JP2021067291A - Shock absorbing member for vehicle - Google Patents

Shock absorbing member for vehicle Download PDF

Info

Publication number
JP2021067291A
JP2021067291A JP2019191179A JP2019191179A JP2021067291A JP 2021067291 A JP2021067291 A JP 2021067291A JP 2019191179 A JP2019191179 A JP 2019191179A JP 2019191179 A JP2019191179 A JP 2019191179A JP 2021067291 A JP2021067291 A JP 2021067291A
Authority
JP
Japan
Prior art keywords
rib
absorbing member
shock absorbing
vehicle
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019191179A
Other languages
Japanese (ja)
Inventor
宏明 中越
Hiroaki Nakakoshi
宏明 中越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2019191179A priority Critical patent/JP2021067291A/en
Publication of JP2021067291A publication Critical patent/JP2021067291A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a shock absorbing member for a vehicle capable of obtaining a characteristic that a load is substantially fixed when shock is applied.SOLUTION: The shock absorbing member for a vehicle has a cylinder part having a cylindrical shape and a top surface part formed so as to close one opening in an axial direction of the cylindrical part, and absorbs shock energy by compressing and deforming in the axial direction with a shock load input to the top surface part. At least one rib for supporting a load at the time of shock inside the cylindrical part is connected to the top surface part, and is provided apart from the cylindrical part.SELECTED DRAWING: Figure 1

Description

本発明は、車両用の衝撃吸収部材に係り、特に、軽量化の効果的な実現と共に入力される衝撃エネルギーを有利に吸収し得るように改良された車両用衝撃吸収部材に関する。 The present invention relates to a shock absorbing member for a vehicle, and more particularly to a shock absorbing member for a vehicle which has been improved so as to be able to advantageously absorb input impact energy together with effective realization of weight reduction.

人と車両、とくに自動車との接触や車同士の正面衝突、側面衝突、後面衝突に備えて、車両の各部位には衝撃吸収部材を設けておくことが望ましい。このような車両用衝撃吸収部材においては、十分にエネルギーを吸収することが求められる一方で、歩行者や乗員へ及ぼされる衝撃荷重が大きすぎると、人に傷害を発生させるおそれがあるため、衝撃荷重をある荷重以下に抑えつつエネルギー吸収量を確保するために、荷重を略一定に保つ(衝突時の荷重−変位線図を矩形波にする)ことが望ましい。 It is desirable to provide shock absorbing members at each part of the vehicle in preparation for contact between a person and a vehicle, particularly an automobile, or a head-on collision, a side collision, or a rear collision between vehicles. While such a vehicle shock absorbing member is required to absorb sufficient energy, if the shock load applied to a pedestrian or an occupant is too large, it may cause injury to a person. In order to secure the amount of energy absorption while keeping the load below a certain load, it is desirable to keep the load substantially constant (load-displacement diagram at the time of collision is a rectangular wave).

このような中、全体として、筒状形態を呈すると共に、その軸方向の一方の開口部を塞ぐように形成された受圧部を有する、一体樹脂成形品にて構成され、かつ金属よりも軽量な樹脂材質の採用によって、充分な軽量化を有利に達成することが出来る衝撃吸収部材(特許文献1)、あるいは、設置スペースを増大することなく、他車への加害性の低減と十分な衝撃エネルギーの吸収とを両立することができる衝撃吸収部材及びバンパ(特許文献2)が提案されている。 Under such circumstances, it is composed of an integrally resin molded product having a tubular shape as a whole and a pressure receiving portion formed so as to close one opening in the axial direction thereof, and is lighter than metal. By adopting a resin material, a shock absorbing member (Patent Document 1) that can advantageously achieve sufficient weight reduction, or a reduction in harmfulness to other vehicles and sufficient shock energy without increasing the installation space. A shock absorbing member and a bumper (Patent Document 2) that can achieve both absorption and absorption have been proposed.

特許第6441034号公報Japanese Patent No. 6441034 特開2002−155981号公報JP-A-2002-155981

しかしながら、上述のように、衝突時、衝撃荷重をある荷重以下に抑えつつエネルギー吸収量を確保するために衝撃荷重を略一定に保つことは、現状では難しい。 However, as described above, at present, it is difficult to keep the impact load substantially constant in order to secure the energy absorption amount while suppressing the impact load to a certain load or less at the time of collision.

例えば、特許文献1では、外形形状が順次大きくなる相似形状を呈する段付き筒状部を有し、筒状部内部には、受圧部とは反対側の端部の端面に至る複数の板状のリブを配置する構造が提案されている。しかし、段付き筒状部が圧縮され座屈が発生するタイミングで特許文献1の図7のように荷重が極端に下がり、荷重を略一定にすることはできない。また、内部のリブを段付き筒状部と連結していることから、内部のリブも筒状部と同じように圧縮変形されるため、内部のリブが筒状部と機械的に独立のふるまいをすることは無く、荷重が下がったタイミングを狙って荷重を上げる機能は期待できない。したがって、荷重-変位線図の荷重を一定にする目的には適していない。また、特許文献2では、変形が進んでも高いエネルギー吸収特性を得ることができるものの、変形が進むにつれて、荷重を上げることでエネルギー吸収特性を良くしているため、荷重-変位線図の荷重を略一定にする目的には適していない。 For example, in Patent Document 1, a stepped tubular portion having a similar shape in which the outer shape gradually increases is provided, and inside the tubular portion, there are a plurality of plate shapes extending to the end surface of the end portion on the opposite side of the pressure receiving portion. A structure for arranging the ribs of is proposed. However, as shown in FIG. 7 of Patent Document 1, the load is extremely reduced at the timing when the stepped tubular portion is compressed and buckling occurs, and the load cannot be made substantially constant. In addition, since the internal ribs are connected to the stepped tubular portion, the internal ribs are also compressed and deformed in the same manner as the tubular portion, so that the internal ribs behave mechanically independently of the tubular portion. It is not possible to expect the function of increasing the load by aiming at the timing when the load drops. Therefore, it is not suitable for the purpose of making the load of the load-displacement diagram constant. Further, in Patent Document 2, although high energy absorption characteristics can be obtained even if the deformation progresses, the energy absorption characteristics are improved by increasing the load as the deformation progresses, so that the load in the load-displacement diagram is changed. It is not suitable for the purpose of making it almost constant.

以上のように、従来の技術では、変形が進んだ状態においてエネルギー吸収特性を確保しつつ荷重が略一定となる特性を得ることができないという問題があった。 As described above, the conventional technique has a problem that it is not possible to obtain the characteristic that the load is substantially constant while ensuring the energy absorption characteristic in the state where the deformation is advanced.

そこで、本発明の課題は、とくに、衝撃を加えた際に荷重が略一定となる特性を得ることができる車両用衝撃吸収部材を提供することにある。 Therefore, an object of the present invention is, in particular, to provide a vehicle shock absorbing member capable of obtaining a characteristic that the load becomes substantially constant when an impact is applied.

上記課題を解決するために、本発明は、筒状形態を呈する筒状部と共に、その軸方向の一方の開口部を塞ぐように形成された天面部を有し、前記天面部に入力される衝撃荷重にて前記軸方向に圧縮変形することによって、衝撃エネルギーを吸収するようにした、車両用衝撃吸収部材について、前記筒状部の内側に少なくとも1つ以上の衝撃時の荷重を支えるためのリブが、前記天面部と接続され、かつ前記筒状部とは離間して設けられていることを特徴とする車両用衝撃吸収部材を提供する。 In order to solve the above problems, the present invention has a tubular portion having a tubular shape and a top surface portion formed so as to close one opening in the axial direction thereof, and is input to the top surface portion. For a vehicle shock absorbing member that absorbs shock energy by compressing and deforming in the axial direction with a shock load, to support at least one or more shock load inside the tubular portion. Provided is a vehicle shock absorbing member characterized in that the rib is connected to the top surface portion and is provided apart from the tubular portion.

このような本発明に係る車両用衝撃吸収部材においては、前記リブの前記天面部側から反対側の先端部までの長さを示すリブ長さが、前記筒状部の軸方向長さよりも短いことが好ましい。 In such a vehicle shock absorbing member according to the present invention, the rib length indicating the length from the top surface side to the opposite end of the rib is shorter than the axial length of the tubular portion. Is preferable.

また、前記リブ長さが、前記筒状部の軸方向長さの50〜99%であることが好ましい。 Further, the rib length is preferably 50 to 99% of the axial length of the tubular portion.

また、本発明に係る車両用衝撃吸収部材においては、前記リブが複数設けられていてもよい。 Further, the vehicle shock absorbing member according to the present invention may be provided with a plurality of the ribs.

また、前記リブの前記天面部側から反対側の先端部までの長さを示すリブ長さについて、少なくとも1つリブのリブ長さがその他のリブのリブ長さと異なってもよい。 Further, regarding the rib length indicating the length from the top surface portion side to the tip end portion on the opposite side of the rib, the rib length of at least one rib may be different from the rib length of the other ribs.

また、本発明における前記リブは、前記筒状部の中心軸に対し放射状に延びる複数のリブから構成されていてもよい。 Further, the rib in the present invention may be composed of a plurality of ribs extending radially with respect to the central axis of the tubular portion.

また、前記リブは、前記筒状部の中心部でリブ同士が互いに離間していてもよい。 Further, the ribs may be separated from each other at the central portion of the tubular portion.

また、前記リブの肉厚が、前記天面部側から前記天面部とは反対側のリブ先端部側に向けて減少するとともに、前記天面部側で最大の肉厚となっている構造であってもよい。 Further, the wall thickness of the rib decreases from the top surface side toward the rib tip side opposite to the top surface portion, and the wall thickness is the maximum on the top surface portion side. May be good.

また、本発明の車両用衝撃吸収部材は、全体が一体成形されていてもよい。 Further, the shock absorbing member for a vehicle of the present invention may be integrally molded as a whole.

また、本発明の車両用衝撃吸収部材を構成する材料は特に限定されず、例えば、熱可塑性樹脂組成物もしくは熱硬化性樹脂組成物により構成することができる。 Further, the material constituting the shock absorbing member for a vehicle of the present invention is not particularly limited, and for example, it can be composed of a thermoplastic resin composition or a thermosetting resin composition.

また、本発明の車両用衝撃吸収部材を構成する前記熱可塑性樹脂組成物もしくは前記熱硬化性樹脂組成物は、熱可塑性樹脂もしくは熱硬化性樹脂にガラス繊維、炭素繊維、金属繊維の少なくとも1つの繊維を混ぜた繊維強化樹脂により構成されていてもよい。 Further, the thermoplastic resin composition or the thermosetting resin composition constituting the shock absorbing member for a vehicle of the present invention is a thermoplastic resin or a thermosetting resin, and at least one of glass fiber, carbon fiber, and metal fiber. It may be composed of a fiber-reinforced resin mixed with fibers.

また、本発明は、上記のような車両用衝撃吸収部材を設置する車両構造側の取付面において、前記天面部とは反対側のリブ先端部側の前記リブの延長部に相当する部位に、前記リブ先端部のすべりを防止するためのすべり止めが設けられている車両用衝撃吸収構造も提供できる。 Further, in the present invention, on the mounting surface on the vehicle structure side on which the shock absorbing member for a vehicle is installed as described above, the portion corresponding to the extension portion of the rib on the rib tip end side opposite to the top surface portion. It is also possible to provide a shock absorbing structure for a vehicle provided with a non-slip for preventing the rib tip from slipping.

本発明の車両用衝撃吸収部材によれば、衝撃を加えた際に荷重が略一定となる荷重特性を得ることができるので、高効率な衝撃エネルギー吸収特性を発現することが可能になる。 According to the shock absorbing member for a vehicle of the present invention, it is possible to obtain a load characteristic in which the load becomes substantially constant when an impact is applied, so that it is possible to exhibit highly efficient shock energy absorbing characteristics.

本発明の第1実施形態に係る車両用衝撃吸収部材を示しており、(A)は概略斜視図、(B)は図1(A)とは異なる角度から見た概略斜視図、(C)は底面図である。The shock absorbing member for a vehicle according to the first embodiment of the present invention is shown, (A) is a schematic perspective view, (B) is a schematic perspective view seen from a different angle from FIG. 1 (A), (C). Is a bottom view. 本発明に係る車両用衝撃吸収部材の自動車への取り付け例を示す自動車前部の概略構成図である。It is a schematic block diagram of the front part of an automobile which shows the example of attaching the shock absorbing member for a vehicle which concerns on this invention to an automobile. 図1(C)に示されたA−A断面における車両用衝撃吸収部材の概略断面図である。It is a schematic cross-sectional view of the shock absorbing member for a vehicle in the cross section AA shown in FIG. 1 (C). 図1に示された車両用衝撃吸収部材に対して落錘試験を行った際の、筒状部とリブの圧縮変形挙動を模式的に示す説明図であって、(A)は錘と天面部とが接触する前の状態、(B)は、錘が天面部に接触し、筒状部が圧縮変形しリブが車両構造側の取付面に接触し始めた状態、(C)は、筒状部の圧縮変形がさらに進み、リブも圧縮変形している状態をそれぞれ示している。It is explanatory drawing which shows typically the compression deformation behavior of a tubular part and a rib when the weight drop test was performed on the shock absorbing member for a vehicle shown in FIG. 1, and (A) is a weight and a ceiling. The state before contact with the surface portion, (B) is the state where the weight is in contact with the top surface portion, the tubular portion is compressed and deformed, and the ribs are beginning to contact the mounting surface on the vehicle structure side, and (C) is the cylinder. It shows a state in which the compression deformation of the shape portion further progresses and the ribs are also compression deformation. 図1に示された車両用衝撃吸収部材のリブを削除した比較例1の概略断面図である。It is the schematic sectional drawing of the comparative example 1 which removed the rib of the shock absorbing member for a vehicle shown in FIG. 図1に示された車両用衝撃吸収部材のリブを筒状部と接続させた比較例2の概略断面図である。FIG. 5 is a schematic cross-sectional view of Comparative Example 2 in which the rib of the vehicle shock absorbing member shown in FIG. 1 is connected to the tubular portion. 図1に示された第1実施形態の車両用衝撃吸収部材、図5に示された比較例1の車両用衝撃吸収部材、図6に示された比較例2の車両用衝撃吸収部材、それぞれに対して落錘試験を行った際の、荷重-変位特性を概略的に示すグラフである。The vehicle shock absorbing member of the first embodiment shown in FIG. 1, the vehicle shock absorbing member of Comparative Example 1 shown in FIG. 5, and the vehicle shock absorbing member of Comparative Example 2 shown in FIG. 6, respectively. It is a graph which shows roughly the load-displacement characteristic when the drop weight test was performed on the vehicle. 本発明の第2実施形態に係る車両用衝撃吸収部材の概略斜視図である。It is a schematic perspective view of the shock absorbing member for a vehicle which concerns on 2nd Embodiment of this invention. 図8に示された車両用衝撃吸収部材に対して落錘試験を行った際の、筒状部とリブの圧縮変形挙動を模式的に示す説明図であって、(A)は錘と天面部とが接触する前の状態、(B)は、錘が天面部に接触し、筒状部が圧縮変形しリブが車両構造側の取付面に接触し始めた状態、(C)は、筒状部の圧縮変形がさらに進み、リブも圧縮変形している状態をそれぞれ示している。FIG. 8 is an explanatory view schematically showing the compression deformation behavior of the tubular portion and the rib when the weight drop test is performed on the shock absorbing member for a vehicle shown in FIG. The state before contact with the surface portion, (B) is the state where the weight is in contact with the top surface portion, the tubular portion is compressed and deformed, and the ribs are beginning to contact the mounting surface on the vehicle structure side, and (C) is the cylinder. It shows a state in which the compression deformation of the shape portion further progresses and the ribs are also compression deformation. 図8に示された車両用衝撃吸収部材のリブを削除した比較例3の概略断面図である。FIG. 5 is a schematic cross-sectional view of Comparative Example 3 in which the ribs of the vehicle shock absorbing member shown in FIG. 8 are removed. 図8に示された第2実施形態の車両用衝撃吸収部材、図10に示された比較例3の車両用衝撃吸収部材、それぞれに対して落錘試験を行った際の、荷重-変位特性を概略的に示すグラフである。Load-displacement characteristics when a drop weight test is performed on each of the vehicle shock absorbing member of the second embodiment shown in FIG. 8 and the vehicle shock absorbing member of Comparative Example 3 shown in FIG. It is a graph which shows roughly.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の第1実施形態に係る車両用衝撃吸収部材を示している。図1において、100は車両用衝撃吸収部材を示しており、車両用衝撃吸収部材100は、例えば、図2に示されるように、自動車車体の前部において、衝突時に入力される衝突エネルギー200を吸収し得るように好適に用いられている。しかし、本構造は車体前部以外の後部または側面部にも好適に用いることができ、自動車車体の前部のみに限定せずに用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a vehicle shock absorbing member according to the first embodiment of the present invention. In FIG. 1, 100 indicates a vehicle shock absorbing member, and the vehicle shock absorbing member 100 receives a collision energy 200 input at the time of a collision at the front portion of an automobile body, for example, as shown in FIG. It is preferably used so that it can be absorbed. However, this structure can be suitably used for a rear portion or a side surface portion other than the front portion of the vehicle body, and is not limited to the front portion of the automobile vehicle body.

図1の車両用衝撃吸収部材100は、車両部材(図示略)へ締結により固定するための固定部101、固定部101から衝突方向(図1(A)Z方向)に向かって順番に筒状部102、筒状部102の一方の開口部を塞ぐように形成された天面部103を有しており、筒状部102の内部には少なくとも1つ以上の衝撃時の荷重を支えるためのリブ110が設けられている。また、他の車両部材に簡便に取り付けることができるように締結部101に締結穴104を設けていてもよい。 The vehicle shock absorbing member 100 of FIG. 1 has a tubular shape in order from the fixing portion 101 for fixing to the vehicle member (not shown) by fastening and the fixing portion 101 toward the collision direction (FIG. 1 (A) Z direction). It has a top surface portion 103 formed so as to close one opening of the portion 102 and the tubular portion 102, and a rib for supporting at least one or more impact load inside the tubular portion 102. 110 is provided. Further, the fastening hole 104 may be provided in the fastening portion 101 so that it can be easily attached to another vehicle member.

ここで、図1に示されるように、車両用衝撃吸収部材100は、衝突方向(図1(A)Z方向)の軸直角断面が略十二角形の側面部からなる筒状部102を有しているが、この断面構造の形状は特に限定されず、円形や略四角形、略六角形など他の形状であってもよい。 Here, as shown in FIG. 1, the vehicle shock absorbing member 100 has a tubular portion 102 having a side surface portion having a substantially dodecagonal cross section perpendicular to the axis in the collision direction (FIG. 1 (A) Z direction). However, the shape of this cross-sectional structure is not particularly limited, and other shapes such as a circle, a substantially quadrangle, and a substantially hexagon may be used.

図1におけるリブ110について、より具体的には図3に示されるように、リブ110は天面部103と接続され、かつ筒状部102とは離間して設けられている。なお、図3における符号301はバンパー、符号300は衝突エネルギーを示している。 More specifically, as shown in FIG. 3, the rib 110 in FIG. 1 is connected to the top surface portion 103 and is provided apart from the tubular portion 102. Reference numeral 301 in FIG. 3 indicates a bumper, and reference numeral 300 indicates a collision energy.

ここで、上記車両用衝撃吸収部材100の構造による効果について、落錘試験を有限要素法によりシミュレーションした結果をもとに効果を説明する。車両用衝撃吸収部材100の寸法は、固定部101が81mm×81mm、高さが77mmである。また、全肉厚は3mmとなっている。この試験においては、図4(A)に示すように車両用衝撃吸収部材100を立設させた状態で、締結穴104を固定面402に拘束し、上方から所定の錘401を衝突エネルギー400の方向に落下させて、車両用衝撃吸収部材100を軸方向に押し潰す手法を採用している。この落錘試験の諸条件としては、錘の重さ20kg、落錘高さ1mとして、車両用衝撃吸収部材100の圧縮変形挙動を観察するとともに、車両用衝撃吸収部材100の圧縮変形開始からの変位と、かかる圧縮変形により発生した荷重とを出力した。車両用衝撃吸収部材100に使用する樹脂は、東レ(株)製8207X01B(弾性率:1.8GPa、強度:135MPa)を用いた。 Here, the effect of the structure of the vehicle shock absorbing member 100 will be described based on the result of simulating the drop weight test by the finite element method. The dimensions of the vehicle shock absorbing member 100 are 81 mm × 81 mm for the fixed portion 101 and 77 mm for the height. The total wall thickness is 3 mm. In this test, in the state where the vehicle shock absorbing member 100 is erected as shown in FIG. 4A, the fastening hole 104 is restrained on the fixed surface 402, and the predetermined weight 401 is subjected to the collision energy 400 from above. A method of dropping in the direction and crushing the shock absorbing member 100 for a vehicle in the axial direction is adopted. As various conditions of this weight drop test, the weight of the weight is 20 kg and the height of the weight is 1 m, the compression deformation behavior of the vehicle shock absorbing member 100 is observed, and the compression deformation of the vehicle shock absorbing member 100 is started. The displacement and the load generated by such compressive deformation were output. As the resin used for the vehicle shock absorbing member 100, 8207X01B (elastic modulus: 1.8 GPa, strength: 135 MPa) manufactured by Toray Industries, Inc. was used.

上記のような落錘試験のシミュレーションについて、先ずは、図5に示された第1実施形態の車両用衝撃吸収部材100のリブ110を削除した比較例1について実施した。結果、図7の700のような荷重-変位線図を得た。変形直後は荷重が徐々に上昇していくが、筒状部102の座屈により目標荷重を超えたあたりから荷重が急落する。さらに変形が進むと、さらに筒状部102が潰され固定面402と錘401に挟まれることで、荷重が上昇していく挙動を示す。このようにリブ110が無い比較例1の構造では、変形が進むにしたがい、荷重特性が波打ち、発生する荷重が目標荷重付近を略一定に推移しない。 Regarding the simulation of the drop weight test as described above, first, Comparative Example 1 in which the rib 110 of the vehicle shock absorbing member 100 of the first embodiment shown in FIG. 5 was deleted was carried out. As a result, a load-displacement diagram like 700 in FIG. 7 was obtained. Immediately after the deformation, the load gradually increases, but the load suddenly drops from the point where the target load is exceeded due to the buckling of the tubular portion 102. As the deformation progresses, the tubular portion 102 is further crushed and sandwiched between the fixed surface 402 and the weight 401, so that the load increases. As described above, in the structure of Comparative Example 1 without the rib 110, the load characteristic undulates as the deformation progresses, and the generated load does not change substantially constant in the vicinity of the target load.

また、図6に示され第1実施形態の車両用衝撃吸収部材100のリブ110を筒状部102と接続させたリブ600とした比較例2についてのシミュレーション結果を、図7の703に示す。リブ600が筒状部102と接続されていることで、全体的に剛性が向上し、荷重が高く発生しているが、剛性が高すぎるため筒状部102の座屈が発生せず、圧縮変形もほぼしない状態で、高いピーク荷重を発生するだけの荷重−変位線図となり、発生する荷重が目標荷重付近を略一定に推移しない。また、比較例2では、目標荷重を大幅にオーバーするため、過剰な衝撃力が発生し、他の部品の損傷や歩行者との衝突時に歩行者に多大なダメージを与えてしまう可能性がある。 Further, FIG. 703 of FIG. 7 shows a simulation result of Comparative Example 2 in which the rib 110 of the vehicle shock absorbing member 100 of the first embodiment shown in FIG. 6 is connected to the tubular portion 102 as the rib 600. Since the rib 600 is connected to the tubular portion 102, the rigidity is improved as a whole and a high load is generated, but the rigidity is too high so that the tubular portion 102 does not buckle and is compressed. With almost no deformation, the load-displacement diagram is such that only a high peak load is generated, and the generated load does not change substantially constant near the target load. Further, in Comparative Example 2, since the target load is significantly exceeded, an excessive impact force is generated, which may cause damage to other parts or cause a great deal of damage to the pedestrian in the event of a collision with the pedestrian. ..

次に、本発明の第1実施形態に係る車両用衝撃吸収部材100のシミュレーション時の変形状態を図4(B)、(C)に示し、荷重−変位線図を図7の701に示す。変形直後は荷重が徐々に上昇していくが、図4(B)に示すように筒状部102の座屈により目標荷重を超えたあたりから荷重が低下し始めるタイミングでリブ110が固定面402に接触し始め、図7の701に示すように筒状部102の代わりに錘401からの荷重を支えることができる。第1実施形態の車両用衝撃吸収部材100は、リブ110が筒状部102と離間されていることから、筒状部102の変形と独立してリブ110が変形できるために発生する効果である。これは、図7の700と701について、荷重の第1ピークまでは同じ荷重−変位線図の推移を示し、その後の荷重の差702がリブ110の効果として発現していることを見ても明らかである。 Next, the deformed state of the vehicle shock absorbing member 100 according to the first embodiment of the present invention at the time of simulation is shown in FIGS. 4 (B) and 4 (C), and the load-displacement diagram is shown in 701 of FIG. Immediately after the deformation, the load gradually increases, but as shown in FIG. 4 (B), the rib 110 has a fixed surface 402 at the timing when the load starts to decrease from around the point where the target load is exceeded due to buckling of the tubular portion 102. Can support the load from the weight 401 instead of the tubular portion 102 as shown in 701 of FIG. The vehicle shock absorbing member 100 of the first embodiment is an effect generated because the rib 110 can be deformed independently of the deformation of the tubular portion 102 because the rib 110 is separated from the tubular portion 102. .. This can be seen from the fact that for 700 and 701 in FIG. 7, the same load-displacement diagram transition is shown up to the first peak of the load, and the subsequent load difference 702 appears as an effect of the rib 110. it is obvious.

ここで、筒状部102の変形が始まり座屈し荷重が低下し始めるタイミングでリブ110が固定面402に接触し始めると、より効果的に荷重−変位線図を目標荷重付近で推移させることができるため、リブ110は天面部103から反対側の先端部111(図3に図示)までの長さをリブ長さとしたとき、筒状部102の衝突方向長さよりもリブ長さの方が短い方がよい。さらには、筒状部102の衝突方向長さの50〜99%であるとより好ましい。 Here, when the rib 110 starts to come into contact with the fixed surface 402 at the timing when the tubular portion 102 starts to be deformed and buckles and the load starts to decrease, the load-displacement diagram can be more effectively changed near the target load. Therefore, when the length from the top surface portion 103 to the opposite tip portion 111 (shown in FIG. 3) is taken as the rib length, the rib length of the rib 110 is shorter than the collision direction length of the tubular portion 102. Better. Further, it is more preferable that the length of the tubular portion 102 in the collision direction is 50 to 99%.

また、筒状部102の荷重が負担していた荷重を効率的にリブ110が負担できるように、複数枚のリブ110を配置するとより好ましい。 Further, it is more preferable to arrange a plurality of ribs 110 so that the ribs 110 can efficiently bear the load borne by the load of the tubular portion 102.

複数枚のリブ110が配置されている場合、リブ110のリブ長さが少なくとも1つのリブ110のリブ長さがその他のリブ長さとは異なることにより、筒状部102が圧縮変形しそれぞれのリブ110が固定面402に接地し始めるタイミングをずらすことで、荷重の負担の移り変わりがスムーズになり、荷重-変位線図がより目標荷重付近を略一定に推移しやすくなるため好ましい。 When a plurality of ribs 110 are arranged, the rib length of the rib 110 is different from the rib length of at least one rib 110, so that the tubular portion 102 is compressively deformed and each rib is deformed. By shifting the timing at which 110 starts to touch the fixed surface 402, the transition of the load load becomes smooth, and the load-displacement diagram becomes more likely to change in the vicinity of the target load to be substantially constant, which is preferable.

また、筒状部102の中心軸に対し放射状に延びる複数のリブ110とすることで、空間内に効率的にリブ110を配置できるため好ましく、さらには、中心部でリブ110同士がお互いに離間していることでリブ110が圧縮変形する各リブ110が独立に変形できるため、過剰な荷重上昇を防ぎつつ筒状部102の代わりに荷重を負担できるためより好ましい。特にリブ110のリブ長さがそれぞれ異なる場合は、中心部でリブ110を離間させるとより効果的である。 Further, it is preferable to use a plurality of ribs 110 extending radially with respect to the central axis of the tubular portion 102 because the ribs 110 can be efficiently arranged in the space, and further, the ribs 110 are separated from each other at the central portion. This is more preferable because each rib 110 in which the rib 110 is compressively deformed can be deformed independently, so that a load can be borne instead of the tubular portion 102 while preventing an excessive load increase. In particular, when the rib lengths of the ribs 110 are different, it is more effective to separate the ribs 110 at the center.

次に、第2実施形態として、車両用衝撃吸収部材100の筒状部102に穴800を開けた形状を図8に示す。第2実施形態では、その変形前の状態を図9(A)に示すように、リブ110aとリブ110bとでリブ長さが異なっている。そして、第2実施形態のシミュレーション時の変形状態を図9(B)、(C)に示し、荷重−変位線図を図11の1101に示す。また、比較例1と同様に、図10に示された第2実施形態の車両用衝撃吸収部材100のリブ110を削除した比較例3についてもシミュレーションを実施し、荷重−変位線図を図11の1100に示す。 Next, as a second embodiment, FIG. 8 shows a shape in which a hole 800 is formed in the tubular portion 102 of the vehicle shock absorbing member 100. In the second embodiment, as shown in FIG. 9A, the rib length before the deformation is different between the rib 110a and the rib 110b. Then, the deformation state at the time of simulation of the second embodiment is shown in FIGS. 9 (B) and 9 (C), and the load-displacement diagram is shown in 1101 of FIG. Further, similarly to Comparative Example 1, a simulation was also carried out for Comparative Example 3 in which the rib 110 of the vehicle shock absorbing member 100 of the second embodiment shown in FIG. 10 was deleted, and a load-displacement diagram was shown in FIG. 1100.

比較例3では、変形直後は荷重が徐々に上昇していくが、筒状部102の上部の座屈により目標荷重を超えたあたりから荷重が急落する。さらに変形が進むと、筒状部102の上部が潰れきり筒状部102の下部が荷重を支えることから荷重が一度上昇し、その後筒状部102の下部が座屈することで荷重が低下し、さらに筒状部102が潰され固定面402と錘401に挟まれることで、荷重が上昇していく挙動を示す。このようにリブ110が無い比較例3の構造のように、荷重特性の波打ちが複数発生することがある。 In Comparative Example 3, the load gradually increases immediately after the deformation, but the load drops sharply from the point where the target load is exceeded due to the buckling of the upper portion of the tubular portion 102. As the deformation progresses, the upper part of the tubular part 102 is crushed and the lower part of the tubular part 102 supports the load, so that the load rises once, and then the lower part of the tubular part 102 buckles, and the load decreases. Further, when the tubular portion 102 is crushed and sandwiched between the fixed surface 402 and the weight 401, the load increases. As described above, as in the structure of Comparative Example 3 without the rib 110, a plurality of waviness of the load characteristic may occur.

次に第2実施形態の結果について、図9に示すように、変形直後は荷重が徐々に上昇していくが、図9(B)に示すように筒状部102の上部の座屈により目標荷重を超えたあたりから荷重が低下し始めるタイミングでリブ110bが固定面402に接触し始め、接触したリブ110bは図11の1101に示すように筒状部102の代わりに錘401からの荷重を荷重差1102(第1の差)の分だけ支えることができる。さらに変形が進み図9(C)に示すように筒状部102の下部の座屈により荷重が低下し始めるタイミングでリブ110aが固定面402に接触し始め、図11の1101の示すように筒状部102の代わりに錘401からの荷重を荷重差1103(第2の差)の分だけ支えることができ、目標荷重付近を発生荷重が推移して、荷重を略一定に保つことが可能となる。このように、比較例3の構造のように、荷重特性の波打ちが複数発生する場合に、リブ110aとリブ長さを変えたリブ110bを設けると、リブの効果を効果的に活用できる。 Next, regarding the result of the second embodiment, as shown in FIG. 9, the load gradually increases immediately after the deformation, but as shown in FIG. 9B, the target is due to the buckling of the upper part of the tubular portion 102. The rib 110b starts to come into contact with the fixed surface 402 at the timing when the load starts to decrease from around the point where the load is exceeded, and the contacted rib 110b receives the load from the weight 401 instead of the tubular portion 102 as shown in 1101 of FIG. It can support only the load difference 1102 (first difference). As the deformation further progresses, the rib 110a starts to come into contact with the fixed surface 402 at the timing when the load starts to decrease due to the buckling of the lower portion of the tubular portion 102 as shown in FIG. 9C, and the cylinder as shown in 1101 of FIG. Instead of the shape portion 102, the load from the weight 401 can be supported by the load difference 1103 (second difference), and the generated load changes near the target load, making it possible to keep the load substantially constant. Become. As described above, when a plurality of waviness of the load characteristic occurs as in the structure of Comparative Example 3, if the rib 110a and the rib 110b having different rib lengths are provided, the effect of the rib can be effectively utilized.

また、車両用衝撃収集部材100は、多くの場合、射出成形により成形されることから、天面部103から反対側の先端部111に向けて肉厚が低減し、天面部103側で最大の肉厚となっている方が、成形性が向上し好ましい。さらには、射出成形により車両用衝撃吸収部材100を一体成形する方が効率的に成形できより好ましい。 Further, since the impact collecting member 100 for a vehicle is molded by injection molding in many cases, the wall thickness decreases from the top surface portion 103 toward the tip end portion 111 on the opposite side, and the maximum meat thickness on the top surface portion 103 side. It is preferable that the thickness is increased because the moldability is improved. Further, it is more preferable to integrally mold the shock absorbing member 100 for a vehicle by injection molding because it can be molded efficiently.

また、車両用衝撃吸収部材100は、熱可塑性樹脂組成物もしくは熱硬化性樹脂組成物により構成されると、より軽量化効果と衝撃吸収性を得られるため好ましい。さらには、熱可塑性樹脂もしくは熱硬化性樹脂にガラス繊維、炭素繊維、金属繊維の少なくとも1つの繊維を混ぜた繊維強化樹脂とすることで、目標荷重が高い場合などにも効果的に対応できるため、好ましい。 Further, it is preferable that the vehicle shock absorbing member 100 is made of a thermoplastic resin composition or a thermosetting resin composition because a lighter weight effect and a shock absorbing property can be obtained. Furthermore, by using a fiber-reinforced resin in which at least one fiber of glass fiber, carbon fiber, or metal fiber is mixed with a thermoplastic resin or a thermosetting resin, it is possible to effectively cope with a high target load. ,preferable.

また、車両用衝撃吸収部材100を設置する車両構造側の取付面において、天面部103とは反対側のリブ先端部111側のリブ110の延長部に相当する部位に、リブ先端部111のすべりを防止するためのすべり止めが設けられていると、リブ110がより効率的に荷重を支えることができるようになるため好ましい。すべり止めの構造は特に限定されず、リブ先端部111のすべりを防止できればよい。 Further, on the mounting surface on the vehicle structure side on which the vehicle shock absorbing member 100 is installed, the rib tip portion 111 slides on a portion corresponding to the extension portion of the rib 110 on the rib tip portion 111 side opposite to the top surface portion 103. It is preferable that the non-slip is provided to prevent the rib 110 from supporting the load more efficiently. The non-slip structure is not particularly limited, and it is sufficient that the rib tip 111 can be prevented from slipping.

本発明の車両用衝撃吸収部材は、衝撃吸収が望まれる車両のあらゆる部位に適用可能であり、特に、自動車車体の前部に加え、後部や側面部に好適に適用できる。 The shock absorbing member for a vehicle of the present invention can be applied to any part of a vehicle in which shock absorption is desired, and in particular, can be suitably applied to a rear portion and a side surface portion in addition to the front portion of an automobile body.

100 第1実施形態に係る車両用衝撃吸収部材
101 固定部
102 筒状部
103 天面部
104 締結穴
110、110a、110b リブ
111 リブ先端部
200、300、400 衝突エネルギー
301 バンパー
401 錘
402 固定面
600 リブ
700 比較例1の荷重-変位線図
701 第1実施形態の荷重-変位線図
702 比較例1と第1実施形態の荷重の差
703 比較例2の荷重-変位線図
800 穴
1100 比較例3の荷重-変位線図
1101 第2実施形態の荷重-変位線図
1102 比較例3と第2実施形態の荷重の第1の差
1103 比較例3と第2実施形態の荷重の第2の差
100 Impact absorbing member for vehicle according to the first embodiment 101 Fixed portion 102 Cylindrical portion 103 Top surface portion 104 Fastening hole 110, 110a, 110b Rib 111 Rib tip portion 200, 300, 400 Collision energy 301 Bumper 401 Weight 402 Fixed surface 600 Rib 700 Load-Displacement Diagram 701 of Comparative Example 1 Load-Displacement Diagram 702 Difference between Load of Comparative Example 1 and First Embodiment 703 Load-Displacement Diagram of Comparative Example 2 Hole 1100 Comparative Example 3 Load-Displacement Diagram 1101 Load-Displacement Diagram 1102 First difference between the load of Comparative Example 3 and the second embodiment 1103 Second difference between the load of Comparative Example 3 and the second embodiment

Claims (12)

筒状形態を呈する筒状部と共に、その軸方向の一方の開口部を塞ぐように形成された天面部を有し、前記天面部に入力される衝撃荷重にて前記軸方向に圧縮変形することによって、衝撃エネルギーを吸収するようにした、車両用衝撃吸収部材について、前記筒状部の内側に少なくとも1つ以上の衝撃時の荷重を支えるためのリブが、前記天面部と接続され、かつ前記筒状部とは離間して設けられていることを特徴とする車両用衝撃吸収部材。 Along with a tubular portion having a tubular shape, it has a top surface portion formed so as to close one opening in the axial direction thereof, and is compressed and deformed in the axial direction by an impact load input to the top surface portion. With respect to the impact absorbing member for a vehicle that absorbs impact energy, ribs for supporting at least one or more impact load are connected to the top surface portion inside the tubular portion, and the above-mentioned A shock absorbing member for a vehicle, characterized in that it is provided apart from the tubular portion. 前記リブの前記天面部側から反対側の先端部までの長さを示すリブ長さが、前記筒状部の軸方向長さよりも短いことを特徴とする請求項1に記載の車両用衝撃吸収部材。 The vehicle shock absorption according to claim 1, wherein the rib length indicating the length from the top surface side to the opposite end of the rib is shorter than the axial length of the tubular portion. Element. 前記リブ長さが、前記筒状部の軸方向長さの50〜99%であることを特徴とする請求項2に記載の車両用衝撃吸収部材。 The vehicle shock absorbing member according to claim 2, wherein the rib length is 50 to 99% of the axial length of the tubular portion. 前記リブが複数設けられていることを特徴とする請求項1〜3のいずれかに記載の車両用衝撃吸収部材。 The vehicle shock absorbing member according to any one of claims 1 to 3, wherein a plurality of the ribs are provided. 前記リブの前記天面部側から反対側の先端部までの長さを示すリブ長さについて、少なくとも1つのリブのリブ長さがその他のリブのリブ長さと異なることを特徴とする請求項4に記載の車両用衝撃吸収部材。 4. The rib length indicating the length from the top surface side to the opposite tip of the rib is characterized in that the rib length of at least one rib is different from the rib length of the other ribs. The vehicle shock absorbing member described. 前記リブは、前記筒状部の中心軸に対し放射状に延びる複数のリブから構成されていることを特徴とする請求項4または5に記載の車両用衝撃吸収部材。 The vehicle shock absorbing member according to claim 4 or 5, wherein the rib is composed of a plurality of ribs extending radially with respect to the central axis of the tubular portion. 前記リブは、前記筒状部の中心部でリブ同士が互いに離間していることを特徴とする請求項4〜6のいずれかに記載の車両用衝撃吸収部材。 The vehicle shock absorbing member according to any one of claims 4 to 6, wherein the ribs are separated from each other at a central portion of the tubular portion. 前記リブの肉厚が、前記天面部側から前記天面部とは反対側のリブ先端部側に向けて減少するとともに、前記天面部側で最大の肉厚となっていることを特徴とする請求項1〜7のいずれかに記載の車両用衝撃吸収部材。 The claim is characterized in that the wall thickness of the rib decreases from the top surface portion side toward the rib tip portion side opposite to the top surface portion, and the wall thickness is the maximum on the top surface portion side. Item 4. The shock absorbing member for a vehicle according to any one of Items 1 to 7. 全体が一体成形されてなる、請求項1〜8のいずれかに記載の車両用衝撃吸収部材。 The vehicle shock absorbing member according to any one of claims 1 to 8, wherein the entire body is integrally molded. 熱可塑性樹脂組成物もしくは熱硬化性樹脂組成物により構成されている、請求項1〜9のいずれかに記載の車両用衝撃吸収部材。 The vehicle shock absorbing member according to any one of claims 1 to 9, which is composed of a thermoplastic resin composition or a thermosetting resin composition. 前記熱可塑性樹脂組成物もしくは前記熱硬化性樹脂組成物が、熱可塑性樹脂もしくは熱硬化性樹脂にガラス繊維、炭素繊維、金属繊維の少なくとも1つの繊維を混ぜた繊維強化樹脂により構成されている、請求項10に記載の車両用衝撃吸収部材。 The thermoplastic resin composition or the thermosetting resin composition is composed of a fiber-reinforced resin in which at least one fiber of glass fiber, carbon fiber, or metal fiber is mixed with the thermoplastic resin or the thermosetting resin. The vehicle shock absorbing member according to claim 10. 請求項1〜11のいずれかに記載の車両用衝撃吸収部材を設置する車両構造側の取付面において、前記天面部とは反対側のリブ先端部側の前記リブの延長部に相当する部位に、前記リブ先端部のすべりを防止するためのすべり止めが設けられていることを特徴とする、車両用衝撃吸収構造。 On the mounting surface on the vehicle structure side on which the vehicle shock absorbing member according to any one of claims 1 to 11 is installed, a portion corresponding to an extension portion of the rib on the rib tip end side opposite to the top surface portion. , A shock absorbing structure for a vehicle, characterized in that a non-slip is provided to prevent the tip of the rib from slipping.
JP2019191179A 2019-10-18 2019-10-18 Shock absorbing member for vehicle Pending JP2021067291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191179A JP2021067291A (en) 2019-10-18 2019-10-18 Shock absorbing member for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191179A JP2021067291A (en) 2019-10-18 2019-10-18 Shock absorbing member for vehicle

Publications (1)

Publication Number Publication Date
JP2021067291A true JP2021067291A (en) 2021-04-30

Family

ID=75636993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191179A Pending JP2021067291A (en) 2019-10-18 2019-10-18 Shock absorbing member for vehicle

Country Status (1)

Country Link
JP (1) JP2021067291A (en)

Similar Documents

Publication Publication Date Title
US7354030B2 (en) Impact-absorbing member for vehicles
JP5587696B2 (en) Vehicle shock absorber and vehicle bumper device
US5433478A (en) Impact-absorbing structure of a door trim
CN107848477B (en) Bumper beam
US7201412B2 (en) Vehicle bumper
US8840171B2 (en) Plastically deformable coil energy absorber systems
CN105564361B (en) Automobile front and bumper reinforcing member therein
WO2007075659A2 (en) Mechanical energy absorption system
WO2012073680A1 (en) Shock absorbing member
JP6070670B2 (en) Vehicle hood structure
CN103963735A (en) Front End For A Motor Vehicle
US6971692B2 (en) Protective structure for vehicles suitable for being used, in particular, in the case of collision with pedestrians
US20180105129A1 (en) Bumper reinforcement for vehicle
JP5620078B2 (en) Shock absorber for shock absorber bumper for vehicles
JP6441034B2 (en) Shock absorbing member
JP2021067291A (en) Shock absorbing member for vehicle
JP2017106611A (en) Shock energy absorption structure for vehicle
WO2017034501A1 (en) Nested crash box as a passive safety component in vehicles
CN111479724B (en) Impact absorbing structure for vehicle
US20030075953A1 (en) Impact energy absorbing component
JP5729274B2 (en) Vehicle shock absorption structure
JP2007176451A (en) Bumper absorber
AU2002321003B2 (en) Front structure that is optimised for a head impact
JP4781212B2 (en) Shock absorber for automobile
KR101319754B1 (en) a Bumper back beam for vehicle