粒子の沈降速度は、グリセリンおよび硫酸銅を含む水溶液を一定容積の容器に入れ、液面に複合粒子1個を静かに置き、沈降する複合粒子が容器の底面に到達するまでに要する時間と、容器底面から液面までの距離によって決定することができる。沈降速度の測定方法の詳細は、後述の実施例において説明される。 The settling rate of the composite particles is the time required for the settling composite particles to reach the bottom surface of the container by placing an aqueous solution containing glycerin and copper sulfate in a container of a certain volume and gently placing one composite particle on the liquid surface. , Can be determined by the distance from the bottom of the container to the liquid level. Details of the method for measuring the sedimentation rate will be described in Examples described later.

無機微粒子の平均粒径が、150μm以下であってもよい。無機微粒子平均粒径が150μm以下であることにより、脱酸素剤の酸素吸収能力をより一層改善することができる。造粒物の表面には、通常、微細な凹凸が形成されており、小さい粒径の無機微粒子は、造粒物表面の凹部に入り込み易い。このことが結果的に造粒物の表面積を大幅に増加させることになり、酸素吸収能力向上に寄与すると考えられる。同様の観点から、無機微粒子の平均粒径は、100μm以下、又は50μm以下であってもよい。平均粒径の下限は、特に制限されないが、ナノサイズの微粒子が高価であることと、取扱が難しくなることから、例えば、0.1μm以上であってもよい。ここでの平均粒径は、レーザー回析法により測定される二次粒子径の値である。 The average particle size of the inorganic fine particles may be 150 μm or less. When the average particle size of the inorganic fine particles is 150 μm or less, the oxygen absorption capacity of the oxygen scavenger can be further improved. Fine irregularities are usually formed on the surface of the granulated product, and inorganic fine particles having a small particle size easily enter the recesses on the surface of the granulated product. As a result, the surface area of the granulated product is significantly increased, which is considered to contribute to the improvement of the oxygen absorption capacity. From the same viewpoint, the average particle size of the inorganic fine particles may be 100 μm or less, or 50 μm or less. The lower limit of the average particle size is not particularly limited, but may be, for example, 0.1 μm or more because nano-sized fine particles are expensive and difficult to handle. The average particle size here is a value of the secondary particle size measured by the laser diffraction method.

無機微粒子の細孔容積が、0.5mL/g以上であってもよい。親水性無機微粒子の細孔容積が0.5mL/g以上であることにより、脱酸素剤の酸素吸収能力をより一層改善することができる。大きな細孔容積を有する無機微粒子は、多くの造粒物表面近傍の酸素吸収組成物を吸収し易いと考えられる。酸素吸収組成物が無機微粒子に吸収されると、酸素吸収組成物と環境下の酸素と接触する面積が増え、その結果、酸素吸収能力が向上すると推察される。同様の観点から、無機微粒子の細孔容積は、0.8mL/g以上、又は1.2mL/g以上であってもよい。細孔容積の上限は、特に制限されないが、例えば、10mL/g以下であってもよい。ここでの細孔容積は、窒素吸着法又は水銀圧入法により測定される値である。窒素吸着法又は水銀圧入法のうち少なくともいずれか一方の方法で測定される細孔容積が上記数値範囲内であればよい。 The pore volume of the inorganic fine particles may be 0.5 mL / g or more. When the pore volume of the hydrophilic inorganic fine particles is 0.5 mL / g or more, the oxygen absorption capacity of the oxygen scavenger can be further improved. It is considered that the inorganic fine particles having a large pore volume easily absorb the oxygen absorbing composition near the surface of many granulated products. When the oxygen absorbing composition is absorbed by the inorganic fine particles, it is presumed that the area of contact between the oxygen absorbing composition and oxygen in the environment increases, and as a result, the oxygen absorbing capacity is improved. From the same viewpoint, the pore volume of the inorganic fine particles may be 0.8 mL / g or more, or 1.2 mL / g or more. The upper limit of the pore volume is not particularly limited, but may be, for example, 10 mL / g or less. The pore volume here is a value measured by a nitrogen adsorption method or a mercury intrusion method. The pore volume measured by at least one of the nitrogen adsorption method and the mercury intrusion method may be within the above numerical range.

以上例示した平均粒径、及び細孔容積を有する無機微粒子は、通常の方法によって製造することが可能であり、市販品の中から適宜選択して入手することもできる。 Inorganic fine particles having the above-exemplified average particle size and pore volume can be produced by a usual method, and can also be appropriately selected and obtained from commercially available products.

造粒物の表面に付着している無機微粒子の量(付着量)は、造粒物の質量100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、2質量部以上又は3質量部以上であってもよい。無機微粒子の付着量がこれらの範囲内にあると、脱酸素剤の適切な酸素吸収能力が得られ易い。無機微粒子の付着量の上限は、特に制限されないが、造粒性等の観点から、30質量部以下、25質量部以下、15質量部以下、10質量部以下又は8質量部以下であってもよい。造粒物に付着していない単独の無機微粒子が、脱酸素剤の粒子と混在していることがあり得るが、単独の無機微粒子の量は上記付着量に含まれない。 The amount (adhesion amount) of the inorganic fine particles adhering to the surface of the granulated product is 0.1 part by mass or more, 0.5 part by mass or more, and 1 part by mass or more with respect to 100 parts by mass of the granulated product. It may be 2 parts by mass or more or 3 parts by mass or more. When the amount of adhered inorganic fine particles is within these ranges, it is easy to obtain an appropriate oxygen absorption capacity of the oxygen scavenger. The upper limit of the adhesion amount of the inorganic fine particles is not particularly limited, but may be 30 parts by mass or less, 25 parts by mass or less, 15 parts by mass or less, 10 parts by mass or less, or 8 parts by mass or less from the viewpoint of granulation property. good. The single inorganic fine particles that are not attached to the granulated product may be mixed with the particles of the oxygen scavenger, but the amount of the single inorganic fine particles is not included in the above-mentioned adhered amount.

脱酸素剤全体を基準とした造粒物の体積比は、60%を超えていてもよい。造粒物の体積比が適切な範囲にあることで、特に高い酸素吸収能力が得られ易い。同様の観点から、造粒物の体積比は、70%以上、又は80%以上であってもよく、98%以下であってもよい。 The volume ratio of the granulated product based on the entire oxygen scavenger may exceed 60%. When the volume ratio of the granulated product is in an appropriate range, it is easy to obtain a particularly high oxygen absorption capacity. From the same viewpoint, the volume ratio of the granulated product may be 70% or more, 80% or more, or 98% or less.

無機微粒子は、通常、造粒物の表面全体にわたって付着している。ただし、造粒物の表面が無機微粒子によって隙間なく被覆されている必要は必ずしもなく、無機微粒子が互いに間隔をあけながら造粒物の表面全体にわたって分布していてもよい。 Inorganic microparticles are usually attached over the entire surface of the granulated material. However, the surface of the granulated product does not necessarily have to be covered with the inorganic fine particles without gaps, and the inorganic fine particles may be distributed over the entire surface of the granulated product while being spaced apart from each other.

脱酸素剤は、担持体及び酸素吸収組成物を含む造粒物に、無機微粒子を付着させる工程を備える方法によって、得ることができる。例えば、造粒物と、無機微粒子とを混合し、得られた粉体混合物を振とうすることにより、造粒物に無機微粒子を付着させることができる。 The oxygen scavenger can be obtained by a method comprising a step of adhering inorganic fine particles to a granulated product containing a carrier and an oxygen absorbing composition. For example, by mixing the granulated product and the inorganic fine particles and shaking the obtained powder mixture, the inorganic fine particles can be attached to the granulated product.

上記のような粉体同士を混ぜ合わせる方法により造粒物に付着した無機微粒子は、比較的薄い層を形成しており、この点で、本実施形態の脱酸素剤の形態は、例えば打錠成形によって得られた外郭部を有する錠剤とは一般に異なる。具体的には、造粒物の表面に付着している無機微粒子は、厚み1mm以下、又は0.7mm以下の層を形成し得る。無機微粒子の層が薄いことは、複合粒子の表面をエネルギー分散型X線分析(EDX分析)によって元素分析したときに、造粒物を構成する材料(グリセリン、アルカリ性化合物又は硫酸銅)に含まれる元素が検出されることから、確認することもできる。一般に、本実施形態に係る脱酸素剤の場合、造粒物を構成する材料に含まれる少なくとも1種の元素が、0.05原子数%以上、又は0.1原子数%以上の濃度で検出されることが多い。一方、造粒物を内包するある程度の厚さの外郭部が打錠成形によって形成されている場合、造粒物を構成する材料の元素がEDX分析によって実質的に検出されることはない。 The inorganic fine particles adhering to the granulated product by the method of mixing the powders as described above form a relatively thin layer, and in this respect, the form of the oxygen scavenger of the present embodiment is, for example, tableting. It is generally different from tablets having an outer shell obtained by molding. Specifically, the inorganic fine particles adhering to the surface of the granulated product can form a layer having a thickness of 1 mm or less or 0.7 mm or less. The thin layer of inorganic fine particles is contained in the material (glycerin, alkaline compound or copper sulfate) constituting the granule when the surface of the composite particle is elementally analyzed by energy dispersive X-ray analysis (EDX analysis). Since the element is detected, it can be confirmed. Generally, in the case of the oxygen scavenger according to the present embodiment, at least one element contained in the material constituting the granulated product is detected at a concentration of 0.05 atomic number% or more or 0.1 atomic number% or more. Often done. On the other hand, when the outer portion having a certain thickness containing the granulated product is formed by tableting, the elements of the material constituting the granulated product are not substantially detected by the EDX analysis.

一実施形態に係る脱酸素包装体は、上記の実施形態に係る脱酸素剤と、この脱酸素剤を収容した通気性包材とから主として構成され得る。通気性包材は、当該技術分野で通常用いられるものから適宜選択することができる。通気性包材の具体例としては、有孔プラスチックフィルム、不織布、マイクロポーラスフィルム、紙又はこれらの組み合わせからなる基材よって形成された袋体が挙げられる。この脱酸素剤包装体は、例えば、各種の食品包装容器の中に収容して、食品の鮮度維持等の目的で使用することができる。 The oxygen scavenger package according to one embodiment may be mainly composed of the oxygen scavenger according to the above embodiment and a breathable packaging material containing the oxygen scavenger. The breathable packaging material can be appropriately selected from those commonly used in the art. Specific examples of the breathable packaging material include a bag formed of a perforated plastic film, a non-woven fabric, a microporous film, paper, or a base material made of a combination thereof. This oxygen scavenger package can be stored in various food packaging containers, for example, and used for the purpose of maintaining the freshness of food.

一実施形態に係る食品包装体は、上記脱酸素剤包装体と、この脱酸素剤包装体が封入された食品包装容器とを備える。食品包装容器は、食品包装の分野で通常用いられるものから適宜選択することができ、密封可能な容器が好適である。食品包装容器としては、袋体、深絞り包装体、トレイ包装体、ストレッチ包装体等が挙げられる。 The food package according to the embodiment includes the above-mentioned oxygen scavenger package and a food package container in which the oxygen scavenger package is enclosed. The food packaging container can be appropriately selected from those usually used in the field of food packaging, and a sealable container is preferable. Examples of the food packaging container include a bag body, a deeply squeezed package body, a tray package body, a stretch package body and the like.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

1.造粒物
表1に示す原料を密封状態で均一に混合して、活性炭と、活性炭に担持された脱酸素剤、アルカリ化合物、遷移金属塩及びバインダーを含む酸素吸収組成物とを含有する混合物を得た。得られた混合物をスクリーン孔径1.0mmφ、開孔率22.6%のスクリーンを設けた押出し造粒機により造粒し、顆粒状の造粒物からなる造粒物粉体を得た。表1は、各原料の配合量を質量部で示す。
1. 1. Granulations The raw materials shown in Table 1 are uniformly mixed in a sealed state to prepare a mixture containing activated carbon and an oxygen absorbing composition containing an oxygen scavenger, an alkaline compound, a transition metal salt and a binder supported on the activated carbon. Obtained. The obtained mixture was granulated by an extrusion granulator provided with a screen having a screen pore diameter of 1.0 mmφ and a pore opening rate of 22.6% to obtain granulated powder composed of granular granules. Table 1 shows the blending amount of each raw material by mass.

Figure 2021183309
Figure 2021183309

2.無機微粒子
以下の無機微粒子を準備した。
・サイロページ720(親水性二酸化ケイ素粉末、富士シリシア化学製)
・ニップシールSS-50B(疎水性二酸化ケイ素粉末、東ソー・シリカ製)
・水酸化カルシウム(関東化学製)
2. 2. Inorganic fine particles The following inorganic fine particles were prepared.
・ Silo page 720 (hydrophilic silicon dioxide powder, manufactured by Fuji Silysia Chemical Ltd.)
・ Nip seal SS-50B (hydrophobic silicon dioxide powder, manufactured by Tosoh Silica)
・ Calcium hydroxide (manufactured by Kanto Chemical Co., Inc.)

3.脱酸素剤
(実施例1)
酸素バリア性の袋に、30gの造粒物と、親水性二酸化ケイ素粉末であるサイロページ720を1.5g入れ、袋をヒートシールして密封した。袋を振とうして、無機微粒子によって造粒物が被覆された脱酸素剤を形成させた。袋を開け、内部の空気を追い出すように再びヒートシールして、脱酸素剤を保管した。
(実施例2)
酸素バリア性の袋に30gの造粒物と、サイロページ720を2.4g入れた以外は、実施例1と同様に脱酸素剤を形成させて保管した。
(比較例1)
酸素バリア性の袋に30gの造粒物と、水酸化カルシウムを6g入れた以外は、実施例1と同様に脱酸素剤を形成させて保管した。
(比較例2)
酸素バリア性の袋に30gの造粒物と、水酸化カルシウムを1.5g入れた以外は、実施例1と同様に脱酸素剤を形成させて保管した。
(比較例3)
酸素バリア性の袋に30gの造粒物と、疎水性二酸化ケイ素を1.5g入れた以外は、実施例1と同様に脱酸素剤を形成させて保管した。
(比較例4)
酸素バリア性の袋に30gの造粒物を入れ、無機微粒子を入れずに袋をヒートシールして保管した。
3. 3. Oxygen scavenger (Example 1)
30 g of granulated product and 1.5 g of silopage 720, which is a hydrophilic silicon dioxide powder, were placed in an oxygen barrier bag, and the bag was heat-sealed and sealed. The bag was shaken to form an oxygen scavenger whose granules were coated with inorganic fine particles. The bag was opened, heat-sealed again to expel the air inside, and the oxygen scavenger was stored.
(Example 2)
An oxygen scavenger was formed and stored in the same manner as in Example 1 except that 30 g of granulated product and 2.4 g of silopage 720 were placed in an oxygen barrier bag.
(Comparative Example 1)
An oxygen scavenger was formed and stored in the same manner as in Example 1 except that 30 g of granulated product and 6 g of calcium hydroxide were put in an oxygen barrier bag.
(Comparative Example 2)
An oxygen scavenger was formed and stored in the same manner as in Example 1 except that 30 g of granulated product and 1.5 g of calcium hydroxide were placed in an oxygen barrier bag.
(Comparative Example 3)
An oxygen scavenger was formed and stored in the same manner as in Example 1 except that 30 g of granulated product and 1.5 g of hydrophobic silicon dioxide were placed in an oxygen barrier bag.
(Comparative Example 4)
30 g of granulated material was placed in an oxygen barrier bag, and the bag was heat-sealed and stored without containing inorganic fine particles.

4.沈降速度
無機微粒子が付着した造粒物(複合粒子)の沈降速度を、以下の手順で測定した。
(1)グリセリン100質量部に対して、硫酸銅(II)5水和物が30質量部、水が40質量部の水溶液を作製し、溶液Aとした。この溶液Aを25℃に保温した。
(2)前記脱酸素剤を目開き1mmのふるいに通し、ふるい上に残り1mm以上の粒径を要する複合粒子を選別した。
(3)直径30mmの開口を有した円筒状のガラス瓶に、底面からの距離が50mmまで溶液Aを注ぎ入れた。
(4)(2)で得た複合粒子1個をピンセットでつまみ、(3)の溶液Aの液面に静かに置き、複合粒子が沈降してガラス瓶の底面に到達するまでの時間を計測した。
(5)以下の式により、沈降速度を計算した。異なる複合粒子5個を用いて計測した値の平均値を採用した。
沈降速度[mm/s]=50[mm]/底面までの到達時間[s]
4. Settling speed The settling speed of the granulated product (composite particles) to which the inorganic fine particles were attached was measured by the following procedure.
(1) An aqueous solution of 30 parts by mass of copper (II) sulfate pentahydrate and 40 parts by mass of water was prepared with respect to 100 parts by mass of glycerin, and used as a solution A. This solution A was kept warm at 25 ° C.
(2) The oxygen scavenger was passed through a sieve having an opening of 1 mm, and composite particles requiring a particle size of 1 mm or more remaining on the sieve were selected.
(3) Solution A was poured into a cylindrical glass bottle having an opening with a diameter of 30 mm up to a distance of 50 mm from the bottom surface.
(4) One composite particle obtained in (2) was picked up with tweezers and gently placed on the liquid surface of the solution A of (3), and the time until the composite particle settled and reached the bottom surface of the glass bottle was measured. ..
(5) The sedimentation speed was calculated by the following formula. The average value of the values measured using five different composite particles was adopted.
Settlement speed [mm / s] = 50 [mm] / arrival time to the bottom [s]

5.酸素吸収能力
脱酸素剤2.0gを、有孔包材によって形成された袋(縦60mm、横60mm)に収納し、脱酸素剤包装体を作製した。有効包材として、ポリエチレンテレフタレート/ポリエチレン/紙/ポリエチレンから構成される積層材料を用いた。脱酸素剤包装体を、ショ糖44%水溶液を浸した脱脂綿(水分活性0.95)とともに、ガスバリア性の袋の中に入れた。袋を密封し、その中に空気500mLを注入してから、袋を25℃の雰囲気に放置した。24時間後の袋内の酸素濃度を測定した。酸素濃度が8%以下で「〇」、13%以下で「△」、13%より大きいとき「×」と判定した。酸素濃度が低いことは、酸素吸収能力が高いことを意味する。
5. Oxygen absorption capacity 2.0 g of oxygen scavenger was stored in a bag (length 60 mm, width 60 mm) formed of a perforated packaging material to prepare an oxygen scavenger package. As an effective packaging material, a laminated material composed of polyethylene terephthalate / polyethylene / paper / polyethylene was used. The oxygen scavenger package was placed in a gas barrier bag together with absorbent cotton (water activity 0.95) soaked with a 44% aqueous solution of sucrose. The bag was sealed, 500 mL of air was injected into it, and then the bag was left in an atmosphere of 25 ° C. The oxygen concentration in the bag after 24 hours was measured. When the oxygen concentration was 8% or less, it was judged as "○", when it was 13% or less, it was judged as "Δ", and when it was larger than 13%, it was judged as "×". A low oxygen concentration means a high oxygen absorption capacity.

6.結果
表2は、無機微粒子の種類と、無機微粒子が付着した複合粒子の沈降速度(n=5の平均値)及び酸素吸収能力の評価結果を示す。参考例は、造粒物を無機微粒子によって被覆せず、そのまま脱酸素剤として用いた例である。沈降速度が2mm/秒以上である脱酸素剤にて、優れた酸素吸収能力を示すことが確認された。
6. Results Table 2 shows the types of inorganic fine particles, the sedimentation rate (average value of n = 5) of the composite particles to which the inorganic fine particles are attached, and the evaluation results of the oxygen absorption capacity. The reference example is an example in which the granulated product is not covered with inorganic fine particles and is used as it is as an oxygen scavenger. It was confirmed that an oxygen scavenger having a sedimentation rate of 2 mm / sec or more showed excellent oxygen absorption capacity.

Figure 2021183309
Figure 2021183309

本発明は、食品保存等に用いる脱酸素剤に有用である。 The present invention is useful as an oxygen scavenger used for food preservation and the like.

Claims (10)

多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、前記造粒物の表面に付着している無機微粒子、を備える複数の複合粒子を含む粉体である脱酸素剤であって、前記酸素吸収組成物が、グリセリン、硫酸銅、及びアルカリ性化合物を含み、前記複合粒子のグリセリンおよび硫酸銅を含有する水溶液中における沈降速度が1個当たり2mm/秒以上である脱酸素剤。 A powder containing a plurality of composite particles comprising a porous carrier and an oxygen absorbing composition carried on the carrier, the granulated product, and inorganic fine particles adhering to the surface of the granulated product. Oxygen scavenger, wherein the oxygen absorbing composition contains glycerin, copper sulfate, and an alkaline compound, and the precipitation rate of the composite particles in an aqueous solution containing glycerin and copper sulfate is 2 mm / sec per particle. The oxygen scavenger that is above. 前記水溶液の濃度は、グリセリン100重量部に対して、硫酸銅の量が、無水物に換算して15〜30質量部であり、水の量が、グリセリン100質量部に対して、30〜85質量部である、請求項1に記載の脱酸素剤。 The concentration of the aqueous solution is 15 to 30 parts by mass of copper sulfate with respect to 100 parts by mass of glycerin, and the amount of water is 30 to 85 parts by mass with respect to 100 parts by mass of glycerin. The deoxidizer according to claim 1, which is a mass portion. 前記無機微粒子の量が、前記造粒物の質量100質量部に対して2〜30質量部である、請求項1または2に記載の脱酸素剤。 The oxygen scavenger according to claim 1 or 2, wherein the amount of the inorganic fine particles is 2 to 30 parts by mass with respect to 100 parts by mass of the granulated product. 前記複合粒子の質量が、1個当たり0.3〜10.0mgである、請求項1〜3のいずれか一項に記載の脱酸素剤。 The oxygen scavenger according to any one of claims 1 to 3, wherein the mass of the composite particles is 0.3 to 10.0 mg per particle. 前記造粒物の表面に付着している前記無機微粒子が、厚み1mm以下の層を形成している、請求項1〜4のいずれか一項に記載の脱酸素剤。 The oxygen scavenger according to any one of claims 1 to 4, wherein the inorganic fine particles adhering to the surface of the granulated product form a layer having a thickness of 1 mm or less. 前記無機微粒子が、前記複合粒子の表面をエネルギー分散型X線分析によって元素分析したときにグリセリン、前記アルカリ性化合物又は硫酸銅に含まれる元素が検出されるように、前記造粒物の表面に付着している、請求項1〜5のいずれか一項に記載の脱酸素剤。 The inorganic fine particles adhere to the surface of the granulated product so that elements contained in glycerin, the alkaline compound or copper sulfate are detected when the surface of the composite particles is elementally analyzed by energy dispersive X-ray analysis. The deoxidizing agent according to any one of claims 1 to 5. 請求項1〜6のいずれか一項に記載の脱酸素剤の製造方法であって、
前記造粒物に前記無機微粒子を付着させて、グリセリンおよび硫酸銅を含有する水溶液中における沈降速度が1個当たり2mm/秒以上となるように前記複合粒子を形成する工程を備える、製造方法。
The method for producing an oxygen scavenger according to any one of claims 1 to 6.
A production method comprising a step of adhering the inorganic fine particles to the granulated product to form the composite particles so that the sedimentation rate in an aqueous solution containing glycerin and copper sulfate is 2 mm / sec or more per particle.
複数の前記造粒物からなる造粒物粉体と複数の前記無機微粒子とを混ぜ合わせることにより、前記造粒物に前記無機微粒子を付着させる、請求項7に記載の製造方法。 The production method according to claim 7, wherein the inorganic fine particles are adhered to the granulated product by mixing the granulated powder composed of the plurality of the granulated products and the plurality of the inorganic fine particles. 請求項1〜6のいずれか一項に記載の脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備える、脱酸素剤包装体。 An oxygen scavenger package comprising the oxygen scavenger according to any one of claims 1 to 6 and a breathable packaging material containing the oxygen scavenger. 請求項9に記載の脱酸素剤包装体と、該脱酸素剤包装体が封入された食品包装容器と、を備える、食品包装体。 A food package comprising the oxygen scavenger package according to claim 9 and a food package container in which the oxygen scavenger package is enclosed.
JP2020089220A 2020-05-21 Method for determining the oxygen absorption capacity of oxygen absorbers Active JP7571392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089220A JP7571392B2 (en) 2020-05-21 Method for determining the oxygen absorption capacity of oxygen absorbers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089220A JP7571392B2 (en) 2020-05-21 Method for determining the oxygen absorption capacity of oxygen absorbers

Publications (2)

Publication Number Publication Date
JP2021183309A true JP2021183309A (en) 2021-12-02
JP7571392B2 JP7571392B2 (en) 2024-10-23

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104846A (en) * 2015-12-07 2017-06-15 凸版印刷株式会社 Deoxidizer and production method of the same
JP2017104845A (en) * 2015-12-07 2017-06-15 凸版印刷株式会社 Deoxidant and method for producing the same
JP2017225952A (en) * 2016-06-24 2017-12-28 凸版印刷株式会社 Oxygen scavenger and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104846A (en) * 2015-12-07 2017-06-15 凸版印刷株式会社 Deoxidizer and production method of the same
JP2017104845A (en) * 2015-12-07 2017-06-15 凸版印刷株式会社 Deoxidant and method for producing the same
JP2017225952A (en) * 2016-06-24 2017-12-28 凸版印刷株式会社 Oxygen scavenger and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6020757B1 (en) Oxygen scavenger and method for producing the same
JP6759755B2 (en) Oxygen scavenger and its manufacturing method
WO2004033088A1 (en) Oxygen scavenger composition
KR20230031198A (en) Oxygen scavenger composition and manufacturing method thereof
CN113811195A (en) Oxygen scavenger composition and method for producing same
JP7459595B2 (en) Oxygen scavenger composition
JP7020270B2 (en) Oxygen scavenger and oxygen scavenger packaging, as well as food packaging
JP4453797B2 (en) Oxygen absorber composition
JP6834282B2 (en) Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package
JP7571392B2 (en) Method for determining the oxygen absorption capacity of oxygen absorbers
JP2021183309A (en) Deoxidant, production method of the same, deoxidant package and food product package
JP6275197B2 (en) Oxygen scavenger and method for producing the same
JP6759754B2 (en) Oxygen scavenger and its manufacturing method
JP7238913B2 (en) Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package
JP2021167217A (en) Oxygen scavenger package and food package
JP7571393B2 (en) Oxygen absorber, oxygen absorber package, and food package
JP7326840B2 (en) oxygen scavenger
WO2008008715A1 (en) Oxygen scavenger compositions
JP7286946B2 (en) Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JP7263989B2 (en) Oxygen absorber, oxygen absorber package and food package
JP2021186691A (en) Deoxidizer, deoxidizer package, and food package
JP7230437B2 (en) Method for inspecting oxygen absorption performance of oxygen absorber, method for manufacturing oxygen absorber, oxygen absorber, oxygen absorber package, and food package
JP2021030145A (en) Deoxidizer, deoxidizer package and food package
JP7286947B2 (en) Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JPH0321148B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240910