JP2021067484A - Build-up weld crack evaluation method, tubular body manufacturing method, and evaluation material - Google Patents

Build-up weld crack evaluation method, tubular body manufacturing method, and evaluation material Download PDF

Info

Publication number
JP2021067484A
JP2021067484A JP2019191043A JP2019191043A JP2021067484A JP 2021067484 A JP2021067484 A JP 2021067484A JP 2019191043 A JP2019191043 A JP 2019191043A JP 2019191043 A JP2019191043 A JP 2019191043A JP 2021067484 A JP2021067484 A JP 2021067484A
Authority
JP
Japan
Prior art keywords
evaluation
welding
overlay welding
evaluation material
overlay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019191043A
Other languages
Japanese (ja)
Other versions
JP7293080B2 (en
Inventor
翔太郎 石嶺
Shotaro Ishimine
翔太郎 石嶺
憲治 吉村
Kenji Yoshimura
憲治 吉村
紘一 古我
Koichi Koga
紘一 古我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2019191043A priority Critical patent/JP7293080B2/en
Publication of JP2021067484A publication Critical patent/JP2021067484A/en
Application granted granted Critical
Publication of JP7293080B2 publication Critical patent/JP7293080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method for appropriately evaluating a weld crack in a welded portion formed on the surface of a cylindrical tubular body.SOLUTION: A build-up weld crack evaluation method includes: a welding step (S101) in which build-up welding is performed to form a welded portion that extends spirally rounding the axis so as to cover a surface of a cylindrical heat transfer tube; a preparation step (S104) for preparing an evaluation material in which the welded portion is formed on an entire surface corresponding to the surface of the heat transfer tube, by cutting the heat transfer tube in which the welded portion is formed by the welding step (S101); a bending step (S105) for bending the evaluation material formed by the preparation step (S104); and a build-up weld crack evaluation step (S106) to evaluate whether or not weld cracks have occurred in the evaluation material bent by the bending step (S105).SELECTED DRAWING: Figure 9

Description

本開示は、肉盛溶接割れ評価方法および管体の製造方法、および評価材に関するものである。 The present disclosure relates to a build-up weld crack evaluation method, a pipe body manufacturing method, and an evaluation material.

ボイラに用いられる火炉壁などには、内部に水や蒸気が流通する長尺の伝熱管と板状のフィンとが交互に溶接で接続された伝熱パネルが用いられるものがある。そして、伝熱管の耐腐食性を確保するために、伝熱管の表面に耐食性材料で螺旋巻溶接を行うことが知られている(例えば、特許文献1(段落0072等)参照)。特許文献1には、素管を回転させながらTIG溶接トーチを送る螺旋巻溶接により耐腐食層を素管の全周囲に形成することが開示されている。 Some of the furnace walls used in boilers use heat transfer panels in which long heat transfer tubes through which water and steam flow and plate-shaped fins are alternately connected by welding. Then, in order to ensure the corrosion resistance of the heat transfer tube, it is known that spiral welding is performed on the surface of the heat transfer tube with a corrosion resistant material (see, for example, Patent Document 1 (paragraph 0072, etc.)). Patent Document 1 discloses that a corrosion-resistant layer is formed on the entire circumference of a raw pipe by spiral welding in which a TIG welding torch is sent while rotating the raw pipe.

特開2018−189282号公報Japanese Unexamined Patent Publication No. 2018-189282

伝熱パネルに用いられる伝熱管は、内部が冷却水により冷却される一方で外部は高温環境にあるため、伝熱管の内側と外側とで熱伸び差が生じる。そして、伝熱管に生じる熱伸び差によって熱応力が繰り返しかかることにより、肉盛層を形成する溶接部に溶接割れが生じてしまう可能性がある。特に、肉盛溶接を行った溶接部の肉盛厚さが厚い場合や溶接部の凹凸が大きいほど、溶接割れが生じる可能性が高くなる場合がある。 Since the inside of the heat transfer tube used for the heat transfer panel is cooled by the cooling water and the outside is in a high temperature environment, a difference in heat elongation occurs between the inside and the outside of the heat transfer tube. Then, thermal stress is repeatedly applied due to the difference in thermal elongation generated in the heat transfer tube, which may cause weld cracks in the welded portion forming the overlay layer. In particular, when the overlay thickness of the welded portion where overlay welding is performed is thick or the unevenness of the welded portion is large, the possibility of welding cracks may increase.

さらに、通常の構造物相互間の溶接接合での溶接割れの評価とは異なり、伝熱管の外周表面に連続的に肉盛溶接を行った際に発生する熱影響部を含めて、溶接割れが生じないことを評価する必要があることが、発明者らにより明確になってきた。なお、肉盛溶接条件の適正を評価するにあたり、肉盛溶接を形成することにより発生する溶接割れは、肉盛溶接割れとして記載をしている。 Furthermore, unlike the evaluation of weld cracks in normal weld joints between structures, weld cracks include the heat-affected zone that occurs when overlay welding is continuously performed on the outer peripheral surface of the heat transfer tube. It has become clearer to the inventors that it is necessary to evaluate that it does not occur. In evaluating the appropriateness of the overlay welding conditions, the weld cracks generated by forming the overlay welds are described as overlay weld cracks.

肉盛溶接割れが生じにくい伝熱管を形成するためには、種々の溶接条件にて溶接された伝熱管の溶接状態を評価し、その評価結果に基づいて溶接条件を適切に設定する必要がある。溶接状態の評価方法としては、ASME(American Society of Mechanical Engineers)のSpec.IX規格が知られている。この規格は、表面に溶接が行われた対象物の一部を評価材として切り出し、評価材に曲げ加工を行い、評価材に溶接割れが発生しているか否かを評価するものである(ASME Spec.IXのQW−163,QW452.5,QW−462.2,QW−466.1等)。 Overlay welding In order to form a heat transfer tube that is less prone to cracking, it is necessary to evaluate the welding state of the heat transfer tube welded under various welding conditions and appropriately set the welding conditions based on the evaluation results. .. As a method for evaluating the welded state, Spec. Of ASME (American Society of Mechanical Engineers). The IX standard is known. This standard cuts out a part of an object whose surface has been welded as an evaluation material, bends the evaluation material, and evaluates whether or not welding cracks have occurred in the evaluation material (ASME). Spec.IX QW-163, QW452.5, QW-462.2, QW-466.1, etc.).

しかしながら、ASMEのSpec.IXで規定される評価材は、溶接部が存在する面において、評価材の表面の全領域には溶接部が存在しておらず、曲げ加工が行われる位置を中心とした部分的な領域にのみ溶接部が存在している。そのため、曲げ加工が行われる位置の近傍の溶接部の評価はできるものの、その他の領域に溶接部が存在する場合の評価を適切に行うことができない可能性がある。 However, ASME's Spec. The evaluation material specified by IX has no welded part in the entire surface area of the evaluation material on the surface where the welded part exists, and is a partial area centered on the position where the bending process is performed. Only welds are present. Therefore, although it is possible to evaluate the welded portion in the vicinity of the position where the bending process is performed, it may not be possible to appropriately evaluate the welded portion in the presence of other regions.

本開示は、このような事情に鑑みてなされたものであって、円筒状の管体の外周表面に形成された溶接部の肉盛溶接割れを適切に評価することが可能な肉盛溶接割れ評価方法を提供することを目的とする。また、肉盛溶接割れを適切に評価することが可能な肉盛溶接割れ評価方法による評価結果に基づいた適切な肉盛溶接条件で肉盛溶接が形成された管体を製造する製造方法を提供することを目的とする。また、肉盛溶接割れを適切に評価することが可能な肉盛溶接割れ評価方法に利用可能な評価材を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and it is possible to appropriately evaluate the overlay weld crack of the welded portion formed on the outer peripheral surface of the cylindrical pipe body. The purpose is to provide an evaluation method. Further, the present invention provides a manufacturing method for manufacturing a pipe body in which overlay welding is formed under appropriate overlay welding conditions based on the evaluation result by the overlay welding crack evaluation method capable of appropriately evaluating overlay welding cracks. The purpose is to do. Another object of the present invention is to provide an evaluation material that can be used in an overlay weld crack evaluation method capable of appropriately evaluating overlay weld cracks.

本開示の一態様に係る肉盛溶接割れ評価方法は、軸線に沿って延びる円筒状の管体への肉盛溶接を形成した後の溶接割れを評価するものであり、前記管体の外周表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う肉盛溶接工程と、前記肉盛溶接工程により前記溶接部が形成された前記管体を切断し、前記管体の表面に対応する面の全体に前記溶接部が形成された評価材を作成する評価材作成工程と、前記評価材作成工程により形成された前記評価材を所定の曲率半径で折り曲げる評価材曲げ工程と、前記評価材曲げ工程により折り曲げられた前記評価材に溶接割れが発生しているか否かを評価する溶接割れ評価工程と、を備える。 The overlay weld crack evaluation method according to one aspect of the present disclosure evaluates the weld crack after forming overlay welding on a cylindrical tubular body extending along an axis, and evaluates the weld crack on the outer peripheral surface of the tubular body. A build-up welding step of forming a welded portion spirally extending around the axis so as to cover the above, and a build-up welding step of cutting the pipe body on which the welded portion is formed by the build-up welding step are performed to cut the pipe. An evaluation material making step of creating an evaluation material in which the welded portion is formed on the entire surface corresponding to the surface of the body, and an evaluation material bending in which the evaluation material formed by the evaluation material making step is bent with a predetermined radius of curvature. It includes a step and a weld crack evaluation step of evaluating whether or not a weld crack has occurred in the evaluation material bent by the evaluation material bending step.

本開示の一態様に係る評価材は、軸線に沿って延びる円筒状の管体の外周表面に肉盛り溶接により形成された溶接部の肉盛溶接割れを評価するための評価材であって、外周表面を覆うように前記軸線回りに螺旋状に延びる前記溶接部により肉盛溶接が形成された前記管体から、前記軸線方向を長手方向とし前記軸線回りの周方向を短手方向とした所定サイズの短冊状に切り出され、所定の曲率半径で折り曲げることで、折り曲げられた前記評価材(EM)に肉盛溶接割れが発生しているか否かの評価を実施可能になるように、前記管体の外周表面に対応する面の全体に前記溶接部が形成されている。 The evaluation material according to one aspect of the present disclosure is an evaluation material for evaluating overlay weld cracks in a welded portion formed by overlay welding on the outer peripheral surface of a cylindrical tube extending along an axis. From the pipe body in which overlay welding is formed by the welded portion spirally extending around the axis so as to cover the outer peripheral surface, the axial direction is the longitudinal direction and the circumferential direction around the axis is the lateral direction. The pipe is cut into strips of a size and bent at a predetermined radius of curvature so that it is possible to evaluate whether or not overlay welding cracks have occurred in the bent evaluation material (EM). The welded portion is formed on the entire surface corresponding to the outer peripheral surface of the body.

本開示によれば、円筒状の管体の表面に形成された溶接部の肉盛溶接割れを適切に評価することが可能な肉盛溶接割れ評価方法を提供することができる。また、肉盛溶接割れを適切に評価することが可能な肉盛溶接割れ評価方法による評価結果に基づいた適切な肉盛溶接条件で肉盛溶接が形成された管体を製造する製造方法を提供することができる。また、肉盛溶接割れを適切に評価することが可能な肉盛溶接割れ評価方法に利用可能な評価材を提供することができる。 According to the present disclosure, it is possible to provide a build-up weld crack evaluation method capable of appropriately evaluating a build-up weld crack of a welded portion formed on the surface of a cylindrical pipe body. Further, the present invention provides a manufacturing method for manufacturing a pipe body in which overlay welding is formed under appropriate overlay welding conditions based on the evaluation result by the overlay welding crack evaluation method capable of appropriately evaluating overlay welding cracks. can do. Further, it is possible to provide an evaluation material that can be used in an overlay weld crack evaluation method capable of appropriately evaluating overlay weld cracks.

本開示の一実施形態に係るガス化炉設備が備えるガス化炉の縦断面図である。It is a vertical sectional view of the gasification furnace provided in the gasification furnace equipment which concerns on one Embodiment of this disclosure. 図1に示すガス化炉壁の概略構成を示す横断面図である。It is a cross-sectional view which shows the schematic structure of the gasification furnace wall shown in FIG. 図1に示すガス化炉壁の概略構成を示す拡大断面図である。It is an enlarged sectional view which shows the schematic structure of the gasification furnace wall shown in FIG. 本開示の一実施形態に係る溶接装置の側面図であり、伝熱管の表面に肉盛溶接を開始した状態を示す。It is a side view of the welding apparatus which concerns on one Embodiment of this disclosure, and shows the state which started overlay welding on the surface of a heat transfer tube. 本開示の一実施形態に係る溶接装置の側面図であり、伝熱管の表面に肉盛溶接を行っている状態を示す。It is a side view of the welding apparatus which concerns on one Embodiment of this disclosure, and shows the state which overlay welding is performed on the surface of a heat transfer tube. 本開示の一実施形態に係る溶接装置の側面図であり、伝熱管の表面への肉盛溶接を終了した状態を示す。It is a side view of the welding apparatus which concerns on one Embodiment of this disclosure, and shows the state which completed the overlay welding to the surface of a heat transfer tube. 図4に示す可動台車の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the movable carriage shown in FIG. 図4に示す溶接装置の制御構成を示す概略構成図である。It is a schematic block diagram which shows the control structure of the welding apparatus shown in FIG. 本実施形態の肉盛溶接割れ評価方法を示すフローチャートである。It is a flowchart which shows the overlay welding crack evaluation method of this embodiment. 溶接ビードが表面に形成された伝熱管を示す横断面図である。It is a cross-sectional view which shows the heat transfer tube which weld bead was formed on the surface. 伝熱管を切断して作成された評価材を示す斜視図である。It is a perspective view which shows the evaluation material made by cutting a heat transfer tube. 評価材の長手方向に沿って延びる切断面を示す側面図である。It is a side view which shows the cut surface extending along the longitudinal direction of an evaluation material. 曲げ加工治具に評価材を設置した状態を示す図である。It is a figure which shows the state which installed the evaluation material in a bending jig. 曲げ加工治具により評価材を折り曲げた状態を示す図である。It is a figure which shows the state which the evaluation material was bent by the bending jig. 曲げ工程により折り曲げられた本実施形態の評価材を溶接ビードが形成された面からみた図である。It is a figure which looked at the evaluation material of this embodiment which was bent by a bending process from the surface where the welding bead was formed. 曲げ工程により折り曲げられた比較例の評価材を溶接ビードが形成された面からみた図である。It is a figure which looked at the evaluation material of the comparative example which was bent by a bending process from the surface where the weld bead was formed. 肉盛溶接条件に対する表面粗度の評価および肉盛溶接割れの評価を示す評価表である。It is an evaluation table which shows the evaluation of the surface roughness and the evaluation of the overlay welding crack with respect to the overlay welding condition.

以下、本開示の一実施形態に係る肉盛溶接割れ評価方法で評価される伝熱管Tを溶接する溶接装置について、図面を参照して説明する。本実施形態の溶接装置200は、肉盛溶接を行う際に、冷却水(冷却媒体)を円筒状の伝熱管の内部に流通させることにより伝熱管自身および周囲を冷却して、伝熱管の外周表面に耐腐食性および耐熱性を向上させるための溶接材料を肉盛溶接する装置である。以下の説明で、上方や下方などの上と下の記載は鉛直方向での上や下を示すものとする。 Hereinafter, a welding apparatus for welding the heat transfer tube T evaluated by the overlay welding crack evaluation method according to the embodiment of the present disclosure will be described with reference to the drawings. When performing overlay welding, the welding apparatus 200 of the present embodiment cools the heat transfer tube itself and its surroundings by circulating cooling water (cooling medium) inside the cylindrical heat transfer tube to cool the outer periphery of the heat transfer tube. It is a device for overlay welding a welding material to improve corrosion resistance and heat resistance on the surface. In the following explanation, the above and below descriptions such as above and below shall indicate the above and below in the vertical direction.

本実施形態の溶接装置200により溶接材料が肉盛溶接された伝熱管は、複数の板材に溶接により連結されて伝熱パネルとなる。伝熱パネルは、例えば、ボイラの火炉の内部や、ガス化炉の内部に配置される。以下では、溶接材料が肉盛溶接された伝熱管を用いた伝熱パネルが配置される一例として、ガス化炉について図面を参照して説明する。図1は、本開示の一実施形態に係るガス化炉の縦断面図である。 The heat transfer tube in which the welding material is built-up welded by the welding device 200 of the present embodiment is connected to a plurality of plate materials by welding to form a heat transfer panel. The heat transfer panel is arranged, for example, inside the furnace of the boiler or inside the gasification furnace. In the following, as an example in which a heat transfer panel using a heat transfer tube in which the welding material is built-up welded is arranged, the gasification furnace will be described with reference to the drawings. FIG. 1 is a vertical sectional view of a gasifier according to an embodiment of the present disclosure.

図1に示すガス化炉101は、石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)において、主に水素と一酸化炭素を含む生成ガスを生成する装置である。ガス化炉101に供給する燃料としては、例えば、石炭等の炭素含有固体燃料が用いられ、石炭ミル(図示略)などで粉砕することで、細かい粒子状に粉砕した微粉炭が供給される。燃料から可燃性ガス(生成ガス)を生成する燃焼方式として、空気を主とする酸化剤を用いる空気燃焼方式を用いている。ガス化炉101が生成した生成ガスは、発電機を回転駆動するガスタービンの燃焼器に供給される。 The gasification furnace 101 shown in FIG. 1 is an apparatus that mainly produces a generated gas containing hydrogen and carbon monoxide in an integrated coal gasification combined cycle (IGCC). As the fuel to be supplied to the gasification furnace 101, for example, a carbon-containing solid fuel such as coal is used, and by pulverizing with a coal mill (not shown) or the like, pulverized coal pulverized into fine particles is supplied. As a combustion method for generating flammable gas (produced gas) from fuel, an air combustion method using an oxidizing agent mainly composed of air is used. The generated gas generated by the gasification furnace 101 is supplied to the combustor of the gas turbine that rotationally drives the generator.

図1に示すように、ガス化炉101は、鉛直方向に延びて形成されており、鉛直方向の下方側に微粉炭及び酸素が供給され、部分燃焼させてガス化した生成ガスが鉛直方向の下方側から上方側に向かって流通している。ガス化炉101は、圧力容器110と、圧力容器110の内部に設けられるガス化炉壁111とを有している。ガス化炉壁111として、伝熱管Tを含む伝熱パネルが利用される。 As shown in FIG. 1, the gasification furnace 101 is formed so as to extend in the vertical direction, and pulverized coal and oxygen are supplied to the lower side in the vertical direction, and the generated gas gasified by partial combustion is in the vertical direction. It circulates from the lower side to the upper side. The gasifier 101 has a pressure vessel 110 and a gasifier wall 111 provided inside the pressure vessel 110. As the gasification furnace wall 111, a heat transfer panel including a heat transfer tube T is used.

ガス化炉101は、圧力容器110とガス化炉壁111との間の空間にアニュラス部115を形成している。また、ガス化炉101は、ガス化炉壁111の内部の空間において、鉛直方向の下方側(つまり、生成ガスの流通方向の上流側)から順に、コンバスタ部116、ディフューザ部117、リダクタ部118を形成している。 The gasifier 101 forms an annulus portion 115 in the space between the pressure vessel 110 and the gasifier wall 111. Further, in the space inside the gasifier wall 111, the gasifier 101 has a convertor portion 116, a diffuser portion 117, and a reducer portion 118 in this order from the lower side in the vertical direction (that is, the upstream side in the flow direction of the generated gas). Is forming.

圧力容器110は、内部が中空空間となる筒形状に形成され、上端部にガス排出口121が形成される一方、下端部(底部)にスラグホッパ122が形成されている。ガス化炉壁111は、内部が中空空間となる筒形状に形成され、その壁面が圧力容器110の内面と対向して設けられている。本実施形態では圧力容器110は例えば円筒形状で、ガス化炉壁111のディフューザ部117も例えば円筒形状に形成されている。そして、ガス化炉壁111は、図示しない支持部材により圧力容器110内面に連結されている。 The pressure vessel 110 is formed in a tubular shape having a hollow space inside, and a gas discharge port 121 is formed at the upper end portion, while a slug hopper 122 is formed at the lower end portion (bottom portion). The gasification furnace wall 111 is formed in a tubular shape having a hollow space inside, and the wall surface thereof is provided so as to face the inner surface of the pressure vessel 110. In the present embodiment, the pressure vessel 110 is formed in a cylindrical shape, for example, and the diffuser portion 117 of the gasification furnace wall 111 is also formed in a cylindrical shape, for example. The gasification furnace wall 111 is connected to the inner surface of the pressure vessel 110 by a support member (not shown).

ガス化炉壁111は、圧力容器110の内部を内部空間154と外部空間156に分離する。ガス化炉壁111は、横断面形状がコンバスタ部116とリダクタ部118との間のディフューザ部117で変化する形状とされている。ガス化炉壁111は、鉛直上方側となるその上端部が、圧力容器110のガス排出口121に接続され、鉛直下方側となるその下端部が圧力容器110の底部と隙間を空けて設けられている。 The gasifier wall 111 separates the inside of the pressure vessel 110 into an internal space 154 and an external space 156. The gasification furnace wall 111 has a shape in which the cross-sectional shape changes at the diffuser portion 117 between the convertor portion 116 and the reducer portion 118. The upper end of the gasifier wall 111 on the vertically upper side is connected to the gas discharge port 121 of the pressure vessel 110, and the lower end thereof on the vertically lower side is provided with a gap from the bottom of the pressure vessel 110. ing.

圧力容器110の底部に形成されるスラグホッパ122には、貯留水が溜められており、ガス化炉壁111の下端部が貯留水に浸水することで、ガス化炉壁111の内外を封止している。ガス化炉壁111には、バーナ装置126,127が挿入され、内部空間154にシンガスクーラ102が配置されている。 The stored water is stored in the slug hopper 122 formed at the bottom of the pressure vessel 110, and the lower end of the gasification furnace wall 111 is flooded with the stored water to seal the inside and outside of the gasification furnace wall 111. ing. Burner devices 126 and 127 are inserted into the gasification furnace wall 111, and a thin gas cooler 102 is arranged in the internal space 154.

アニュラス部115は、圧力容器110の内側とガス化炉壁111の外側に形成された空間、つまり外部空間156であり、空気分離設備(図示略)で分離された不活性ガスである窒素が、図示しない窒素供給ラインを通って供給される。このため、アニュラス部115は、窒素が充満する空間となる。なお、このアニュラス部115の鉛直方向の上部付近には、ガス化炉101内を均圧にするための図示しない炉内均圧管が設けられている。炉内均圧管は、ガス化炉壁111の内外を連通して設けられ、ガス化炉壁111の内部(コンバスタ部116、ディフューザ部117及びリダクタ部118)と外部(アニュラス部115)との圧力差を所定圧力以内となるよう略均圧にしている。 The annular portion 115 is a space formed inside the pressure vessel 110 and outside the gasification furnace wall 111, that is, an external space 156, and nitrogen, which is an inert gas separated by an air separation facility (not shown), is contained in the annulus portion 115. It is supplied through a nitrogen supply line (not shown). Therefore, the annulus portion 115 becomes a space filled with nitrogen. A pressure equalizing pipe (not shown) for equalizing the pressure inside the gasification furnace 101 is provided near the upper portion of the annulus portion 115 in the vertical direction. The pressure equalizing pipe in the furnace is provided so as to communicate the inside and outside of the gasification furnace wall 111, and the pressure between the inside (combustor part 116, diffuser part 117 and reducer part 118) and the outside (annulus part 115) of the gasification furnace wall 111. The pressure is approximately equalized so that the difference is within a predetermined pressure.

コンバスタ部116は、微粉炭及びチャー(石炭の未反応分と灰分)と空気とを一部燃焼させる燃焼室となっており、コンバスタ部116におけるガス化炉壁111には、複数のバーナ装置126からなる燃焼装置が配置されている。コンバスタ部116で微粉炭及びチャーの一部を燃焼した高温の燃焼ガスは、ディフューザ部117を通過してリダクタ部118に流入する。 The convertor section 116 is a combustion chamber that partially burns pulverized coal and char (unreacted coal and ash) and air, and a plurality of burner devices 126 are formed on the gasification furnace wall 111 of the convertor section 116. A combustion chamber consisting of is arranged. The high-temperature combustion gas obtained by burning the pulverized coal and a part of the char in the converter section 116 passes through the diffuser section 117 and flows into the reducer section 118.

リダクタ部118は、ガス化反応に必要な高温状態に維持されコンバスタ部116からの燃焼ガスに微粉炭を供給し部分酸化燃焼させて、微粉炭を揮発分(一酸化炭素、水素、低級炭化水素等)へと分解してガス化されて生成ガスを生成する空間となっており、リダクタ部118におけるガス化炉壁111には、複数のバーナ装置127からなる燃焼装置が配置されている。 The reducer section 118 is maintained at a high temperature state required for the gasification reaction, supplies pulverized coal to the combustion gas from the convertor section 116 and partially oxidatively burns the pulverized coal to volatile components (carbon monoxide, hydrogen, lower hydrocarbons). Etc.), and the space is gasified to generate the generated gas. A combustion device composed of a plurality of burner devices 127 is arranged on the gasification furnace wall 111 of the reducer unit 118.

次に、ガス化炉壁111について図面を参照して説明する。図2は、図1に示すガス化炉壁111の概略構成を示す横断面図である。図3は、図1に示すガス化炉壁111の概略構成を示す拡大断面図である。 Next, the gasification furnace wall 111 will be described with reference to the drawings. FIG. 2 is a cross-sectional view showing a schematic configuration of the gasification furnace wall 111 shown in FIG. FIG. 3 is an enlarged cross-sectional view showing a schematic configuration of the gasification furnace wall 111 shown in FIG.

ガス化炉壁111の水平方向の断面形状は、多角筒形状や円筒形状の筒形状であるが、図3に示す形態では円筒形状のものの例であり、筒形状となる壁部140に複数の水冷壁管142が設けられている。つまり壁部140の一部に複数の水冷壁管142が同心円状に配置して設けられている。 The horizontal cross-sectional shape of the gasification furnace wall 111 is a polygonal tubular shape or a cylindrical tubular shape, but the form shown in FIG. 3 is an example of a cylindrical shape, and a plurality of tubular wall portions 140 have a tubular shape. A water-cooled wall pipe 142 is provided. That is, a plurality of water-cooled wall pipes 142 are arranged concentrically on a part of the wall portion 140.

ガス化炉101は、水冷壁管142内に冷媒(冷却水として給水や蒸気など)を循環させる冷却水循環機構(図示略)を有する。複数の水冷壁管142は、ガス化炉101を全域にわたって鉛直方向に沿って延設されており、一部が切断されることなく鉛直方向上下に伸び、周方向に並設されることで、ガス化炉101の壁部140が形成されている。 The gasifier 101 has a cooling water circulation mechanism (not shown) that circulates a refrigerant (water supply, steam, etc. as cooling water) in the water-cooled wall pipe 142. The plurality of water-cooled wall pipes 142 extend the gasifier 101 along the vertical direction over the entire area, extend vertically in the vertical direction without being partially cut, and are arranged side by side in the circumferential direction. The wall portion 140 of the gasifier 101 is formed.

図3に示すように、水冷壁管142の少なくとも一部は、伝熱管Tと、伝熱管Tの外周に設けられた溶接ビードWBと、を有する。伝熱管Tは、内部に冷却水が流れる管路である。溶接ビードWBは、伝熱管Tの周方向の全周に配置され、伝熱管Tの外周面を覆っている。溶接ビードWBは、後述する溶接装置200が伝熱管Tの外周表面に肉盛溶接を行うことで形成される。 As shown in FIG. 3, at least a part of the water-cooled wall tube 142 has a heat transfer tube T and a weld bead WB provided on the outer periphery of the heat transfer tube T. The heat transfer tube T is a pipeline through which cooling water flows. The weld beads WB are arranged on the entire circumference of the heat transfer tube T in the circumferential direction and cover the outer peripheral surface of the heat transfer tube T. The welding bead WB is formed by performing overlay welding on the outer peripheral surface of the heat transfer tube T by a welding device 200 described later.

壁部140は、水冷壁管142と水冷壁管142との間に板材(フィン)166が設けられている。本実施形態の壁部140は、複数の水冷壁管142を同心円状に配置し、水冷壁管142と水冷壁管142との間を板材166で塞ぐことで、筒形状を形成している。また、壁部140は、水冷壁管142の溶接ビードWBと板材166とを連結する溶接部168を有する。溶接部168は、溶接ビードWBと板材166との接触部分の内部空間154側の端部と、外部空間156側の端部に形成されている。溶接部168は、溶接により形成され、溶接ビードWBと板材166との両方と密着することで、水冷壁管142の溶接ビードWBと板材166とを連結する。 The wall portion 140 is provided with a plate material (fin) 166 between the water-cooled wall pipe 142 and the water-cooled wall pipe 142. The wall portion 140 of the present embodiment has a tubular shape by arranging a plurality of water-cooled wall pipes 142 concentrically and closing the space between the water-cooled wall pipes 142 and the water-cooled wall pipes 142 with a plate material 166. Further, the wall portion 140 has a welded portion 168 that connects the weld bead WB of the water-cooled wall pipe 142 and the plate material 166. The welded portion 168 is formed at an end portion on the inner space 154 side and an end portion on the outer space 156 side of the contact portion between the weld bead WB and the plate material 166. The welded portion 168 is formed by welding and is in close contact with both the weld bead WB and the plate material 166 to connect the weld bead WB of the water-cooled wall pipe 142 and the plate material 166.

ガス化炉壁111は、伝熱管Tが第1材料で製作され、溶接ビードWBが第2材料で作製されている。また、板材166及び溶接部168は、第2材料で作製されていてもよい。第1材料及び第2材料は、金属である。第2材料は、第1材料よりも耐食性(耐腐食性)が高く、かつ、耐熱性が高い材料である。ガス化炉壁111は、溶接ビードWBを伝熱管Tよりも耐食性が高く、かつ、耐熱性が高い材料で形成することで、伝熱管Tを保護することができる。 In the gasification furnace wall 111, the heat transfer tube T is made of the first material, and the weld bead WB is made of the second material. Further, the plate material 166 and the welded portion 168 may be made of a second material. The first material and the second material are metals. The second material is a material having higher corrosion resistance (corrosion resistance) and higher heat resistance than the first material. The gasification furnace wall 111 can protect the heat transfer tube T by forming the weld bead WB with a material having higher corrosion resistance and heat resistance than the heat transfer tube T.

具体的には、ガス化炉壁111の内側の可燃性ガスが流れる内部空間154は、酸化剤(酸素を含むガス)と燃料が部分燃焼されてガス化した生成ガスとなって流れ、かつ高温となる。伝熱管Tの内部空間154側の面を溶接ビードWBで覆うことで、伝熱管Tを腐食や高温の使用環境から保護することができる。 Specifically, the internal space 154 inside the gasification furnace wall 111 through which the flammable gas flows flows as a gasified product gas obtained by partially burning the oxidant (gas containing oxygen) and the fuel, and has a high temperature. It becomes. By covering the surface of the heat transfer tube T on the internal space 154 side with the weld bead WB, the heat transfer tube T can be protected from corrosion and a high temperature usage environment.

また、ガス化炉壁111の伝熱管Tや溶接ビードWBや板材166に石炭などのスラグが付着と脱落を発生することで、ガス化炉壁111の壁面の温度変化が発生して、伝熱管Tや溶接ビードWBで温度分布が生じると、材質の違いによる熱膨張差の影響が大きくなり、局部的な熱応力が大きくなる場合があるので溶接ビードWBは耐熱性が高い材料で形成している。 Further, slag such as coal adheres to and falls off from the heat transfer tube T, the weld bead WB, and the plate material 166 of the gasification furnace wall 111, so that the temperature of the wall surface of the gasification furnace wall 111 changes, and the heat transfer tube When a temperature distribution occurs in T or the weld bead WB, the influence of the thermal expansion difference due to the difference in the material becomes large, and the local thermal stress may become large. Therefore, the weld bead WB is formed of a material having high heat resistance. There is.

さらにガス化炉壁111のコンバスタ部116、ディフューザ部117、リダクタ部118の内側の内部空間154では1500℃を越える高温雰囲気であることで温度差は大きくなり易い。このため本実施形態では、ガス化炉壁111の外部空間156側と内部空間154側は、伝熱管Tの軸心と板材166の板厚中心を結ぶ面に対して対称となる同じ形状としてあり、局所的な温度分布が発生しても熱膨張差による熱負荷の増大を抑制することができて、ガス化炉壁111の耐久性を向上できる。 Further, the internal space 154 inside the convertor portion 116, the diffuser portion 117, and the reducer portion 118 of the gasification furnace wall 111 has a high temperature atmosphere exceeding 1500 ° C., so that the temperature difference tends to be large. Therefore, in the present embodiment, the outer space 156 side and the inner space 154 side of the gasifier wall 111 have the same shape symmetrical with respect to the surface connecting the axis of the heat transfer tube T and the plate thickness center of the plate material 166. Even if a local temperature distribution occurs, it is possible to suppress an increase in heat load due to a difference in thermal expansion, and it is possible to improve the durability of the gasification furnace wall 111.

次に、伝熱管Tの外周表面に螺旋状に肉盛溶接を行う溶接装置200について、図面を参照して説明する。図4は、本開示の一実施形態に係る溶接装置200の側面図であり、伝熱管Tの表面に肉盛溶接を開始して溶接ビードWBが形成され始めた状態を示す。図5は、本開示の一実施形態に係る溶接装置200の側面図であり、伝熱管Tの外周表面に肉盛溶接を行って溶接ビードWBが形成している状態を示す。 Next, a welding device 200 that spirally overlays welds the outer peripheral surface of the heat transfer tube T will be described with reference to the drawings. FIG. 4 is a side view of the welding apparatus 200 according to the embodiment of the present disclosure, showing a state in which overlay welding is started on the surface of the heat transfer tube T and the welding bead WB is started to be formed. FIG. 5 is a side view of the welding apparatus 200 according to the embodiment of the present disclosure, showing a state in which a weld bead WB is formed by overlay welding the outer peripheral surface of the heat transfer tube T.

図6は、本開示の一実施形態に係る溶接装置200の側面図であり、伝熱管Tの表面への肉盛溶接を終了した状態を示す。図7は、図4に示す可動台車10の内部構造を示す斜視図である。図8は、図4に示す溶接装置200の制御構成を示す概略構成図である。 FIG. 6 is a side view of the welding apparatus 200 according to the embodiment of the present disclosure, showing a state in which overlay welding to the surface of the heat transfer tube T is completed. FIG. 7 is a perspective view showing the internal structure of the movable carriage 10 shown in FIG. FIG. 8 is a schematic configuration diagram showing a control configuration of the welding apparatus 200 shown in FIG.

図4から図6に示す溶接装置200は、ガス化炉壁111の水冷壁管142に対して、伝熱管T外周表面に、溶接材料を螺旋状に肉盛溶接して溶接ビードWBを形成する装置である。図4から図6に示すように、伝熱管Tは、紙面水平方向に延びる軸線Xに沿って配置される円筒状の管体である。図4から図6に示すように、溶接装置200は、可動台車10と、肉盛溶接機構20と、下方支持機構30と、上方支持機構40と、冷却機構50と、計測機構60と、本体部70と、撮像部80と、表示部85と、制御部90と、を備える。 The welding apparatus 200 shown in FIGS. 4 to 6 spirally overlays the welding material on the outer peripheral surface of the heat transfer tube T with respect to the water-cooled wall tube 142 of the gasification furnace wall 111 to form a welding bead WB. It is a device. As shown in FIGS. 4 to 6, the heat transfer tube T is a cylindrical tube body arranged along the axis X extending in the horizontal direction of the paper surface. As shown in FIGS. 4 to 6, the welding apparatus 200 includes a movable carriage 10, an overlay welding mechanism 20, a lower support mechanism 30, an upper support mechanism 40, a cooling mechanism 50, a measurement mechanism 60, and a main body. A unit 70, an imaging unit 80, a display unit 85, and a control unit 90 are provided.

溶接装置200は、伝熱管Tを設置面Sに平行となるように設置面Sから一定の高さに配置して下方支持機構30および上方支持機構40により支持する。溶接装置200は、可動台車10により、伝熱管Tを移動方向MDに沿って所定の速度で移動させながら軸線X回りに所定の回転数で回転させる。溶接装置200は、移動方向MDに沿って移動しながら軸線X回りに回転する伝熱管Tに対して、紙面上方に設置面Sに対して固定して位置に設置された肉盛溶接機構20により肉盛溶接を行う。 In the welding device 200, the heat transfer tube T is arranged at a constant height from the installation surface S so as to be parallel to the installation surface S, and is supported by the lower support mechanism 30 and the upper support mechanism 40. The welding device 200 rotates the heat transfer tube T around the axis X at a predetermined rotation speed while moving the heat transfer tube T along the moving direction MD at a predetermined speed by the movable carriage 10. The welding device 200 is provided by a build-up welding mechanism 20 installed at a position fixed to an installation surface S above the paper surface with respect to a heat transfer tube T that rotates around the axis X while moving along the movement direction MD. Overlay welding is performed.

図4に示す状態で伝熱管Tの表面に肉盛溶接が開始され、図5に示すように螺旋状に形成される溶接ビードWBの範囲が増加し、図6に示す状態で伝熱管Tの表面への肉盛溶接が終了する。溶接装置200は、図4から図6までの動作を実行することにより、伝熱管Tの表面に溶接材料を螺旋状に肉盛溶接された溶接ビードWBを形成する。 Overlay welding is started on the surface of the heat transfer tube T in the state shown in FIG. 4, the range of the weld bead WB formed in a spiral shape increases as shown in FIG. 5, and the heat transfer tube T is in the state shown in FIG. Overlay welding to the surface is completed. By executing the operations of FIGS. 4 to 6, the welding apparatus 200 forms a weld bead WB in which the welding material is spirally overlaid on the surface of the heat transfer tube T.

可動台車10は、伝熱管Tを軸線Xに沿って所定速度で移動させながら所定速度で回転させる機構の一例である。図12に示すように、可動台車10は、伝熱管Tを軸線Xに沿って移動させる移動機構11と、伝熱管Tを軸線X回りに回転させる回転機構12とを備える。 The movable carriage 10 is an example of a mechanism that rotates the heat transfer tube T at a predetermined speed while moving it along the axis X at a predetermined speed. As shown in FIG. 12, the movable carriage 10 includes a moving mechanism 11 for moving the heat transfer tube T along the axis X, and a rotating mechanism 12 for rotating the heat transfer tube T around the axis X.

図7に示すように、移動機構11は、移動用モータ11aを駆動させることにより、駆動軸11bに連結された第1ギア11cを駆動軸11bと同軸方向に回転させ、第1ギア11cに係合した第2ギア11dを回転させる。第2ギア11dは、連結軸11eを介して連結された第3ギア11fを回転させる。第3ギア11fは、溶接装置200が設置される設置面Sに対して固定された本体部70に設けられたラックギア71と係合している。そのため、第3ギア11fが回転することにより、移動機構11の台車部11gが本体部70のレール72に沿って移動方向MDに移動する。ここで、移動方向MDは、伝熱管Tの軸線X方向と平行な方向である。 As shown in FIG. 7, the moving mechanism 11 drives the moving motor 11a to rotate the first gear 11c connected to the drive shaft 11b in the coaxial direction with the drive shaft 11b, and engages with the first gear 11c. The combined second gear 11d is rotated. The second gear 11d rotates the third gear 11f connected via the connecting shaft 11e. The third gear 11f is engaged with a rack gear 71 provided on the main body 70 fixed to the installation surface S on which the welding device 200 is installed. Therefore, as the third gear 11f rotates, the carriage portion 11g of the moving mechanism 11 moves along the rail 72 of the main body portion 70 in the moving direction MD. Here, the moving direction MD is a direction parallel to the axis X direction of the heat transfer tube T.

伝熱管Tは、回転機構12により、可動台車10に軸線X回りに回転可能な状態で、移動機構11に対して軸線X方向に移動しないように伝熱管Tの外周表面を固定部12eで保持して固定されている。そのため、移動機構11が軸線Xに沿って移動すると、伝熱管Tもそれに伴って軸線Xに沿って移動する。このように、移動機構11は、移動用モータ11aを駆動させることにより、伝熱管Tを軸線Xに沿って移動させる。移動用モータ11aの駆動は、制御部90から伝達される制御信号により制御される。 The heat transfer tube T is held by the fixing portion 12e on the outer peripheral surface of the heat transfer tube T so as not to move in the axis X direction with respect to the moving mechanism 11 in a state where the movable carriage 10 can rotate around the axis X by the rotating mechanism 12. And fixed. Therefore, when the moving mechanism 11 moves along the axis X, the heat transfer tube T also moves along the axis X accordingly. In this way, the moving mechanism 11 moves the heat transfer tube T along the axis X by driving the moving motor 11a. The drive of the moving motor 11a is controlled by a control signal transmitted from the control unit 90.

図7に示すように、回転機構12は、回転用モータ12aを駆動させることにより、駆動軸12bに連結された第1ギア12cを回転させ、第1ギア12cに係合した第2ギア12dを回転させる。第2ギア12dは、伝熱管Tの外周表面を保持して第2ギア12dに対して回転不能に固定される固定部12eと一体となるように連結されている。そのため、第2ギア12dが回転すると、伝熱管Tもそれに伴って軸線X回りに回転する。 As shown in FIG. 7, the rotation mechanism 12 drives the rotation motor 12a to rotate the first gear 12c connected to the drive shaft 12b, and causes the second gear 12d engaged with the first gear 12c to rotate. Rotate. The second gear 12d is connected so as to be integrated with a fixing portion 12e that holds the outer peripheral surface of the heat transfer tube T and is fixed to the second gear 12d so as not to rotate. Therefore, when the second gear 12d rotates, the heat transfer tube T also rotates around the axis X accordingly.

このように、回転機構12は、回転用モータ12aを駆動させることにより、伝熱管Tを軸線X回りに一定の方向に所定の回転数で回転させる。回転用モータ12aの駆動は、制御部90から伝達される制御信号により制御される。 In this way, the rotation mechanism 12 drives the rotation motor 12a to rotate the heat transfer tube T around the axis X in a fixed direction at a predetermined rotation speed. The drive of the rotary motor 12a is controlled by a control signal transmitted from the control unit 90.

肉盛溶接機構20は、軸線X上の所定の溶接位置を通過する伝熱管Tの外周表面に溶接材料を供給しながら螺旋状に溶接ビードWBを形成する装置である。肉盛溶接機構20は、溶接装置200が設置される設置面Sに対して本体部70を介して固定されている。肉盛溶接機構20は、例えばタングステン電極(図示略)を有する溶接トーチ21により、TIG(Tungsten Inert Gas)溶接を行う。肉盛溶接機構20は、制御部90から伝達される制御信号によりタングステン電極に電圧を印可して電流を供給することで、タングステン電極の先端と伝熱管Tの外周表面との間に溶接電流が流れてアークを形成して温度が上昇する。 The overlay welding mechanism 20 is a device that spirally forms a weld bead WB while supplying a welding material to the outer peripheral surface of a heat transfer tube T that passes through a predetermined welding position on the axis X. The overlay welding mechanism 20 is fixed to the installation surface S on which the welding device 200 is installed via the main body 70. The overlay welding mechanism 20 performs TIG (Tungsten Inert Gas) welding with, for example, a welding torch 21 having a tungsten electrode (not shown). The overlay welding mechanism 20 applies a voltage to the tungsten electrode by a control signal transmitted from the control unit 90 to supply a current, so that a welding current is generated between the tip of the tungsten electrode and the outer peripheral surface of the heat transfer tube T. It flows to form an arc and the temperature rises.

溶接トーチ21によって形成されたアークに対して、溶接ワイヤ(溶接材料)が供給されるようになっている。溶接ワイヤは、制御部90から伝達される制御信号によって所定の送給量が供給されるようになっており、溶接ワイヤに電流を流すことによって、ジュール熱で溶接ワイヤが加熱される。本実施形態の溶接ワイヤとしては、例えばインコネル(登録商標)等の固溶強化型ニッケル基合金や高クロム含有合金を含む耐腐食性材料などを用いることができる。 A welding wire (welding material) is supplied to the arc formed by the welding torch 21. A predetermined feed amount is supplied to the welding wire by a control signal transmitted from the control unit 90, and the welding wire is heated by Joule heat by passing an electric current through the welding wire. As the welding wire of the present embodiment, for example, a corrosion-resistant material containing a solid solution reinforced nickel-based alloy such as Inconel (registered trademark) or a high chromium-containing alloy can be used.

肉盛溶接機構20は、本体部70に固定されているが、伝熱管Tは移動方向MDに沿って移動し、かつ軸線X回りに回転している。そのため、肉盛溶接機構20は本体部70の固定された位置で伝熱管Tへの溶接を行うことで、伝熱管Tの外周表面上に耐腐食性材料が、螺旋状に肉盛溶接される。また、肉盛溶接機構20は本体部70の固定された位置であるために、溶接トーチ21と伝熱管Tの位置関係を精度高く管理することができる。 The overlay welding mechanism 20 is fixed to the main body 70, but the heat transfer tube T moves along the moving direction MD and rotates around the axis X. Therefore, the overlay welding mechanism 20 spirally overlays the corrosion-resistant material on the outer peripheral surface of the heat transfer tube T by welding the heat transfer tube T at a fixed position of the main body 70. .. Further, since the overlay welding mechanism 20 is at a fixed position of the main body 70, the positional relationship between the welding torch 21 and the heat transfer tube T can be managed with high accuracy.

下方支持機構30は、伝熱管Tを下方から支持する機構であり、設置面Sに対して固定されている。下方支持機構30は、第1下方支持部31と、第2下方支持部32と、第3下方支持部33と、を備える。第1下方支持部31は、肉盛溶接機構20に最も近接した位置で伝熱管Tの下方側の外周表面を支持し、肉盛溶接機構20が固定される本体部70に対して固定されている。第2下方支持部32は、第1下方支持部31に隣接して配置され、第1下方支持部31よりも軸線Xに沿った伝熱管Tの移動方向MDの上流側(紙面右側)に配置されている。 The lower support mechanism 30 is a mechanism that supports the heat transfer tube T from below, and is fixed to the installation surface S. The lower support mechanism 30 includes a first lower support portion 31, a second lower support portion 32, and a third lower support portion 33. The first lower support portion 31 supports the outer peripheral surface on the lower side of the heat transfer tube T at the position closest to the overlay welding mechanism 20, and is fixed to the main body portion 70 to which the overlay welding mechanism 20 is fixed. There is. The second lower support portion 32 is arranged adjacent to the first lower support portion 31, and is arranged on the upstream side (right side of the paper surface) of the moving direction MD of the heat transfer tube T along the axis X from the first lower support portion 31. Has been done.

第3下方支持部33は、第1下方支持部31に対して伝熱管Tの移動方向MDの下流側(紙面左側)の複数箇所と、第2下方支持部32に対して伝熱管Tの移動方向MDの上流側(紙面右側)の複数箇所に配置される。第3下方支持部33は、伝熱管Tを支持する先端位置の設置面Sに対して直交する方向(紙面上下方向)の距離を調整可能な高さ調整機構(切替機構)33cを備える。 The third lower support portion 33 has a plurality of locations on the downstream side (left side of the paper surface) of the heat transfer tube T in the moving direction MD with respect to the first lower support portion 31, and the heat transfer tube T moves with respect to the second lower support portion 32. It is arranged at a plurality of locations on the upstream side (right side of the paper) of the direction MD. The third lower support portion 33 includes a height adjusting mechanism (switching mechanism) 33c capable of adjusting the distance in the direction orthogonal to the installation surface S at the tip position supporting the heat transfer tube T (vertical direction on the paper surface).

高さ調整機構33cは、伝熱管Tを支持する位置に第3下方支持部33の先端を保持する支持状態と、伝熱管Tを支持しない位置に第3下方支持部33の先端を退避させた退避状態とを切り替え可能な機構である。高さ調整機構33cは、第3下方支持部33の先端位置を、設置面Sに対して直交する方向(紙面上下方向)に沿って移動させる機構である。高さ調整機構33cは、例えば、圧縮空気源(図示略)から供給される圧縮空気の圧力によって鉛直方向上下に伸縮して、図示しないストッパで第3下方支持部33の先端位置を管理する機構となっている。 The height adjusting mechanism 33c has a support state in which the tip of the third lower support portion 33 is held at a position that supports the heat transfer tube T, and the tip of the third lower support portion 33 is retracted at a position that does not support the heat transfer tube T. It is a mechanism that can switch between the retracted state. The height adjusting mechanism 33c is a mechanism for moving the tip position of the third lower support portion 33 along a direction orthogonal to the installation surface S (vertical direction on the paper surface). The height adjusting mechanism 33c is, for example, a mechanism that expands and contracts vertically in the vertical direction by the pressure of compressed air supplied from a compressed air source (not shown) and manages the tip position of the third lower support portion 33 with a stopper (not shown). It has become.

第3下方支持部33のうち、第1下方支持部31に対して伝熱管Tの移動方向MDの下流側の複数箇所に配置されるものは、可動台車10の移動方向MDへの移動に際して接触しないように高さ調整機構33cにより先端位置を下方側へ退避状態となるように移動させる。伝熱管Tの移動方向MDの最も下流側に配置される第3下方支持部33は、図4および図5に示す状態では、可動台車10が通過していないため、可動台車10との接触を避けるために第3下方支持部33の先端位置を退避状態となる。一方、図6に示す状態では、可動台車10が通過しているため、第3下方支持部33の先端位置は支持状態となる。 Among the third lower support portions 33, those arranged at a plurality of locations on the downstream side of the moving direction MD of the heat transfer tube T with respect to the first lower supporting portion 31 come into contact with each other when the movable carriage 10 moves in the moving direction MD. The height adjusting mechanism 33c moves the tip position downward so as to prevent the tip from being retracted. In the state shown in FIGS. 4 and 5, the third lower support portion 33 arranged on the most downstream side of the moving direction MD of the heat transfer tube T does not pass through the movable carriage 10, so that the third lower support portion 33 does not come into contact with the movable carriage 10. In order to avoid this, the tip position of the third lower support portion 33 is retracted. On the other hand, in the state shown in FIG. 6, since the movable carriage 10 has passed, the tip position of the third lower support portion 33 is in the support state.

第3下方支持部33のうち、第1下方支持部31に対して伝熱管Tの移動方向MDの上流側の複数箇所に配置されるものは、冷却機構50に接触しないように高さ調整機構33cにより第3下方支持部33の先端位置を退避状態となるように移動させる。伝熱管Tの移動方向MDの最も上流側に配置される第3下方支持部33は、図4に示す状態では、冷却機構50が通過していないため、第3下方支持部33の先端位置は支持状態となる。一方、図5および図6に示す状態では、冷却機構50が通過しているため、冷却機構50との接触を避けるために第3下方支持部33の先端位置は退避状態となる。 Among the third lower support portions 33, those arranged at a plurality of locations on the upstream side of the moving direction MD of the heat transfer tube T with respect to the first lower support portion 31 are height adjusting mechanisms so as not to come into contact with the cooling mechanism 50. The tip position of the third lower support portion 33 is moved by the 33c so as to be in the retracted state. In the state shown in FIG. 4, the third lower support portion 33 arranged on the most upstream side of the moving direction MD of the heat transfer tube T does not pass through the cooling mechanism 50, so that the tip position of the third lower support portion 33 is It becomes a support state. On the other hand, in the states shown in FIGS. 5 and 6, since the cooling mechanism 50 has passed through, the tip position of the third lower support portion 33 is in the retracted state in order to avoid contact with the cooling mechanism 50.

上方支持機構40は、伝熱管Tを上方から支持する機構であり、肉盛溶接機構20が固定される本体部70に対して固定されている。上方支持機構40は、肉盛溶接機構20よりも伝熱管Tの移動方向MDの上流側かつ肉盛溶接機構20に近接した位置で伝熱管Tを支持することにより、肉盛溶接機構20の溶接トーチ21から伝熱管Tまでの距離や溶接トーチ21との角度など溶接トーチ21と伝熱管Tの位置関係が変動することを抑制する。上方支持機構40は、高さ調整機構により、伝熱管Tを支持する先端位置の設置面Sに対して直交する方向(紙面上下方向)の距離を調整可能となっている。 The upper support mechanism 40 is a mechanism that supports the heat transfer tube T from above, and is fixed to the main body 70 to which the overlay welding mechanism 20 is fixed. The upper support mechanism 40 welds the overlay welding mechanism 20 by supporting the heat transfer tube T on the upstream side of the moving direction MD of the heat transfer tube T and closer to the overlay welding mechanism 20 than the overlay welding mechanism 20. It suppresses fluctuations in the positional relationship between the welding torch 21 and the heat transfer tube T, such as the distance from the torch 21 to the heat transfer tube T and the angle with the welding torch 21. The upper support mechanism 40 can adjust the distance in the direction orthogonal to the installation surface S at the tip position supporting the heat transfer tube T (up and down direction on the paper surface) by the height adjusting mechanism.

冷却機構50は、伝熱管Tの移動方向MDの上流側端部Tuから冷却水(冷却媒体)を伝熱管T内に流入させるとともに伝熱管Tの移動方向MDの下流側端部Tdから冷却水を伝熱管T内から流出させることにより伝熱管Tを内部から冷却する機構である。ここで冷却媒体は、水の他に、熱媒体や機械作動油などの液体や、窒素などの気体を用いてもよい。 The cooling mechanism 50 causes cooling water (cooling medium) to flow into the heat transfer tube T from the upstream end Tu of the heat transfer tube T in the moving direction MD, and cool water from the downstream end Td of the heat transfer tube T in the moving direction MD. Is a mechanism for cooling the heat transfer tube T from the inside by causing the heat transfer tube T to flow out from the inside. Here, as the cooling medium, in addition to water, a liquid such as a heat medium or mechanical hydraulic oil or a gas such as nitrogen may be used.

冷却機構50は、伝熱管Tの移動方向MDに沿って、上流側端部Tuから下流側端部Tdに向けて伝熱管T内に流入した冷却水を流通させる。伝熱管Tの上流側端部Tuから溶接位置までの領域は、溶接ビードWBが形成されていない領域である。そのため、冷却水は、伝熱管Tの中で最も高温となる溶接位置近傍へは加熱されて温度上昇されない状態で供給され、溶接位置の近傍の伝熱管Tを適切に効果的に冷却することができる。これにより、伝熱管Tの溶接ビードWBが形成時に熱影響による溶け込み量の変化や熱応力による伝熱管Tの反り変形を抑制することができる。 The cooling mechanism 50 circulates the cooling water that has flowed into the heat transfer tube T from the upstream end Tu to the downstream end Td along the moving direction MD of the heat transfer tube T. The region from the upstream end Tu of the heat transfer tube T to the welding position is a region where the welding bead WB is not formed. Therefore, the cooling water is supplied to the vicinity of the welding position, which is the highest temperature in the heat transfer tube T, in a state where the temperature is not raised by being heated, and the heat transfer tube T in the vicinity of the welding position can be appropriately and effectively cooled. it can. As a result, when the weld bead WB of the heat transfer tube T is formed, it is possible to suppress a change in the amount of penetration due to the heat effect and warpage deformation of the heat transfer tube T due to thermal stress.

計測機構60は、肉盛溶接機構20が配置される溶接位置よりも移動方向MDの下流側に配置される機構である。計測機構60は、例えば非接触式のセンサを用いることにより、計測位置を通過する伝熱管Tの外径を計測する機構である。制御部90は、計測機構60から伝達される肉盛溶接がされていない伝熱管Tの外径と肉盛溶接がされた伝熱管Tの外径とに基づいて、溶接ビードWBの肉盛厚さが適切な厚さとなっているかどうかを判断することができる。 The measuring mechanism 60 is a mechanism that is arranged on the downstream side of the MD in the moving direction from the welding position where the overlay welding mechanism 20 is arranged. The measuring mechanism 60 is a mechanism for measuring the outer diameter of the heat transfer tube T passing through the measuring position by using, for example, a non-contact type sensor. The control unit 90 builds up the weld bead WB based on the outer diameter of the heat transfer tube T that has not been overlaid welded and the outer diameter of the heat transfer tube T that has been overlaid welded, which is transmitted from the measuring mechanism 60. It is possible to judge whether or not the thickness is appropriate.

制御部90は、例えば、溶接ビードWBの肉盛厚さが適切な厚さでないと判断した場合、肉盛厚さ目標範囲から外れて適切な厚さでないことを示す情報を表示部85に表示させる。また、制御部90は、肉盛溶接機構20による伝熱管Tの肉盛溶接を一時停止するよう肉盛溶接機構20を制御してもよい。このとき、制御部90は、肉盛溶接機構20による伝熱管Tの各種の肉盛溶接条件を設定値との差異の情報を表示部85に表示して、肉盛厚さが適切な厚さから外れた要因を判断し易くするようにしても良い。 For example, when the control unit 90 determines that the overlay thickness of the weld bead WB is not an appropriate thickness, the control unit 90 displays on the display unit 85 information indicating that the overlay thickness is out of the target range and is not an appropriate thickness. Let me. Further, the control unit 90 may control the overlay welding mechanism 20 so as to temporarily stop the overlay welding of the heat transfer tube T by the overlay welding mechanism 20. At this time, the control unit 90 displays information on the difference between the various overlay welding conditions of the heat transfer tube T by the overlay welding mechanism 20 and the set value on the display unit 85, and the overlay thickness is an appropriate thickness. It may be possible to make it easier to determine the factors that deviate from the above.

本体部70は、溶接装置200が設置される設置面Sに対して固定される筐体である。本体部70には、肉盛溶接機構20と、第1下方支持部31と、上方支持機構40が固定される。また、本体部70は、図7に示すラックギア71およびレール72を備え、可動台車10がレール72に沿って軸線X方向に平行な移動方向MDへ往復移動が可能となっている。 The main body 70 is a housing fixed to the installation surface S on which the welding device 200 is installed. The overlay welding mechanism 20, the first lower support portion 31, and the upper support mechanism 40 are fixed to the main body portion 70. Further, the main body 70 includes the rack gear 71 and the rail 72 shown in FIG. 7, and the movable carriage 10 can reciprocate in the moving direction MD parallel to the axis X direction along the rail 72.

撮像部80は、溶接トーチ21の先端に設けられるタングステン電極の先端と伝熱管Tの外周表面とを含む溶接位置の近傍を撮像する撮像装置である。撮像部80は、撮像した溶接位置の近傍の画像を表示部85に出力することができる。溶接装置200を操作する作業者は、表示部85に表示される画像を目視することで、肉盛溶接機構20により伝熱管Tに形成される溶接ビードWBに異常がないかどうかを確認することができる。作業者は、溶接ビードWBに異常があると判断した場合は、溶接装置200の動作を一時停止させる。また、撮像部80で撮像された画像を制御部90で解析し、異常があると判断した場合は、制御部90からの信号で自動的に溶接装置200の動作を一時停止させてもよい。 The imaging unit 80 is an imaging device that images the vicinity of the welding position including the tip of the tungsten electrode provided at the tip of the welding torch 21 and the outer peripheral surface of the heat transfer tube T. The imaging unit 80 can output an image in the vicinity of the imaged welding position to the display unit 85. The operator who operates the welding apparatus 200 visually confirms whether or not there is any abnormality in the welding bead WB formed on the heat transfer tube T by the overlay welding mechanism 20 by visually observing the image displayed on the display unit 85. Can be done. When the operator determines that the welding bead WB has an abnormality, the operator suspends the operation of the welding device 200. Further, when the control unit 90 analyzes the image captured by the image pickup unit 80 and determines that there is an abnormality, the operation of the welding device 200 may be automatically suspended by a signal from the control unit 90.

制御部90は、図8の制御構成図に示すように、移動機構11と、回転機構12と、肉盛溶接機構20とを含む溶接装置200の各部を制御する装置である。制御部90は、移動機構11が伝熱管Tを軸線Xに沿って移動方向MDに所定の一定の移動速度で移動させ、かつ回転機構12が伝熱管Tを軸線X回りに所定の一定の回転速度で回転させる状態で、肉盛溶接機構20が伝熱管Tの外周表面に螺旋状に肉盛溶接を行うよう制御する。 As shown in the control configuration diagram of FIG. 8, the control unit 90 is a device that controls each part of the welding device 200 including the moving mechanism 11, the rotating mechanism 12, and the overlay welding mechanism 20. In the control unit 90, the moving mechanism 11 moves the heat transfer tube T along the axis X in the moving direction MD at a predetermined constant moving speed, and the rotating mechanism 12 rotates the heat transfer tube T around the axis X at a predetermined constant speed. The overlay welding mechanism 20 controls the overlay welding to be spirally performed on the outer peripheral surface of the heat transfer tube T in a state of being rotated at a high speed.

制御部90は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。 The control unit 90 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Then, as an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.

本実施形態において、伝熱管Tは、例えば、低合金鋼により形成されている。溶接されていない伝熱管Tの外径は、例えば、30mm以上かつ50mm以下である。また、伝熱管Tの軸線Xに沿った長さは、例えば、2000mm以上かつ8000mm以下である。溶接装置200は、伝熱管Tの外周表面に形成される溶接ビードWBの肉盛厚さが、例えば1mm以上かつ2.5mm以下となるように肉盛溶接機構20による溶接を行う。溶接ビードWBの肉盛厚さは、例えば耐腐食性と耐熱性から伝熱管Tを保護することができるものとして設定される。 In this embodiment, the heat transfer tube T is made of, for example, low alloy steel. The outer diameter of the unwelded heat transfer tube T is, for example, 30 mm or more and 50 mm or less. The length of the heat transfer tube T along the axis X is, for example, 2000 mm or more and 8000 mm or less. The welding apparatus 200 performs welding by the overlay welding mechanism 20 so that the overlay thickness of the weld bead WB formed on the outer peripheral surface of the heat transfer tube T is, for example, 1 mm or more and 2.5 mm or less. The overlay thickness of the weld bead WB is set so as to be able to protect the heat transfer tube T from, for example, corrosion resistance and heat resistance.

制御部90は、溶接ビードWBの肉盛厚さが、1mm以上かつ2.5mm以下となるように、移動機構11による伝熱管Tの軸線X方向の所定の移動速度が設定され、回転機構12による軸線X回りの伝熱管Tの所定の回転速度が設定されている。制御部90は、計測機構60から伝達される計測値に基づいた、肉盛溶接がされた伝熱管Tの外径および/または溶接ビードWBの肉盛厚さが目標仕様の範囲内になるよう、伝熱管Tの軸線X方向の移動速度と、軸線X回りの伝熱管Tの回転速度を所定範囲内で制御してもよい。 In the control unit 90, a predetermined moving speed of the heat transfer tube T in the axial X direction by the moving mechanism 11 is set by the moving mechanism 11 so that the overlay thickness of the weld bead WB is 1 mm or more and 2.5 mm or less, and the rotation mechanism 12 A predetermined rotation speed of the heat transfer tube T around the axis X is set. The control unit 90 adjusts the outer diameter of the overlaid heat transfer tube T and / or the overlaid thickness of the weld bead WB to be within the target specifications based on the measured value transmitted from the measuring mechanism 60. , The moving speed of the heat transfer tube T in the axis X direction and the rotation speed of the heat transfer tube T around the axis X may be controlled within a predetermined range.

制御部90は、伝熱管Tの軸線X方向の移動速度(送り速度)が例えば20mm/min以上かつ50mm/min以下となるように移動機構11を制御する。また、制御部90は、伝熱管Tの軸線X回りの回転速度が例えば5rpm以上かつ10rpm以下となるように回転機構12を制御する。 The control unit 90 controls the moving mechanism 11 so that the moving speed (feeding speed) of the heat transfer tube T in the axis X direction is, for example, 20 mm / min or more and 50 mm / min or less. Further, the control unit 90 controls the rotation mechanism 12 so that the rotation speed of the heat transfer tube T around the axis X is, for example, 5 rpm or more and 10 rpm or less.

次に、本実施形態の溶接装置200により伝熱管Tの外周表面に形成された溶接ビードWBの肉盛溶接割れを評価する肉盛溶接割れ評価方法について、図面を参照して説明する。図9は、本実施形態の肉盛溶接割れ評価方法を示すフローチャートである。図10は、溶接ビードWBが外周表面に形成された伝熱管Tを示す横断面図である。 Next, a build-up weld crack evaluation method for evaluating the build-up weld crack of the weld bead WB formed on the outer peripheral surface of the heat transfer tube T by the welding device 200 of the present embodiment will be described with reference to the drawings. FIG. 9 is a flowchart showing the overlay weld crack evaluation method of the present embodiment. FIG. 10 is a cross-sectional view showing a heat transfer tube T in which a weld bead WB is formed on the outer peripheral surface.

図11は、伝熱管Tを切断して作成された評価材EMを示す斜視図である。図12は、評価材EMの長手方向に沿って延びる切断面CSを示す側面図である。図13は、曲げ加工治具300に評価材EMを設置した状態を示す図である。図14は、曲げ加工治具300により評価材EMを折り曲げた状態を示す図である。 FIG. 11 is a perspective view showing the evaluation material EM produced by cutting the heat transfer tube T. FIG. 12 is a side view showing a cut surface CS extending along the longitudinal direction of the evaluation material EM. FIG. 13 is a diagram showing a state in which the evaluation material EM is installed on the bending jig 300. FIG. 14 is a diagram showing a state in which the evaluation material EM is bent by the bending jig 300.

図9に示す本実施形態の肉盛溶接割れ評価方法は、軸線Xに沿って延びる円筒状の伝熱管(管体)Tの外周表面に形成された溶接ビードWBの肉盛溶接割れを評価するものである。
ステップS101で、制御部90は、溶接装置200に設置された伝熱管Tの外周表面を覆うように軸線X回りに螺旋状に延びる溶接ビードWBを形成する肉盛溶接を行う第1溶接工程を実行するよう溶接装置200を制御する。
The overlay weld crack evaluation method of the present embodiment shown in FIG. 9 evaluates the overlay weld crack of the weld bead WB formed on the outer peripheral surface of the cylindrical heat transfer tube (tube body) T extending along the axis X. It is a thing.
In step S101, the control unit 90 performs a first welding step of overlay welding to form a welding bead WB spirally extending around the axis X so as to cover the outer peripheral surface of the heat transfer tube T installed in the welding device 200. The welding device 200 is controlled to perform.

制御部90は、第1溶接工程を実行する際に、予め定められた所定の肉盛溶接条件を設定して肉盛溶接を行う。肉盛溶接条件には、伝熱管Tに溶接を行う肉盛溶接機構20に対する伝熱管Tの軸線X回りの回転数Rtと、肉盛溶接機構20に対する伝熱管Tの軸線X方向への移動速度Vtとの比率である溶接ピッチ(Vt/Rt)が含まれる。 When the control unit 90 executes the first welding step, the control unit 90 sets predetermined overlay welding conditions and performs overlay welding. The overlay welding conditions include the rotation speed Rt around the axis X of the heat transfer tube T with respect to the overlay welding mechanism 20 that welds to the heat transfer tube T, and the moving speed of the heat transfer tube T with respect to the overlay welding mechanism 20 in the axis X direction. The welding pitch (Vt / Rt), which is the ratio to Vt, is included.

ステップS102では、伝熱管Tの肉盛溶接割れを評価するための評価材EMを作成する。図10から図12に示すように、評価材EMは、第1溶接工程により溶接ビードWBが外周表面に形成された伝熱管Tの一部を切断することにより作成される。評価材EMは、伝熱管Tの外周表面に対応する溶接面WSの全周に螺旋状に溶接ビードWBが形成され、溶接面WSに対して略直交する面が切断面CSとなっている。 In step S102, an evaluation material EM for evaluating the overlay weld crack of the heat transfer tube T is created. As shown in FIGS. 10 to 12, the evaluation material EM is produced by cutting a part of the heat transfer tube T formed on the outer peripheral surface of the weld bead WB by the first welding step. In the evaluation material EM, the weld bead WB is spirally formed on the entire circumference of the welded surface WS corresponding to the outer peripheral surface of the heat transfer tube T, and the surface substantially orthogonal to the welded surface WS is the cut surface CS.

図11に示すように、ステップS102で作成される評価材EMは、軸線X方向を長手方向とし、軸線X回りの周方向を短手方向とした短冊状に切り出して形成される。評価材EMの長手方向の長さL1は、例えば、200mm以上かつ300mm以下である。評価材EMの短手方向の長さL2は、例えば、約10mmである。評価材EMの一方向の表面全面には溶接ビードWBが形成されている。 As shown in FIG. 11, the evaluation material EM created in step S102 is formed by cutting out a strip shape having the axial X direction as the longitudinal direction and the circumferential direction around the axis X as the lateral direction. The length L1 of the evaluation material EM in the longitudinal direction is, for example, 200 mm or more and 300 mm or less. The length L2 of the evaluation material EM in the lateral direction is, for example, about 10 mm. A weld bead WB is formed on the entire surface of the evaluation material EM in one direction.

ステップS103では、第1溶接工程により溶接ビードWBが形成された伝熱管Tの溶接ビードWB部分の凹凸形状の起伏として表面粗度を計測し、表面粗度が評価基準を満たしているかどうかを評価する。表面粗度とは、図12に示すように、伝熱管Tの一部(例えば、軸線Xに沿った長手方向が50mmの部分)において、溶接ビードWBの高さが最も高い位置であるBUmaxと、溶接ビードWBの高さが最も低い位置であるBUminとの差分であるBUtのことを示す。例えば、BUtが0.15mm以下であれば評価基準を満たし、BUtが例えば0.15mmより大きければ評価基準を満たさないものとする。 In step S103, the surface roughness is measured as the undulations of the uneven shape of the weld bead WB portion of the heat transfer tube T in which the weld bead WB is formed by the first welding step, and it is evaluated whether or not the surface roughness satisfies the evaluation criteria. To do. As shown in FIG. 12, the surface roughness is defined as BUmax, which is the position where the height of the weld bead WB is the highest in a part of the heat transfer tube T (for example, a portion having a longitudinal direction of 50 mm along the axis X). , BUt, which is the difference from BUmin, which is the position where the height of the weld bead WB is the lowest. For example, if the BUt is 0.15 mm or less, the evaluation standard is satisfied, and if the BUt is larger than, for example, 0.15 mm, the evaluation standard is not satisfied.

ステップS104では、表面粗度BUtが例えば0.15mm以下であれば評価基準を満たすと判断してステップS105へ処理を進め、表面粗度BUtが例えば0.15mmより大きければ評価基準を満たさないと判断してステップS110へ処理を進める。 In step S104, if the surface roughness But is, for example, 0.15 mm or less, it is determined that the evaluation standard is satisfied, and the process proceeds to step S105. If the surface roughness But is larger than, for example, 0.15 mm, the evaluation standard is not satisfied. The determination is made and the process proceeds to step S110.

ステップS105では、ステップS102で作成された評価材EMを折り曲げる評価材曲げ工程が実行される。ステップS105の評価材曲げ工程は、曲げ加工治具300を用いて実行される。図13および図14に示すように、曲げ加工治具300は、加圧用治具310と、本体治具320とを有する。 In step S105, the evaluation material bending step of bending the evaluation material EM created in step S102 is executed. The evaluation material bending step of step S105 is executed by using the bending jig 300. As shown in FIGS. 13 and 14, the bending jig 300 includes a pressurizing jig 310 and a main body jig 320.

加圧用治具310は、先端に曲率半径r1の半円筒状(円弧状)の外周面311を有する部材である。本体治具320は、曲率半径r2の半円筒状(円弧状)の内周面321を有する部材である。曲率半径r2と曲率半径r1との差分は、評価材EMの短手方向の長さL2と略一致している。曲率半径r1は、短冊状に切り出して形成される評価材EMのサイズに対して、折り曲げにより伝熱管Tが座屈破断しない範囲で適切に設定された所定の曲率半径であり、例えば、約20mmであり、曲率半径r2は、r2=r1+L2±評価材EMの切り出し誤差で設定される。 The pressurizing jig 310 is a member having a semi-cylindrical (arc-shaped) outer peripheral surface 311 having a radius of curvature r1 at its tip. The main body jig 320 is a member having a semi-cylindrical (arc-shaped) inner peripheral surface 321 having a radius of curvature r2. The difference between the radius of curvature r2 and the radius of curvature r1 is substantially the same as the length L2 in the lateral direction of the evaluation material EM. The radius of curvature r1 is a predetermined radius of curvature appropriately set within a range in which the heat transfer tube T does not buckle and fracture due to bending with respect to the size of the evaluation material EM formed by cutting out in a strip shape, for example, about 20 mm. The radius of curvature r2 is set by r2 = r1 + L2 ± the cutting error of the evaluation material EM.

ステップS105で、曲げ加工治具300の作業者は、本体治具320の中心部と評価材EMの長手方向の中央部が鉛直方向に一致するように載置する。図13に示すように、評価材EMは、長手方向に延びる切断面CSに加圧用治具310が突き当てられるように配置される。その後、作業者は、評価材EMの長手方向の中央部に加圧用治具310の先端の外周面311を突き当てる。 In step S105, the operator of the bending jig 300 places the jig 320 so that the central portion of the main body jig 320 and the central portion of the evaluation material EM in the longitudinal direction coincide with each other in the vertical direction. As shown in FIG. 13, the evaluation material EM is arranged so that the pressurizing jig 310 is abutted against the cut surface CS extending in the longitudinal direction. After that, the operator abuts the outer peripheral surface 311 of the tip of the pressurizing jig 310 against the central portion of the evaluation material EM in the longitudinal direction.

図13に示す状態に評価材EMを設置した後、作業者は、油圧シリンダ等の加圧機構により加圧用治具310を下方に向けて移動させ、評価材EMの長手方向の中央部に加圧用治具310の外周面311を突き当てて評価材EMを折り曲げる。評価材EMが本体治具320の内周面321に接触する位置まで加圧用治具310を押し下げると、図14に示す状態となる。 After installing the evaluation material EM in the state shown in FIG. 13, the operator moves the pressurizing jig 310 downward by a pressurizing mechanism such as a hydraulic cylinder, and applies the evaluation material EM to the central portion in the longitudinal direction. The evaluation material EM is bent by abutting the outer peripheral surface 311 of the pressure jig 310. When the pressurizing jig 310 is pushed down to a position where the evaluation material EM comes into contact with the inner peripheral surface 321 of the main body jig 320, the state shown in FIG. 14 is obtained.

図14に示す状態で、評価材EMは、加圧用治具310の外周面311と本体治具320の内周面321の双方に隙間なく接触する状態まで折り曲げられて略U字状となる。評価材EMの短手方向の長さL2、加圧用治具310の外周面311の曲率半径r1と本体治具320の内周面321の曲率半径r2や評価材EMの切り出し誤差などの各サイズによっては、隙間が小さくなった状態まで折り曲げられて略U字状となる。 In the state shown in FIG. 14, the evaluation material EM is bent into a substantially U-shape so as to be in contact with both the outer peripheral surface 311 of the pressurizing jig 310 and the inner peripheral surface 321 of the main body jig 320 without a gap. Each size such as the length L2 in the lateral direction of the evaluation material EM, the radius of curvature r1 of the outer peripheral surface 311 of the pressurizing jig 310, the radius of curvature r2 of the inner peripheral surface 321 of the main body jig 320, and the cutting error of the evaluation material EM. Depending on the case, it is bent to a state where the gap becomes small and becomes a substantially U-shape.

ステップS106では、ステップS105で曲げ加工治具300により折り曲げられた評価材EMの溶接ビードWBの表面および溶接面WSと溶接ビードWBとの間(熱影響部)に溶接割れが発生しているか否かを評価する。肉盛溶接割れの評価は、例えば、浸透探傷試験(Penetrant Testing)により行われてもよい。 In step S106, whether or not a welding crack has occurred on the surface of the welding bead WB of the evaluation material EM bent by the bending jig 300 in step S105 and between the welding surface WS and the welding bead WB (heat-affected zone). Evaluate. The evaluation of overlay weld cracks may be performed, for example, by a penetrant testing.

従来は肉盛溶接に対して製品としての十分な評価が行われていなかったが、曲げ加工治具300により折り曲げられた評価材EMに、例えば浸透探傷試験により溶接割れが発生しているか否を評価することで、溶接ビードWBや伝熱管Tの熱影響部の曲げ加工による強度低下を加味した評価が行われ、製品として問題なく使用できる伝熱管Tであるかどうかを適切に評価することができる。 Conventionally, sufficient evaluation as a product has not been performed for overlay welding, but whether or not welding cracks have occurred in the evaluation material EM bent by the bending jig 300, for example, by a penetrant inspection test. By evaluating, evaluation is performed in consideration of the decrease in strength due to bending of the heat-affected zone of the weld bead WB and heat transfer tube T, and it is possible to appropriately evaluate whether or not the heat transfer tube T can be used as a product without problems. it can.

浸透探傷試験は、以下の手順により行われる。まず、評価材EMに付着する油や汚れなどの不純物を洗浄液など使用して除去する。次に、評価材EMの溶接ビードWBの全領域に溶接割れ部分への浸透性の高い着色された浸透液を塗布する。評価材EMに溶接割れが発生している場合には、溶接割れ部分に浸透液が浸透する。次に、評価材EMの表面に塗布された浸透液を、水等を用いて除去する。評価材EMに溶接割れが発生している場合には、溶接割れ部分に浸透した浸透液は水等では除去されずに残存する。 The penetrant inspection is carried out according to the following procedure. First, impurities such as oil and dirt adhering to the evaluation material EM are removed by using a cleaning liquid or the like. Next, a colored penetrant having high permeability to the weld crack portion is applied to the entire region of the weld bead WB of the evaluation material EM. When the evaluation material EM has weld cracks, the penetrant permeates the weld cracks. Next, the penetrant applied to the surface of the evaluation material EM is removed using water or the like. When the evaluation material EM has weld cracks, the penetrant that has penetrated into the weld cracks remains without being removed by water or the like.

次に、溶接ビードWBの全領域に溶接割れ部分へ侵入する現像剤を塗布する。評価材EMに溶接割れが発生している場合には、溶接割れ部分へ現像剤が侵入し、現像剤が侵入したことによって浸透液が評価材EMの表面に吸い上げられる。評価材EMの表面に吸い上げられた浸透液は、溶接割れの部分よりも拡大した領域に広がる。そのため、評価材EMを観察する作業者は、溶接割れが発生しているかどうかを外観の目視により適切に評価することができる。 Next, a developer that penetrates into the weld crack portion is applied to the entire region of the weld bead WB. When welding cracks occur in the evaluation material EM, the developer invades the weld cracked portion, and the penetrant is sucked up to the surface of the evaluation material EM due to the invasion of the developer. The penetrant sucked up on the surface of the evaluation material EM spreads in an enlarged region rather than the weld crack portion. Therefore, the operator observing the evaluation material EM can appropriately evaluate whether or not welding cracks have occurred by visually observing the appearance.

ステップS107で、作業者は、浸透探傷試験が行われた評価材EMの外観を目視することにより、評価材EMに溶接割れが発生しているか否かを判断する。評価材EMに溶接割れが発生していない場合には、肉盛溶接が評価基準を満たすと判断し、ステップS108へ処理を進める。一方、評価材EMに溶接割れが発生している場合には、肉盛溶接が評価基準を満たさないと判断し、ステップS110へ処理を進める。 In step S107, the operator visually determines the appearance of the evaluation material EM subjected to the penetrant inspection test to determine whether or not welding cracks have occurred in the evaluation material EM. When the evaluation material EM does not have welding cracks, it is determined that the overlay welding satisfies the evaluation criteria, and the process proceeds to step S108. On the other hand, if welding cracks occur in the evaluation material EM, it is determined that the overlay welding does not satisfy the evaluation criteria, and the process proceeds to step S110.

作業者は、着色された浸透液が視認できる場合には溶接割れが発生して肉盛溶接が評価基準を満たさないと判断し、着色された浸透液が視認できない場合には溶接割れが発生しておらず肉盛溶接が評価基準を満たすと判断する。なお、作業者は、着色された浸透液が視認できる場合であっても、浸透液が広がる領域が所定の大きさ以下(例えば、最大の長さが3mm以下)である場合には、溶接割れが発生していないと判断してステップS108へ処理を進めるようにしてもよい。 The operator determines that welding cracks occur when the colored penetrant is visible and the overlay welding does not meet the evaluation criteria, and when the colored penetrant is not visible, welding cracks occur. It is judged that the overlay welding meets the evaluation criteria. Even when the colored penetrant is visible, the operator can crack the weld if the area where the penetrant spreads is less than a predetermined size (for example, the maximum length is 3 mm or less). May be determined and the process proceeds to step S108.

ステップS108で、作業者は、ステップS101で肉盛溶接が行われた伝熱管Tの表面粗度が評価基準を満たし、かつステップS101で肉盛溶接が行われた伝熱管Tから切り出した評価材EMが溶接割れの評価基準を満たすため、ステップS101での肉盛溶接条件を適切な肉盛溶接条件として溶接装置200に設定する。 In step S108, the operator can see that the surface roughness of the heat transfer tube T subjected to overlay welding in step S101 satisfies the evaluation criteria, and the evaluation material cut out from the heat transfer tube T subjected to overlay welding in step S101. In order for the EM to satisfy the evaluation criteria for welding cracks, the overlay welding conditions in step S101 are set in the welding apparatus 200 as appropriate overlay welding conditions.

ステップS109で、溶接装置200は、ステップS108で設定された肉盛溶接条件で溶接ビードWBが形成されていない伝熱管Tの表面に肉盛溶接を行う第2溶接工程を実行する。ステップS108で設定される肉盛溶接条件は、肉盛溶接された伝熱管Tに溶接割れが発生しない適切な肉盛溶接条件であるため、溶接割れの発生しない適切な肉盛溶接された伝熱管Tが製造される。ステップS109が終了すると、本フローチャートの処理が終了する。 In step S109, the welding apparatus 200 executes a second welding step of overlay welding on the surface of the heat transfer tube T in which the welding bead WB is not formed under the overlay welding conditions set in step S108. Since the build-up welding condition set in step S108 is an appropriate build-up welding condition in which welding cracks do not occur in the build-up welded heat transfer tube T, an appropriate build-up welded heat transfer tube in which weld cracks do not occur. T is manufactured. When step S109 ends, the processing of this flowchart ends.

ステップS110で、作業者は、ステップS101で肉盛溶接が行われた伝熱管Tの表面粗度が評価基準を満たさず、あるいはステップS101で肉盛溶接が行われた伝熱管Tから切り出した評価材EMが溶接割れの評価基準を満たさないため、ステップS101での肉盛溶接条件を変更し、新たな肉盛溶接条件を溶接装置200に設定する。 In step S110, the operator evaluates that the surface roughness of the heat transfer tube T subjected to overlay welding in step S101 does not meet the evaluation criteria, or is cut out from the heat transfer tube T subjected to overlay welding in step S101. Since the material EM does not satisfy the evaluation criteria for welding cracks, the overlay welding conditions in step S101 are changed, and new overlay welding conditions are set in the welding apparatus 200.

作業者は、肉盛溶接条件として、例えば、伝熱管Tに溶接を行う肉盛溶接機構20に対する伝熱管Tの軸線X回りの回転数Rtと、肉盛溶接機構20に対する伝熱管Tの軸線X方向への移動速度Vtのいずれか、もしくは両方を変更して、移動速度Vtと回転数Rtとの比率である溶接ピッチ(Vt/Rt)を変更する。 As the overlay welding conditions, the operator can use, for example, the rotation speed Rt around the axis X of the heat transfer tube T with respect to the overlay welding mechanism 20 for welding the heat transfer tube T, and the axis X of the heat transfer tube T with respect to the overlay welding mechanism 20. The welding pitch (Vt / Rt), which is the ratio of the moving speed Vt and the rotation speed Rt, is changed by changing either or both of the moving speed Vt in the direction.

以上の図9に示すフローチャートを実行することにより、肉盛溶接が行われた伝熱管Tの表面粗度が評価基準を満たし、かつ肉盛溶接が行われた伝熱管Tから切り出した評価材EMが溶接割れの評価基準を満たすように、適切に肉盛溶接が可能な肉盛溶接条件が設定される。そして、要求される肉盛溶接の製品仕様を満足する適切な肉盛溶接条件により肉盛溶接が行われた伝熱管Tを製造することができる。 By executing the flowchart shown in FIG. 9 above, the surface roughness of the heat transfer tube T subjected to overlay welding satisfies the evaluation criteria, and the evaluation material EM cut out from the heat transfer tube T subjected to overlay welding. The overlay welding conditions are set so that overlay welding can be performed appropriately so that the weld cracks satisfy the evaluation criteria. Then, it is possible to manufacture the heat transfer tube T in which overlay welding is performed under appropriate overlay welding conditions that satisfy the required product specifications for overlay welding.

次に、図15から図17を参照して、本実施形態の評価方法と、比較例の評価方法とを対比した一例を用いて説明する。図15は、評価材曲げ工程により折り曲げられた本実施形態の評価材EMを溶接ビードWBが形成された面からみた図である。図16は、評価材曲げ工程により折り曲げられた比較例の評価材EM´を溶接ビードWBが形成された面からみた図である。図17は、肉盛溶接条件に対する表面粗度の評価および肉盛溶接割れの評価を示す評価表の一例である。 Next, with reference to FIGS. 15 to 17, an example in which the evaluation method of the present embodiment and the evaluation method of the comparative example are compared will be described. FIG. 15 is a view of the evaluation material EM of the present embodiment bent by the evaluation material bending step as viewed from the surface on which the weld bead WB is formed. FIG. 16 is a view of the evaluation material EM'of the comparative example bent by the evaluation material bending step as viewed from the surface on which the weld bead WB is formed. FIG. 17 is an example of an evaluation table showing the evaluation of the surface roughness under the overlay welding conditions and the evaluation of the overlay welding cracks.

図15に示すように、本実施形態の評価材EMは、伝熱管Tの表面に対応する溶接面WSの全体に溶接ビードWBが形成されたものである。一方、図16に示すように、比較例の評価材EM´は、伝熱管Tの表面に対応する溶接面WSの長手方向の中央部の近傍領域にのみ溶接ビードWB´が形成され、評価材曲げ工程により折り曲げられた近傍領域にのみ溶接ビードWB´が形成されたものである。 As shown in FIG. 15, in the evaluation material EM of the present embodiment, the weld bead WB is formed on the entire weld surface WS corresponding to the surface of the heat transfer tube T. On the other hand, as shown in FIG. 16, in the evaluation material EM'of the comparative example, the weld bead WB'is formed only in the vicinity of the central portion in the longitudinal direction of the welded surface WS corresponding to the surface of the heat transfer tube T, and the evaluation material is evaluated. The weld bead WB'is formed only in the vicinity region bent by the bending step.

まず、表面粗度の評価について説明する。溶接装置200においては、肉盛溶接機構20に対する伝熱管Tの軸線X方向への移動速度が大きくなると、肉盛溶接機構20により形成される溶接ビードWBの軸線Xに沿った間隔(ビード間隔)が広くなり、溶接ビードWBの凹凸形状の起伏が大きくなって肉盛溶接割れが発生しやすくなる条件がある。図17では、条件3の溶接ピッチを基準(1.0)とし、他の条件を基準に対する比率で示している。 First, the evaluation of surface roughness will be described. In the welding device 200, when the moving speed of the heat transfer tube T with respect to the overlay welding mechanism 20 in the axis X direction increases, the interval (bead interval) along the axis X of the welding beads WB formed by the overlay welding mechanism 20. There is a condition that the undulations of the uneven shape of the weld bead WB become large and the overlay welding cracks are likely to occur. In FIG. 17, the welding pitch of condition 3 is used as a reference (1.0), and other conditions are shown as ratios to the reference.

図17に示すように、溶接ピッチが条件3よりも1.17倍大きい条件5においては、表面粗度が0.15mmより大きくなり表面粗度の評価基準を満たさない。一方、溶接ピッチが条件4の溶接ピッチ(条件3の溶接ピッチの1.08倍)以下であれば、溶接ピッチが小さいため、表面粗度の評価基準を満たす。 As shown in FIG. 17, under the condition 5 in which the welding pitch is 1.17 times larger than the condition 3, the surface roughness becomes larger than 0.15 mm and does not satisfy the evaluation standard of the surface roughness. On the other hand, when the welding pitch is equal to or less than the welding pitch of the condition 4 (1.08 times the welding pitch of the condition 3), the welding pitch is small and the surface roughness evaluation standard is satisfied.

次に、肉盛溶接割れの評価について説明する。溶接装置200においては、肉盛溶接機構20に対する伝熱管Tの軸線X回りの回転数Rtが高くなると、肉盛溶接機構20により形成される溶接ビードWBの軸線Xに沿った間隔(ビード間隔)が狭くなり、溶接ビードWBの重なりが大きくなることで熱影響が局所に集中して肉盛溶接時の伝熱管Tへの熱影響が大きくなり、伝熱管Tの靭性が低下することで、肉盛溶接による割れが発生しやすくなる。 Next, the evaluation of overlay weld cracks will be described. In the welding apparatus 200, when the rotation speed Rt around the axis X of the heat transfer tube T with respect to the overlay welding mechanism 20 becomes high, the interval (bead interval) along the axis X of the weld bead WB formed by the overlay welding mechanism 20. Is narrowed and the overlap of the weld beads WB is increased, so that the heat effect is concentrated locally and the heat effect on the heat transfer tube T during overlay welding is increased, and the toughness of the heat transfer tube T is reduced, so that the meat is thickened. Cracks are likely to occur due to build-up welding.

図17に示すように、本実施形態の評価材EMを用いて肉盛溶接割れの評価を評価した場合、溶接ピッチが条件3の溶接ピッチ以上である場合は肉盛溶接による熱影響が局所への集中が過剰にならず、肉盛溶接割れが発生しないと評価される。一方、条件2の溶接ピッチ(条件3の溶接ピッチの0.97倍)以下である場合は肉盛溶接による熱影響が局所への集中が過剰となり、伝熱管Tの靭性の低下により、溶接割れが発生していると評価される。 As shown in FIG. 17, when the evaluation of overlay welding cracks is evaluated using the evaluation material EM of the present embodiment, if the welding pitch is equal to or greater than the welding pitch of Condition 3, the thermal effect of overlay welding is local. It is evaluated that the concentration of the overlay is not excessive and the build-up weld crack does not occur. On the other hand, when the welding pitch of condition 2 (0.97 times the welding pitch of condition 3) or less, the heat effect due to overlay welding becomes excessively concentrated locally, and the toughness of the heat transfer tube T decreases, resulting in welding cracking. Is evaluated to have occurred.

一方、比較例の評価材EM´を用いて肉盛溶接割れの評価を評価した場合、溶接ピッチが条件2の溶接ピッチ以上である場合は肉盛溶接による熱影響が局所に集中が過剰にはならなく、肉盛溶接割れが発生するに至らなかったと評価される。一方、条件1の溶接ピッチ(条件3の溶接ピッチの0.93倍)以下である場合は、熱影響が局所に集中が過剰となり、伝熱管Tの靭性の低下により、溶接割れが発生していると評価される。 On the other hand, when the evaluation of overlay welding cracks is evaluated using the evaluation material EM'of the comparative example, if the welding pitch is equal to or greater than the welding pitch of condition 2, the thermal effect of overlay welding is excessively concentrated locally. Therefore, it is evaluated that the overlay welding crack did not occur. On the other hand, when the welding pitch is less than or equal to the welding pitch of condition 1 (0.93 times the welding pitch of condition 3), the heat effect is excessively concentrated locally, and the toughness of the heat transfer tube T is lowered, so that welding cracks occur. It is evaluated as being.

本実施形態の評価材EMを用いた肉盛溶接割れの評価方法と、比較例の評価材EM´を用いた肉盛溶接割れの評価方法を対比すると、本実施形態の評価方法では条件2は肉盛溶接割れが発生する肉盛溶接条件であると評価されるのに対し、比較例の評価方法では条件2は肉盛溶接割れが発生しない肉盛溶接条件であると評価される。同じ条件2において、本実施形態の評価材EMと比較例の評価材EM´では肉盛溶接割れの評価結果が異なっている。 Comparing the evaluation method of the build-up weld crack using the evaluation material EM of the present embodiment and the evaluation method of the build-up weld crack using the evaluation material EM'of the comparative example, the condition 2 is satisfied in the evaluation method of the present embodiment. While it is evaluated as an overlay welding condition in which overlay welding cracks occur, in the evaluation method of the comparative example, condition 2 is evaluated as an overlay welding condition in which overlay welding cracks do not occur. Under the same condition 2, the evaluation material EM of the present embodiment and the evaluation material EM'of the comparative example have different evaluation results of overlay weld cracks.

本実施形態の評価方法で条件2は肉盛溶接割れが発生する肉盛溶接条件であると評価しているのは、評価材EMに、曲げ加工が行われる位置を中心とした部分的な領域だけでなく、その他の領域にも溶接ビードWBが存在しているためである。本実施形態の評価方法では、曲げ加工が行われる位置から離れた位置において肉盛溶接が行われることにより肉盛溶接割れが発生し易くなる条件があることを適切に評価し、条件2を不適切な肉盛溶接条件であると判別することができる。 In the evaluation method of the present embodiment, the condition 2 is evaluated as the build-up welding condition in which cracks occur in the build-up welding in the evaluation material EM in a partial region centered on the position where the bending process is performed. This is because the weld bead WB is present not only in other areas but also in other areas. In the evaluation method of the present embodiment, it is appropriately evaluated that there is a condition in which overlay welding is likely to occur due to overlay welding performed at a position away from the position where bending is performed, and condition 2 is not satisfied. It can be determined that the overlay welding conditions are appropriate.

このように、本実施形態と比較例の評価方法を対比すると、本実施形態の評価材EMを用いた肉盛溶接割れの評価方法の方が、比較例よりも曲げ加工が行われる位置から離れた位置において肉盛溶接割れが発生する肉盛溶接条件が不適切であることを適切に判断することができる。 As described above, when the evaluation methods of the present embodiment and the comparative example are compared, the evaluation method of the overlay weld crack using the evaluation material EM of the present embodiment is farther from the position where the bending process is performed than the comparative example. It is possible to appropriately determine that the overlay welding conditions in which cracks occur in the overlay weld at the above position are inappropriate.

以上説明した各実施形態に記載の肉盛溶接割れ評価方法は、例えば以下のように把握される。
本開示に係る肉盛溶接割れ評価方法は、軸線に沿って延びる円筒状の管体への肉盛溶接を形成した後の溶接割れを評価する肉盛溶接割れ評価方法であって、前記管体の外周表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う肉盛溶接工程と、前記溶接工程により前記溶接部が形成された前記管体を切断し、前記管体の表面に対応する面の全体に前記溶接部が形成された評価材を作成する評価材作成工程と、前記評価材作成工程により形成された前記評価材を所定の曲率半径で折り曲げる評価材曲げ工程と、前記評価材曲げ工程により折り曲げられた前記評価材に溶接割れが発生しているか否かを評価する肉盛溶接割れ評価工程と、を備える。
The overlay weld crack evaluation method described in each of the above-described embodiments can be grasped as follows, for example.
The build-up weld crack evaluation method according to the present disclosure is a build-up weld crack evaluation method for evaluating a weld crack after forming a build-up weld on a cylindrical pipe body extending along an axis, and is the pipe body. A build-up welding step of forming a welded portion spirally extending around the axis so as to cover the outer peripheral surface of the above, and a build-up welding step in which the welded portion is formed by the welding step are cut and described. An evaluation material making step of creating an evaluation material in which the welded portion is formed on the entire surface corresponding to the surface of the pipe body, and an evaluation material for bending the evaluation material formed by the evaluation material making step with a predetermined radius of curvature. It includes a bending step and an overlay weld crack evaluation step for evaluating whether or not a weld crack has occurred in the evaluation material bent by the evaluation material bending step.

本開示に係る肉盛溶接割れ評価方法によれば、評価材曲げ工程により折り曲げられる評価材は、螺旋状に延びる溶接部が形成された管体を切断し、管体の外周表面に対応する面の全体に溶接部が形成されたものである。評価材には、評価材曲げ加工が行われる位置を中心とした部分的な領域だけでなく、その他の領域にも溶接部が存在する。そのため、曲げ加工が行われる位置における肉盛溶接割れの評価だけでなく、曲げ加工が行われる位置から離れた位置における肉盛溶接割れの評価も適切に行うことができる。 According to the overlay weld crack evaluation method according to the present disclosure, the evaluation material bent by the evaluation material bending step is a surface corresponding to the outer peripheral surface of the pipe body by cutting the pipe body in which the welded portion extending spirally is formed. A welded portion is formed on the entire surface of the. The evaluation material has welded portions not only in a partial region centered on the position where the evaluation material bending process is performed, but also in other regions. Therefore, not only the evaluation of the build-up weld crack at the position where the bending process is performed but also the evaluation of the build-up weld crack at the position away from the position where the bending process is performed can be appropriately performed.

本開示に係る肉盛溶接割れ評価方法において、前記評価材作成工程は、前記軸線方向を長手方向とし前記軸線回りの周方向を短手方向とした短冊状の前記評価材を作成する。
評価対象である評価材が、管体が延びる軸線方向を長手方向としているため、螺旋状に形成される溶接部の各周回の境界を複数箇所に渡って1つの評価材に配置することができる。これにより、溶接割れが生じやすい箇所を1つの評価材に数多く配置し、肉盛溶接割れを適切に評価することができる。
In the overlay weld crack evaluation method according to the present disclosure, the evaluation material making step prepares the strip-shaped evaluation material having the axial direction as the longitudinal direction and the circumferential direction around the axis as the lateral direction.
Since the evaluation material to be evaluated has the axial direction in which the pipe body extends as the longitudinal direction, the boundary of each circumference of the welded portion formed in a spiral shape can be arranged in one evaluation material over a plurality of places. .. As a result, a large number of places where welding cracks are likely to occur can be arranged on one evaluation material, and overlay welding cracks can be appropriately evaluated.

本開示に係る肉盛溶接割れ評価方法において、前記評価材曲げ工程は、前記評価材の切断面の前記長手方向の中央部を折り曲げる。
本開示に係る肉盛溶接割れ評価方法によれば、評価材曲げ工程において、評価材の切断面が評価材の長手方向の中央部において引き延ばされる。そのため、管体の外周表面に形成される溶接部と管体との境界部分が評価材の中で最も大きく変形する。溶接部と管体との境界部分は、特に肉盛溶接割れが発生しやすい部分であるため、この部分を大きく変形させることにより、肉盛溶接割れを適切に評価することができる。
In the overlay weld crack evaluation method according to the present disclosure, the evaluation material bending step bends the central portion of the cut surface of the evaluation material in the longitudinal direction.
According to the overlay weld crack evaluation method according to the present disclosure, in the evaluation material bending step, the cut surface of the evaluation material is stretched at the central portion in the longitudinal direction of the evaluation material. Therefore, the boundary portion between the welded portion and the pipe body formed on the outer peripheral surface of the pipe body is deformed most among the evaluation materials. Since the boundary portion between the welded portion and the pipe body is a portion where overlay welding cracks are particularly likely to occur, the overlay welding cracks can be appropriately evaluated by significantly deforming this portion.

本開示に係る肉盛溶接割れ評価方法において、前記評価材曲げ工程は、前記評価材の前記長手方向の中央部に前記所定の曲率半径となる領域を含む円弧状の外周面を有する治具を突き当てて折り曲げる。
本開示に係る肉盛溶接割れ評価方法によれば、円弧状の外周面を有する治具により評価材の長手方向の中央部が折り曲げられるため、適切な曲率半径を有する円弧状の外周面とすることにより、評価材の長手方向の中央部の全体を略均一に変形するため、局所的に過度な変形を生じさせることなく、肉盛溶接割れを適切に評価することができる。
In the overlay weld crack evaluation method according to the present disclosure, in the evaluation material bending step, a jig having an arc-shaped outer peripheral surface including a region having a predetermined radius of curvature is provided at the central portion of the evaluation material in the longitudinal direction. Butt and fold.
According to the overlay weld crack evaluation method according to the present disclosure, the central portion of the evaluation material in the longitudinal direction is bent by a jig having an arc-shaped outer peripheral surface, so that the arc-shaped outer peripheral surface has an appropriate radius of curvature. As a result, the entire central portion of the evaluation material in the longitudinal direction is deformed substantially uniformly, so that overlay welding cracks can be appropriately evaluated without causing excessive deformation locally.

本開示に係る肉盛溶接割れ評価方法において、前記肉盛溶接割れ評価工程は、折り曲げられた前記評価材に浸透液を染み込ませた後に現像剤により前記評価材の表面に吸い上げられた前記浸透液を観察する浸透探傷試験により前記評価材に溶接割れが発生しているか否かを評価する。
本開示に係る肉盛溶接割れ評価方法によれば、浸透探傷試験により、肉盛溶接割れが発生した箇所に染み込ませた浸透液を吸い上げて溶接割れを拡大して視認できるようにし、肉盛溶接割れを適切に評価することができる。
In the overlay weld crack evaluation method according to the present disclosure, in the overlay weld crack evaluation step, the penetrant is soaked into the bent evaluation material and then sucked up on the surface of the evaluation material by a developer. It is evaluated whether or not welding cracks are generated in the evaluation material by a penetrant inspection test.
According to the overlay welding crack evaluation method according to the present disclosure, the penetrant that has soaked into the location where the overlay welding crack has occurred is sucked up so that the weld crack can be enlarged and visually recognized by the penetration flaw detection test, and the overlay welding Cracks can be evaluated appropriately.

以上説明した実施形態に記載の管体(T)の製造方法は、例えば以下のように把握される。
本開示に係る肉盛溶接が形成された管体(T)の製造方法は、軸線に沿って延びる円筒状の管体の製造方法であって、前記管体の表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う第1溶接工程(S101)と、前記第1溶接工程により前記溶接部が形成された前記管体を切断し、前記管体の表面に対応する面の全体に前記溶接部が形成された評価材を作成する評価材作成工程(S104)と、前記評価材作成工程により形成された前記評価材を折り曲げる評価材曲げ工程(S105)と、前記評価材曲げ工程により前記評価材に形成された前記溶接部に溶接割れが発生しているか否かを評価する肉盛溶接割れ評価工程(S106)と、前記肉盛溶接割れ評価工程の評価結果に基づいて前記溶接部を形成する際の肉盛溶接条件を設定する肉盛溶接条件設定工程(S108)と、前記肉盛溶接条件設定工程により設定された前記肉盛溶接条件に基づいて前記管体の外周表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う第2溶接工程(S109)と、を備える。
The method for manufacturing the tubular body (T) according to the embodiment described above is grasped as follows, for example.
The method for manufacturing a tubular body (T) on which overlay welding is formed according to the present disclosure is a method for manufacturing a cylindrical tubular body extending along an axis, and is around the axis so as to cover the surface of the tubular body. The first welding step (S101) in which overlay welding is performed to form a welded portion extending in a spiral shape, and the tubular body in which the welded portion is formed by the first welding step are cut and formed on the surface of the tubular body. An evaluation material making step (S104) for creating an evaluation material in which the welded portion is formed on the entire corresponding surface, and an evaluation material bending step (S105) for bending the evaluation material formed by the evaluation material making step. Evaluation results of the overlay weld crack evaluation step (S106) for evaluating whether or not weld cracks are generated in the welded portion formed on the evaluation material by the evaluation material bending step, and the overlay weld crack evaluation step. Based on the overlay welding condition setting step (S108) for setting the overlay welding conditions when forming the welded portion and the overlay welding conditions set by the overlay welding condition setting step, the pipe A second welding step (S109) is provided in which overlay welding is performed to form a welded portion spirally extending around the axis so as to cover the outer peripheral surface of the body.

本開示に係る管体の製造方法によれば、評価材曲げ工程により折り曲げられる評価材は、螺旋状に延びる溶接部が形成された管体を切断し、管体の外周表面に対応する面の全体に溶接部が形成されたものである。評価材には、折り曲げ加工が行われる位置を中心とした部分的な領域だけでなく、その他の領域にも溶接部が存在する。そのため、曲げ加工が行われる位置における肉盛溶接割れの評価だけでなく、折り曲げ加工が行われる位置から離れた位置における肉盛溶接を行うことによる肉盛溶接割れの評価も適切に行うことができる。そして、評価結果に基づいて設定された肉盛溶接条件に基づいて第2溶接工程を実行するため、肉盛溶接割れが生じにくい適切な肉盛溶接条件で肉盛溶接が形成された管体を製造することができる。 According to the method for manufacturing a pipe body according to the present disclosure, the evaluation material bent by the evaluation material bending step is a surface corresponding to the outer peripheral surface of the pipe body by cutting the pipe body having a spirally extending welded portion formed therein. A welded portion is formed as a whole. The evaluation material has welded portions not only in a partial region centered on the position where the bending process is performed but also in other regions. Therefore, not only the evaluation of the build-up weld crack at the position where the bending process is performed, but also the evaluation of the build-up weld crack by performing the build-up weld at a position away from the position where the bending process is performed can be appropriately performed. .. Then, since the second welding step is executed based on the build-up welding conditions set based on the evaluation result, the pipe body in which the build-up welding is formed under the appropriate build-up welding conditions in which cracks in the build-up welding are unlikely to occur is formed. Can be manufactured.

本開示に係る管体の製造方法において、前記溶接条件は、前記管体に肉盛溶接を行う肉盛溶接機構(20)に対する前記管体の前記軸線回りの回転数と、前記肉盛溶接機構に対する前記管体の前記軸線方向への移動速度との比率を含む。
肉盛溶接機構に対する管体の軸線回りの回転数が高くなると、肉盛溶接機構により形成される溶接部の軸線に沿った間隔(ビード間隔)が狭くなり、肉盛溶接による熱影響が局所に過剰に集中して伝熱管Tの靭性の低下することで肉盛溶接割れが発生しやすくなる。
In the method for manufacturing a pipe body according to the present disclosure, the welding conditions are the number of rotations of the pipe body around the axis with respect to the build-up welding mechanism (20) that performs overlay welding on the pipe body, and the build-up welding mechanism. Includes the ratio of the moving speed of the tube to the axial direction.
When the number of rotations around the axis of the pipe with respect to the overlay welding mechanism increases, the interval (bead interval) along the axis of the weld formed by the overlay welding mechanism becomes narrower, and the thermal effect of overlay welding becomes local. Overlay welding cracks are likely to occur due to excessive concentration and a decrease in the toughness of the heat transfer tube T.

また、肉盛溶接機構に対する管体の軸線方向への移動速度が大きくなると、肉盛溶接機構により形成される溶接部の軸線に沿った間隔(ビード間隔)が広くなり、溶接部の凹凸形状の起伏が大きくなって肉盛溶接割れが発生しやすくなる。そこで、本開示に係る管体の製造方法によれば、管体の軸線回りの回転数と管体の軸線方向への移動速度の比率を適切に調整することで、肉盛溶接割れが生じにくい適切な肉盛溶接条件で肉盛溶接が形成された管体を製造することができる。 Further, when the moving speed of the pipe body in the axial direction with respect to the overlay welding mechanism increases, the interval (bead interval) along the axis of the welded portion formed by the overlay welding mechanism becomes wider, and the uneven shape of the welded portion becomes wider. The undulations become large and overlay welding cracks are likely to occur. Therefore, according to the method for manufacturing a pipe body according to the present disclosure, by appropriately adjusting the ratio between the rotation speed around the axis of the pipe body and the moving speed of the pipe body in the axial direction, overlay welding cracks are unlikely to occur. It is possible to manufacture a pipe body in which overlay welding is formed under appropriate overlay welding conditions.

以上説明した実施形態に記載の評価材(EM)は、例えば以下のように把握される。
本開示に係る評価材(EM)は、軸線に沿って延びる円筒状の管体の外周表面に肉盛溶接により形成された溶接部(WB)の肉盛溶接割れを評価するためのものであり、外周表面を覆うように前記軸線回りに螺旋状に延びる前記溶接部が形成された前記管体から、前記軸線方向を長手方向とし前記軸線(X)回りの周方向を短手方向とした所定サイズの短冊状に切り出され、所定の曲率半径で折り曲げることで、折り曲げられた前記評価材に肉盛溶接割れが発生しているか否かの評価を実施可能になるように、肉盛溶接が形成された前記管体の外周表面に対応する面の全体に前記溶接部が形成されている。
The evaluation material (EM) described in the above-described embodiment is grasped as follows, for example.
The evaluation material (EM) according to the present disclosure is for evaluating overlay weld cracks in a welded portion (WB) formed by overlay welding on the outer peripheral surface of a cylindrical tube extending along an axis. From the tubular body in which the welded portion spirally extending around the axis is formed so as to cover the outer peripheral surface, the axial direction is the longitudinal direction and the circumferential direction around the axis (X) is the lateral direction. Overlay welding is formed so that it is possible to evaluate whether or not overlay welding cracks have occurred in the bent evaluation material by cutting it into strips of size and bending it with a predetermined radius of curvature. The welded portion is formed on the entire surface corresponding to the outer peripheral surface of the pipe body.

本開示に係る評価材によれば、曲げ加工が行われる位置における肉盛溶接割れの評価だけでなく、曲げ加工が行われる位置から離れた位置における肉盛溶接を行うことによる肉盛溶接割れの評価も適切に行うことが可能となる。 According to the evaluation material according to the present disclosure, not only the evaluation of the build-up weld crack at the position where the bending process is performed, but also the build-up weld crack due to the build-up welding at the position away from the position where the bending process is performed. Evaluation can also be performed appropriately.

10 可動台車
11 移動機構
20 肉盛溶接機構
21 溶接トーチ
30 下方支持機構
40 上方支持機構
50 冷却機構
60 計測機構
70 本体部
80 撮像部
85 表示部
90 制御部
200 溶接装置
300 曲げ加工治具
310 加圧用治具
311 外周面
320 本体治具
321 内周面
BUt 表面粗度
CS 切断面
EM,EM´ 評価材
T 伝熱管(管体)
WB,WB´ 溶接ビード(溶接部)
WS 溶接面
X 軸線
r1,r2 曲率半径
10 Movable trolley 11 Moving mechanism 20 Overlay welding mechanism 21 Welding torch 30 Lower support mechanism 40 Upper support mechanism 50 Cooling mechanism 60 Measuring mechanism 70 Main body 80 Imaging unit 85 Display 90 Control unit 200 Welding device 300 Bending jig 310 Pressure jig 311 Outer peripheral surface 320 Main body jig 321 Inner peripheral surface But Surface roughness CS Cut surface EM, EM'Evaluation material T Heat transfer tube (tube body)
WB, WB'Welded bead (welded part)
WS Welding Helmet X Axis r1, r2 Curvature Radius

Claims (8)

軸線に沿って延びる円筒状の管体への肉盛溶接を形成した後の溶接割れを評価する肉盛溶接割れ評価方法であって、
前記管体の外周表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う肉盛溶接工程と、
前記肉盛溶接工程により前記溶接部が形成された前記管体を切断し、前記管体の表面に対応する面の全体に前記溶接部が形成された評価材を作成する評価材作成工程と、
前記評価材作成工程により形成された前記評価材を所定の曲率半径で折り曲げる評価材曲げ工程と、
前記評価材曲げ工程により折り曲げられた前記評価材に溶接割れが発生しているか否かを評価する肉盛溶接割れ評価工程と、を備える肉盛溶接割れ評価方法。
This is a build-up weld crack evaluation method for evaluating weld cracks after forming build-up welds on a cylindrical tube body extending along an axis.
A overlay welding step of performing overlay welding to form a welded portion spirally extending around the axis so as to cover the outer peripheral surface of the tubular body.
An evaluation material preparation step of cutting the pipe body on which the welded portion is formed by the overlay welding step and creating an evaluation material in which the welded portion is formed on the entire surface corresponding to the surface of the pipe body.
An evaluation material bending step of bending the evaluation material formed by the evaluation material preparation step with a predetermined radius of curvature, and an evaluation material bending step.
A build-up weld crack evaluation method comprising a build-up weld crack evaluation step for evaluating whether or not a weld crack has occurred in the evaluation material bent by the evaluation material bending step.
前記評価材作成工程は、前記軸線方向を長手方向とし前記軸線回りの周方向を短手方向とした短冊状の前記評価材を作成する請求項1に記載の肉盛溶接割れ評価方法。 The overlay welding crack evaluation method according to claim 1, wherein the evaluation material making step is to prepare a strip-shaped evaluation material having the axial direction as the longitudinal direction and the circumferential direction around the axis as the lateral direction. 前記評価材曲げ工程は、前記評価材の切断面の前記長手方向の中央部を折り曲げる請求項2に記載の肉盛溶接割れ評価方法。 The overlay welding crack evaluation method according to claim 2, wherein the evaluation material bending step bends a central portion of the cut surface of the evaluation material in the longitudinal direction. 前記評価材曲げ工程は、前記評価材の前記長手方向の中央部に前記所定の曲率半径となる領域を含む円弧状の外周面を有する治具を突き当てて折り曲げる請求項2または請求項3に記載の肉盛溶接割れ評価方法。 The evaluation material bending step according to claim 2 or 3, wherein a jig having an arcuate outer peripheral surface including a region having a predetermined radius of curvature is abutted against the central portion of the evaluation material in the longitudinal direction and bent. The overlaid weld crack evaluation method described. 前記肉盛溶接割れ評価工程は、折り曲げられた前記評価材に浸透液を染み込ませた後に現像剤により前記評価材の表面に吸い上げられた前記浸透液を観察する浸透探傷試験により前記評価材に溶接割れが発生しているか否かを評価する請求項1から請求項4のいずれか一項に記載の肉盛溶接割れ評価方法。 In the overlay welding crack evaluation step, the bent evaluation material is impregnated with the penetrant and then welded to the evaluation material by a penetrant inspection test in which the penetrant sucked up on the surface of the evaluation material by a developer is observed. The overlay weld crack evaluation method according to any one of claims 1 to 4, which evaluates whether or not cracks have occurred. 軸線に沿って延びる円筒状の肉盛溶接が形成された管体の製造方法であって、
前記管体の外周表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う第1溶接工程と、
前記第1溶接工程により前記溶接部が形成された前記管体を切断し、前記管体の外周表面に対応する面の全体に前記溶接部が形成された評価材を作成する評価材作成工程と、
前記評価材作成工程により形成された前記評価材を折り曲げる評価材曲げ工程と、
前記評価材曲げ工程により前記評価材に形成された前記溶接部に溶接割れが発生しているか否かを評価する肉盛溶接割れ評価工程と、
前記肉盛溶接割れ評価工程の評価結果に基づいて前記溶接部を形成する際の肉盛溶接条件を設定する肉盛溶接条件設定工程と、
前記肉盛溶接条件設定工程により設定された前記肉盛溶接条件に基づいて前記管体の外周表面を覆うように前記軸線回りに螺旋状に延びる溶接部を形成する肉盛溶接を行う第2溶接工程と、を備える肉盛溶接が形成された管体の製造方法。
It is a method of manufacturing a pipe body in which a cylindrical overlay weld extending along an axis is formed.
The first welding step of performing overlay welding to form a welded portion spirally extending around the axis so as to cover the outer peripheral surface of the tubular body.
An evaluation material preparation step of cutting the pipe body on which the welded portion is formed by the first welding step and creating an evaluation material in which the welded portion is formed on the entire surface corresponding to the outer peripheral surface of the pipe body. ,
An evaluation material bending step of bending the evaluation material formed by the evaluation material preparation step, and an evaluation material bending step.
An overlay weld crack evaluation step for evaluating whether or not a weld crack is generated in the welded portion formed on the evaluation material by the evaluation material bending step, and a build-up weld crack evaluation step.
An overlay welding condition setting step for setting overlay welding conditions when forming the welded portion based on the evaluation result of the overlay welding crack evaluation process, and an overlay welding condition setting step.
Second welding for overlay welding to form a welded portion spirally extending around the axis so as to cover the outer peripheral surface of the pipe body based on the overlay welding conditions set by the overlay welding condition setting step. A method of manufacturing a tubular body in which overlay welding is formed, comprising a process.
前記肉盛溶接条件は、前記管体に肉盛溶接を行う肉盛溶接機構に対する前記管体の前記軸線回りの回転数と、前記肉盛溶接機構に対する前記管体の前記軸線方向への移動速度との比率を含む請求項6に記載の肉盛溶接が形成された管体の製造方法。 The overlay welding conditions are the number of rotations of the tubular body around the axis with respect to the overlay welding mechanism for overlay welding the tubular body and the moving speed of the tubular body in the axial direction with respect to the overlay welding mechanism. The method for manufacturing a pipe body on which overlay welding is formed according to claim 6, which includes a ratio of 軸線に沿って延びる円筒状の管体の外周表面に肉盛溶接により形成された溶接部の肉盛溶接割れを評価するための評価材であって、
外周表面を覆うように前記軸線回りに螺旋状に延びる前記溶接部が形成された前記管体から、前記軸線方向を長手方向とし前記軸線回りの周方向を短手方向とした所定サイズの短冊状に切り出され、所定の曲率半径で折り曲げることで、折り曲げられた前記評価材に肉盛溶接割れが発生しているか否かの評価を実施可能になるように、肉盛溶接が形成された前記管体の外周表面に対応する面の全体に前記溶接部が形成されている評価材。
An evaluation material for evaluating overlay weld cracks in a welded portion formed by overlay welding on the outer peripheral surface of a cylindrical tube extending along an axis.
From the pipe body in which the welded portion spirally extending around the axis is formed so as to cover the outer peripheral surface, a strip of a predetermined size having the axis direction as the longitudinal direction and the circumferential direction around the axis as the minor direction. The pipe in which overlay welding is formed so that it is possible to evaluate whether or not overlay welding cracks have occurred in the bent evaluation material by being cut out and bent at a predetermined radius of curvature. An evaluation material in which the welded portion is formed on the entire surface corresponding to the outer peripheral surface of the body.
JP2019191043A 2019-10-18 2019-10-18 Overlay weld crack evaluation method, pipe manufacturing method, and evaluation material Active JP7293080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191043A JP7293080B2 (en) 2019-10-18 2019-10-18 Overlay weld crack evaluation method, pipe manufacturing method, and evaluation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191043A JP7293080B2 (en) 2019-10-18 2019-10-18 Overlay weld crack evaluation method, pipe manufacturing method, and evaluation material

Publications (2)

Publication Number Publication Date
JP2021067484A true JP2021067484A (en) 2021-04-30
JP7293080B2 JP7293080B2 (en) 2023-06-19

Family

ID=75637022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191043A Active JP7293080B2 (en) 2019-10-18 2019-10-18 Overlay weld crack evaluation method, pipe manufacturing method, and evaluation material

Country Status (1)

Country Link
JP (1) JP7293080B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663237A (en) * 1979-10-26 1981-05-29 Toray Eng Co Ltd Method and apparatus for guide bend of butt weld joint
JPS61139741A (en) * 1984-12-12 1986-06-27 Fuji Electric Co Ltd Method for forming material test piece
JPH07126750A (en) * 1993-10-27 1995-05-16 Sumitomo Metal Ind Ltd Production of high strength resistance welded tube excellent in delayed fracture resistance
WO1996017098A1 (en) * 1994-12-02 1996-06-06 Toyota Jidosha Kabushiki Kaisha High-chromium nickel alloy with excellent resistances to wear and lead corrosion and engine valve
JP2003290919A (en) * 2002-03-28 2003-10-14 Daido Steel Co Ltd Method for improving surface of clad-welded part in powder cladding by welding
US6781083B1 (en) * 2001-08-08 2004-08-24 Howard Derrick Keller Weld overlay system
US20110100720A1 (en) * 2009-10-30 2011-05-05 The Nanosteel Company, Inc. Glass Forming Hardbanding Material
US20120214017A1 (en) * 2011-02-22 2012-08-23 Pourin Welding Engineering Co., Ltd. Weld Overlay Structure and a Method of Providing a Weld Overlay Structure
JP2014098609A (en) * 2012-11-14 2014-05-29 Mitsubishi Heavy Ind Ltd Bending test method of weld joint
JP2016123992A (en) * 2014-12-26 2016-07-11 川崎重工業株式会社 Bent pipeline manufacturing method
JP2017148820A (en) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 Ni-BASED ALLOY SOLID WIRE FOR WELDING AND Ni-BASED ALLOY WELD METAL

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663237A (en) * 1979-10-26 1981-05-29 Toray Eng Co Ltd Method and apparatus for guide bend of butt weld joint
JPS61139741A (en) * 1984-12-12 1986-06-27 Fuji Electric Co Ltd Method for forming material test piece
JPH07126750A (en) * 1993-10-27 1995-05-16 Sumitomo Metal Ind Ltd Production of high strength resistance welded tube excellent in delayed fracture resistance
WO1996017098A1 (en) * 1994-12-02 1996-06-06 Toyota Jidosha Kabushiki Kaisha High-chromium nickel alloy with excellent resistances to wear and lead corrosion and engine valve
US6781083B1 (en) * 2001-08-08 2004-08-24 Howard Derrick Keller Weld overlay system
JP2003290919A (en) * 2002-03-28 2003-10-14 Daido Steel Co Ltd Method for improving surface of clad-welded part in powder cladding by welding
US20110100720A1 (en) * 2009-10-30 2011-05-05 The Nanosteel Company, Inc. Glass Forming Hardbanding Material
US20120214017A1 (en) * 2011-02-22 2012-08-23 Pourin Welding Engineering Co., Ltd. Weld Overlay Structure and a Method of Providing a Weld Overlay Structure
JP2014098609A (en) * 2012-11-14 2014-05-29 Mitsubishi Heavy Ind Ltd Bending test method of weld joint
JP2016123992A (en) * 2014-12-26 2016-07-11 川崎重工業株式会社 Bent pipeline manufacturing method
JP2017148820A (en) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 Ni-BASED ALLOY SOLID WIRE FOR WELDING AND Ni-BASED ALLOY WELD METAL

Also Published As

Publication number Publication date
JP7293080B2 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
US20110316271A1 (en) Nickel-base radiant tube and method for making the same
EA028243B1 (en) High strength steel weld metal for demanding structural applications
US20190389757A1 (en) Post-manufacturing processes for submerged combustion burner
Kumar et al. Microstructure and tensile properties of friction welded SUS 304HCu austenitic stainless steel tubes
CN112894087A (en) Tube plate nickel-based alloy double-tungsten-electrode single-hot-wire automatic tungsten electrode argon arc welding surfacing process
JP2021067484A (en) Build-up weld crack evaluation method, tubular body manufacturing method, and evaluation material
CN111331313B (en) Method for repairing spline of driving roll shaft of continuous casting roll
Adullah et al. Repair of tube–tubesheet weld cracks in a cracked gas/steam heat exchanger
EP2540864B1 (en) Inspection of a component comprising a cladding layer bonded to a substrate
CN102500886A (en) High-strength nickel-iron-chromium alloy and chromium-nickel stainless steel plate welding method and application to preparation of polysilicon cold hydrogenation reactors
Benac et al. High-temperature stress relaxation cracking and stress rupture observed in a coke gasifier failure
Lessa et al. Microstructural behavior of SAF 2205 duplex stainless steel welded by friction hydro pillar processing
Shuaib et al. Friction stir seal welding (FSSW) tube-tubesheet joints made of steel
Ma et al. Evaluation of weld joint strength reduction factor due to creep in alloy 740H to P92 dissimilar metal weld joint
RU2449870C1 (en) Method of producing steel complex axially symmetric welded structure operated under pressure
Vasechkin et al. Effect of welding and heat treatment regimes on the mechanical properties of various titanium alloy welded joints
JP7467066B2 (en) Welding device and method for controlling the same
King Failures of pressure vessels
JP2021004787A (en) Damage risk evaluation method, system maintenance management method and risk evaluation device
Tanner et al. Creep Behavior of P92 and P92 Welds at 675 C
Sessions et al. Materials development for a fast breeder reactor steam generator concept
Prasetyo et al. IDENTIFYING THE INFLUENCE OF ORBITAL PIPE WELDING PARAMETERS ON MECHANICAL PROPERTIES USING SS316L PIPE.
Nelson et al. Review of Life Assessment and Repair Strategies for Hydrogen Reformer Furnace Outlet Header Castings
Coleman et al. Deficient Materials in Hot Reheat Seam Welded High-Energy Piping
JP2009012030A (en) Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230607

R150 Certificate of patent or registration of utility model

Ref document number: 7293080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150