JP2021072390A - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP2021072390A
JP2021072390A JP2019199012A JP2019199012A JP2021072390A JP 2021072390 A JP2021072390 A JP 2021072390A JP 2019199012 A JP2019199012 A JP 2019199012A JP 2019199012 A JP2019199012 A JP 2019199012A JP 2021072390 A JP2021072390 A JP 2021072390A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
base material
carrier base
element array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199012A
Other languages
Japanese (ja)
Other versions
JP7389331B2 (en
Inventor
三賀 大輔
Daisuke Sanga
大輔 三賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2019199012A priority Critical patent/JP7389331B2/en
Publication of JP2021072390A publication Critical patent/JP2021072390A/en
Application granted granted Critical
Publication of JP7389331B2 publication Critical patent/JP7389331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

To provide a method for manufacturing a light emitting device capable of suppressing occurrence of an unused light emitting element.SOLUTION: A method for manufacturing a light emitting device includes: the steps of: classifying a plurality of light emitting elements on a light-emitting-element mounting substrate into a plurality of n groups each consisting of at least one light emitting element array, and transferring a light emitting element array 10α included in each group onto carrier substrates 30A, 30B, 30C, and 30D having resin materials different among groups, thereby producing a plurality of n light-emitting-element mounted carrier substrates on which the light emitting element arrays included in the respective group are transferred; individualizing the plurality of n light-emitting-element mounted carrier substrates so as to contain the at least one light emitting element array, thereby producing each of a plurality of m light-emitting-element mounted carrier substrate units from each light-emitting-element mounted carrier substrate; and mounting the light emitting elements contained in the light emitting element array of the light-emitting-element mounted carrier substrate unit on a wiring substrate.SELECTED DRAWING: Figure 1B

Description

本発明の一実施形態は、発光デバイスの製造方法に関する。 One embodiment of the present invention relates to a method for manufacturing a light emitting device.

近年、発光素子として、マイクロサイズの寸法を有するマイクロLEDの需要が高まっている。特許文献1には、ウェハ上に行列状に配置されたマイクロLEDをウェハから相対的に大きな寸法(50インチ)を有する単一の実装基板へと複数回に分けて移し、マイクロLEDと実装基板との一体化物を画像表示装置として用いることが示されている。 In recent years, there has been an increasing demand for micro LEDs having micro size dimensions as light emitting elements. In Patent Document 1, micro LEDs arranged in a matrix on a wafer are transferred from the wafer to a single mounting substrate having a relatively large size (50 inches) in a plurality of times, and the micro LEDs and the mounting substrate are transferred. It has been shown that an integrated product with is used as an image display device.

特許第4491948号公報Japanese Patent No. 4491948

ここで、生産効率向上の観点からウェハ上に配置されたマイクロLEDを実装基板へと一括して移す場合が考えられる。この場合、実装基板上へと移されるマイクロLEDの平面領域がウェハ上に配置されたマイクロLEDの全平面領域よりも小さいと、ウェハ上に未使用のマイクロLED(発光素子)が残る可能性がある。 Here, from the viewpoint of improving production efficiency, it is conceivable that the micro LEDs arranged on the wafer are collectively transferred to the mounting substrate. In this case, if the plane area of the micro LED transferred onto the mounting substrate is smaller than the entire plane area of the micro LED arranged on the wafer, there is a possibility that unused micro LEDs (light emitting elements) may remain on the wafer. is there.

本発明の一実施形態は、未使用の発光素子が生じることを抑制可能な発光デバイスの製 造方法を提供することを目的とする。 One embodiment of the present invention aims to provide a method for manufacturing a light emitting device capable of suppressing the generation of an unused light emitting element.

上記目的を達成するために、本発明の一実施形態では、
複数の発光素子が搭載された発光素子搭載基材から、複数の発光素子のうちの1つ又は 2つ以上の発光素子をそれぞれ含む発光素子アレイごとに配線基材に搭載することを含む発光デバイスの製造方法であって、
前記発光素子搭載基材の前記複数の発光素子を、それぞれ少なくとも1つの発光素子アレイから構成される複数nグループに分類し、各グループに含まれる前記発光素子アレイをグループごとに異なる樹脂材料付きのキャリア基材に転写することにより、各グループに含まれる前記発光素子アレイがそれぞれ転写された複数n個の発光素子搭載キャリア基材を作製する工程と、
前記複数n個の発光素子搭載キャリア基材をそれぞれ前記少なくとも1つの発光素子アレイを含むように個片化して、各発光素子搭載キャリア基材からそれぞれ複数m個の発光素子搭載キャリア基材ユニットを作製する工程と、
前記発光素子搭載キャリア基材ユニットの前記発光素子アレイに含まれる前記発光素子を配線基材に搭載する工程と
を含む発光デバイスの製造方法が供される。
In order to achieve the above object, in one embodiment of the present invention,
A light emitting device including mounting on a wiring base material for each light emitting element array including one or two or more light emitting elements among a plurality of light emitting elements from a light emitting element mounting base material on which a plurality of light emitting elements are mounted. It is a manufacturing method of
The plurality of light emitting elements of the light emitting element mounting base material are classified into a plurality of n groups each composed of at least one light emitting element array, and the light emitting element arrays included in each group are provided with different resin materials for each group. A step of producing a plurality of n light-emitting element-mounted carrier base materials on which the light-emitting element arrays included in each group are transferred by transferring to a carrier base material, and
The plurality of n light-emitting element-mounted carrier base materials are individually separated so as to include the at least one light-emitting element array, and a plurality of m light-emitting element-mounted carrier base material units are formed from each light-emitting element-mounted carrier base material. The process of making and
A method for manufacturing a light emitting device including a step of mounting the light emitting element included in the light emitting element array of the light emitting element mounting carrier base material unit on a wiring base material is provided.

本発明の一実施形態に係る発光デバイスの製造方法によれば、未使用の発光素子が生じることを抑制可能である。 According to the method for manufacturing a light emitting device according to an embodiment of the present invention, it is possible to suppress the generation of an unused light emitting element.

発光素子搭載基材の準備工程を示す模式図である。It is a schematic diagram which shows the preparation process of the base material on which a light emitting element is mounted. 発光素子搭載キャリア基材の作製工程を示す模式平面図である。It is a schematic plan view which shows the manufacturing process of the carrier base material on which a light emitting element is mounted. 発光素子搭載キャリア基材ユニットの作製工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the carrier base material unit with a light emitting element. 配線基材および配線基材上に配置された発光素子アレイを有して成る、本発明の一実施形態に係る発光デバイスの完成工程を示す模式斜視図である。It is a schematic perspective view which shows the completion process of the light emitting device which concerns on one Embodiment of this invention, which comprises a wiring base material and a light emitting element array arranged on a wiring base material. 樹脂材料付きのキャリア基材上への発光素子搭載基材の位置づけ態様を示す模式断面図である。It is a schematic cross-sectional view which shows the positioning mode of the light emitting element mounting base material on the carrier base material with a resin material. 発光素子搭載基材の模式図である。It is a schematic diagram of the base material on which a light emitting element is mounted. 樹脂材料付きのキャリア基材の模式図である。It is a schematic diagram of the carrier base material with a resin material. 第1のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。It is a schematic plan view which shows the coating mode of the resin material on the 1st carrier base material. 第2のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。It is a schematic plan view which shows the coating mode of the resin material on the 2nd carrier base material. 第3のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。It is a schematic plan view which shows the coating mode of the resin material on the 3rd carrier base material. 第4のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。It is a schematic plan view which shows the coating mode of the resin material on the 4th carrier base material. 樹脂材料付きのキャリア基材と発光素子との貼合せ態様を示す模式断面図である。It is a schematic cross-sectional view which shows the bonding mode of the carrier base material with a resin material, and a light emitting element. 樹脂材料付きのキャリア基材と発光素子との貼合せ態様を示す模式平面図である。It is a schematic plan view which shows the bonding mode of the carrier base material with a resin material, and a light emitting element. 樹脂材料付きのキャリア基材上への発光素子転写態様を示す模式断面図である。It is a schematic cross-sectional view which shows the mode of transfer | transfer of a light emitting element onto a carrier base material with a resin material. 樹脂材料付きのキャリア基材上への発光素子転写実施後における発光素子搭載基材の模式図である。It is a schematic diagram of the base material on which the light emitting element is mounted after the transfer of the light emitting element onto the carrier base material with a resin material. 樹脂材料付きのキャリア基材上への発光素子転写実施後におけるキャリア基材の模式図である。It is a schematic diagram of the carrier base material after the light-emitting element transfer on the carrier base material with a resin material. 発光素子の電極面側のクリーニング工程を示す模式断面図である。It is a schematic cross-sectional view which shows the cleaning process of the electrode surface side of a light emitting element. 個片化工程完了時の態様を示す模式断面図である。It is a schematic cross-sectional view which shows the mode at the time of completion of an individualization process. 個片化工程実施中の態様を示す模式図である。It is a schematic diagram which shows the mode during the individualization process. 個片化工程完了時の態様を示す模式平面図である。It is a schematic plan view which shows the mode at the time of completion of an individualization process. 配線基材への発光素子搭載キャリア基材ユニットの搭載態様を示す模式断面図である。It is a schematic cross-sectional view which shows the mounting mode of the carrier base material unit which mounts a light emitting element on a wiring base material. 樹脂材料付きのキャリア基材の剥離態様を示す模式部分断面図である。It is a schematic partial cross-sectional view which shows the peeling mode of the carrier base material with a resin material. 配線基材上に所定の間隔をおいて複数搭載された発光素子アレイを示す模式平面図である。It is a schematic plan view which shows the light emitting element array mounted on the wiring base material at a predetermined space. 個片化された発光デバイスを示す模式斜視図である。It is a schematic perspective view which shows the light emitting device which was separated into pieces.

以下、図面に基づいて本発明の一実施形態について詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語を用いる。しかしながら、これらの用語の使用は図面を参照した発明の理解を容易にするためであって、これらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一または同等の部分を指す。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction or position will be used as necessary. However, the use of these terms is for facilitating the understanding of the invention with reference to the drawings, and the meaning of these terms does not limit the technical scope of the invention. Further, the parts having the same reference numerals appearing in a plurality of drawings refer to the same or equivalent parts.

更に、以下に示す実施形態は、本発明の技術的思想を具体化するための発光デバイスを例示するものであって、本発明を限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、図面が示す部材の大きさおよび位置関係等は、説明を明確にするため誇張している場合がある。 Furthermore, the embodiments shown below exemplify a light emitting device for embodying the technical idea of the present invention, and do not limit the present invention. In addition, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention to the specific description, but are exemplified. It was intended. In addition, the size and positional relationship of the members shown in the drawings may be exaggerated to clarify the explanation.

[発光デバイスの製造方法]
以下、図面を参照しながら、本発明の一実施形態に係る発光デバイスの製造方法について説明する。図1Aは、発光素子搭載基材の準備工程を示す模式図である。図1Bは、発光素子搭載キャリア基材の作製工程を示す模式平面図である。図1Cは、発光素子搭載キャリア基材ユニットの作製工程を示す模式図である。図1Dは、配線基材および配線基材上に配置された発光素子アレイを有して成る、本発明の一実施形態に係る発光デバイスの完成工程を示す模式斜視図である。
[Manufacturing method of light emitting device]
Hereinafter, a method for manufacturing a light emitting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a schematic view showing a preparation process of a base material on which a light emitting element is mounted. FIG. 1B is a schematic plan view showing a process of manufacturing a carrier base material on which a light emitting element is mounted. FIG. 1C is a schematic view showing a manufacturing process of a carrier base material unit on which a light emitting element is mounted. FIG. 1D is a schematic perspective view showing a completion process of a light emitting device according to an embodiment of the present invention, which comprises a wiring base material and a light emitting element array arranged on the wiring base material.

本発明の一実施形態に係る発光デバイスの製造方法は、複数の発光素子が搭載された発光素子搭載基材(図1A参照)から、最終的に、発光素子アレイごとに配線基材に搭載する(図1D参照)ことを前提とする。特に、一実施形態の発光デバイスの製造方法は、発光素子アレイごとに配線基材に搭載する前段階にて、主として下記の工程を含むことを特徴とする。なお、本明細書において「発光素子アレイ」とは1つ又は2つ以上の発光素子から構成されるものを指し、例えば平面視で行列状に密集して配置された10000個〜30000個の発光素子から構成されるものを指す。 In the method for manufacturing a light emitting device according to an embodiment of the present invention, a light emitting element mounting base material (see FIG. 1A) on which a plurality of light emitting elements are mounted is finally mounted on a wiring base material for each light emitting element array. (See FIG. 1D). In particular, the method for manufacturing a light emitting device of one embodiment is characterized in that it mainly includes the following steps before mounting each light emitting element array on a wiring base material. In the present specification, the "light emitting element array" refers to an array composed of one or two or more light emitting elements, for example, 10,000 to 30,000 light emitting elements arranged in a matrix in a plan view. Refers to those composed of elements.

(a)発光素子搭載キャリア基材を作製する工程
図1Aおよび図1Bに示すように、発光素子搭載キャリア基材を作製する工程では、発光素子搭載基材100の複数の発光素子1を、それぞれ少なくとも1つの発光素子アレイ10αから構成される複数nグループ(n≧2)に分類し、各グループに含まれる発光素子アレイ10αをグループごとに異なる樹脂材料付きのキャリア基材30に転写する。すなわち、発光素子アレイ10αをグループごとに複数n個(n≧2)のキャリア基材の各々に転写する。これにより、各グループに含まれる発光素子アレイ10αがそれぞれ転写された複数n個の発光素子搭載キャリア基材200を作製する。
(A) Step of Producing a Carrier Base Material Mounted with a Light Emitting Element As shown in FIGS. 1A and 1B, in a step of manufacturing a carrier base material mounted with a light emitting element, a plurality of light emitting elements 1 of the base material 100 mounted with a light emitting element are respectively. It is classified into a plurality of n groups (n ≧ 2) composed of at least one light emitting element array 10α, and the light emitting element array 10α included in each group is transferred to a carrier base material 30 with a different resin material for each group. That is, the light emitting element array 10α is transferred to each of a plurality of n (n ≧ 2) carrier substrates for each group. As a result, a plurality of n light-emitting element-mounted carrier base materials 200 to which the light-emitting element arrays 10α included in each group are transferred are produced.

具体的には、発光素子搭載基材100に配置された複数の発光素子1の全体領域10の形状と、各キャリア基材30への発光素子アレイ10αの転写領域をそれぞれ重ね合わせた際における転写全領域の形状とが略同一となるように、発光素子アレイ10を各キャリア基材30に転写する。 Specifically, transfer when the shape of the entire region 10 of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100 and the transfer region of the light emitting element array 10α to each carrier base material 30 are overlapped with each other. The light emitting element array 10 is transferred to each carrier base material 30 so that the shapes of all regions are substantially the same.

つまり、本工程では、“転写前”における発光素子搭載基材100に配置された複数の発光素子1の全体領域10の形状を基準として、各キャリア基材30への発光素子アレイ10αの転写方法を予め決定する。換言すれば、当該転写方法は、あくまでも発光素子搭載基材100に配置された発光素子1の全体領域10の形状に基づき予め決定される。 That is, in this step, a method of transferring the light emitting element array 10α to each carrier base material 30 based on the shape of the entire region 10 of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100 “before transfer”. To be determined in advance. In other words, the transfer method is determined in advance based on the shape of the entire region 10 of the light emitting element 1 arranged on the light emitting element mounting base material 100.

そのため、予め決定した各キャリア基材30への発光素子アレイ10αの転写方法に従えば、発光素子搭載基材100に配置された複数の発光素子1の略全てを複数n個のキャリア基材30上へと転写することが可能となる。後述するようにキャリア基材30を4個以上用いることで、未使用の発光素子1が生じることを確実に抑制できる。 Therefore, according to a predetermined transfer method of the light emitting element array 10α to each carrier base material 30, substantially all of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100 are a plurality of n carrier base materials 30. It becomes possible to transfer to the top. By using four or more carrier base materials 30 as described later, it is possible to reliably suppress the generation of an unused light emitting element 1.

なお、各キャリア基材30上への発光素子アレイ10αの転写に際しては、当該発光素子アレイ10αの転写形状、転写サイズ、および転写位置等を考慮する必要がある。 When transferring the light emitting element array 10α onto each carrier base material 30, it is necessary to consider the transfer shape, transfer size, transfer position, and the like of the light emitting element array 10α.

発光素子アレイ10αの転写形状および転写サイズについては、生産効率の観点から、最終的に得られる発光デバイスの構成要素である単一の発光素子アレイの平面形状およびサイズに対応させることが好ましい。又、発光素子アレイ10αの転写位置については、後刻の個片化工程の実施し易さの観点から、各キャリア基材30上にて複数の転写領域がそれぞれ離隔して配置されるように調整することが好ましい。 From the viewpoint of production efficiency, it is preferable that the transfer shape and transfer size of the light emitting element array 10α correspond to the planar shape and size of a single light emitting element array which is a component of the finally obtained light emitting device. Further, the transfer position of the light emitting element array 10α is adjusted so that a plurality of transfer regions are separated from each other on each carrier base material 30 from the viewpoint of easiness of carrying out the individualization step later. It is preferable to do so.

各転写領域の離隔配置については、各キャリア基材30への発光素子アレイ10αの転写と、各キャリア基材30への発光素子アレイ10αの転写を実施しない非転写とを交互に繰り返すことで実施し得る。 The separation arrangement of each transfer region is carried out by alternately repeating the transfer of the light emitting element array 10α to each carrier base material 30 and the non-transfer of the light emitting element array 10α to each carrier base material 30 without carrying out the transfer. Can be done.

発光素子アレイ10αの転写と非転写の交互実施の一例としては、例えば、行方向および列方向の少なくとも一方の方向に各転写領域を供する場合、当該少なくとも一方の方向に沿って所定の間隔をおいて発光素子アレイ10αの転写を行う。これにより、各キャリア基材30上にて複数の転写領域をそれぞれ離隔して位置づけることが可能となり、後刻の個片化工程を実施し易くすることが可能となる。 As an example of alternating transfer and non-transfer of the light emitting element array 10α, for example, when each transfer region is provided in at least one of the row direction and the column direction, a predetermined interval is provided along the at least one direction. Then, the light emitting element array 10α is transferred. As a result, it becomes possible to position a plurality of transfer regions separately on each carrier base material 30, and it becomes possible to facilitate the subsequent individualization step.

以下、(a)発光素子搭載キャリア基材を作製する工程について、より具体的に説明する。 Hereinafter, the step (a) of manufacturing the carrier base material on which the light emitting element is mounted will be described in more detail.

発光素子搭載キャリア基材を作製する工程は、以下のステップを含む。 The step of producing the carrier base material on which the light emitting element is mounted includes the following steps.

1)樹脂材料付きのキャリア基材上への発光素子搭載基材の位置づけ
図2Aは、樹脂材料付きのキャリア基材上への発光素子搭載基材の位置づけ態様を示す模式断面図である。図2Bは、発光素子搭載基材の模式図である。図2Cは、樹脂材料付きのキャリア基材の模式図である。
1) Positioning of the Light Emitting Element Mounted Base Material on the Carrier Base Material with the Resin Material FIG. 2A is a schematic cross-sectional view showing the positioning mode of the light emitting element mounting base material on the carrier base material with the resin material. FIG. 2B is a schematic view of a base material on which a light emitting element is mounted. FIG. 2C is a schematic view of a carrier base material with a resin material.

まず、図2Aに示すように、樹脂材料M付きのキャリア基材30上に、複数の発光素子1が基材20に搭載された発光素子搭載基材100を位置づける。 First, as shown in FIG. 2A, the light emitting element mounting base material 100 in which a plurality of light emitting elements 1 are mounted on the base material 20 is positioned on the carrier base material 30 with the resin material M.

図2Bに示すように、発光素子搭載基材100は、上述のように複数の発光素子1が基材20に搭載されたものである。具体的には、発光素子搭載基材100は、基材20(例えばサファイア基材)上に、行列状に密集して複数の発光素子1を形成することで得られる。特に限定されるものではないが、本実施形態では、発光素子搭載基材100には、500,000個〜1,000,000個の発光素子1が基材20上に行列状に密集して配置される。 As shown in FIG. 2B, the light emitting element mounting base material 100 has a plurality of light emitting elements 1 mounted on the base material 20 as described above. Specifically, the light emitting element-mounted base material 100 is obtained by forming a plurality of light emitting elements 1 on the base material 20 (for example, a sapphire base material) in a matrix. Although not particularly limited, in the present embodiment, 500,000 to 1,000,000 light emitting elements 1 are densely packed on the base material 20 in a matrix in the light emitting element mounting base material 100. Be placed.

上記発光素子1は、半導体積層体と、電極と、を備える。発光素子1は、発光面1a(主発光面ともいう)と、発光面1aに対して異なる方向(例えば垂直方向)に延在する側面1bと、発光面1aの反対側の面であって正負一対の電極1cが設けられた電極面1dとを備える。発光素子搭載基材100は、発光素子の電極面1dが基材20に対向するように複数の発光素子1が基材20に樹脂などの接合材を用いて搭載されている。 The light emitting element 1 includes a semiconductor laminate and electrodes. The light emitting element 1 is a surface opposite to the light emitting surface 1a (also referred to as the main light emitting surface), the side surface 1b extending in a direction different from the light emitting surface 1a (for example, the vertical direction), and the light emitting surface 1a. It includes an electrode surface 1d provided with a pair of electrodes 1c. In the light emitting element mounting base material 100, a plurality of light emitting elements 1 are mounted on the base material 20 by using a bonding material such as resin so that the electrode surface 1d of the light emitting element faces the base material 20.

発光素子1としては、任意の波長を有する光を発することが可能な半導体発光素子を選択することができる。例えば、発光素子1として、発光ダイオード等を選択することができる。一例として、発光素子1としては、青色光を発するものを用いることができる。これに限定されることなく、発光素子1としては、青色光以外の他の色の光を発するものを用いてよい。発光デバイスにおいて、所定の間隔をおいて各々配置された複数の発光素子1を用いる場合、同色の光を各々発するものを用いてもよいし、異なる色を発するものを用いてもよい。 As the light emitting element 1, a semiconductor light emitting device capable of emitting light having an arbitrary wavelength can be selected. For example, a light emitting diode or the like can be selected as the light emitting element 1. As an example, as the light emitting element 1, one that emits blue light can be used. The light emitting element 1 is not limited to this, and an element that emits light of a color other than blue light may be used. When a plurality of light emitting elements 1 arranged at predetermined intervals are used in the light emitting device, one that emits light of the same color or one that emits different colors may be used.

例えば、青色光を発することが可能な発光素子1の半導体積層体として、窒化物系半導体(InxAlyGa1-x-yN、0≦X、0≦Y、X+Y≦1)を用いることができる。この場合、窒化物系半導体発光素子は、例えば、サファイア基板およびサファイア基板に積層された窒化物系半導体積層構造を有する。窒化物系半導体積層構造は、発光層と、発光層をはさむように位置づけられたn型窒化物系半導体層およびp型窒化物系半導体層とを含む。n型窒化物系半導体層およびp型窒化物系半導体層に、電極1cであるn側電極およびp側電極がそれぞれ電気的に接続される。 For example, a semiconductor stacked body of the light emitting element 1 capable of emitting blue light, the use of the nitride semiconductor (In x Al y Ga 1- xy N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) it can. In this case, the nitride-based semiconductor light emitting device has, for example, a sapphire substrate and a nitride-based semiconductor laminated structure laminated on the sapphire substrate. The nitride-based semiconductor laminated structure includes a light-emitting layer, an n-type nitride-based semiconductor layer positioned so as to sandwich the light-emitting layer, and a p-type nitride-based semiconductor layer. The n-side electrode and the p-side electrode, which are electrodes 1c, are electrically connected to the n-type nitride-based semiconductor layer and the p-type nitride-based semiconductor layer, respectively.

発光素子1は、平面視にて任意の形状、例えば、正方形、矩形等の形状を有してよい。さらに、発光素子1の平面視形状は、三角形、六角形等の多角形等でもよい。発光素子1の平面視における大きさは、例えば、平面視にて5μm以上100μm以下、好ましくは10μm以上80μm以下の縦横寸法を有し得る。発光素子1の高さは、1μm以上50μm以下、好ましくは2μm〜20μmを有し得る。 The light emitting element 1 may have an arbitrary shape in a plan view, for example, a shape such as a square or a rectangle. Further, the plan view shape of the light emitting element 1 may be a polygon such as a triangle or a hexagon. The size of the light emitting element 1 in a plan view may have, for example, a vertical and horizontal dimension of 5 μm or more and 100 μm or less, preferably 10 μm or more and 80 μm or less in a plan view. The height of the light emitting element 1 may be 1 μm or more and 50 μm or less, preferably 2 μm to 20 μm.

又、図2Cに示すように、樹脂材料M付きのキャリア基材30は、キャリア基材30の上面に樹脂材料Mを塗布することで得られる。樹脂材料Mは、キャリア基材30と、キャリア基材30上に後刻に転写する発光素子アレイとを接合可能なものであれば特に限定されるものではない。樹脂としては、シリコーン系樹脂材、エポキシ系樹脂材、およびアクリル系樹脂材から成る群から選択される少なくとも1種の樹脂材が挙げられる。具体的には、ポリジメチルシロキサン(PDMS)を用いることができる。ポリジメチルシロキサンのような低粘度の材料を用いれば、樹脂材料の塗布領域を狙った位置に形成することができる。又、キャリア基材30としては、ガラス基材等を用いることができる。 Further, as shown in FIG. 2C, the carrier base material 30 with the resin material M can be obtained by applying the resin material M on the upper surface of the carrier base material 30. The resin material M is not particularly limited as long as it can bond the carrier base material 30 and the light emitting element array to be transferred onto the carrier base material 30 later. Examples of the resin include at least one resin material selected from the group consisting of a silicone-based resin material, an epoxy-based resin material, and an acrylic-based resin material. Specifically, polydimethylsiloxane (PDMS) can be used. If a low-viscosity material such as polydimethylsiloxane is used, the coating region of the resin material can be formed at a target position. Further, as the carrier base material 30, a glass base material or the like can be used.

当該塗布態様としては、「キャリア基材30の上面に所定の間隔をおいて樹脂材料Mを塗布する」塗布態様1と、「キャリア基材30の上面に樹脂材料Mを連続して塗布する」塗布態様2とに分けることができる。塗布態様1は、キャリア基材30上面における複数の発光素子1の全体領域10に対応する領域に対して、樹脂材料Mを塗布する領域と塗布しない領域が形成されるように樹脂材料Mの塗布を行う。一方、塗布態様2は、キャリア基材30上面における複数の発光素子1の全体領域10に対応する領域全域に樹脂材料Mの塗布を行う。なお、塗布態様2では、キャリア基材30上面全域に樹脂材料Mを塗布しても良い。 The coating modes include "coating the resin material M on the upper surface of the carrier base material 30 at predetermined intervals" and "continuously applying the resin material M on the upper surface of the carrier base material 30". It can be divided into application mode 2. In the coating mode 1, the resin material M is applied so that a region to which the resin material M is applied and a region not to be applied are formed on the region corresponding to the entire region 10 of the plurality of light emitting elements 1 on the upper surface of the carrier base material 30. I do. On the other hand, in the coating mode 2, the resin material M is coated on the entire region corresponding to the entire region 10 of the plurality of light emitting elements 1 on the upper surface of the carrier base material 30. In the coating mode 2, the resin material M may be coated on the entire upper surface of the carrier base material 30.

図3Aは、第1のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。図3Bは、第2のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。図3Cは、第3のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。図3Dは、第4のキャリア基材上への樹脂材料の塗布態様を示す模式平面図である。 FIG. 3A is a schematic plan view showing a mode in which the resin material is applied onto the first carrier base material. FIG. 3B is a schematic plan view showing a mode in which the resin material is applied onto the second carrier base material. FIG. 3C is a schematic plan view showing a mode in which the resin material is applied onto the third carrier base material. FIG. 3D is a schematic plan view showing a mode in which the resin material is applied onto the fourth carrier base material.

以下、主として塗布態様1について説明する。塗布態様1は、上記の発光素子アレイ10αの転写前に、キャリア基材30の上面に所定の間隔をおいて樹脂材料Mを塗布する態様である(図2C参照)。つまり、塗布態様1では、キャリア基材30の上面に断続的かつ非連続的に樹脂材料Mからなる塗布領域を形成する。 Hereinafter, the coating mode 1 will be mainly described. The coating mode 1 is a mode in which the resin material M is coated on the upper surface of the carrier base material 30 at predetermined intervals before the transfer of the light emitting element array 10α (see FIG. 2C). That is, in the coating mode 1, a coating region made of the resin material M is intermittently and discontinuously formed on the upper surface of the carrier base material 30.

具体的には、発光素子搭載基材100に配置された複数の発光素子1の全体領域10の形状に基づいて、複数のキャリア基材30に対する樹脂材料Mの塗布位置を決定し、決定した塗布位置に従い各キャリア基材30に所定の間隔をおいて樹脂材料Mからなる塗布領域を形成する。 Specifically, the coating position of the resin material M on the plurality of carrier base materials 30 is determined based on the shape of the entire region 10 of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100, and the determined coating is performed. A coating region made of the resin material M is formed on each carrier base material 30 at predetermined intervals according to the position.

より具体的には、発光素子搭載基材100に配置された複数の発光素子1の全体領域10の形状と、各キャリア基材30への樹脂材料Mの塗布領域をそれぞれ重ね合わせた際における塗布全領域の形状とが略同一となるように、各キャリア基材30の上面に所定の間隔をおいて樹脂材料Mからなる塗布領域を形成する。 More specifically, the coating when the shape of the entire region 10 of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100 and the coating region of the resin material M on each carrier base material 30 are overlapped with each other. A coating region made of the resin material M is formed on the upper surface of each carrier base material 30 at predetermined intervals so that the shapes of all regions are substantially the same.

つまり、“転写前”における発光素子搭載基材100に配置された複数の発光素子1の全体領域10の形状を基準として、各キャリア基材30の上面への樹脂材料の塗布態様を予め決定する。換言すれば、当該塗布態様は、あくまでも発光素子搭載基材100に配置された発光素子1の全体領域10の形状に基づき予め決定される。 That is, the mode of applying the resin material to the upper surface of each carrier base material 30 is determined in advance based on the shape of the entire region 10 of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100 “before transfer”. .. In other words, the coating mode is determined in advance based on the shape of the entire region 10 of the light emitting element 1 arranged on the light emitting element mounting base material 100.

又、各塗布領域の形状およびサイズについては、最終的に得られる発光デバイスの構成要素の1つである発光素子アレイの平面形状および平面サイズに対応させることが好ましい。 Further, it is preferable that the shape and size of each coating region correspond to the planar shape and planar size of the light emitting element array, which is one of the components of the finally obtained light emitting device.

一例として、最終的に得られる発光デバイスの構成要素である単一の発光素子アレイの平面形状が矩形形状である場合、これに対応して樹脂材料Mからなる塗布領域の平面形状も矩形形状にすることが好ましい。これに限定されることなく、塗布領域の平面形状は正方形等であってよい。更に、樹脂材料Mからなる塗布領域のサイズを、最終的に得られる発光デバイスの構成要素である単一の発光素子アレイの平面サイズに対応させることが好ましい。又、後刻に同一形状の発光素子アレイを効率的に生産する観点から、各キャリア基材30の上面に所定の間隔をおいて形成する各塗布領域の形状は略同一であることが好ましい。 As an example, when the planar shape of a single light emitting element array, which is a component of the finally obtained light emitting device, is rectangular, the planar shape of the coating region made of the resin material M is also rectangular. It is preferable to do so. Without being limited to this, the planar shape of the coating region may be a square or the like. Further, it is preferable that the size of the coating region made of the resin material M corresponds to the plane size of a single light emitting element array which is a component of the finally obtained light emitting device. Further, from the viewpoint of efficiently producing a light emitting element array having the same shape later, it is preferable that the shapes of the coating regions formed on the upper surface of each carrier base material 30 at predetermined intervals are substantially the same.

樹脂材料の塗布領域のサイズが、発光素子アレイのサイズと同等であるのが好ましい。樹脂材料の塗布領域のサイズが、発光素子アレイのサイズより大きければ、転写対象ではない発光素子にも樹脂が接するため、発光素子の表面に樹脂が残存してしまい、後の工程に影響を及ぼす恐れがあるが、樹脂材料の塗布領域のサイズが、発光素子アレイのサイズと同等であれば、前述した恐れは生じない。 It is preferable that the size of the coating area of the resin material is equal to the size of the light emitting element array. If the size of the coating area of the resin material is larger than the size of the light emitting element array, the resin also comes into contact with the light emitting element that is not the transfer target, so that the resin remains on the surface of the light emitting element, which affects the subsequent process. However, if the size of the coating area of the resin material is the same as the size of the light emitting element array, the above-mentioned fear does not occur.

特に限定されるものではないが、塗布領域のサイズについてはその平面形状が矩形形状又は正方形である場合、塗布領域の一辺は1mm〜40mmであってよく、好ましくは2mm〜35mmであり、更に好ましくは3mm〜30mmであり、例えば25mmである。又、特に限定されるものではないが、塗布領域の厚さは5μm〜500μmであってよく、好ましくは10μm〜400μm、更に好ましくは15μm〜300μmである。 Although not particularly limited, when the plane shape of the coating area is rectangular or square, one side of the coating area may be 1 mm to 40 mm, preferably 2 mm to 35 mm, more preferably 2 mm to 35 mm. Is 3 mm to 30 mm, for example 25 mm. Further, although not particularly limited, the thickness of the coating region may be 5 μm to 500 μm, preferably 10 μm to 400 μm, and more preferably 15 μm to 300 μm.

樹脂材料の厚みが薄すぎると、発光素子アレイをキャリア基材30に配置する際に、発光素子1に衝撃が加わり、発光素子がダメージを受ける恐れがある。また、樹脂材料の厚みが厚すぎると、発光素子アレイをキャリア基材30に配置する際、平面方向にズレやすくなるため、発光素子アレイの実装精度が低下する恐れがある。 If the thickness of the resin material is too thin, an impact may be applied to the light emitting element 1 when the light emitting element array is arranged on the carrier base material 30, and the light emitting element may be damaged. Further, if the thickness of the resin material is too thick, when the light emitting element array is arranged on the carrier base material 30, the light emitting element array is likely to be displaced in the plane direction, so that the mounting accuracy of the light emitting element array may be lowered.

各塗布領域の位置については、後刻の個片化工程の実施し易さの観点から、各キャリア基材30上にて複数の塗布領域がそれぞれ離隔して形成されるように調整決定されることが好ましい。 The position of each coating region shall be adjusted and determined so that a plurality of coating regions are formed separately on each carrier base material 30 from the viewpoint of ease of carrying out the individualization step later. Is preferable.

各塗布領域の離隔配置については、各キャリア基材30の上面への樹脂材料Mの塗布と、各キャリア基材30の上面への樹脂材料Mの塗布を実施しない未塗布とを交互に繰り返すことで実施し得る。 Regarding the separation arrangement of each coating region, the coating of the resin material M on the upper surface of each carrier base material 30 and the non-coating in which the resin material M is not applied to the upper surface of each carrier base material 30 are alternately repeated. Can be carried out at.

材料Mの塗布と未塗布の交互実施の一例としては、例えば、行方向および列方向の少なくとも一方の方向に各塗布領域を形成する場合、当該少なくとも一方の方向に沿って所定の間隔をおいて樹脂材料Mの塗布を行う。これにより、各キャリア基材30の上面に複数の塗布領域をそれぞれ離隔して形成することが可能となる。 As an example of alternating application and non-coating of the material M, for example, when each coating region is formed in at least one of the row direction and the column direction, a predetermined interval is provided along the at least one direction. The resin material M is applied. This makes it possible to form a plurality of coating regions on the upper surface of each carrier base material 30 at a distance from each other.

以上の事からも、塗布態様1では、既述の複数n個のキャリア基材30の各々に転写する発光素子アレイ10αの転写条件に対応する条件で、樹脂材料Mからなる塗布領域を形成する。すなわち、塗布態様1では、各キャリア基材30上に後刻に転写する発光素子アレイの転写形状と略同一形状を有し、転写サイズと略同一サイズを有し、および転写位置と略同一箇所に、樹脂材料Mからなる塗布領域を形成する。 From the above, in the coating mode 1, the coating region made of the resin material M is formed under the conditions corresponding to the transfer conditions of the light emitting element array 10α to be transferred to each of the plurality of n carrier base materials 30 described above. .. That is, in the coating mode 1, it has substantially the same shape as the transfer shape of the light emitting element array to be transferred later on each carrier base material 30, has substantially the same size as the transfer size, and is substantially the same as the transfer position. , A coating region made of the resin material M is formed.

一例として、複数の発光素子1の全体領域10の平面形状が、矩形部分の各コーナー部分が取り除かれた形状を有する場合を例に採る(図2B参照)。 As an example, a case where the planar shape of the entire region 10 of the plurality of light emitting elements 1 has a shape in which each corner portion of the rectangular portion is removed is taken as an example (see FIG. 2B).

この場合、複数の発光素子1の全体領域10の形状に基づき、必要なキャリア基材30の枚数を決定する。具体的には、複数の発光素子1の全体領域10の形状と各キャリア基材30への樹脂材料Mの塗布領域をそれぞれ重ね合わせた際における塗布全領域の形状とが略同一となり得るために必要なキャリア基材30の枚数を判断する。 In this case, the required number of carrier base materials 30 is determined based on the shape of the entire region 10 of the plurality of light emitting elements 1. Specifically, the shape of the entire region 10 of the plurality of light emitting elements 1 and the shape of the entire coated region when the coating regions of the resin material M on each carrier base material 30 are overlapped with each other can be substantially the same. The number of required carrier base materials 30 is determined.

なお、かかる判断に際しては、各キャリア基材30上に塗布する塗布領域を、後刻の個片化工程の実施し易さ等をふまえ所定の間隔をおいて形成すること、および発光素子アレイの平面形状と略同一平面形状とすることを考慮する。 In making such a determination, the coating regions to be coated on each carrier base material 30 are formed at predetermined intervals in consideration of the ease of carrying out the individualization step later, and the plane of the light emitting element array. Consider making the shape substantially the same plane as the shape.

かかる判断の結果、図2Bに示す例の場合、図3A〜3Dに示す4枚のキャリア基材30A〜30Dを用いれば、複数の発光素子1の全体領域10の形状と4枚のキャリア基材30A〜30Dへの樹脂材料Mの塗布領域をそれぞれ重ね合わせた際における塗布全領域の形状とが略同一となり得ることが把握できる。 As a result of this determination, in the case of the example shown in FIG. 2B, if the four carrier base materials 30A to 30D shown in FIGS. 3A to 3D are used, the shape of the entire region 10 of the plurality of light emitting elements 1 and the four carrier base materials are used. It can be understood that the shapes of the entire coated regions when the coated regions of the resin material M on 30A to 30D are overlapped with each other can be substantially the same.

かかる内容をふまえ、図3Aに示すように、第1のキャリア基材30A上に、行方向および列方向に沿って所定の間隔をおいて樹脂材料Mの塗布領域を複数形成する。例えば、行方向および列方向に沿って、最終的に得られる発光デバイスの構成要素である発光素子アレイの略幅分間隔をあけて、複数の塗布領域を形成する。ここでいう「所定の間隔」とは、例えば、発光素子アレイのサイズ分の間隔である。発光素子アレイのサイズ分の間隔である場合、樹脂材料は、列方向に3.2mm、行方向に12.8mmの間隔をおいて複数形成することができる。 Based on such contents, as shown in FIG. 3A, a plurality of coating regions of the resin material M are formed on the first carrier base material 30A at predetermined intervals along the row direction and the column direction. For example, a plurality of coating regions are formed along the row direction and the column direction at intervals of approximately the width of the light emitting element array which is a component of the finally obtained light emitting device. The "predetermined interval" here is, for example, an interval corresponding to the size of the light emitting element array. When the spacing is equal to the size of the light emitting element array, a plurality of resin materials can be formed at a spacing of 3.2 mm in the column direction and 12.8 mm in the row direction.

図3Bに示すように、第1のキャリア基材30Aへの樹脂材料Mの塗布領域(図3A参照)の位置を基準として、塗布領域の位置が列方向に沿って発光素子アレイの略幅分ずれるように、第2のキャリア基材30B上に樹脂材料Mからなる塗布領域を形成する。 As shown in FIG. 3B, the position of the coating region is approximately the width of the light emitting element array along the column direction with reference to the position of the coating region (see FIG. 3A) of the resin material M on the first carrier base material 30A. A coating region made of the resin material M is formed on the second carrier base material 30B so as to be displaced.

図3Cに示すように、第1のキャリア基材30Aへの樹脂材料Mの塗布領域(図3A参照)の位置を基準として、塗布領域の位置が行方向に沿って発光素子アレイの略幅分ずれるように、第3のキャリア基材30C上に樹脂材料Mからなる塗布領域を形成する。 As shown in FIG. 3C, the position of the coating region is approximately the width of the light emitting element array along the row direction with reference to the position of the coating region (see FIG. 3A) of the resin material M on the first carrier base material 30A. A coating region made of the resin material M is formed on the third carrier base material 30C so as to be displaced.

最後に、図3Dに示すように、第1のキャリア基材30Aへの樹脂材料Mの塗布領域(図3A参照)の位置を基準として、塗布領域の位置が行方向および列方向に沿って発光素子アレイの略幅分ずれるように、第4のキャリア基材30D上に樹脂材料Mからなる塗布領域を形成する。なお、当該第4のキャリア基材30D上における塗布領域の形成パターンについては、第3のキャリア基材30C上における塗布領域の位置を基準として、列方向に沿って発光素子アレイの略幅分更にずれるように形成する。 Finally, as shown in FIG. 3D, the position of the coating region emits light along the row direction and the column direction with reference to the position of the coating region (see FIG. 3A) of the resin material M on the first carrier base material 30A. A coating region made of the resin material M is formed on the fourth carrier base material 30D so as to be displaced by approximately the width of the element array. Regarding the formation pattern of the coating region on the fourth carrier base material 30D, the position of the coating region on the third carrier base material 30C is used as a reference, and the width of the light emitting element array is further along the column direction. Form so as to shift.

なお、上述のとおり、塗布態様1に限定されることなく、「キャリア基材30の上面に樹脂材料Mを連続して塗布する」塗布態様2を適用してもよい。 As described above, the coating mode 2 is not limited to the coating mode 1, and the coating mode 2 in which the resin material M is continuously coated on the upper surface of the carrier base material 30 may be applied.

2)樹脂材料付きのキャリア基材と発光素子との貼合せ
図4Aは、樹脂材料付きのキャリア基材と発光素子との貼合せ態様を示す模式断面図である。図4Bは、樹脂材料付きのキャリア基材と発光素子との貼合せ態様を示す模式平面図である。なお、図4Bでは、発光素子1の位置を判別しやすくするために基材20は省略している。
2) Bonding of Carrier Base Material with Resin Material and Light Emitting Element FIG. 4A is a schematic cross-sectional view showing a bonding mode of the carrier base material with a resin material and the light emitting element. FIG. 4B is a schematic plan view showing a bonding mode between the carrier base material with the resin material and the light emitting element. In FIG. 4B, the base material 20 is omitted in order to make it easier to determine the position of the light emitting element 1.

図4Aおよび図4Bに示すように、樹脂材料M付きのキャリア基材30と発光素子1との貼合せを行う。 As shown in FIGS. 4A and 4B, the carrier base material 30 with the resin material M and the light emitting element 1 are bonded together.

具体的には、発光素子アレイを構成する発光素子1の発光面1aと各キャリア基材30上の樹脂材料Mとが接するように、キャリア基材30上に発光素子搭載基材100を位置づける。なお、特に限定されるものではないが、一例として、基材20(サファイア基材等)の平面形状および平面サイズと、キャリア基材30の平面形状および平面サイズとは略同一であってよい。 Specifically, the light emitting element mounting base material 100 is positioned on the carrier base material 30 so that the light emitting surface 1a of the light emitting element 1 constituting the light emitting element array and the resin material M on each carrier base material 30 are in contact with each other. Although not particularly limited, as an example, the plane shape and plane size of the base material 20 (sapphire base material, etc.) and the plane shape and plane size of the carrier base material 30 may be substantially the same.

発光素子アレイを構成する発光素子1の発光面1aと直接対向する樹脂材料Mの塗布態様としては、図4Aおよび図4Bに示すように上記の塗布態様1(キャリア基材30の上面に所定の間隔をおいて樹脂材料Mを塗布する態様)を用いることができる。なお、これに限定されることなく、塗布態様2を用いてもよい。 As a coating mode of the resin material M directly facing the light emitting surface 1a of the light emitting element 1 constituting the light emitting element array, as shown in FIGS. 4A and 4B, the above coating mode 1 (predetermined on the upper surface of the carrier base material 30). A mode in which the resin material M is applied at intervals) can be used. The application mode 2 may be used without being limited to this.

特に、塗布態様2と比べ、塗布態様1では、塗布領域の形成位置、形状およびサイズを予め決定の上、所定の間隔をおいてキャリア基材30上に樹脂材料Mを塗布して塗布領域を形成する。そのため、後刻に転写する発光素子アレイの構成要素である発光素子1の発光面1aとキャリア基材上の樹脂材料Mとが接するように、キャリア基材30上における発光素子搭載基材100の位置合わせをすることが好ましい。 In particular, as compared with the coating mode 2, in the coating mode 1, the formation position, shape and size of the coating region are determined in advance, and the resin material M is applied onto the carrier base material 30 at predetermined intervals to form the coating region. Form. Therefore, the position of the light emitting element mounting base material 100 on the carrier base material 30 so that the light emitting surface 1a of the light emitting element 1 which is a component of the light emitting element array to be transferred later and the resin material M on the carrier base material are in contact with each other. It is preferable to match.

3)発光素子アレイの転写
図5は、樹脂材料付きのキャリア基材上への発光素子転写態様を示す模式断面図である。図6Aは、樹脂材料付きのキャリア基材上への発光素子転写実施後における発光素子搭載基材の模式図である。図6Bは、樹脂材料付きのキャリア基材上への発光素子転写実施後におけるキャリア基材の模式図である。
3) Transfer of the light emitting element array FIG. 5 is a schematic cross-sectional view showing a mode of transferring the light emitting element onto a carrier base material with a resin material. FIG. 6A is a schematic view of the light emitting element mounting base material after the light emitting element is transferred onto the carrier base material with the resin material. FIG. 6B is a schematic view of the carrier base material after the transfer of the light emitting element onto the carrier base material with the resin material.

次に、発光素子アレイの転写を行う。すなわち、発光素子の転写を行う。予め決定した発光素子アレイの転写位置、転写形状、転写サイズに関する情報に従い、各キャリア基材30の上面の所定箇所に当該発光素子アレイを転写する。 Next, the light emitting element array is transferred. That is, the light emitting element is transferred. The light emitting element array is transferred to a predetermined position on the upper surface of each carrier base material 30 according to the information regarding the transfer position, transfer shape, and transfer size of the light emitting element array determined in advance.

本実施形態では、“転写前”における発光素子搭載基材100に配置された複数の発光素子1の全体領域10の形状を基準として、発光素子搭載基材100の複数の発光素子1を、それぞれ少なくとも1つの発光素子アレイ10αから構成される複数nグループに分類し、各グループに含まれる発光素子アレイ10αをグループごとに異なる樹脂材料付きのキャリア基材30に転写する。 In the present embodiment, each of the plurality of light emitting elements 1 of the light emitting element mounting base material 100 is based on the shape of the entire region 10 of the plurality of light emitting element 1 arranged on the light emitting element mounting base material 100 “before transfer”. It is classified into a plurality of n groups composed of at least one light emitting element array 10α, and the light emitting element array 10α included in each group is transferred to a carrier base material 30 with a different resin material for each group.

一例として、複数の発光素子1の全体領域10の平面形状が、矩形部分の各コーナー部分が取り除かれた形状を有する場合を例に採る(図2B参照)。この場合、上記のとおり、4枚のキャリア基材30を用いれば、複数の発光素子1の全体領域10の形状と4枚のキャリア基材30への樹脂材料Mの塗布領域をそれぞれ重ね合わせた際における塗布全領域の形状とが略同一となり得る。かかる内容を前提として、各キャリア基材30における、発光素子アレイ10αの転写位置、転写形状、および転写サイズを予め決定する。 As an example, a case where the planar shape of the entire region 10 of the plurality of light emitting elements 1 has a shape in which each corner portion of the rectangular portion is removed is taken as an example (see FIG. 2B). In this case, as described above, if the four carrier base materials 30 are used, the shapes of the entire region 10 of the plurality of light emitting elements 1 and the coating regions of the resin material M on the four carrier base materials 30 are overlapped with each other. The shape of the entire coated area can be substantially the same. On the premise of such contents, the transfer position, transfer shape, and transfer size of the light emitting element array 10α in each carrier base material 30 are determined in advance.

そして、図1B、図5、図6A、および図6Bに示すように、予め決定した発光素子アレイ10αの転写位置、転写形状、転写サイズに関する情報に従い、各キャリア基材30の上面の所定箇所に当該発光素子アレイを転写する。 Then, as shown in FIGS. 1B, 5, 6A, and 6B, in accordance with predetermined information on the transfer position, transfer shape, and transfer size of the light emitting element array 10α, the carriers are placed at predetermined positions on the upper surface of each carrier base material 30. The light emitting element array is transferred.

具体的には、第1のキャリア基材30A上に、行方向および列方向に沿って所定の間隔をおいて発光素子アレイを複数転写する。例えば、行方向および列方向に沿って、最終的に得られる発光デバイスの構成要素である発光素子アレイの略幅分間隔をあけて、複数の発光素子アレイを転写する。なお、図5、図6A、および図6Bに示す態様は、一例として第1のキャリア基材上に所定の間隔をおいて発光素子アレイを複数転写する態様である。 Specifically, a plurality of light emitting element arrays are transferred onto the first carrier base material 30A at predetermined intervals along the row direction and the column direction. For example, a plurality of light emitting element arrays are transferred along the row direction and the column direction at intervals of approximately the width of the light emitting element array which is a component of the finally obtained light emitting device. The embodiment shown in FIGS. 5, 6A, and 6B is, for example, an embodiment in which a plurality of light emitting element arrays are transferred onto the first carrier substrate at predetermined intervals.

同様に、第1のキャリア基材30Aへの発光素子アレイ10αの転写領域の位置を基準として、転写領域の位置が列方向に沿って発光素子アレイの略幅分ずれるように、第2のキャリア基材30B上に所定の間隔をおいて発光素子アレイ10αを複数転写する(図1B参照)。 Similarly, with reference to the position of the transfer region of the light emitting element array 10α on the first carrier base material 30A, the position of the transfer region is shifted along the column direction by approximately the width of the light emitting element array. A plurality of light emitting element arrays 10α are transferred onto the base material 30B at predetermined intervals (see FIG. 1B).

同様に、第1のキャリア基材30Aへの発光素子アレイ10αの転写領域の位置を基準として、転写領域の位置が行方向に沿って発光素子アレイの略幅分ずれるように、第3のキャリア基材30C上に所定の間隔をおいて発光素子アレイ10αを複数転写する(図1B参照)。 Similarly, with reference to the position of the transfer region of the light emitting element array 10α on the first carrier base material 30A, the position of the transfer region is shifted along the row direction by approximately the width of the light emitting element array. A plurality of light emitting element arrays 10α are transferred onto the base material 30C at predetermined intervals (see FIG. 1B).

最後に、第1のキャリア基材30Aへの発光素子アレイ10αの転写領域の位置を基準として、転写領域の位置が行方向および列方向に沿って発光素子アレイの略幅分ずれるように、第4のキャリア基材30D上に発光素子アレイ10αの転写領域を形成する。なお、当該第4のキャリア基材30D上における転写領域の形成パターンについては、第3のキャリア基材30C上における転写領域の位置を基準として、列方向に沿って発光素子アレイの略幅分更にずれるように形成する。 Finally, with reference to the position of the transfer region of the light emitting element array 10α on the first carrier base material 30A, the position of the transfer region is shifted along the row direction and the column direction by approximately the width of the light emitting element array. A transfer region of the light emitting device array 10α is formed on the carrier base material 30D of No. 4. Regarding the formation pattern of the transfer region on the fourth carrier base material 30D, the position of the transfer region on the third carrier base material 30C is used as a reference, and the width of the light emitting element array is further along the column direction. Form so as to shift.

これにより、複数の発光素子1の全体領域10の平面形状が図2Bに示す形状である場合を例にとれば、上記の4つのキャリア基材30の各々への発光素子アレイ10αの転写により、4つの発光素子搭載キャリア基材200(200A〜200D)を形成することができる。 As a result, for example, in the case where the planar shape of the entire region 10 of the plurality of light emitting elements 1 is the shape shown in FIG. 2B, the transfer of the light emitting element array 10α to each of the above four carrier base materials 30 results in the transfer of the light emitting element array 10α. It is possible to form the carrier base material 200 (200A to 200D) on which four light emitting elements are mounted.

その結果として、予め決定した各キャリア基材30への発光素子アレイ10αの転写方法に従えば、発光素子搭載基材100に配置された複数の発光素子1の略全てを4枚のキャリア基材30上へと転写することが可能となる。従って、未使用の発光素子1が生じることを抑制可能となる。 As a result, according to a predetermined transfer method of the light emitting element array 10α to each carrier base material 30, substantially all of the plurality of light emitting elements 1 arranged on the light emitting element mounting base material 100 are four carrier base materials. It is possible to transfer up to 30. Therefore, it is possible to suppress the generation of an unused light emitting element 1.

転写方法としては、公知のものが挙げられる。例えば、転写対象箇所に紫外光又はレーザー光を照射することで発光素子を転写先のキャリア基材30に移すことができる。 Examples of the transfer method include known ones. For example, the light emitting element can be transferred to the carrier base material 30 of the transfer destination by irradiating the transfer target portion with ultraviolet light or laser light.

(b)発光素子搭載キャリア基材ユニットを作製する工程
図7は、発光素子の電極面側のクリーニング工程を示す模式断面図である。図8Aは、個片化工程完了時の態様を示す模式断面図である。図8Bは、個片化工程実施中の態様を示す模式図である。図8Cは、個片化工程完了時の態様を示す模式平面図である。
(B) Step of Fabricating Carrier Base Material Unit Mounted with Light-emitting Element FIG. 7 is a schematic cross-sectional view showing a cleaning process of the electrode surface side of the light-emitting element. FIG. 8A is a schematic cross-sectional view showing an aspect at the time of completion of the individualization step. FIG. 8B is a schematic view showing an aspect in which the individualization step is being carried out. FIG. 8C is a schematic plan view showing an aspect when the individualization step is completed.

上記のとおり、複数の発光素子1の全体領域10の平面形状が図2Bに示す形状である場合を例にとれば、(a)発光素子搭載キャリア基材を作製する工程を経ることで、4つの発光素子搭載キャリア基材200(200A〜200D)を形成することができる。 As described above, for example, in the case where the planar shape of the entire region 10 of the plurality of light emitting elements 1 is the shape shown in FIG. 2B, by going through the steps of (a) producing the carrier base material on which the light emitting element is mounted, 4 It is possible to form the carrier base material 200 (200A to 200D) on which one light emitting element is mounted.

得られた4つの発光素子搭載キャリア基材200の各々は、図8Bに示すように、キャリア基材30およびキャリア基材30上に所定の間隔をおいて配置された複数の発光素子アレイ10αを有して成る。かかる状態で、図7に示すように、各発光素子搭載キャリア基材200の発光素子1の電極面1d側に位置する電極1cが露出するようにクリーニング処理を行う。その後、図1C、図8A、および図8Cに示すように、例えばダイシングブレードを用いて行列方向にキャリア基材30を切断することでキャリア基材30が個片化される。 As shown in FIG. 8B, each of the four light-emitting element-mounted carrier base materials 200 obtained has a plurality of light-emitting element arrays 10α arranged on the carrier base material 30 and the carrier base material 30 at predetermined intervals. Consists of having. In such a state, as shown in FIG. 7, a cleaning process is performed so that the electrode 1c located on the electrode surface 1d side of the light emitting element 1 of each light emitting element-mounted carrier base material 200 is exposed. Then, as shown in FIGS. 1C, 8A, and 8C, the carrier base material 30 is separated into individual pieces by cutting the carrier base material 30 in the matrix direction using, for example, a dicing blade.

以上により、個片化されたキャリア基材30αおよび当該キャリア基材30α上に配置された発光素子アレイ10αを有して成る、複数m個の発光素子搭載キャリア基材ユニット200αを作製することができる。 As described above, it is possible to manufacture a plurality of m light emitting element-mounted carrier base material units 200α having the individualized carrier base material 30α and the light emitting element array 10α arranged on the carrier base material 30α. it can.

なお、上記の塗布態様1に従い得られる発光素子搭載キャリア基材200は、その構成要素であるキャリア基材30の上面に、塗布領域の形成位置、形状およびサイズを予め決定の上で所定の間隔をおいて形成された樹脂材料Mから構成される塗布領域を有して成る。 The light emitting element-mounted carrier base material 200 obtained in accordance with the above coating mode 1 has a predetermined interval after determining the formation position, shape and size of the coating region on the upper surface of the carrier base material 30 which is a component thereof. It has a coating region composed of the resin material M formed by the above.

そのため、(b)工程において、発光素子搭載キャリア基材ユニット200αを得るためにキャリア基材30を切断する際に、キャリア基材30の切断を実施する一方、樹脂材料Mの切断を回避することが可能となる。その結果、樹脂屑の発生が抑制され、これに起因して歩留まりを改善することが可能となる。更に、切断する対象がキャリア基材30単独であるため、その対象が2つ以上である場合と比べて、発光素子搭載キャリア基材ユニット200αの作製工程を実施しやすいといった効果も奏され得る。 Therefore, in the step (b), when the carrier base material 30 is cut in order to obtain the light emitting element-mounted carrier base material unit 200α, the carrier base material 30 is cut, while the cutting of the resin material M is avoided. Is possible. As a result, the generation of resin waste is suppressed, and as a result, the yield can be improved. Further, since the target to be cut is the carrier base material 30 alone, the effect that the manufacturing process of the carrier base material unit 200α on which the light emitting element is mounted can be easily performed can be obtained as compared with the case where the target is two or more.

一方、上記の塗布態様2に従い得られる発光素子搭載キャリア基材200は、その構成要素であるキャリア基材30の上面に、連続して形成された樹脂材料Mから構成される塗布領域を有して成る。 On the other hand, the light emitting element-mounted carrier base material 200 obtained according to the above coating mode 2 has a coating region composed of a continuously formed resin material M on the upper surface of the carrier base material 30 which is a component thereof. Consists of.

塗布態様2では、キャリア基板30に設けた位置決めマークに合わせて発光素子1の位置合わせを行うことができる。塗布態様1で説明したような樹脂材料Mとキャリア基材30の位置合わせは不要となるため、上記の発光素子搭載基材100の位置合わせが容易となる。これにより、転写をして発光素子搭載キャリア基材200を形成した後、当該発光素子搭載キャリア基材200の切断実施にいたるまでの工程を円滑かつ低コストで行うことが可能となる。 In the coating mode 2, the light emitting element 1 can be aligned with the positioning mark provided on the carrier substrate 30. Since it is not necessary to align the resin material M and the carrier base material 30 as described in the coating mode 1, the alignment of the light emitting element mounting base material 100 becomes easy. As a result, it is possible to smoothly and at low cost the process from the transfer to form the light emitting element-mounted carrier base material 200 to the cutting of the light emitting element-mounted carrier base material 200.

(c)発光素子を配線基材に搭載する工程
図9は、配線基材への発光素子搭載キャリア基材ユニットの搭載態様を示す模式断面図である。図10は、樹脂材料キャリア基材の剥離態様を示す模式部分断面図である。図11は、配線基材上に所定の間隔をおいて複数搭載された発光素子アレイを示す模式平面図である。図12は、個片化された発光デバイスを示す模式斜視図である。
(C) Step of mounting the light emitting element on the wiring base material FIG. 9 is a schematic cross-sectional view showing a mounting mode of the light emitting element mounting carrier base material unit on the wiring base material. FIG. 10 is a schematic partial cross-sectional view showing a peeling mode of the resin material carrier base material. FIG. 11 is a schematic plan view showing a plurality of light emitting element arrays mounted on the wiring base material at predetermined intervals. FIG. 12 is a schematic perspective view showing an individualized light emitting device.

発光素子搭載キャリア基材ユニット200αを形成した後、図9に示すように、発光素子1の電極面1d側に設けた電極1cと配線基材40の構成要素である配線部41とが接触するように、配線基材40上に、キャリア基材30αを備えた発光素子搭載キャリア基材ユニット200αを搭載する。配線基材40は、例えば、IC回路を備えたシリコン基板からなるものを用いることができる。 After forming the carrier base material unit 200α on which the light emitting element is mounted, as shown in FIG. 9, the electrode 1c provided on the electrode surface 1d side of the light emitting element 1 and the wiring portion 41 which is a component of the wiring base material 40 come into contact with each other. As described above, the light emitting element-mounted carrier base material unit 200α provided with the carrier base material 30α is mounted on the wiring base material 40. As the wiring base material 40, for example, one made of a silicon substrate provided with an IC circuit can be used.

その後、図10に示すように、発光素子搭載キャリア基材ユニット200αのキャリア基材30αを発光素子1から剥離する。具体的には、発光素子1の発光面1aと樹脂材料Mとが離れるように、個片化したキャリア基材30αを発光素子1から剥離する。キャリア基材30αの剥離方法は、公知の手法を用いることができる。 Then, as shown in FIG. 10, the carrier base material 30α of the light emitting element-mounted carrier base material unit 200α is peeled off from the light emitting element 1. Specifically, the individualized carrier base material 30α is peeled from the light emitting element 1 so that the light emitting surface 1a of the light emitting element 1 and the resin material M are separated from each other. As a method for peeling the carrier base material 30α, a known method can be used.

なお、図9および図10では、単一の発光素子搭載キャリア基材ユニット200αを配線基材40上に搭載する態様を示している。しかしながら、図9および図10に示す態様はあくまでも一例にすぎず、図11に示すように、単一の配線基材40の好適に電気接続可能な箇所に、複数の発光素子搭載キャリア基材ユニット200αを所定の間隔をおいて配置し、その後図10と同様に個片化したキャリア基材30αを剥離し得る。 Note that FIGS. 9 and 10 show an embodiment in which a single light emitting element-mounted carrier base material unit 200α is mounted on the wiring base material 40. However, the embodiments shown in FIGS. 9 and 10 are merely examples, and as shown in FIG. 11, a plurality of light emitting element-mounted carrier base material units are located at a position where a single wiring base material 40 can be preferably electrically connected. 200α can be arranged at predetermined intervals, and then the individualized carrier base material 30α can be peeled off in the same manner as in FIG.

個片化したキャリア基材30αの剥離後、例えばダイシングブレードを用いて平面視で各発光素子アレイ10αが個片化されるように切断する。 After the individualized carrier base material 30α is peeled off, each light emitting element array 10α is cut so as to be individualized in a plan view using, for example, a dicing blade.

以上により、図1Dおよび図12に示すように、個片化された配線基材40αおよび当該配線基材40α上に配置された発光素子アレイ10αを有して成る、本発明の一実施形態に係る発光デバイス300αを得ることができる。 As described above, as shown in FIGS. 1D and 12, the embodiment of the present invention includes the individualized wiring base material 40α and the light emitting element array 10α arranged on the wiring base material 40α. Such a light emitting device 300α can be obtained.

なお、発光デバイス300αを得た後、発光素子アレイ10αの構成要素である発光素子から発せられる光を所定方向に導きやすくする観点から、発光素子の側面を囲むように光反射部材を設けることが好ましい。光反射部材は、例えば光反射する白色粉末等を透明樹脂に加えられた白色樹脂を用いることができる。光反射部材は、例えば酸化チタン等の無機白色粉末を含有させたシリコーン樹脂であってよい。発光素子から発せられる光を好適に反射させる観点から、光反射部材は当該光に対して例えば60%以上の反射率を有する白色樹脂であってよく、好ましくは90%以上の反射率を有する白色樹脂である。なお、酸化チタン以外に、ジルコニア又は、アルミナなどを含有させても良い。 After obtaining the light emitting device 300α, a light reflecting member may be provided so as to surround the side surface of the light emitting element from the viewpoint of facilitating guiding the light emitted from the light emitting element which is a component of the light emitting element array 10α in a predetermined direction. preferable. As the light-reflecting member, for example, a white resin obtained by adding light-reflecting white powder or the like to a transparent resin can be used. The light reflecting member may be a silicone resin containing an inorganic white powder such as titanium oxide. From the viewpoint of preferably reflecting the light emitted from the light emitting element, the light reflecting member may be a white resin having a reflectance of, for example, 60% or more, preferably white having a reflectance of 90% or more. It is a resin. In addition to titanium oxide, zirconia, alumina, or the like may be contained.

発光素子の側面と光反射部材との間および/または発光素子の発光面上に透光性部材を設けても良い。透光性部材の材料としては、例えば、シリコーン系樹脂、エポキシ樹脂、アクリル系樹脂が挙げられる。 A translucent member may be provided between the side surface of the light emitting element and the light reflecting member and / or on the light emitting surface of the light emitting element. Examples of the material of the translucent member include silicone-based resin, epoxy resin, and acrylic-based resin.

又、発光素子の発光面側に発光素子から発せられる光を吸収して、異なる波長の光に変換可能な波長変換部材を設けてよい。波長変換部材は、蛍光体等の波長変換材を含んで成る。蛍光体としては、例えば、黄色系の発光をするYAG蛍光体((Y,Lu,Gd)(Al,Ga)12:Ce)、緑色系の発光をするβサイアロン蛍光体、赤色系の発光をするフッ化物系蛍光体(例えばK(Si,Ti,Ge)F:Mn等)、窒化物系蛍光体(例えばSr,Ca)AlSiN:Eu)等が挙げられる。波長変換部材は、単一種の波長変換材を含んでいてもよいし、複数の波長変換材を含んでいてもよい。 Further, a wavelength conversion member capable of absorbing light emitted from the light emitting element and converting it into light having a different wavelength may be provided on the light emitting surface side of the light emitting element. The wavelength conversion member includes a wavelength conversion material such as a phosphor. Examples of the phosphor include a YAG phosphor ((Y, Lu, Gd) 3 (Al, Ga) 5 O 12 : Ce) that emits yellowish light, a β-sialone phosphor that emits greenish light, and a reddish one. Fluoride-based phosphors (for example, K 2 (Si, Ti, Ge) F 6 : Mn, etc.), nitride-based phosphors (for example, Sr, Ca), AlSiN 3 : Eu), etc., which emit light of the above can be mentioned. The wavelength conversion member may include a single type of wavelength conversion material, or may include a plurality of wavelength conversion materials.

以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely illustrates a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.

本実施形態に係る発光デバイスは、自動車のヘッドライト、プロジェクタ等に好適に利用できる。 The light emitting device according to the present embodiment can be suitably used for automobile headlights, projectors and the like.

1 発光素子
1a 発光素子の発光面
1b 発光素子の側面
1c 電極
1d 発光素子の電極面
10 発光素子搭載基材に配置された複数の発光素子の全体領域
10α 発光素子アレイ
20 基材
30 キャリア基材
30α 個片化されたキャリア基材
30A 第1のキャリア基材
30B 第2のキャリア基材
30C 第3のキャリア基材
30D 第4のキャリア基材
40 配線基材
40α 個片化された配線基材
41 配線部
42 基材
100 発光素子搭載基材
200 発光素子搭載キャリア基材
200α 発光素子搭載キャリア基材ユニット
200A 第1の発光素子搭載キャリア基材
200B 第2の発光素子搭載キャリア基材
200C 第3の発光素子搭載キャリア基材
200D 第4の発光素子搭載キャリア基材
300α 発光デバイス
M 樹脂材料
1 Light emitting element 1a Light emitting surface of light emitting element 1b Side surface of light emitting element 1c Electrode 1d Electrode plane of light emitting element 10 Overall area of a plurality of light emitting elements arranged on a base material mounted on a light emitting element 10 α Light emitting element array 20 Base material 30 Carrier base material 30α Fragmented carrier base material 30A First carrier base material 30B Second carrier base material 30C Third carrier base material 30D Fourth carrier base material 40 Wiring base material 40α Fragmented wiring base material 41 Wiring part 42 Base material 100 Light emitting element mounted base material 200 Light emitting element mounted carrier base material 200α Light emitting element mounted carrier base material unit 200A First light emitting element mounted carrier base material 200B Second light emitting element mounted carrier base material 200C Third Light-emitting element-mounted carrier base material 200D Fourth light-emitting element-mounted carrier base material 300α Light-emitting device M Resin material

Claims (12)

複数の発光素子が搭載された発光素子搭載基材から、複数の発光素子のうちの1つ又は2つ以上の発光素子をそれぞれ含む発光素子アレイごとに配線基材に搭載することを含む発光デバイスの製造方法であって、
前記発光素子搭載基材の前記複数の発光素子を、それぞれ少なくとも1つの発光素子アレイから構成される複数nグループに分類し、各グループに含まれる前記発光素子アレイをグループごとに異なる樹脂材料付きのキャリア基材に転写することにより、各グループに含まれる前記発光素子アレイがそれぞれ転写された複数n個の発光素子搭載キャリア基材を作製する工程と、
前記複数n個の発光素子搭載キャリア基材をそれぞれ前記少なくとも1つの発光素子アレイを含むように個片化して、各発光素子搭載キャリア基材からそれぞれ複数m個の発光素子搭載キャリア基材ユニットを作製する工程と、
前記発光素子搭載キャリア基材ユニットの前記発光素子アレイに含まれる前記発光素子を配線基材に搭載する工程と
を含む発光デバイスの製造方法。
A light emitting device including mounting on a wiring base material for each light emitting element array including one or two or more light emitting elements among a plurality of light emitting elements from a light emitting element mounting base material on which a plurality of light emitting elements are mounted. It is a manufacturing method of
The plurality of light emitting elements of the light emitting element mounting base material are classified into a plurality of n groups each composed of at least one light emitting element array, and the light emitting element arrays included in each group are provided with different resin materials for each group. A step of producing a plurality of n light-emitting element-mounted carrier base materials on which the light-emitting element arrays included in each group are transferred by transferring to a carrier base material, and
The plurality of n light-emitting element-mounted carrier base materials are individually separated so as to include the at least one light-emitting element array, and a plurality of m light-emitting element-mounted carrier base material units are formed from each light-emitting element-mounted carrier base material. The process of making and
A method for manufacturing a light emitting device, which comprises a step of mounting the light emitting element included in the light emitting element array of the light emitting element mounting carrier base material unit on a wiring base material.
前記発光素子搭載基材に配置された前記複数の前記発光素子の全体領域の形状と、各キャリア基材への発光素子アレイの転写領域をそれぞれ重ね合わせた際における転写全領域の形状とが略同一となるように、前記発光素子アレイを各キャリア基材に転写する、請求項1に記載の製造方法。 The shape of the entire region of the plurality of light emitting elements arranged on the base material on which the light emitting element is mounted and the shape of the entire region of transfer when the transfer regions of the light emitting element array on each carrier base material are overlapped with each other are approximately abbreviated. The manufacturing method according to claim 1, wherein the light emitting element array is transferred to each carrier base material so as to be the same. 各キャリア基材への前記発光素子アレイの転写と、各キャリア基材への該発光素子アレイの転写を実施しない非転写とを交互に繰り返す、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the transfer of the light emitting element array to each carrier base material and the non-transfer of the light emitting element array to each carrier base material are alternately repeated. 行方向および列方向の少なくとも一方の方向に沿って所定の間隔をおいて前記発光素子アレイの転写を行う、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the light emitting element array is transferred at a predetermined interval along at least one of the row direction and the column direction. 前記発光素子アレイの転写前に、各キャリア基材に、該発光素子アレイと該キャリア基材とを接合するための樹脂材料を塗布することを含み、前記発光素子搭載基材に配置された前記複数の発光素子の全体領域の形状に基づいて、各キャリア基材に対する樹脂材料の塗布位置を決定し、決定した塗布位置に従い各キャリア基材に前記樹脂材料を塗布する、請求項1〜4のいずれかに記載の製造方法。 Prior to transfer of the light emitting element array, each carrier base material is coated with a resin material for joining the light emitting element array and the carrier base material, and is arranged on the light emitting element mounting base material. Claims 1 to 4, wherein the coating position of the resin material on each carrier base material is determined based on the shape of the entire region of the plurality of light emitting elements, and the resin material is applied to each carrier base material according to the determined coating position. The manufacturing method according to any one. 各キャリア基材上に、行方向および列方向の少なく一方の方向に沿って所定の間隔をおいて前記樹脂材料を塗布する、請求項5に記載の製造方法。 The production method according to claim 5, wherein the resin material is applied onto each carrier base material at a predetermined interval along at least one of the row direction and the column direction. 前記樹脂材料の塗布領域の平面形状および平面サイズと、前記発光素子アレイの平面形状および平面サイズとを一致させる、請求項5又は6に記載の製造方法。 The manufacturing method according to claim 5 or 6, wherein the planar shape and the planar size of the coating region of the resin material are matched with the planar shape and the planar size of the light emitting element array. 各キャリア基材上に所定の間隔をおいて形成する各塗布領域の平面形状が略同一となるように、前記キャリア基材上に前記樹脂材料を塗布する、請求項7に記載の製造方法。 The production method according to claim 7, wherein the resin material is coated on the carrier substrate so that the planar shapes of the coating regions formed on the carrier substrates at predetermined intervals are substantially the same. 4つの前記キャリア基材を用い、第1の前記キャリア基材への前記樹脂材料の塗布領域の位置を基準として、前記塗布領域の位置が行方向、列方向、および行列方向に沿って前記発光素子アレイの略幅分各々ずれるように、第2の前記キャリア基材、第3の前記キャリア基材、および第4の前記キャリア基材に前記樹脂材料を塗布する、請求項5〜8のいずれかに記載の製造方法。 Using the four carrier base materials, the position of the coating region is the light emission along the row direction, the column direction, and the matrix direction with reference to the position of the coating region of the resin material on the first carrier base material. Any of claims 5 to 8, wherein the resin material is applied to the second carrier base material, the third carrier base material, and the fourth carrier base material so as to be displaced by approximately the width of the element array. The manufacturing method described in Crab. 前記発光素子アレイを構成する前記発光素子の発光面と前記キャリア基材上の前記樹脂材料とが接するように、前記キャリア基材上にて前記発光素子搭載基材の位置合わせを行う、請求項5〜9のいずれかに記載の製造方法。 The claim that the light emitting element mounting base material is aligned on the carrier base material so that the light emitting surface of the light emitting element constituting the light emitting element array and the resin material on the carrier base material are in contact with each other. The production method according to any one of 5 to 9. 前記発光素子アレイの転写前に、各キャリア基材に樹脂材料を塗布することを含み、各キャリア基材に前記樹脂材料を連続して塗布する、請求項1〜4のいずれかに記載の製造方法。 The production according to any one of claims 1 to 4, wherein the resin material is continuously applied to each carrier base material, and the resin material is continuously applied to each carrier base material before the transfer of the light emitting element array. Method. 前記発光素子アレイとして、行列状に密集して配置された10000個〜30000個の前記発光素子から構成されるものを用いる、請求項1〜11のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 11, wherein as the light emitting element array, an array composed of 10,000 to 30,000 light emitting elements arranged densely in a matrix is used.
JP2019199012A 2019-10-31 2019-10-31 Manufacturing method of light emitting device Active JP7389331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199012A JP7389331B2 (en) 2019-10-31 2019-10-31 Manufacturing method of light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199012A JP7389331B2 (en) 2019-10-31 2019-10-31 Manufacturing method of light emitting device

Publications (2)

Publication Number Publication Date
JP2021072390A true JP2021072390A (en) 2021-05-06
JP7389331B2 JP7389331B2 (en) 2023-11-30

Family

ID=75713422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199012A Active JP7389331B2 (en) 2019-10-31 2019-10-31 Manufacturing method of light emitting device

Country Status (1)

Country Link
JP (1) JP7389331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172895A1 (en) 2021-02-12 2022-08-18 株式会社イノアックコーポレーション Polyurethane foam and seat pad

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118124A (en) * 2000-10-06 2002-04-19 Sony Corp Device mounting method
JP2002198569A (en) * 2000-12-26 2002-07-12 Sony Corp Transfer method of element, semiconductor device and image display device
JP2003051621A (en) * 2001-08-06 2003-02-21 Sony Corp Method for mounting light-emitting diode and method for manufacturing image-display unit
JP2004281630A (en) * 2003-03-14 2004-10-07 Sony Corp Element transfer method, substrate for element transfer, and display device
JP2007242662A (en) * 2006-03-06 2007-09-20 Japan Science & Technology Agency Microchip peeling method and peeling apparatus, and method of selecting and transferring microchip
JP2010161221A (en) * 2009-01-08 2010-07-22 Sony Corp Method of manufacturing mounting substrate, mounting substrate, and light emitting device
JP2010251360A (en) * 2009-04-10 2010-11-04 Sony Corp Method of manufacturing display and display
JP2013038212A (en) * 2011-08-08 2013-02-21 Toshiba Corp Semiconductor light-emitting device and light-emitting module
JP2016062986A (en) * 2014-09-16 2016-04-25 株式会社東芝 Semiconductor device and semiconductor device manufacturing method
JP2016062940A (en) * 2014-09-16 2016-04-25 株式会社東芝 Light-emitting unit and semiconductor light-emitting
JP2017054092A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display panel, display device and display panel manufacturing method
US20170236811A1 (en) * 2016-02-16 2017-08-17 Glo Ab Method of selectively transferring led die to a backplane using height controlled bonding structures
WO2018216621A1 (en) * 2017-05-22 2018-11-29 日立化成株式会社 Semiconductor device manufacturing method and expand tape
CN109661122A (en) * 2018-11-09 2019-04-19 华中科技大学 It is a kind of suitable for micro-led selective flood tide transfer method
US20190229001A1 (en) * 2018-01-25 2019-07-25 Epistar Corporation Chip transferring method and the apparatus thereof
JP2019522891A (en) * 2016-05-24 2019-08-15 グロ アーベーGlo Ab Selective die repair on light emitting device assemblies

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118124A (en) * 2000-10-06 2002-04-19 Sony Corp Device mounting method
JP2002198569A (en) * 2000-12-26 2002-07-12 Sony Corp Transfer method of element, semiconductor device and image display device
JP2003051621A (en) * 2001-08-06 2003-02-21 Sony Corp Method for mounting light-emitting diode and method for manufacturing image-display unit
JP2004281630A (en) * 2003-03-14 2004-10-07 Sony Corp Element transfer method, substrate for element transfer, and display device
JP2007242662A (en) * 2006-03-06 2007-09-20 Japan Science & Technology Agency Microchip peeling method and peeling apparatus, and method of selecting and transferring microchip
JP2010161221A (en) * 2009-01-08 2010-07-22 Sony Corp Method of manufacturing mounting substrate, mounting substrate, and light emitting device
JP2010251360A (en) * 2009-04-10 2010-11-04 Sony Corp Method of manufacturing display and display
JP2013038212A (en) * 2011-08-08 2013-02-21 Toshiba Corp Semiconductor light-emitting device and light-emitting module
JP2016062986A (en) * 2014-09-16 2016-04-25 株式会社東芝 Semiconductor device and semiconductor device manufacturing method
JP2016062940A (en) * 2014-09-16 2016-04-25 株式会社東芝 Light-emitting unit and semiconductor light-emitting
JP2017054092A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display panel, display device and display panel manufacturing method
US20170236811A1 (en) * 2016-02-16 2017-08-17 Glo Ab Method of selectively transferring led die to a backplane using height controlled bonding structures
JP2019522891A (en) * 2016-05-24 2019-08-15 グロ アーベーGlo Ab Selective die repair on light emitting device assemblies
WO2018216621A1 (en) * 2017-05-22 2018-11-29 日立化成株式会社 Semiconductor device manufacturing method and expand tape
US20190229001A1 (en) * 2018-01-25 2019-07-25 Epistar Corporation Chip transferring method and the apparatus thereof
CN109661122A (en) * 2018-11-09 2019-04-19 华中科技大学 It is a kind of suitable for micro-led selective flood tide transfer method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172895A1 (en) 2021-02-12 2022-08-18 株式会社イノアックコーポレーション Polyurethane foam and seat pad

Also Published As

Publication number Publication date
JP7389331B2 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
US10333035B2 (en) Method of manufacturing light emitting device package
JP6398222B2 (en) Light emitting device and manufacturing method thereof
JP6237181B2 (en) Method for manufacturing light emitting device
JP6384533B2 (en) Method for manufacturing light emitting device
JP6209949B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP4995722B2 (en) Semiconductor light emitting device, lighting module, and lighting device
TWI529959B (en) Light emitting device, light emitting module, and method for manufacturing light emitting device
CN116682924A (en) Light-emitting device and manufacturing method thereof
JP6504221B2 (en) Method of manufacturing light emitting device
JP2011054736A (en) Light-emitting device, plane light source, and liquid crystal display device
JP2007134376A (en) Light emitting diode, and method of manufacturing same
CN110034224A (en) A kind of transfer method based on bar shaped Micro-LED
JP2012119673A (en) Method of coating a semiconductor light-emitting element with phosphor
WO2004079700A1 (en) Element transfer method and display device
JP6421952B2 (en) Light-emitting diode color conversion substrate and method for manufacturing the same
JP4386789B2 (en) Method for manufacturing light-emitting diode element
JP6593237B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
CN111129062B (en) LED display module, LED display screen and manufacturing method
KR20180024228A (en) Display panel and manufacturing method of the same
JP2013153134A (en) Light-emitting device manufacturing method
JP7273280B2 (en) Light-emitting module and method for manufacturing light-emitting module
JP2012164902A (en) Method of manufacturing semiconductor light-emitting device
JP4840371B2 (en) Element transfer method
US20200212016A1 (en) Method of mounting semiconductor elements and method of manufacturing semiconductor device
JP6551245B2 (en) Method of manufacturing light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7389331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151