JP2021073464A - Analyzer and analysis method - Google Patents

Analyzer and analysis method Download PDF

Info

Publication number
JP2021073464A
JP2021073464A JP2021014953A JP2021014953A JP2021073464A JP 2021073464 A JP2021073464 A JP 2021073464A JP 2021014953 A JP2021014953 A JP 2021014953A JP 2021014953 A JP2021014953 A JP 2021014953A JP 2021073464 A JP2021073464 A JP 2021073464A
Authority
JP
Japan
Prior art keywords
signal
light receiving
region
fine particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021014953A
Other languages
Japanese (ja)
Other versions
JP7056773B2 (en
Inventor
雅之 小野
Masayuki Ono
雅之 小野
糸長 誠
Makoto Itonaga
誠 糸長
祐一 長谷川
Yuichi Hasegawa
祐一 長谷川
辻田 公二
Koji Tsujita
公二 辻田
茂彦 岩間
Shigehiko Iwama
茂彦 岩間
勝恵 堀越
Katsue Horikoshi
勝恵 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2021014953A priority Critical patent/JP7056773B2/en
Publication of JP2021073464A publication Critical patent/JP2021073464A/en
Application granted granted Critical
Publication of JP7056773B2 publication Critical patent/JP7056773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide an analyzer and an analysis method capable of measuring fine particles in a shorter time than a conventional one by suppressing the influence of inter-track crosstalk.SOLUTION: A detection signal is generated by adding a first photoreception level signal and a second photoreception level signal. A difference signal is generated by subtracting the second photoreception level signal from the first photoreception level signal. When the detection signal exceeds a first threshold, a fine particle detection signal is generated. When the difference signal exceeds the second threshold value, a measurement correction signal is generated. An exclusive-OR of the fine particle detection signal and the measurement correction signal is calculated. A fine particle measurement signal is generated when the exclusive OR is 1. By counting the fine particle measurement signal, the total number of the number of the fine particles labeling the detection target substance captured in a target region and the number of the fine particles labeling the detection target substance captured in a peripheral region is measured.SELECTED DRAWING: Figure 1

Description

本発明は、抗原、抗体等の生体物質を分析するための分析装置及び分析方法に関する。 The present invention relates to an analyzer and an analysis method for analyzing biological substances such as antigens and antibodies.

疾病に関連付けられた特定の抗原または抗体をバイオマーカーとして検出することで、
疾病の発見及び治療の効果等を定量的に分析する免疫検定法(immunoassay)が知られて
いる。
By detecting a specific antigen or antibody associated with a disease as a biomarker,
An immunoassay (immunoassay) that quantitatively analyzes the effects of disease detection and treatment is known.

特許文献1には、試料分析用ディスク上の反応領域に固定された抗体と試料中の抗原と
を結合させ、抗体を有する微粒子によって抗原を標識し、光ピックアップから照射される
レーザ光を走査することにより、反応領域に捕捉された微粒子を検出する分析装置が記載
されている。特許文献1に記載されている分析装置は、光ディスク装置を検体検出用に利
用したものである。
In Patent Document 1, an antibody fixed in a reaction region on a sample analysis disk and an antigen in a sample are bound, the antigen is labeled with fine particles having the antibody, and laser light emitted from an optical pickup is scanned. Thereby, an analyzer for detecting the fine particles captured in the reaction region is described. The analyzer described in Patent Document 1 uses an optical disk device for sample detection.

特開2015−127691号公報Japanese Unexamined Patent Publication No. 2015-127691

試料分析用ディスクの表面には、凸部と凹部とが交互に配置されたトラック領域が形成
されている。トラック領域上に形成される反応領域では、通常、凸部及び凹部に微粒子が
捕捉される。そのため、反応領域に捕捉されている微粒子の総数を計測するためには、凸
部及び凹部に対してレーザ光を走査することが必要であり、微粒子を検出するための測定
時間が長くなる。
On the surface of the sample analysis disc, track regions in which convex portions and concave portions are alternately arranged are formed. In the reaction region formed on the track region, fine particles are usually trapped in the protrusions and recesses. Therefore, in order to measure the total number of fine particles captured in the reaction region, it is necessary to scan the laser beam on the convex portion and the concave portion, and the measurement time for detecting the fine particles becomes long.

光ディスク装置を検体検出用に利用した分析装置では、トラッキング制御及びフォーカ
ス制御等のサーボ制御を行っている。そのため、凹部に対してレーザ光を走査する場合、
隣接する両側の凸部にもレーザ光が照射される。隣接する凸部に微粒子が捕捉されている
場合、この微粒子は検出される。さらに隣の凹部に対してレーザ光を走査する場合にも上
記の微粒子は検出される。即ち、トラック間クロストークにより、1個の微粒子が2回計
測されるため、微粒子の定量精度を悪化させる要因となる。
An analyzer that uses an optical disk device for sample detection performs servo control such as tracking control and focus control. Therefore, when scanning the laser beam against the recess,
Laser light is also applied to the convex parts on both sides adjacent to each other. If the particles are trapped in the adjacent protrusions, the particles are detected. Further, the above fine particles are also detected when the laser beam is scanned against the adjacent recess. That is, since one fine particle is measured twice by the crosstalk between tracks, it becomes a factor that deteriorates the quantification accuracy of the fine particles.

本発明は、トラック間クロストークによる影響を抑制し、従来よりも短い時間で微粒子
を精度よく計測できる分析装置及び分析方法を提供することを目的とする。
An object of the present invention is to provide an analyzer and an analysis method capable of accurately measuring fine particles in a shorter time than before by suppressing the influence of crosstalk between tracks.

本発明は、試料分析用ディスク上に交互に形成された凹部と凸部のうちの一方である対
象領域と凹部と凸部のうちの他方である周辺領域とに補足された検出対象物質を標識する
微粒子を計測する分析装置において、レーザ光源から射出されたレーザ光のレーザスポッ
トが対象領域と対象領域に隣接する一方の側の周辺領域である第1の周辺領域と対象領域
に隣接する他方の側の周辺領域である第2の周辺領域とを含む位置に照射された際に、対
象領域と第1の周辺領域からの反射光を受光する第1の受光領域で得られる第1の受光レ
ベル信号と、対象領域と第2の周辺領域からの反射光を受光する第2の受光領域で得られ
る第2の受光レベル信号とを取得し、第1の受光レベル信号と第2の受光レベル信号を加
算して検出信号を生成し、第1の受光レベル信号から第2の受光レベル信号を減算して差
信号を生成する信号生成回路と、検出信号が第1の閾値を超えていれば微粒子検出信号を
生成し、差信号が第2の閾値を超えていれば計測補正信号を生成し、微粒子検出信号と計
測補正信号との排他的論理和を論理演算し、排他的論理和が1となる場合に微粒子計測信
号を生成し、微粒子計測信号をカウントすることによって、対象領域に捕捉されている検
出対象物質を標識する微粒子の数と周辺領域に捕捉されている検出対象物質を標識する微
粒子の数との総数を計測する論理演算回路とを備えることを特徴とする分析装置を提供す
る。
The present invention labels a substance to be detected that is captured in a target area that is one of concave and convex portions and a peripheral region that is the other of the concave and convex portions that are alternately formed on a sample analysis disk. In an analyzer that measures fine particles, the laser spot of the laser light emitted from the laser light source is the peripheral region on one side adjacent to the target region and the target region, that is, the first peripheral region and the other adjacent to the target region. The first light receiving level obtained in the first light receiving area that receives the reflected light from the target area and the first peripheral area when the position including the second peripheral area which is the peripheral area on the side is irradiated. The signal and the second light receiving level signal obtained in the second light receiving area that receives the reflected light from the target area and the second peripheral area are acquired, and the first light receiving level signal and the second light receiving level signal are obtained. A signal generation circuit that generates a detection signal by adding and subtracting a second light receiving level signal from the first light receiving level signal to generate a difference signal, and fine particles if the detected signal exceeds the first threshold value. A detection signal is generated, if the difference signal exceeds the second threshold value, a measurement correction signal is generated, the exclusive logical sum of the fine particle detection signal and the measurement correction signal is logically calculated, and the exclusive logical sum is 1. In this case, a fine particle measurement signal is generated and the fine particle measurement signal is counted to label the number of fine particles that label the detection target substance captured in the target region and the fine particles that label the detection target substance captured in the peripheral region. Provided is an analyzer characterized by including a logic calculation circuit for measuring the total number of light ups and downs.

また、本発明は、試料分析用ディスク上に交互に形成された凹部と凸部のうちの一方で
ある対象領域と凹部と凸部のうちの他方である周辺領域とに補足された検出対象物質を標
識する微粒子を計測する分析方法において、レーザ光源から射出されたレーザ光のレーザ
スポットが対象領域と対象領域に隣接する一方の側の周辺領域である第1の周辺領域と対
象領域に隣接する他方の側の周辺領域である第2の周辺領域とを含む位置に照射された際
に、対象領域と第1の周辺領域からの反射光を受光する第1の受光領域で得られる第1の
受光レベル信号と、対象領域と第2の周辺領域からの反射光を受光する第2の受光領域で
得られる第2の受光レベル信号とを取得し、第1の受光レベル信号と第2の受光レベル信
号を加算して検出信号を生成し、第1の受光レベル信号から第2の受光レベル信号を減算
して差信号を生成し、検出信号が第1の閾値を超えていれば微粒子検出信号を生成し、差
信号が第2の閾値を超えていれば計測補正信号を生成し、微粒子検出信号と計測補正信号
との排他的論理和を論理演算し、排他的論理和が1となる場合に微粒子計測信号を生成し
、微粒子計測信号をカウントすることによって、対象領域に捕捉されている検出対象物質
を標識する微粒子の数と周辺領域に捕捉されている検出対象物質を標識する微粒子の数と
の総数を計測することを特徴とする分析方法を提供する。
Further, in the present invention, the detection target substance is supplemented to a target region which is one of the concave and convex portions and a peripheral region which is the other of the concave and convex portions which are alternately formed on the sample analysis disk. In the analysis method for measuring fine particles labeled with, the laser spot of the laser light emitted from the laser light source is adjacent to the first peripheral region and the target region, which are peripheral regions on one side adjacent to the target region and the target region. The first light receiving region obtained in the first light receiving region that receives the reflected light from the target region and the first peripheral region when the position including the second peripheral region, which is the peripheral region on the other side, is irradiated. The light receiving level signal and the second light receiving level signal obtained in the second light receiving area that receives the reflected light from the target region and the second peripheral region are acquired, and the first light receiving level signal and the second light receiving light are received. The level signal is added to generate a detection signal, the second light reception level signal is subtracted from the first light reception level signal to generate a difference signal, and if the detection signal exceeds the first threshold value, the fine particle detection signal is generated. Is generated, and if the difference signal exceeds the second threshold value, a measurement correction signal is generated, the exclusive logical sum of the fine particle detection signal and the measurement correction signal is logically calculated, and the exclusive logical sum becomes 1. The number of fine particles that label the detection target substance captured in the target area and the number of fine particles that label the detection target substance captured in the peripheral region by generating the fine particle measurement signal and counting the fine particle measurement signal. Provided is an analysis method characterized by measuring the total number of and.

本発明の分析装置及び分析方法によれば、トラック間クロストークによる影響を抑制し
、従来よりも短い時間で精度よく微粒子を計測できる。
According to the analyzer and analysis method of the present invention, the influence of crosstalk between tracks can be suppressed, and fine particles can be measured accurately in a shorter time than before.

一実施形態の分析装置を示す構成図である。It is a block diagram which shows the analyzer of one Embodiment. 光検出器の受光領域を示す平面図である。It is a top view which shows the light receiving area of a photodetector. 光検出器の受光領域と受光領域に照射される検出光との関係を示す平面図である。It is a top view which shows the relationship between the light receiving area of a photodetector and the detection light which irradiates the light receiving area. 試料分析用ディスクのトラック領域上に捕捉されている微粒子と、トラック領域に照射されるレーザ光のレーザスポットとの関係を示す図である。It is a figure which shows the relationship between the fine particles captured on the track region of a sample analysis disk, and the laser spot of the laser beam which irradiates the track region. 検出信号と微粒子検出信号と差信号と計測補正信号との関係を示すタイムチャートである。It is a time chart which shows the relationship between a detection signal, a fine particle detection signal, a difference signal, and a measurement correction signal. 検出信号と微粒子検出信号と差信号と計測補正信号との関係を示すタイムチャートである。It is a time chart which shows the relationship between a detection signal, a fine particle detection signal, a difference signal, and a measurement correction signal. 検出信号と微粒子検出信号と差信号と計測補正信号との関係を示すタイムチャートである。It is a time chart which shows the relationship between a detection signal, a fine particle detection signal, a difference signal, and a measurement correction signal.

図1を用いて、一実施形態の分析装置を説明する。分析装置1は、光ピックアップ10
と信号処理回路20とを備える。光ピックアップ10は、レーザ光源11と、コリメータ
レンズ12と、ビームスプリッタ13と、対物レンズ14と、集光レンズ15a,15b
と、光検出器30とを有する。信号処理回路20は、検出信号生成回路21と論理演算回
路22とを有する。
The analyzer of one embodiment will be described with reference to FIG. The analyzer 1 is an optical pickup 10.
And a signal processing circuit 20. The optical pickup 10 includes a laser light source 11, a collimator lens 12, a beam splitter 13, an objective lens 14, and condenser lenses 15a and 15b.
And a photodetector 30. The signal processing circuit 20 includes a detection signal generation circuit 21 and a logic operation circuit 22.

レーザ光源11は、波長が例えば405nmのレーザ光Laを射出する。コリメータレ
ンズ12はレーザ光Laを平行光にする。ビームスプリッタ13はレーザ光Laを透過さ
せる。対物レンズ14はレーザ光Laを試料分析用ディスク100のトラック領域101
に所定のビームスポットで集光させる。
The laser light source 11 emits a laser beam La having a wavelength of, for example, 405 nm. The collimator lens 12 makes the laser beam La parallel light. The beam splitter 13 transmits the laser beam La. The objective lens 14 transmits the laser beam La to the track region 101 of the sample analysis disc 100.
Condenses at a predetermined beam spot.

トラック領域101には凹部102(対象領域)と凸部103(周辺領域)とが半径方
向に交互に形成されている。凹部102及び凸部103は、内周部から外周部に向かって
スパイラル状に形成されている。試料分析用ディスク100は、例えばブルーレイディス
ク(BD)、DVD、コンパクトディスク(CD)等の光ディスクと同等の円板形状を有
する。
In the track region 101, concave portions 102 (target region) and convex portions 103 (peripheral region) are alternately formed in the radial direction. The concave portion 102 and the convex portion 103 are formed in a spiral shape from the inner peripheral portion to the outer peripheral portion. The sample analysis disc 100 has a disk shape equivalent to that of an optical disc such as a Blu-ray disc (BD), a DVD, or a compact disc (CD).

試料分析用ディスク100は、例えば、一般的に光ディスクに用いられるポリカーボネ
ート樹脂またはシクロオレフィンポリマー等の樹脂材料で形成されている。なお、試料分
析用ディスク100は、上記の光ディスクに限定されるものではなく、他の形態または所
定の規格に準拠した光ディスクを用いることもできる。
The sample analysis disc 100 is made of, for example, a resin material such as a polycarbonate resin or a cycloolefin polymer generally used for optical discs. The sample analysis disc 100 is not limited to the above-mentioned optical discs, and optical discs conforming to other forms or predetermined standards can also be used.

試料分析用ディスク100のトラック領域101における凹部102は光ディスクのグ
ルーブに相当し、凸部103はランドに相当する。凹部102の半径方向のピッチに相当
するトラックピッチは例えば320nmである。
The concave portion 102 in the track region 101 of the sample analysis disk 100 corresponds to the groove of the optical disc, and the convex portion 103 corresponds to the land. The track pitch corresponding to the radial pitch of the recess 102 is, for example, 320 nm.

レーザ光Laはトラック領域101で反射し、検出光Lbとして対物レンズ14を介し
てビームスプリッタ13へ入射する。ビームスプリッタ13は検出光Lbを集光レンズ1
5a,15bに向けて反射する。集光レンズ15a,15bは検出光Lbを光検出器30
に向けて集光させる。
The laser beam La is reflected in the track region 101 and is incident on the beam splitter 13 via the objective lens 14 as the detection light Lb. The beam splitter 13 concentrates the detection light Lb on the condenser lens 1.
It reflects toward 5a and 15b. The condenser lenses 15a and 15b use the detection light Lb as a photodetector 30.
Condensing toward.

図2Aに示すように、光検出器30は、受光領域31と受光領域32と受光領域33と
受光領域34とを有する。光検出器30は、受光領域が4分割された4分割フォトダイオ
ードである。検出光Lbは受光領域31,32,33,34へ入射する。
As shown in FIG. 2A, the photodetector 30 has a light receiving region 31, a light receiving region 32, a light receiving region 33, and a light receiving region 34. The photodetector 30 is a quadrant photodiode in which the light receiving region is divided into four. The detection light Lb is incident on the light receiving regions 31, 32, 33, 34.

光検出器30は、受光領域31に入射した検出光Lbの受光レベルRL1を検出し、信
号処理回路20の検出信号生成回路21へ出力する。光検出器30は、受光領域32に入
射した検出光Lbの受光レベルRL2を検出し、検出信号生成回路21へ出力する。光検
出器30は、受光領域33に入射した検出光Lbの受光レベルRL3を検出し、検出信号
生成回路21へ出力する。光検出器30は、受光領域34に入射された検出光Lbの受光
レベルRL4を検出し、検出信号生成回路21へ出力する。
The photodetector 30 detects the light receiving level RL1 of the detected light Lb incident on the light receiving region 31 and outputs the light receiving level RL1 to the detection signal generation circuit 21 of the signal processing circuit 20. The photodetector 30 detects the light receiving level RL2 of the detected light Lb incident on the light receiving region 32 and outputs it to the detection signal generation circuit 21. The photodetector 30 detects the light receiving level RL3 of the detected light Lb incident on the light receiving region 33 and outputs it to the detection signal generation circuit 21. The photodetector 30 detects the light receiving level RL4 of the detected light Lb incident on the light receiving region 34 and outputs it to the detection signal generation circuit 21.

検出信号生成回路21は、受光レベルRL1に基づいて受光レベル信号RS1を生成す
る。検出信号生成回路21は、受光レベルRL2に基づいて受光レベル信号RS2を生成
する。検出信号生成回路21は、受光レベルRL3に基づいて受光レベル信号RS3を生
成する。検出信号生成回路21は、受光レベルRL4に基づいて受光レベル信号RS4を
生成する。
The detection signal generation circuit 21 generates the light receiving level signal RS1 based on the light receiving level RL1. The detection signal generation circuit 21 generates the light receiving level signal RS2 based on the light receiving level RL2. The detection signal generation circuit 21 generates the light receiving level signal RS3 based on the light receiving level RL3. The detection signal generation circuit 21 generates the light receiving level signal RS4 based on the light receiving level RL4.

検出信号生成回路21は、受光レベル信号RS1と受光レベル信号RS2と受光レベル
信号RS3と受光レベル信号RS4とを加算して総和信号(RS1+RS2+RS3+R
S4)を生成し、検出信号DSとして論理演算回路22へ出力する。
The detection signal generation circuit 21 adds the light receiving level signal RS1, the light receiving level signal RS2, the light receiving level signal RS3, and the light receiving level signal RS4 to obtain a total signal (RS1 + RS2 + RS3 + R).
S4) is generated and output to the logical operation circuit 22 as a detection signal DS.

検出信号生成回路21は、受光レベル信号RS1と受光レベル信号RS2とを加算して
加算信号(RS1+RS2)を生成し、受光レベル信号RS3と受光レベル信号RS4と
を加算して加算信号(RS3+RS4)を生成する。検出信号生成回路21は、加算信号
(RS1+RS2)から加算信号(RS3+RS4)を減算して差信号SS((RS1+
RS2)−(RS3+RS4))を生成し、論理演算回路22へ出力する。
The detection signal generation circuit 21 adds the light receiving level signal RS1 and the light receiving level signal RS2 to generate an addition signal (RS1 + RS2), and adds the light receiving level signal RS3 and the light receiving level signal RS4 to generate an addition signal (RS3 + RS4). Generate. The detection signal generation circuit 21 subtracts the addition signal (RS3 + RS4) from the addition signal (RS1 + RS2) and subtracts the difference signal SS ((RS1 +).
RS2)-(RS3 + RS4)) is generated and output to the logical operation circuit 22.

論理演算回路22は、検出信号DSの信号レベルが閾値を超えている期間にハイレベル
となるパルス信号である微粒子検出信号BSを生成する。論理演算回路22は、差信号S
Sの信号レベルが閾値を超えている期間にハイレベルとなるパルス信号である計測補正信
号CSを生成する。論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排
他的論理和(BS XOR CS)の論理演算を実行する。
The logical operation circuit 22 generates a fine particle detection signal BS which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DS exceeds the threshold value. The logical operation circuit 22 has a difference signal S.
A measurement correction signal CS, which is a pulse signal that becomes a high level during the period when the signal level of S exceeds the threshold value, is generated. The logical operation circuit 22 executes the logical operation of the exclusive OR (BS XOR CS) of the fine particle detection signal BS and the measurement correction signal CS.

図3〜図6を用いて、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算により、微粒子を計測する方法の一例を説明する。
An example of a method of measuring fine particles by logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS will be described with reference to FIGS. 3 to 6.

図3に示すように、試料分析用ディスク100のトラック領域101には凹部102と
凸部103とが交互に形成されている。以下に、凹部102をトラックTRとし、レーザ
光Laが凹部102上を走査される場合について説明する。なお、説明をわかりやすくす
るために、図1と同じ構成部には同じ符号を付す。
As shown in FIG. 3, recesses 102 and protrusions 103 are alternately formed in the track region 101 of the sample analysis disc 100. Hereinafter, a case where the recess 102 is a track TR and the laser beam La is scanned on the recess 102 will be described. In addition, in order to make the explanation easy to understand, the same components as those in FIG. 1 are designated by the same reference numerals.

レーザ光LaがトラックTR上を走査される場合、トラッキング制御を行うためには、
レーザ光Laは、レーザスポットLSが凹部102と、凹部102に隣接する両側の凸部
103とを含む領域(第1の照射領域)に位置するように照射される。なお、凸部103
をトラックTRとし、レーザ光Laが凸部103上を走査される場合は、レーザ光Laは
、レーザスポットLSが凸部103と、凸部103に隣接する両側の凹部102とを含む
領域(第2の照射領域)に位置するように照射される。
When the laser beam La is scanned on the track TR, in order to perform tracking control,
The laser beam La is irradiated so that the laser spot LS is located in a region (first irradiation region) including the concave portion 102 and the convex portions 103 on both sides adjacent to the concave portion 102. The convex portion 103
Is a track TR, and when the laser light La is scanned on the convex portion 103, the laser light La is a region in which the laser spot LS includes the convex portion 103 and the concave portions 102 on both sides adjacent to the convex portion 103 (the first). It is irradiated so as to be located in the irradiation area of 2).

レーザスポットLSの直径は、1.22×レーザ光Laの波長÷対物レンズ14の開口
数NAにより決定される。図1に示すように、レーザ光Laは、トラック領域101で反
射し、検出光Lbとして対物レンズ14、ビームスプリッタ13、集光レンズ15a,1
5bを介して光検出器30に集光される。
The diameter of the laser spot LS is determined by 1.22 × the wavelength of the laser beam La ÷ the numerical aperture NA of the objective lens 14. As shown in FIG. 1, the laser beam La is reflected in the track region 101, and the objective lens 14, the beam splitter 13, and the condenser lenses 15a, 1 are used as the detection light Lb.
It is focused on the photodetector 30 via 5b.

図2Bに示すように、検出光Lbは、光検出器30の受光領域31,32,33,34
に4分割されて入射する。受光領域31に分割されて入射する検出光LbをLb1、受光
領域32に分割されて入射する検出光LbをLb2、受光領域33に分割されて入射する
検出光LbをLb3、受光領域34に分割されて入射する検出光LbをLb4とする。図
3に示すレーザスポットLS1,LS2,LS3,LS4は図2Bに示すLb1,Lb2
,Lb3,Lb4に対応する。
As shown in FIG. 2B, the detection light Lb is the light receiving regions 31, 32, 33, 34 of the photodetector 30.
It is divided into four parts and incident. The detection light Lb divided into the light receiving region 31 and incident is divided into Lb1, the detection light Lb divided into the light receiving region 32 and incident is Lb2, and the detection light Lb divided into the light receiving region 33 and incident is divided into Lb3 and the light receiving region 34. Let Lb4 be the detection light Lb that is incident. The laser spots LS1, LS2, LS3, and LS4 shown in FIG. 3 are Lb1, Lb2 shown in FIG. 2B.
, Lb3, Lb4.

図3に示すように、レーザ光Laは、レーザスポットLS1,LS2が凹部102と、
凹部102に隣接する一方の側(図3における左側)の凸部103(第1の凸部)とを含
む領域に位置するように照射される。また、レーザ光Laは、レーザスポットLS3,L
S4が凹部102と、凹部102に隣接する他方の側(図3における右側)の凸部103
(第2の凸部)とを含む領域に位置するように照射される。
As shown in FIG. 3, in the laser light La, the laser spots LS1 and LS2 have recesses 102, and the laser light La has a recess 102.
It is irradiated so as to be located in a region including a convex portion 103 (first convex portion) on one side (left side in FIG. 3) adjacent to the concave portion 102. Further, the laser light La is the laser spots LS3, L.
S4 is a concave portion 102 and a convex portion 103 on the other side (right side in FIG. 3) adjacent to the concave portion 102.
It is irradiated so as to be located in the region including (the second convex portion).

レーザ光LaのレーザスポットLS1,LS2により生成される検出光Lb1,Lb2
は、光検出器30の受光領域31,32に入射する。レーザ光LaのレーザスポットLS
3,LS4により生成される検出光Lb3,Lb4は、光検出器30の受光領域33,3
4に入射する。
Detection light Lb1, Lb2 generated by laser spots LS1 and LS2 of laser light La
Is incident on the light receiving regions 31 and 32 of the photodetector 30. Laser spot LS of laser light La
The detection lights Lb3 and Lb4 generated by the LS4 are the light receiving regions 33 and 3 of the photodetector 30.
It is incident on 4.

従って、レーザ光La(レーザスポットLS)は、凹部102と凹部102に隣接する
一方の側の凸部103とを含む領域に位置するレーザスポットLS1,LS2(第1のレ
ーザスポット)と、凹部102と凹部102に隣接する他方の側の凸部103とを含む領
域に位置するレーザスポットLS3,LS4(第2のレーザスポット)とに分割される。
レーザスポットLS1,LS2に分割されたレーザ光Laは、検出光Lb1,Lb2(第
1の検出光)として受光領域31,32(第1の受光領域)に入射し、レーザスポットL
S3,LS4に分割されたレーザ光Laは、検出光Lb3,Lb4(第2の検出光)とし
て受光領域33,34(第2の受光領域)に入射する。
Therefore, the laser beam La (laser spot LS) includes the laser spots LS1 and LS2 (first laser spots) located in the region including the concave portion 102 and the convex portion 103 on one side adjacent to the concave portion 102, and the concave portion 102. It is divided into laser spots LS3 and LS4 (second laser spots) located in a region including the concave portion 102 and the convex portion 103 on the other side adjacent to the concave portion 102.
The laser light La divided into the laser spots LS1 and LS2 is incident on the light receiving regions 31 and 32 (first light receiving region) as the detection lights Lb1 and Lb2 (first detection light), and the laser spot L
The laser beam La divided into S3 and LS4 is incident on the light receiving regions 33 and 34 (second light receiving region) as the detection lights Lb3 and Lb4 (second detection light).

検出信号生成回路21は、検出光Lb1,Lb2の受光レベルRL1,RL2に基づい
て受光レベル信号RS1,RS2(第1の受光レベル信号)を生成し、検出光Lb3,L
b4の受光レベルRL3,RL4に基づいて受光レベル信号RS3,RS4(第2の受光
レベル信号)を生成する。
The detection signal generation circuit 21 generates light-receiving level signals RS1 and RS2 (first light-receiving level signals) based on the light-receiving levels RL1 and RL2 of the detection lights Lb1 and Lb2, and detects light Lb3 and Lb3.
The light receiving level signals RS3 and RS4 (second light receiving level signal) are generated based on the light receiving levels RL3 and RL4 of b4.

図3は、トラック領域101上に、検出対象物質を標識する微粒子40が捕捉されてい
る状態の一例を示している。なお、図3では、各凹部102及び各凸部103を区別する
ために、各凹部102を凹部1021,1022,1023とし、各凸部103を凸部1
031,1032,1033,1034として図示している。
FIG. 3 shows an example of a state in which the fine particles 40 labeling the substance to be detected are captured on the track region 101. In addition, in FIG. 3, in order to distinguish each concave portion 102 and each convex portion 103, each concave portion 102 is referred to as concave portion 1021, 1022, 1023, and each convex portion 103 is referred to as convex portion 1.
It is shown as 031, 1032, 1033, 1034.

第1のトラックTR1に対応する凹部1021には2個の微粒子40a,40bが捕捉
されている。第2のトラックTR2に対応する凹部1022には1個の微粒子40cが捕
捉されている。第3のトラックTR3に対応する凹部1023には1個の微粒子40dが
捕捉されている。
Two fine particles 40a and 40b are captured in the recess 1021 corresponding to the first track TR1. One fine particle 40c is captured in the recess 1022 corresponding to the second track TR2. One fine particle 40d is captured in the recess 1023 corresponding to the third track TR3.

凸部1031には微粒子40は捕捉されていない。第1のトラックTR1と第2のトラ
ックTR2との間に位置する凸部1032には1個の微粒子40eが捕捉されている。第
2のトラックTR2と第3のトラックTR3との間に位置する凸部1033には2個の微
粒子40f,40gが連接して捕捉されている。凸部1034には微粒子40は捕捉され
ていない。
Fine particles 40 are not captured in the convex portion 1031. One fine particle 40e is captured in the convex portion 1032 located between the first track TR1 and the second track TR2. Two fine particles 40f and 40g are concatenated and captured in the convex portion 1033 located between the second track TR2 and the third track TR3. Fine particles 40 are not captured in the convex portion 1034.

レーザ光Laが第1のトラックTR1上を走査される場合、トラッキング制御を行うた
めに、レーザ光Laは、レーザスポットLSが凹部1021と、凹部1021に隣接する
両側の凸部1031及び凸部1032とを含む領域に位置するように照射される。凹部1
021を第1の凹部とすると、凸部1031は第1の凸部であり、凸部1032は第2の
凸部である。
When the laser light La is scanned on the first track TR1, in order to perform tracking control, the laser light La has a laser spot LS having a concave portion 1021 and convex portions 1031 and convex portions 1032 on both sides adjacent to the concave portion 1021. It is irradiated so as to be located in the area including and. Recess 1
Assuming that 021 is the first concave portion, the convex portion 1031 is the first convex portion, and the convex portion 1032 is the second convex portion.

図4は、レーザ光Laが第1のトラックTR1上を走査される場合の検出信号DSと微
粒子検出信号BSと差信号SSと計測補正信号CSとの関係を示すタイムチャートである
。レーザ光Laが微粒子40a上を走査されると、微粒子40aにより受光レベルRL1
,RL2,RL3,RL4がほぼ同じレベルで低下する。
FIG. 4 is a time chart showing the relationship between the detection signal DS, the fine particle detection signal BS, the difference signal SS, and the measurement correction signal CS when the laser beam La is scanned on the first track TR1. When the laser beam La is scanned on the fine particles 40a, the light receiving level RL1 is generated by the fine particles 40a.
, RL2, RL3, RL4 decrease at about the same level.

これにより、受光レベル信号RS1,RS2,RS3,RS4の信号レベルがほぼ同じ
レベルで低下するため、微粒子40aに対する検出信号DSaの信号レベルは低下し、差
信号SSの信号レベルはほとんど変化しない。
As a result, the signal levels of the light receiving level signals RS1, RS2, RS3, and RS4 are lowered at almost the same level, so that the signal level of the detection signal DSa with respect to the fine particles 40a is lowered, and the signal level of the difference signal SS is hardly changed.

論理演算回路22は、検出信号DSaの信号レベルが閾値を超えている期間にハイレベ
ルとなるパルス信号である微粒子検出信号BSaを生成する。差信号SSの信号レベルは
ほとんど変化しないので閾値を超えないため、計測補正信号CSは生成されない。ここで
、信号レベルが閾値を超える期間とは、レーザ光Laが微粒子40a上を走査されると、
微粒子40aにより受光レベルが低下するため、図4〜図6においては信号レベルが閾値
を下回っている期間をいう。
The logical operation circuit 22 generates a fine particle detection signal BSa which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSa exceeds the threshold value. Since the signal level of the difference signal SS hardly changes and does not exceed the threshold value, the measurement correction signal CS is not generated. Here, the period during which the signal level exceeds the threshold value means that when the laser beam La is scanned on the fine particles 40a,
In FIGS. 4 to 6, the signal level is below the threshold value because the light receiving level is lowered by the fine particles 40a.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。論理演算のフラグとしてハイレベルを1、ローレベルを0とすれば、微
粒子検出信号BSは微粒子検出信号BSaが生成されるので、微粒子検出信号BSaは1
、計測補正信号CSは生成されないので0として論理演算される。これにより、排他的論
理和は1となるため、論理演算回路22は、微粒子検出信号BSaに対応する微粒子計測
信号HSaを生成する。即ち、論理演算回路22は、微粒子検出信号BSと計測補正信号
CSとの排他的論理和の論理演算を実行し、排他的論理和が1となる場合に微粒子計測信
号HSを生成する。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. If the high level is set to 1 and the low level is set to 0 as the flag of the logical operation, the fine particle detection signal BSa is generated as the fine particle detection signal BSa, so that the fine particle detection signal BSa is 1.
Since the measurement correction signal CS is not generated, the logical operation is performed as 0. As a result, the exclusive OR becomes 1, so that the logical operation circuit 22 generates the fine particle measurement signal HSa corresponding to the fine particle detection signal BSa. That is, the logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS, and generates the fine particle measurement signal HS when the exclusive OR is 1.

次に、レーザ光Laが第1のトラックTR1(凹部1021)に隣接する凸部1032
に捕捉されている微粒子40eの近傍を走査されると、微粒子40eにより受光レベルR
L3,RL4が低下し、受光レベルRL1,RL2は変化しない。これにより、受光レベ
ル信号RS3,RS4の信号レベルが低下し、受光レベル信号RS1,RS2の信号レベ
ルは変化しないため、微粒子40eに対する検出信号DSe1の信号レベルは低下し、差
信号SSe1の信号レベルは上昇する。
Next, the convex portion 1032 in which the laser beam La is adjacent to the first track TR1 (concave portion 1021).
When the vicinity of the fine particles 40e captured by the fine particles 40e is scanned, the light receiving level R is received by the fine particles 40e.
L3 and RL4 decrease, and the light receiving levels RL1 and RL2 do not change. As a result, the signal levels of the light receiving level signals RS3 and RS4 are lowered, and the signal levels of the light receiving level signals RS1 and RS2 are not changed. Therefore, the signal level of the detection signal DSe1 with respect to the fine particles 40e is lowered, and the signal level of the difference signal SSe1 is changed. To rise.

論理演算回路22は、検出信号DSe1の信号レベルが閾値を超えている期間にハイレ
ベルとなるパルス信号である微粒子検出信号BSe1を生成する。差信号SSe1は信号
レベルが上昇するので閾値を超えないため、計測補正信号CSは生成されない。
The logical operation circuit 22 generates the fine particle detection signal BSe1 which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSe1 exceeds the threshold value. Since the difference signal SSe1 does not exceed the threshold value because the signal level rises, the measurement correction signal CS is not generated.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BSe1が生成されるので1、計
測補正信号CSは生成されないので0として論理演算される。これにより、排他的論理和
は1となるため、論理演算回路22は、微粒子検出信号BSe1に対応する微粒子計測信
号HSeを生成する。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. The fine particle detection signal BS is logically calculated as 1 because the fine particle detection signal BSe1 is generated and 0 because the measurement correction signal CS is not generated. As a result, the exclusive OR becomes 1, so that the logical operation circuit 22 generates the fine particle measurement signal HSe corresponding to the fine particle detection signal BSe1.

次に、レーザ光Laが微粒子40b上を走査されると、微粒子40bにより受光レベル
RL1,RL2,RL3,RL4がほぼ同じレベルで低下する。
Next, when the laser beam La is scanned on the fine particles 40b, the light receiving levels RL1, RL2, RL3, and RL4 are lowered by the fine particles 40b at substantially the same level.

これにより、受光レベル信号RS1,RS2,RS3,RS4の信号レベルがほぼ同じ
レベルで低下するため、微粒子40aに対する検出信号DSbの信号レベルは低下し、差
信号SSの信号レベルはほとんど変化しない。
As a result, the signal levels of the light receiving level signals RS1, RS2, RS3, and RS4 are lowered at almost the same level, so that the signal level of the detection signal DSb with respect to the fine particles 40a is lowered, and the signal level of the difference signal SS is hardly changed.

論理演算回路22は、検出信号DSbの信号レベルが閾値を超えている期間にハイレベ
ルとなるパルス信号である微粒子検出信号BSbを生成する。差信号SSの信号レベルは
ほとんど変化しないので閾値を超えないため、計測補正信号CSは生成されない。
The logical operation circuit 22 generates the fine particle detection signal BSb, which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSb exceeds the threshold value. Since the signal level of the difference signal SS hardly changes and does not exceed the threshold value, the measurement correction signal CS is not generated.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BSbが生成されるので1、計測
補正信号CSは生成されないので0として論理演算される。これにより、排他的論理和は
1となるため、論理演算回路22は、微粒子検出信号BSbに対応する微粒子計測信号H
Sbを生成する。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. The fine particle detection signal BS is logically calculated as 1 because the fine particle detection signal BSb is generated and 0 because the measurement correction signal CS is not generated. As a result, the exclusive OR becomes 1, so that the logical operation circuit 22 has the fine particle measurement signal H corresponding to the fine particle detection signal BSb.
Generate Sb.

論理演算回路22は、第1のトラックTR1における微粒子計測信号HSをカウントす
る。具体的には、第1のトラックTR1における微粒子計測信号HSa,HSe,HSb
をカウントし、カウント結果に基づいて、第1のトラックTR1をレーザ光Laが走査さ
れた場合の微粒子40の数を3と判定する。第1のトラックTR1をレーザ光Laが走査
された場合の微粒子40の総数は、凹部1021に捕捉されている微粒子40a,40b
と凸部1032に捕捉されている微粒子40eの総数に対応する。
The logical operation circuit 22 counts the fine particle measurement signal HS on the first track TR1. Specifically, the fine particle measurement signals HSa, HSe, HSb in the first track TR1.
Is counted, and based on the count result, the number of fine particles 40 when the laser beam La is scanned on the first track TR1 is determined to be 3. The total number of fine particles 40 when the laser beam La is scanned on the first track TR1 is the fine particles 40a, 40b captured in the recess 1021.
Corresponds to the total number of fine particles 40e captured in the convex portion 1032.

レーザ光Laが第2のトラックTR2上を走査される場合、トラッキング制御を行うた
めに、レーザ光Laは、レーザスポットLSが凹部1022と、凹部1022に隣接する
両側の凸部1032及び凸部1033とを含む領域に位置するように照射される。凹部1
022を第1の凹部とすると、凸部1032は第1の凸部であり、凸部1033は第2の
凸部である。
When the laser light La is scanned on the second track TR2, in order to perform tracking control, the laser light La has the laser spot LS having the concave portion 1022 and the convex portions 1032 and the convex portion 1033 on both sides adjacent to the concave portion 1022. It is irradiated so as to be located in the area including and. Recess 1
Assuming that 022 is the first concave portion, the convex portion 1032 is the first convex portion, and the convex portion 1033 is the second convex portion.

図5は、レーザ光Laが第2のトラックTR2上を走査される場合の検出信号DSと微
粒子検出信号BSと差信号SSと計測補正信号CSとの関係を示すタイムチャートである
。レーザ光Laが微粒子40c上を走査されると、微粒子40cにより受光レベルRL1
,RL2,RL3,RL4がほぼ同じレベルで低下する。
FIG. 5 is a time chart showing the relationship between the detection signal DS, the fine particle detection signal BS, the difference signal SS, and the measurement correction signal CS when the laser beam La is scanned on the second track TR2. When the laser beam La is scanned on the fine particles 40c, the light receiving level RL1 is generated by the fine particles 40c.
, RL2, RL3, RL4 decrease at about the same level.

これにより、受光レベル信号RS1,RS2,RS3,RS4の信号レベルがほぼ同じ
レベルで低下するため、微粒子40cに対する検出信号DScの信号レベルは低下し、差
信号SSの信号レベルはほとんど変化しない。
As a result, the signal levels of the light receiving level signals RS1, RS2, RS3, and RS4 are lowered at almost the same level, so that the signal level of the detection signal DSc with respect to the fine particles 40c is lowered, and the signal level of the difference signal SS is hardly changed.

論理演算回路22は、検出信号DScの信号レベルが閾値を超えている期間にハイレベ
ルとなるパルス信号である微粒子検出信号BScを生成する。差信号SSの信号レベルは
ほとんど変化しないので閾値を超えないため、計測補正信号CSは生成されない。
The logical operation circuit 22 generates the fine particle detection signal BSc, which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSc exceeds the threshold value. Since the signal level of the difference signal SS hardly changes and does not exceed the threshold value, the measurement correction signal CS is not generated.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BScが生成されるので1、計測
補正信号CSは生成されないので0として論理演算される。これにより、排他的論理和は
1となるため、論理演算回路22は、微粒子計測信号HScを生成する。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. The fine particle detection signal BS is logically calculated as 1 because the fine particle detection signal BSc is generated and 0 because the measurement correction signal CS is not generated. As a result, the exclusive OR becomes 1, so that the logical operation circuit 22 generates the fine particle measurement signal HSc.

次に、レーザ光Laが第2のトラックTR2(凹部1022)に隣接する一方の凸部1
032に捕捉されている微粒子40eの近傍を走査されると、微粒子40eにより受光レ
ベルRL1,RL2が低下し、受光レベルRL3,RL4は変化しない。これにより、受
光レベル信号RS1,RS2の信号レベルが低下し、受光レベル信号RS3,RS4の信
号レベルは変化しないため、微粒子40eに対する検出信号DSe2及び差信号SSe2
の信号レベルは低下する。
Next, one convex portion 1 in which the laser beam La is adjacent to the second track TR2 (recessed 1022)
When the vicinity of the fine particles 40e captured by 032 is scanned, the light receiving levels RL1 and RL2 are lowered by the fine particles 40e, and the light receiving levels RL3 and RL4 do not change. As a result, the signal levels of the light receiving level signals RS1 and RS2 are lowered, and the signal levels of the light receiving level signals RS3 and RS4 do not change. Therefore, the detection signal DSe2 and the difference signal SSe2 for the fine particles 40e
Signal level drops.

論理演算回路22は、検出信号DSe2の信号レベルが閾値を超えている期間にハイレ
ベルとなるパルス信号である微粒子検出信号BSe2を生成する。論理演算回路22は、
差信号SSe2の信号レベルが閾値を超えている期間にハイレベルとなるパルス信号であ
る計測補正信号CSeを生成する。
The logical operation circuit 22 generates the fine particle detection signal BSe2, which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSe2 exceeds the threshold value. The logical operation circuit 22
The measurement correction signal CSe, which is a pulse signal that becomes a high level during the period when the signal level of the difference signal SSe2 exceeds the threshold value, is generated.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BSe2が生成されるので1、計
測補正信号CSは計測補正信号CSeが生成されるので1として論理演算される。これに
より、排他的論理和は0となり、微粒子計測信号HSは生成されない。即ち、微粒子検出
信号BSe2はカウントされない。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. The fine particle detection signal BS is logically calculated as 1 because the fine particle detection signal BSe2 is generated, and the measurement correction signal CS is logically operated as 1 because the measurement correction signal CSe is generated. As a result, the exclusive OR becomes 0, and the fine particle measurement signal HS is not generated. That is, the fine particle detection signal BSe2 is not counted.

次に、レーザ光Laが第2のトラックTR2(凹部1022)に隣接する他方の凸部1
033に捕捉されている微粒子40f,40gの近傍を走査されると、微粒子40f,4
0gにより受光レベルRL3,RL4が低下し、受光レベルRL1,RL2は変化しない
。これにより、受光レベル信号RS3,RS4の信号レベルが低下し、受光レベル信号R
S1,RS2の信号レベルは変化しないため、微粒子40f,40gに対する検出信号D
Sfg1の信号レベルは低下し、差信号SSfg1の信号レベルは上昇する。
Next, the other convex portion 1 in which the laser beam La is adjacent to the second track TR2 (recessed portion 1022)
When the vicinity of the fine particles 40f, 40g captured by 033 is scanned, the fine particles 40f, 4
With 0 g, the light receiving levels RL3 and RL4 decrease, and the light receiving levels RL1 and RL2 do not change. As a result, the signal levels of the light receiving level signals RS3 and RS4 are lowered, and the light receiving level signal R
Since the signal levels of S1 and RS2 do not change, the detection signal D for the fine particles 40f and 40g
The signal level of Sfg1 decreases, and the signal level of the difference signal SSfg1 increases.

論理演算回路22は、検出信号DSfgの信号レベルが閾値を超えている期間にハイレ
ベルとなるパルス信号である微粒子検出信号BSfgを生成する。差信号SSfg1は信
号レベルが上昇するので閾値を超えないため、計測補正信号CSは生成されない。
The logical operation circuit 22 generates the fine particle detection signal BSfg, which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSfg exceeds the threshold value. Since the difference signal SSfg1 does not exceed the threshold value because the signal level rises, the measurement correction signal CS is not generated.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BSfg1が生成されるので1、
計測補正信号CSは生成されないので0として論理演算される。これにより、排他的論理
和は1となるため、論理演算回路22は、微粒子検出信号BSfg1に対応する微粒子計
測信号HSfgを生成する。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. Since the fine particle detection signal BSfg1 is generated in the fine particle detection signal BS, 1.
Since the measurement correction signal CS is not generated, it is logically operated as 0. As a result, the exclusive OR becomes 1, so that the logical operation circuit 22 generates the fine particle measurement signal HSfg corresponding to the fine particle detection signal BSfg1.

論理演算回路22は、第2のトラックTR2における微粒子計測信号HSをカウントす
る。具体的には、第2のトラックTR2における微粒子計測信号HSc,HSfgをカウ
ントし、カウント結果に基づいて、第2のトラックTR2をレーザ光Laが走査された場
合の微粒子40の数を3と判定する。論理演算回路22は、微粒子計測信号HSfgのパ
ルス幅に基づいて、微粒子40の数を2と判定する。第2のトラックTR2をレーザ光L
aが走査された場合の微粒子40の総数は、凹部1022に捕捉されている微粒子40c
と凸部1033に捕捉されている微粒子40f,40gとの総数に対応する。
The logical operation circuit 22 counts the fine particle measurement signal HS on the second track TR2. Specifically, the fine particle measurement signals HSc and HSfg in the second track TR2 are counted, and based on the count result, the number of fine particles 40 when the laser beam La is scanned in the second track TR2 is determined to be 3. To do. The logical operation circuit 22 determines that the number of fine particles 40 is 2 based on the pulse width of the fine particle measurement signal HSfg. Laser light L on the second track TR2
The total number of fine particles 40 when a is scanned is the total number of fine particles 40c captured in the recess 1022.
Corresponds to the total number of fine particles 40f and 40g captured in the convex portion 1033.

レーザ光Laが第3のトラックTR3上を走査される場合、トラッキング制御を行うた
めに、レーザ光Laは、レーザスポットLSが凹部1023と、凹部1023に隣接する
凸部1033及び凸部1034とを含む領域に位置するように照射される。凹部1023
を第1の凹部とすると、凸部1033は第1の凸部であり、凸部1034は第2の凸部で
ある。
When the laser light La is scanned on the third track TR3, in order to perform tracking control, the laser light La causes the laser spot LS to have a concave portion 1023 and a convex portion 1033 and a convex portion 1034 adjacent to the concave portion 1023. It is irradiated so as to be located in the including area. Recess 1023
Is the first concave portion, the convex portion 1033 is the first convex portion, and the convex portion 1034 is the second convex portion.

図6は、レーザ光Laが第3のトラックTR3上を走査される場合の検出信号DSと微
粒子検出信号BSと差信号SSと計測補正信号CSとの関係を示すタイムチャートである
。レーザ光Laが微粒子40d上を走査されると、微粒子40dにより受光レベルRL1
,RL2,RL3,RL4がほぼ同じレベルで低下する。
FIG. 6 is a time chart showing the relationship between the detection signal DS, the fine particle detection signal BS, the difference signal SS, and the measurement correction signal CS when the laser beam La is scanned on the third track TR3. When the laser beam La is scanned on the fine particles 40d, the light receiving level RL1 is generated by the fine particles 40d.
, RL2, RL3, RL4 decrease at about the same level.

これにより、受光レベル信号RS1,RS2,RS3,RS4の信号レベルがほぼ同じ
レベルで低下するため、微粒子40dに対する検出信号DSdの信号レベルは低下し、差
信号SSの信号レベルはほとんど変化しない。
As a result, the signal levels of the light receiving level signals RS1, RS2, RS3, and RS4 are lowered at almost the same level, so that the signal level of the detection signal DSd with respect to the fine particles 40d is lowered, and the signal level of the difference signal SS is hardly changed.

論理演算回路22は、検出信号DSdの信号レベルが閾値を超えている期間にハイレベ
ルとなるパルス信号である微粒子検出信号BSdを生成する。差信号SSの信号レベルは
ほとんど変化しないので閾値を超えないため、計測補正信号CSは生成されない。
The logical operation circuit 22 generates the fine particle detection signal BSd, which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSd exceeds the threshold value. Since the signal level of the difference signal SS hardly changes and does not exceed the threshold value, the measurement correction signal CS is not generated.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BSdが生成されるので1、計測
補正信号CSは生成されないので0として論理演算される。これにより、排他的論理和は
1となるため、論理演算回路22は、微粒子計測信号HSdを生成する。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. The fine particle detection signal BS is logically calculated as 1 because the fine particle detection signal BSd is generated and 0 because the measurement correction signal CS is not generated. As a result, the exclusive OR becomes 1, so that the logical operation circuit 22 generates the fine particle measurement signal HSd.

次に、レーザ光Laが第3のトラックTR3(凹部1023)に隣接する凸部1033
に捕捉されている微粒子40f,40gの近傍を走査されると、微粒子40f,40gに
より受光レベルRL1,RL2が低下し、受光レベルRL3,RL4は変化しない。これ
により、受光レベル信号RS1,RS2の信号レベルが低下し、受光レベル信号RS3,
RS4の信号レベルは変化しないため、微粒子40f,40gに対する検出信号DSfg
2及び差信号SSfg2の信号レベルは低下する。
Next, the convex portion 1033 in which the laser beam La is adjacent to the third track TR3 (recessed portion 1023).
When the vicinity of the fine particles 40f and 40g captured in is scanned, the light receiving levels RL1 and RL2 are lowered by the fine particles 40f and 40g, and the light receiving levels RL3 and RL4 do not change. As a result, the signal levels of the light receiving level signals RS1 and RS2 are lowered, and the light receiving level signals RS3 and RS3 are reduced.
Since the signal level of RS4 does not change, the detection signal DSfg for 40f and 40g of fine particles
2 and the signal level of the difference signal SSfg2 are lowered.

論理演算回路22は、検出信号DSfg2の信号レベルが閾値を超えている期間にハイ
レベルとなるパルス信号である微粒子検出信号BSfg2を生成する。論理演算回路22
は、差信号SSfg2の信号レベルが閾値を超えている期間にハイレベルとなるパルス信
号である計測補正信号CSfgを生成する。
The logical operation circuit 22 generates the fine particle detection signal BSfg2, which is a pulse signal that becomes a high level during the period when the signal level of the detection signal DSfg2 exceeds the threshold value. Logical operation circuit 22
Generates a measurement correction signal CSfg, which is a pulse signal that becomes a high level during the period when the signal level of the difference signal SSfg2 exceeds the threshold value.

論理演算回路22は、微粒子検出信号BSと計測補正信号CSとの排他的論理和の論理
演算を実行する。微粒子検出信号BSは微粒子検出信号BSfg2が生成されるので1、
計測補正信号CSは計測補正信号CSfgが生成されるので1として論理演算される。こ
れにより、排他的論理和は0となり、微粒子計測信号HSは生成されない。即ち、微粒子
検出信号BSfg2はカウントされない。
The logical operation circuit 22 executes the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS. Since the fine particle detection signal BSfg2 is generated in the fine particle detection signal BS, 1.
Since the measurement correction signal CSfg is generated, the measurement correction signal CS is logically calculated as 1. As a result, the exclusive OR becomes 0, and the fine particle measurement signal HS is not generated. That is, the fine particle detection signal BSfg2 is not counted.

論理演算回路22は、第3のトラックTR3における微粒子計測信号HSをカウントす
る。具体的には、第3のトラックTR3における微粒子計測信号HSdをカウントし、カ
ウント結果に基づいて、第3のトラックTR3をレーザ光Laが走査された場合の微粒子
40の数を1と判定する。
The logical operation circuit 22 counts the fine particle measurement signal HS on the third track TR3. Specifically, the fine particle measurement signal HSd on the third track TR3 is counted, and based on the count result, the number of fine particles 40 when the laser beam La is scanned on the third track TR3 is determined to be 1.

第3のトラックTR3をレーザ光Laが走査された場合の微粒子40の総数は、凹部1
023に捕捉されている微粒子40dと凸部1034に捕捉されている微粒子との総数に
対応する。
The total number of fine particles 40 when the laser beam La is scanned on the third track TR3 is the concave portion 1.
It corresponds to the total number of fine particles 40d captured in 023 and fine particles captured in the convex portion 1034.

従って、論理演算回路22は、図3に示すトラック領域101上に捕捉されている微粒
子40の総数を7と判定する。従来のように微粒子検出信号BSをカウントすると、図3
に示すトラック領域101上に捕捉されている微粒子40の総数は10と判定される。
Therefore, the logical operation circuit 22 determines that the total number of fine particles 40 captured on the track region 101 shown in FIG. 3 is 7. When the fine particle detection signal BS is counted as in the conventional case, FIG.
The total number of fine particles 40 captured on the track region 101 shown in is determined to be 10.

この測定誤差は、レーザ光Laが第1のトラックTR1を走査される場合と第2のトラ
ックTR2を走査される場合とで微粒子40eがトラック間クロストークによりダブルカ
ウントされ、レーザ光Laが第2のトラックTR2を走査される場合と第3のトラックT
R3を走査される場合とで微粒子40f,40gがトラック間クロストークによりダブル
カウントされることに起因する。
In this measurement error, the fine particles 40e are double-counted by inter-track crosstalk when the laser beam La is scanned on the first track TR1 and when the laser beam TR2 is scanned on the second track TR2, and the laser beam La is second. When the track TR2 is scanned and the third track T
This is due to the fact that the fine particles 40f and 40g are double-counted by crosstalk between tracks when the R3 is scanned.

以上のように、本実施形態の分析装置1及び分析方法は、差信号SSに基づいて計測補
正信号CSを生成し、総和信号である検出信号DSに基づいて生成された微粒子検出信号
BSと計測補正信号CSとの排他的論理和の論理演算を実行する。本実施形態の分析装置
1及び分析方法は、排他的論理和が1のときに微粒子計測信号HSを生成し、微粒子計測
信号HSをカウントすることにより、トラック領域101上に捕捉されている微粒子40
を計測する。
As described above, the analyzer 1 and the analysis method of the present embodiment generate the measurement correction signal CS based on the difference signal SS, and measure with the fine particle detection signal BS generated based on the detection signal DS which is the total signal. The logical operation of the exclusive OR with the correction signal CS is executed. The analyzer 1 and the analysis method of the present embodiment generate the fine particle measurement signal HS when the exclusive OR is 1, and count the fine particle measurement signal HS to capture the fine particles 40 on the track region 101.
To measure.

従って、本実施形態の分析装置1及び分析方法によれば、レーザ光Laをトラック領域
101の凹部102のみを走査することにより、凹部102に捕捉されている微粒子40
と、凹部102に隣接する一方の側の凸部103に捕捉されている微粒子40との総数を
計測することができる。よって、本実施形態の分析装置1及び分析方法によれば、トラッ
ク間クロストークによる影響を抑制し、従来よりも短い時間で精度よく微粒子を計測でき
る。
Therefore, according to the analyzer 1 and the analysis method of the present embodiment, the fine particles 40 captured in the recess 102 by scanning only the recess 102 of the track region 101 with the laser beam La.
And the total number of the fine particles 40 captured in the convex portion 103 on one side adjacent to the concave portion 102 can be measured. Therefore, according to the analyzer 1 and the analysis method of the present embodiment, the influence of crosstalk between tracks can be suppressed, and fine particles can be measured accurately in a shorter time than before.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱し
ない範囲において種々変更可能である。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、検出信号生成回路21は、加算信号(RS3+RS4)から加算信号(RS1
+RS2)を減算して差信号SS((RS3+RS4)−(RS1+RS2))を生成し
てもよい。この場合、微粒子40に対する差信号SSの信号レベルの変化が反転するため
、例えば微粒子40eは、レーザ光Laが第2のトラックTR2(凹部1022)を走査
される場合にはカウントされ、第1のトラックTR1(凹部1021)を走査される場合
にカウントされない。
For example, the detection signal generation circuit 21 changes from the addition signal (RS3 + RS4) to the addition signal (RS1).
+ RS2) may be subtracted to generate the difference signal SS ((RS3 + RS4)-(RS1 + RS2)). In this case, since the change in the signal level of the difference signal SS with respect to the fine particles 40 is inverted, for example, the fine particles 40e are counted when the laser beam La is scanned through the second track TR2 (recess 1022), and the first fine particles 40e are counted. It is not counted when the track TR1 (recess 1021) is scanned.

即ち、レーザ光Laが第1のトラックTR1を走査される場合の微粒子40の総数は、
凹部1021に捕捉されている微粒子40a,40bと凸部1031に捕捉されている微
粒子の総数に対応する。レーザ光Laが第2のトラックTR2を走査される場合の微粒子
40の総数は、凹部1022に捕捉されている微粒子40cと凸部1032に捕捉されて
いる微粒子40eの総数に対応する。レーザ光Laが第3のトラックTR3を走査される
場合の微粒子40の総数は、凹部1023に捕捉されている微粒子40dと凸部1033
に捕捉されている微粒子40f,40gの総数に対応する。
That is, the total number of fine particles 40 when the laser beam La is scanned through the first track TR1 is
It corresponds to the total number of fine particles 40a and 40b trapped in the concave portion 1021 and the fine particles captured in the convex portion 1031. The total number of fine particles 40 when the laser beam La is scanned on the second track TR2 corresponds to the total number of fine particles 40c captured in the concave portion 1022 and the fine particles 40e captured in the convex portion 1032. The total number of fine particles 40 when the laser beam La is scanned through the third track TR3 is the fine particles 40d captured in the concave portion 1023 and the convex portion 1033.
Corresponds to the total number of fine particles 40f and 40g captured in.

凸部103を対象領域とし、凹部102を周辺領域としてもよい。即ち、レーザ光La
がトラック領域101の凸部103のみを走査されることにより、凸部103に捕捉され
ている微粒子40と、凸部103に隣接する一方の側の凹部102に捕捉されている微粒
子40との総数を計測するようにしてもよい。
The convex portion 103 may be the target region, and the concave portion 102 may be the peripheral region. That is, the laser beam La
Is the total number of fine particles 40 captured in the convex portion 103 and the fine particles 40 captured in the concave portion 102 on one side adjacent to the convex portion 103 by scanning only the convex portion 103 of the track region 101. May be measured.

具体的には、例えば凸部1032を第1の凸部とし、凸部1032に隣接する一方の側
の凹部1021を第1の凹部、他方の側の凹部1022を第2の凹部とする。光ピックア
ップ10は、レーザ光Laを、レーザスポットLSが第1の凸部と、第1の凸部に隣接す
る両側の第1及び第2の凹部とを含む第2の照射領域に位置するように照射する。
Specifically, for example, the convex portion 1032 is the first convex portion, the concave portion 1021 on one side adjacent to the convex portion 1032 is the first concave portion, and the concave portion 1022 on the other side is the second concave portion. The optical pickup 10 arranges the laser light La so that the laser spot LS is located in the second irradiation region including the first convex portion and the first and second concave portions on both sides adjacent to the first convex portion. Irradiate to.

レーザスポットLSは、第1の凸部と第1の凸部に隣接する一方の側の第1の凹部とを
含む領域に位置する第1のレーザスポットLS1,LS2と、第1の凸部と第1の凸部に
隣接する他方の側の第2の凹部とを含む領域に位置する第2のレーザスポットLS3,L
S4とに分割される。
The laser spot LS includes the first laser spots LS1 and LS2 located in a region including the first convex portion and the first concave portion on one side adjacent to the first convex portion, and the first convex portion. The second laser spot LS3, L located in the region including the second concave portion on the other side adjacent to the first convex portion.
It is divided into S4.

受光領域31,32は第1のレーザスポットLS1,LS2に分割されたレーザ光La
を第1の検出光Lb1,Lb2として受光する。受光領域33,34は第2のレーザスポ
ットLS3,LS4に分割されたレーザ光Laを第2の検出光Lb3,Lb4として受光
する。
The light receiving regions 31 and 32 are the laser light La divided into the first laser spots LS1 and LS2.
Is received as the first detection light Lb1 and Lb2. The light receiving regions 33 and 34 receive the laser light La divided into the second laser spots LS3 and LS4 as the second detection lights Lb3 and Lb4.

信号処理回路20による微粒子検出信号BSと計測補正信号CSとの排他的論理和の論
理演算により微粒子40を計測する方法は、レーザ光Laが凹部102のみを走査される
場合と同じである。
The method of measuring the fine particles 40 by the logical operation of the exclusive OR of the fine particle detection signal BS and the measurement correction signal CS by the signal processing circuit 20 is the same as the case where the laser beam La scans only the concave portion 102.

光検出器30として2分割フォトダイオードを用いてもよい。この場合、一方の受光領
域は受光領域31,32に対応し、他方の受光領域は受光領域33,34に対応する。
A two-segment photodiode may be used as the photodetector 30. In this case, one light receiving area corresponds to the light receiving areas 31 and 32, and the other light receiving area corresponds to the light receiving areas 33 and 34.

検出信号DS及び差信号SSの閾値は、トラック領域に微粒子が捕捉されていない場合
の信号レベルと、トラック領域に捕捉された微粒子に起因する信号レベルの中間値に設定
するが、微粒子の材質または径の大きさ、並びに、用いられるレーザ光Laの波長または
対物レンズ14の開口数に応じて、より最適な値に設定してもよい。トラック領域に微粒
子が捕捉されていない信号レベルに対して、トラック領域に捕捉されている微粒子に起因
する信号レベルが高い値として検出されるような検出系の場合は、閾値を上回っている信
号に対して論理演算のフラグを1にすればよい。
The threshold value of the detection signal DS and the difference signal SS is set to an intermediate value between the signal level when the fine particles are not captured in the track region and the signal level caused by the fine particles captured in the track region. A more optimum value may be set according to the size of the diameter and the wavelength of the laser light La used or the numerical aperture of the objective lens 14. In the case of a detection system in which the signal level caused by the fine particles captured in the track region is detected as a high value with respect to the signal level in which the fine particles are not captured in the track region, the signal exceeds the threshold value. On the other hand, the logical operation flag may be set to 1.

1 分析装置
10 光ピックアップ
20 信号処理回路
31,32 受光領域(第1の受光領域)
33,34 受光領域(第2の受光領域)
40 微粒子
101 トラック領域
102 凹部(対象領域)
103 凸部(周辺領域)
La レーザ光
LS レーザスポット
Lb 検出光
RS 受光レベル信号
DS 検出信号
SS 差信号
BS 微粒子検出信号
CS 計測補正信号
HS 微粒子計測信号
1 Analyzer 10 Optical pickup 20 Signal processing circuit 31, 32 Light receiving area (first light receiving area)
33,34 Light receiving area (second light receiving area)
40 Fine particles 101 Track area 102 Recess (target area)
103 Convex part (peripheral area)
La laser light LS laser spot Lb detection light RS light receiving level signal DS detection signal SS difference signal BS fine particle detection signal CS measurement correction signal HS fine particle measurement signal

Claims (2)

試料分析用ディスク上に交互に形成された凹部と凸部のうちの一方である対象領域と凹
部と凸部のうちの他方である周辺領域とに補足された検出対象物質を標識する微粒子を計
測する分析装置において、
レーザ光源から射出されたレーザ光のレーザスポットが前記対象領域と前記対象領域に
隣接する一方の側の周辺領域である第1の周辺領域と前記対象領域に隣接する他方の側の
周辺領域である第2の周辺領域とを含む位置に照射された際に、
前記対象領域と前記第1の周辺領域からの反射光を受光する第1の受光領域で得られる
第1の受光レベル信号と、前記対象領域と前記第2の周辺領域からの反射光を受光する第
2の受光領域で得られる第2の受光レベル信号とを取得し、前記第1の受光レベル信号と
前記第2の受光レベル信号を加算して検出信号を生成し、前記第1の受光レベル信号から
前記第2の受光レベル信号を減算して差信号を生成する信号生成回路と、
前記検出信号が第1の閾値を超えていれば微粒子検出信号を生成し、前記差信号が第2
の閾値を超えていれば計測補正信号を生成し、前記微粒子検出信号と前記計測補正信号と
の排他的論理和を論理演算し、前記排他的論理和が1となる場合に微粒子計測信号を生成
し、前記微粒子計測信号をカウントすることによって、前記対象領域に捕捉されている前
記検出対象物質を標識する微粒子の数と前記周辺領域に捕捉されている前記検出対象物質
を標識する微粒子の数との総数を計測する論理演算回路と、
を備える分析装置。
Measure the fine particles that label the substance to be detected that is captured in the target area, which is one of the concave and convex portions, and the peripheral region, which is the other of the concave and convex portions, which are alternately formed on the sample analysis disk. In the analyzer
The laser spot of the laser beam emitted from the laser light source is a first peripheral region which is a peripheral region on one side adjacent to the target region and the target region and a peripheral region on the other side adjacent to the target region. When the position including the second peripheral area is irradiated,
Receives the first light receiving level signal obtained in the first light receiving region that receives the reflected light from the target region and the first peripheral region, and the reflected light from the target region and the second peripheral region. The second light receiving level signal obtained in the second light receiving region is acquired, the first light receiving level signal and the second light receiving level signal are added to generate a detection signal, and the first light receiving level is generated. A signal generation circuit that generates a difference signal by subtracting the second light receiving level signal from the signal, and
If the detection signal exceeds the first threshold value, a fine particle detection signal is generated, and the difference signal is the second.
If it exceeds the threshold value of, a measurement correction signal is generated, an exclusive logical sum of the fine particle detection signal and the measurement correction signal is logically calculated, and if the exclusive logical sum is 1, a fine particle measurement signal is generated. Then, by counting the fine particle measurement signal, the number of fine particles that label the detection target substance captured in the target region and the number of fine particles that label the detection target substance captured in the peripheral region are obtained. A logical operation circuit that measures the total number of
An analyzer equipped with.
試料分析用ディスク上に交互に形成された凹部と凸部のうちの一方である対象領域と凹
部と凸部のうちの他方である周辺領域とに補足された検出対象物質を標識する微粒子を計
測する分析方法において、
レーザ光源から射出されたレーザ光のレーザスポットが前記対象領域と前記対象領域に
隣接する一方の側の周辺領域である第1の周辺領域と前記対象領域に隣接する他方の側の
周辺領域である第2の周辺領域とを含む位置に照射された際に、
前記対象領域と前記第1の周辺領域からの反射光を受光する第1の受光領域で得られる
第1の受光レベル信号と、前記対象領域と前記第2の周辺領域からの反射光を受光する第
2の受光領域で得られる第2の受光レベル信号とを取得し、前記第1の受光レベル信号と
前記第2の受光レベル信号を加算して検出信号を生成し、前記第1の受光レベル信号から
前記第2の受光レベル信号を減算して差信号を生成し、
前記検出信号が第1の閾値を超えていれば微粒子検出信号を生成し、前記差信号が第2
の閾値を超えていれば計測補正信号を生成し、前記微粒子検出信号と前記計測補正信号と
の排他的論理和を論理演算し、前記排他的論理和が1となる場合に微粒子計測信号を生成
し、前記微粒子計測信号をカウントすることによって、前記対象領域に捕捉されている前
記検出対象物質を標識する微粒子の数と前記周辺領域に捕捉されている前記検出対象物質
を標識する微粒子の数との総数を計測する
分析方法。
Measure the fine particles that label the substance to be detected that is captured in the target area, which is one of the concave and convex portions, and the peripheral region, which is the other of the concave and convex portions, which are alternately formed on the sample analysis disk. In the analysis method to be performed
The laser spot of the laser beam emitted from the laser light source is the first peripheral region which is the peripheral region on one side adjacent to the target region and the peripheral region on one side adjacent to the target region and the peripheral region on the other side adjacent to the target region. When the position including the second peripheral area is irradiated,
Receives the first light receiving level signal obtained in the first light receiving region that receives the reflected light from the target region and the first peripheral region, and the reflected light from the target region and the second peripheral region. The second light receiving level signal obtained in the second light receiving region is acquired, the first light receiving level signal and the second light receiving level signal are added to generate a detection signal, and the first light receiving level is generated. The second light receiving level signal is subtracted from the signal to generate a difference signal.
If the detection signal exceeds the first threshold value, a fine particle detection signal is generated, and the difference signal is the second.
If the threshold value of is exceeded, a measurement correction signal is generated, the exclusive logical sum of the fine particle detection signal and the measurement correction signal is logically calculated, and if the exclusive logical sum is 1, a fine particle measurement signal is generated. Then, by counting the fine particle measurement signal, the number of fine particles that label the detection target substance captured in the target region and the number of fine particles that label the detection target substance captured in the peripheral region are obtained. An analysis method that measures the total number of particles.
JP2021014953A 2021-02-02 2021-02-02 Analytical equipment and analytical method Active JP7056773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014953A JP7056773B2 (en) 2021-02-02 2021-02-02 Analytical equipment and analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014953A JP7056773B2 (en) 2021-02-02 2021-02-02 Analytical equipment and analytical method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017062074A Division JP6834676B2 (en) 2017-03-28 2017-03-28 Analytical device and analytical method

Publications (2)

Publication Number Publication Date
JP2021073464A true JP2021073464A (en) 2021-05-13
JP7056773B2 JP7056773B2 (en) 2022-04-19

Family

ID=75802406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014953A Active JP7056773B2 (en) 2021-02-02 2021-02-02 Analytical equipment and analytical method

Country Status (1)

Country Link
JP (1) JP7056773B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644572A (en) * 1992-02-19 1994-02-18 Sony Corp Optical recording medium, its recording and reproducing methods and tracking error signal generation method
JP2002367185A (en) * 2002-04-11 2002-12-20 Nec Corp Optical disk device
JP2005134379A (en) * 2003-10-07 2005-05-26 Matsushita Electric Ind Co Ltd Method for determining granular material
JP2005156538A (en) * 2003-10-30 2005-06-16 Matsushita Electric Ind Co Ltd Optical analysis device and particle counting method for it
JP2005523684A (en) * 2001-10-24 2005-08-11 バースタイン テクノロジーズ,インコーポレイティド Segment area detector for biodrive and related methods
US20060171288A1 (en) * 2005-01-04 2006-08-03 Children's Hospital Oakland Research Institute Optical disk assay device, system and method
JP2012237711A (en) * 2011-05-13 2012-12-06 Jvc Kenwood Corp Optical analysis device, and optical analysis method
JP2013040772A (en) * 2011-08-11 2013-02-28 Jvc Kenwood Corp Optical analysis apparatus and optical analysis method
JP2016038359A (en) * 2014-08-11 2016-03-22 シャープ株式会社 Fine particle detection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644572A (en) * 1992-02-19 1994-02-18 Sony Corp Optical recording medium, its recording and reproducing methods and tracking error signal generation method
JP2005523684A (en) * 2001-10-24 2005-08-11 バースタイン テクノロジーズ,インコーポレイティド Segment area detector for biodrive and related methods
JP2002367185A (en) * 2002-04-11 2002-12-20 Nec Corp Optical disk device
JP2005134379A (en) * 2003-10-07 2005-05-26 Matsushita Electric Ind Co Ltd Method for determining granular material
JP2005156538A (en) * 2003-10-30 2005-06-16 Matsushita Electric Ind Co Ltd Optical analysis device and particle counting method for it
US20060171288A1 (en) * 2005-01-04 2006-08-03 Children's Hospital Oakland Research Institute Optical disk assay device, system and method
JP2012237711A (en) * 2011-05-13 2012-12-06 Jvc Kenwood Corp Optical analysis device, and optical analysis method
JP2013040772A (en) * 2011-08-11 2013-02-28 Jvc Kenwood Corp Optical analysis apparatus and optical analysis method
JP2016038359A (en) * 2014-08-11 2016-03-22 シャープ株式会社 Fine particle detection device

Also Published As

Publication number Publication date
JP7056773B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
EP0881638B1 (en) Optical disc discriminating apparatus
JP4498082B2 (en) Optical analyzer and particle counting method thereof
US20080151722A1 (en) Optical disc device and method for discriminating different kinds of optical discs
US6956801B2 (en) Optical disc drive and optical disc discriminating method
JP7056773B2 (en) Analytical equipment and analytical method
KR100644564B1 (en) method for detecting track cross signal of optical disc recording/reproducing device and apparatus therefor
JP6834676B2 (en) Analytical device and analytical method
EP1460623B1 (en) Optical pickup apparatus
JP4513570B2 (en) Skew detection method, optical pickup, and optical disc apparatus
JP3691965B2 (en) Optical head and optical disk apparatus using the same
JP2887273B2 (en) Optical pickup device
JP2002074714A (en) Radial tilt detector
JP4206705B2 (en) Skew detection method, skew detection device, optical pickup, and optical disk device
JPH0338646Y2 (en)
JP4396707B2 (en) Optical disk device
US6347066B1 (en) Optical pickup and optical disk apparatus
US20100220576A1 (en) Optical pickup device and information recording/reproduction device
JP3871122B2 (en) Skew sensor, optical pickup, and optical disc apparatus
JP2011216164A (en) Optical pickup device
JP2004095180A (en) Method and device for generating tracking error signal
JP2006228390A (en) Optical recording disk device
JP2006120235A (en) Optical pickup and optical disk device
JP2006344299A (en) Optical disk device
JPS61250855A (en) Detector of optical information signal
JP2005141863A (en) Device and method for correcting tracking error signal, and optical disk device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7056773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150