JP2021065893A - Welding device and control method for welding device - Google Patents

Welding device and control method for welding device Download PDF

Info

Publication number
JP2021065893A
JP2021065893A JP2019191042A JP2019191042A JP2021065893A JP 2021065893 A JP2021065893 A JP 2021065893A JP 2019191042 A JP2019191042 A JP 2019191042A JP 2019191042 A JP2019191042 A JP 2019191042A JP 2021065893 A JP2021065893 A JP 2021065893A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
welding
axis
overlay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019191042A
Other languages
Japanese (ja)
Other versions
JP7467066B2 (en
Inventor
翔太郎 石嶺
Shotaro Ishimine
翔太郎 石嶺
匡 田村
Tadashi Tamura
匡 田村
昇大 山口
Shota Yamaguchi
昇大 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2019191042A priority Critical patent/JP7467066B2/en
Publication of JP2021065893A publication Critical patent/JP2021065893A/en
Application granted granted Critical
Publication of JP7467066B2 publication Critical patent/JP7467066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To perform spiral overlay welding on an outer peripheral surface of a heat transfer tube while appropriately satisfying welding specifications such as overlay thickness and overlay surface roughness.SOLUTION: A welding device 200 comprises: a movement mechanism which moves a heat transfer tube T along an axis X; a rotating mechanism which rotates the heat transfer tube T around the axis X; an overlay welding mechanism 20 welds while supplying a weld material onto an outer peripheral surface of the heat transfer tube T of which a position is fixed with respect to an installation surface S on which the welding device 200 is installed, as well as, which passes a prescribed welding position P0; and a control part 90 which controls the movement mechanism, the rotating mechanism, and the overlay welding mechanism 20. The control part 90 controls so that the overlay welding mechanism 20 performs spiral overlay welding on the outer peripheral surface of the heat transfer tube T in the state that the movement mechanism moves the heat transfer tube T along the axis X direction, and the rotating mechanism rotates the heat transfer tube T around the axis X.SELECTED DRAWING: Figure 4

Description

本開示は、溶接装置および溶接装置の制御方法に関するものである。 The present disclosure relates to a welding apparatus and a method for controlling the welding apparatus.

ボイラに用いられる火炉壁などには、内部に水や蒸気が流通する長尺の伝熱管と板状のフィンとが交互に溶接で接続された伝熱パネルが用いられるものがある。そして、伝熱管の耐腐食性を確保するために、伝熱管の表面に耐腐食性材料で螺旋巻溶接を行うことが知られている(例えば、特許文献1(段落0072等)参照)。特許文献1には、素管を回転させながらTIG溶接トーチを送ることで、素管の全周により配管の全周に螺旋巻溶接により耐腐食層を形成することが開示されている。 Some of the furnace walls used in boilers use heat transfer panels in which long heat transfer tubes through which water and steam flow and plate-shaped fins are alternately connected by welding. Then, in order to ensure the corrosion resistance of the heat transfer tube, it is known that spiral welding is performed on the surface of the heat transfer tube with a corrosion resistant material (see, for example, Patent Document 1 (paragraph 0072, etc.)). Patent Document 1 discloses that by feeding a TIG welding torch while rotating a raw pipe, a corrosion-resistant layer is formed by spiral welding on the entire circumference of the raw pipe.

特開2018−189282号公報Japanese Unexamined Patent Publication No. 2018-189282

特許文献1に開示される螺旋巻溶接では、長尺の伝熱管に対して溶接トーチが移動するため、溶接トーチの移動方向に沿った各位置で溶接トーチと伝熱管との間の距離などに変動が生じやすい。溶接トーチと伝熱管との間の距離や溶接トーチとの角度などに変動が生じると、溶接トーチと伝熱管の位置関係を精度高く管理することができなくなり、伝熱管の長手方向の各位置での溶接状態に変動が生じてしまい、肉盛厚さや肉盛表面粗度などの許容範囲を設定した溶接仕様を満たすことができない可能性がある。 In the spiral winding welding disclosed in Patent Document 1, since the welding torch moves with respect to the long heat transfer tube, the distance between the welding torch and the heat transfer tube can be determined at each position along the moving direction of the welding torch. Fluctuations are likely to occur. If the distance between the welding torch and the heat transfer tube or the angle between the welding torch fluctuates, it becomes impossible to accurately manage the positional relationship between the welding torch and the heat transfer tube, and at each position in the longitudinal direction of the heat transfer tube. There is a possibility that the welding condition of the torch will fluctuate, and it will not be possible to meet the welding specifications for which the allowable range such as overlay thickness and overlay surface roughness is set.

本開示は、このような事情に鑑みてなされたものであって、肉盛厚さや肉盛表面粗度などの溶接仕様を適切に満たして伝熱管の外周表面に螺旋状の肉盛溶接を行うことが可能な溶接装置および溶接装置の制御方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and spiral overlay welding is performed on the outer peripheral surface of the heat transfer tube while appropriately satisfying welding specifications such as overlay thickness and overlay surface roughness. It is an object of the present invention to provide a welding apparatus capable of being capable of and a method of controlling the welding apparatus.

本開示の一態様に係る溶接装置は、軸線に沿って配置される円筒状の伝熱管の外周表面に肉盛溶接を行い、前記伝熱管を前記軸線に沿って移動させる移動機構と、前記伝熱管を前記軸線回りに回転させる回転機構と、前記溶接装置が設置される設置面に対して位置が固定されるとともに所定の溶接位置を通過する前記伝熱管の外周表面に溶接材料を供給しながら溶接する肉盛溶接機構と、前記移動機構と前記回転機構と前記肉盛溶接機構とを制御する制御部と、を備え、前記制御部は、前記移動機構が前記伝熱管を前記軸線に沿って移動させ、かつ前記回転機構が前記伝熱管を前記軸線回りに回転させる状態で、前記肉盛溶接機構が前記伝熱管の外周表面に螺旋状に肉盛溶接を行うよう制御する。 The welding apparatus according to one aspect of the present disclosure includes a moving mechanism that performs overlay welding on the outer peripheral surface of a cylindrical heat transfer tube arranged along an axis and moves the heat transfer tube along the axis, and the transfer. While supplying the welding material to the outer peripheral surface of the heat transfer tube that is fixed in position with respect to the installation surface on which the welding device is installed and that passes through the predetermined welding position and the rotation mechanism that rotates the heat tube around the axis. A build-up welding mechanism for welding, a moving mechanism, a rotating mechanism, and a control unit for controlling the build-up welding mechanism are provided. In the control unit, the moving mechanism moves the heat transfer tube along the axis. The overlay welding mechanism controls the overlay welding to spirally perform overlay welding on the outer peripheral surface of the heat transfer tube while the rotating mechanism rotates the heat transfer tube around the axis.

本開示の一態様に係る溶接装置の制御方法は、軸線に沿って配置される円筒状の伝熱管の外周表面に肉盛溶接を行う溶接装置の制御方法であって、前記溶接装置は、前記伝熱管を前記軸線に沿って移動させる移動機構と、前記伝熱管を前記軸線回りに回転させる回転機構と、前記溶接装置が設置される設置面に対して固定されるとともに所定の溶接位置を通過する前記伝熱管の外周表面に溶接材料を供給しながら溶接する肉盛溶接機構と、を備え、前記移動機構が前記伝熱管を前記軸線に沿って移動させ、かつ前記回転機構が前記伝熱管を前記軸線回りに回転させる状態で、前記肉盛溶接機構が前記伝熱管の外周表面に螺旋状に肉盛溶接を行うよう前記溶接装置を制御する制御工程を備える。 The method for controlling the welding device according to one aspect of the present disclosure is a method for controlling a welding device that performs overlay welding on the outer peripheral surface of a cylindrical heat transfer tube arranged along an axis. A moving mechanism that moves the heat transfer tube along the axis, a rotation mechanism that rotates the heat transfer tube around the axis, and a rotation mechanism that rotates the heat transfer tube around the axis are fixed to the installation surface on which the welding device is installed and pass through a predetermined welding position. A build-up welding mechanism for welding while supplying a welding material to the outer peripheral surface of the heat transfer tube is provided, the moving mechanism moves the heat transfer tube along the axis, and the rotating mechanism moves the heat transfer tube. It is provided with a control step of controlling the welding apparatus so that the overlay welding mechanism spirally overlays welds on the outer peripheral surface of the heat transfer tube in a state of being rotated around the axis.

本開示によれば、肉盛厚さや肉盛表面粗度などの溶接仕様を適切に満たして伝熱管の外周表面に螺旋状の肉盛溶接を行うことが可能な溶接装置および溶接装置の制御方法を提供することができる。 According to the present disclosure, a welding device and a method for controlling a welding device capable of performing spiral overlay welding on the outer peripheral surface of a heat transfer tube by appropriately satisfying welding specifications such as overlay thickness and overlay surface roughness. Can be provided.

本開示の一実施形態に係るガス化炉設備が備えるガス化炉の縦断面図である。It is a vertical sectional view of the gasification furnace provided in the gasification furnace equipment which concerns on one Embodiment of this disclosure. 図1に示すガス化炉壁の概略構成を示す横断面図である。It is a cross-sectional view which shows the schematic structure of the gasification furnace wall shown in FIG. 図1に示すガス化炉壁の概略構成を示す拡大断面図である。It is an enlarged sectional view which shows the schematic structure of the gasification furnace wall shown in FIG. 本開示の一実施形態に係る溶接装置の側面図であり、伝熱管の外周表面に肉盛溶接を開始した状態を示す。It is a side view of the welding apparatus which concerns on one Embodiment of this disclosure, and shows the state which started overlay welding on the outer peripheral surface of a heat transfer tube. 本開示の一実施形態に係る溶接装置の側面図であり、伝熱管の外周表面に肉盛溶接を行っている状態を示す。It is a side view of the welding apparatus which concerns on one Embodiment of this disclosure, and shows the state which overlay welding is performed on the outer peripheral surface of a heat transfer tube. 本開示の一実施形態に係る溶接装置の側面図であり、伝熱管の外周表面への肉盛溶接を終了した状態を示す。It is a side view of the welding apparatus which concerns on one Embodiment of this disclosure, and shows the state which completed the overlay welding to the outer peripheral surface of a heat transfer tube. 図5に示す溶接装置の部分拡大図である。It is a partially enlarged view of the welding apparatus shown in FIG. 図7に示す溶接装置のA−A矢視断面図であり、第1下方支持部を示す図である。FIG. 7 is a cross-sectional view taken along the line AA of the welding apparatus shown in FIG. 7 and shows a first lower support portion. 図7に示す溶接装置のB−B矢視断面図であり、第2下方支持部および上方支持機構を示す図である。FIG. 7 is a cross-sectional view taken along the line BB of the welding apparatus shown in FIG. 7, showing a second lower support portion and an upper support mechanism. 図7に示す溶接装置のC−C矢視断面図であり、第3下方支持部を示す図である。FIG. 7 is a cross-sectional view taken along the line CC of the welding apparatus shown in FIG. 7, showing a third lower support portion. 図9に示す上方支持機構の変形例を示す図である。It is a figure which shows the modification of the upper support mechanism shown in FIG. 図4に示す可動台車の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the movable carriage shown in FIG. 図4に示す冷却機構を示す概略構成図である。It is a schematic block diagram which shows the cooling mechanism shown in FIG. 図7に示す肉盛溶接機構のD−D矢視断面図であり、計測機構が肉盛溶接されていない伝熱管を計測する状態を示す図である。FIG. 7 is a cross-sectional view taken along the line DD of the overlay welding mechanism shown in FIG. 7, showing a state in which the measuring mechanism measures a heat transfer tube that has not been overlay welded. 図7に示す肉盛溶接機構のD−D矢視断面図であり、計測機構が肉盛溶接された伝熱管を計測する状態を示す図である。FIG. 7 is a cross-sectional view taken along the line DD of the overlay welding mechanism shown in FIG. 7, showing a state in which the measuring mechanism measures the overlay-welded heat transfer tube. 図4に示す溶接装置の制御構成を示す概略構成図である。It is a schematic block diagram which shows the control structure of the welding apparatus shown in FIG. 図9に示す第2下方支持部および上方支持機構の変形例を示す図である。It is a figure which shows the modification of the 2nd lower support part and the upper support mechanism shown in FIG.

以下、本開示の一実施形態に係る溶接装置および溶接装置の制御方法について、図面を参照して説明する。本実施形態の溶接装置は、肉盛溶接を行う際に、冷却水(冷却媒体)を円筒状の伝熱管の内部に流通させることにより、伝熱管自身および周囲を冷却して、伝熱管の外周表面に耐腐食性および耐熱性を向上させるための溶接材料を肉盛溶接する装置である。
以下の説明で、上方や下方などの上と下の記載は、鉛直方向での上や下を示すものとする。
Hereinafter, the welding apparatus and the control method of the welding apparatus according to the embodiment of the present disclosure will be described with reference to the drawings. In the welding apparatus of the present embodiment, when performing overlay welding, cooling water (cooling medium) is circulated inside the cylindrical heat transfer tube to cool the heat transfer tube itself and its surroundings, thereby cooling the outer periphery of the heat transfer tube. It is a device for overlay welding a welding material to improve corrosion resistance and heat resistance on the surface.
In the following description, the above and below descriptions such as above and below shall indicate the above and below in the vertical direction.

本実施形態の溶接装置200により溶接材料が肉盛溶接された伝熱管は、例えば複数の板材に溶接により連結されて伝熱パネルとなる。伝熱パネルは、例えば、ボイラの火炉の内部や、ガス化炉の内部に配置される。以下では、溶接材料が肉盛溶接された伝熱管を用いた伝熱パネルが配置される一例として、ガス化炉について図面を参照して説明する。図1は、本開示の一実施形態に係るガス化炉の縦断面図である。 The heat transfer tube in which the welding material is built-up welded by the welding device 200 of the present embodiment is connected to, for example, a plurality of plate materials by welding to form a heat transfer panel. The heat transfer panel is arranged, for example, inside the furnace of the boiler or inside the gasification furnace. In the following, as an example in which a heat transfer panel using a heat transfer tube in which the welding material is built-up welded is arranged, the gasification furnace will be described with reference to the drawings. FIG. 1 is a vertical sectional view of a gasifier according to an embodiment of the present disclosure.

図1に示すガス化炉101は、石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)において、主に水素と一酸化炭素を含む生成ガスを生成する装置である。ガス化炉101に供給する燃料としては、例えば、石炭等の炭素含有固体燃料が用いられ、石炭ミル(図示略)などで粉砕することで、細かい粒子状に粉砕した微粉炭が供給される。燃料から可燃性ガス(生成ガス)を生成する燃焼方式として、空気を主とする酸化剤を用いる空気燃焼方式を用いている。ガス化炉101が生成した生成ガスは、発電機を回転駆動するガスタービンの燃焼器に供給される。 The gasification furnace 101 shown in FIG. 1 is an apparatus that mainly produces a generated gas containing hydrogen and carbon monoxide in an integrated coal gasification combined cycle (IGCC). As the fuel to be supplied to the gasification furnace 101, for example, a carbon-containing solid fuel such as coal is used, and by pulverizing with a coal mill (not shown) or the like, pulverized coal pulverized into fine particles is supplied. As a combustion method for generating flammable gas (produced gas) from fuel, an air combustion method using an oxidizing agent mainly composed of air is used. The generated gas generated by the gasification furnace 101 is supplied to the combustor of the gas turbine that rotationally drives the generator.

図1に示すように、ガス化炉101は、鉛直方向に延びて形成されており、鉛直方向の下方側に微粉炭及び酸素が供給され、部分燃焼させてガス化した生成ガスが鉛直方向の下方側から上方側に向かって流通している。ガス化炉101は、圧力容器110と、圧力容器110の内部に設けられるガス化炉壁111とを有している。ガス化炉壁111として、伝熱管Tを含む伝熱パネルが利用される。 As shown in FIG. 1, the gasification furnace 101 is formed so as to extend in the vertical direction, and pulverized coal and oxygen are supplied to the lower side in the vertical direction, and the generated gas gasified by partial combustion is in the vertical direction. It circulates from the lower side to the upper side. The gasifier 101 has a pressure vessel 110 and a gasifier wall 111 provided inside the pressure vessel 110. As the gasification furnace wall 111, a heat transfer panel including a heat transfer tube T is used.

ガス化炉101は、圧力容器110とガス化炉壁111との間の空間にアニュラス部115を形成している。また、ガス化炉101は、ガス化炉壁111の内部の空間において、鉛直方向の下方側(つまり、生成ガスの流通方向の上流側)から順に、コンバスタ部116、ディフューザ部117、リダクタ部118を形成している。 The gasifier 101 forms an annulus portion 115 in the space between the pressure vessel 110 and the gasifier wall 111. Further, in the space inside the gasifier wall 111, the gasifier 101 has a convertor portion 116, a diffuser portion 117, and a reducer portion 118 in this order from the lower side in the vertical direction (that is, the upstream side in the flow direction of the generated gas). Is forming.

圧力容器110は、内部が中空空間となる筒形状に形成され、上端部にガス排出口121が形成される一方、下端部(底部)にスラグホッパ122が形成されている。ガス化炉壁111は、内部が中空空間となる筒形状に形成され、その壁面が圧力容器110の内面と対向して設けられている。本実施形態では圧力容器110は例えば円筒形状で、ガス化炉壁111のディフューザ部117も例えば円筒形状に形成されている。そして、ガス化炉壁111は、図示しない支持部材により圧力容器110内面に連結されている。 The pressure vessel 110 is formed in a tubular shape having a hollow space inside, and a gas discharge port 121 is formed at the upper end portion, while a slug hopper 122 is formed at the lower end portion (bottom portion). The gasification furnace wall 111 is formed in a tubular shape having a hollow space inside, and the wall surface thereof is provided so as to face the inner surface of the pressure vessel 110. In the present embodiment, the pressure vessel 110 is formed in a cylindrical shape, for example, and the diffuser portion 117 of the gasification furnace wall 111 is also formed in a cylindrical shape, for example. The gasification furnace wall 111 is connected to the inner surface of the pressure vessel 110 by a support member (not shown).

ガス化炉壁111は、圧力容器110の内部を内部空間154と外部空間156に分離する。ガス化炉壁111は、横断面形状がコンバスタ部116とリダクタ部118との間のディフューザ部117で変化する形状とされている。ガス化炉壁111は、鉛直上方側となるその上端部が、圧力容器110のガス排出口121に接続され、鉛直下方側となるその下端部が圧力容器110の底部と隙間を空けて設けられている。 The gasifier wall 111 separates the inside of the pressure vessel 110 into an internal space 154 and an external space 156. The gasification furnace wall 111 has a shape in which the cross-sectional shape changes at the diffuser portion 117 between the convertor portion 116 and the reducer portion 118. The upper end of the gasifier wall 111 on the vertically upper side is connected to the gas discharge port 121 of the pressure vessel 110, and the lower end thereof on the vertically lower side is provided with a gap from the bottom of the pressure vessel 110. ing.

圧力容器110の底部に形成されるスラグホッパ122には、貯留水が溜められており、ガス化炉壁111の下端部が貯留水に浸水することで、ガス化炉壁111の内外を封止している。ガス化炉壁111には、バーナ装置126,127が挿入され、内部空間154にシンガスクーラ102が配置されている。 The stored water is stored in the slug hopper 122 formed at the bottom of the pressure vessel 110, and the lower end of the gasification furnace wall 111 is flooded with the stored water to seal the inside and outside of the gasification furnace wall 111. ing. Burner devices 126 and 127 are inserted into the gasification furnace wall 111, and a thin gas cooler 102 is arranged in the internal space 154.

アニュラス部115は、圧力容器110の内側とガス化炉壁111の外側に形成された空間、つまり外部空間156であり、空気分離設備(図示略)で分離された不活性ガスである窒素が、図示しない窒素供給ラインを通って供給される。このため、アニュラス部115は、窒素が充満する空間となる。なお、このアニュラス部115の鉛直方向の上部付近には、ガス化炉101内を均圧にするための図示しない炉内均圧管が設けられている。炉内均圧管は、ガス化炉壁111の内外を連通して設けられ、ガス化炉壁111の内部(コンバスタ部116、ディフューザ部117及びリダクタ部118)と外部(アニュラス部115)との圧力差を所定圧力以内となるよう略均圧にしている。 The annular portion 115 is a space formed inside the pressure vessel 110 and outside the gasification furnace wall 111, that is, an external space 156, and nitrogen, which is an inert gas separated by an air separation facility (not shown), is contained in the annulus portion 115. It is supplied through a nitrogen supply line (not shown). Therefore, the annulus portion 115 becomes a space filled with nitrogen. A pressure equalizing pipe (not shown) for equalizing the pressure inside the gasification furnace 101 is provided near the upper portion of the annulus portion 115 in the vertical direction. The pressure equalizing pipe in the furnace is provided so as to communicate the inside and outside of the gasification furnace wall 111, and the pressure between the inside (combustor part 116, diffuser part 117 and reducer part 118) and the outside (annulus part 115) of the gasification furnace wall 111. The pressure is approximately equalized so that the difference is within a predetermined pressure.

コンバスタ部116は、微粉炭及びチャー(石炭の未反応分と灰分)と空気とを一部燃焼させる燃焼室となっており、コンバスタ部116におけるガス化炉壁111には、複数のバーナ装置126からなる燃焼装置が配置されている。コンバスタ部116で微粉炭及びチャーの一部を燃焼した高温の燃焼ガスは、ディフューザ部117を通過してリダクタ部118に流入する。 The convertor section 116 is a combustion chamber that partially burns pulverized coal and char (unreacted coal and ash) and air, and a plurality of burner devices 126 are formed on the gasification furnace wall 111 of the convertor section 116. A combustion chamber consisting of is arranged. The high-temperature combustion gas obtained by burning the pulverized coal and a part of the char in the converter section 116 passes through the diffuser section 117 and flows into the reducer section 118.

リダクタ部118は、ガス化反応に必要な高温状態に維持されコンバスタ部116からの燃焼ガスに微粉炭を供給し部分酸化燃焼させて、微粉炭を揮発分(一酸化炭素、水素、低級炭化水素等)へと分解してガス化されて生成ガスを生成する空間となっており、リダクタ部118におけるガス化炉壁111には、複数のバーナ装置127からなる燃焼装置が配置されている。 The reducer section 118 is maintained at a high temperature state required for the gasification reaction, supplies pulverized coal to the combustion gas from the convertor section 116 and partially oxidatively burns the pulverized coal to volatile components (carbon monoxide, hydrogen, lower hydrocarbons). Etc.), and the space is gasified to generate the generated gas. A combustion device composed of a plurality of burner devices 127 is arranged on the gasification furnace wall 111 of the reducer unit 118.

次に、ガス化炉壁111について図面を参照して説明する。図2は、図1に示すガス化炉壁111の概略構成を示す横断面図である。図3は、図1に示すガス化炉壁111の概略構成を示す拡大断面図である。 Next, the gasification furnace wall 111 will be described with reference to the drawings. FIG. 2 is a cross-sectional view showing a schematic configuration of the gasification furnace wall 111 shown in FIG. FIG. 3 is an enlarged cross-sectional view showing a schematic configuration of the gasification furnace wall 111 shown in FIG.

ガス化炉壁111の水平方向の断面形状は、多角筒形状や円筒形状の筒形状であるが、図3に示す形態では円筒形状のものの例であり、筒形状となる壁部140に複数の水冷壁管142が設けられている。つまり壁部140の一部に複数の水冷壁管142が同心円状に配置して設けられている。 The horizontal cross-sectional shape of the gasification furnace wall 111 is a polygonal tubular shape or a cylindrical tubular shape, but the form shown in FIG. 3 is an example of a cylindrical shape, and a plurality of tubular wall portions 140 have a tubular shape. A water-cooled wall pipe 142 is provided. That is, a plurality of water-cooled wall pipes 142 are arranged concentrically on a part of the wall portion 140.

ガス化炉101は、水冷壁管142内に冷媒(冷却水として給水や蒸気など)を循環させる冷却水循環機構(図示略)を有する。複数の水冷壁管142は、ガス化炉101を全域にわたって鉛直方向に沿って延設されており、一部が切断されることなく鉛直方向上下に伸び、周方向に並設されることで、ガス化炉101の壁部140が形成されている。 The gasifier 101 has a cooling water circulation mechanism (not shown) that circulates a refrigerant (water supply, steam, etc. as cooling water) in the water-cooled wall pipe 142. The plurality of water-cooled wall pipes 142 extend the gasifier 101 along the vertical direction over the entire area, extend vertically in the vertical direction without being partially cut, and are arranged side by side in the circumferential direction. The wall portion 140 of the gasifier 101 is formed.

図3に示すように、水冷壁管142の少なくとも一部は、伝熱管Tと、伝熱管Tの外周に設けられた溶接ビードWBと、を有する。伝熱管Tは、内部に冷却水が流れる管路である。溶接ビードWBは、伝熱管Tの周方向の全周に配置され、伝熱管Tの外周面を覆っている。溶接ビードWBは、後述する溶接装置200が伝熱管Tの外周表面に肉盛溶接を行うことで形成される。 As shown in FIG. 3, at least a part of the water-cooled wall tube 142 has a heat transfer tube T and a weld bead WB provided on the outer periphery of the heat transfer tube T. The heat transfer tube T is a pipeline through which cooling water flows. The weld beads WB are arranged on the entire circumference of the heat transfer tube T in the circumferential direction and cover the outer peripheral surface of the heat transfer tube T. The welding bead WB is formed by performing overlay welding on the outer peripheral surface of the heat transfer tube T by a welding device 200 described later.

壁部140は、水冷壁管142と水冷壁管142との間に板材(フィン)166が設けられている。本実施形態の壁部140は、複数の水冷壁管142を同心円状に配置し、水冷壁管142と水冷壁管142との間を板材166で塞ぐことで、筒形状を形成している。また、壁部140は、水冷壁管142の溶接ビードWBと板材166とを連結する溶接部168を有する。溶接部168は、溶接ビードWBと板材166との接触部分の内部空間154側の端部と、外部空間156側の端部に形成されている。溶接部168は、溶接により形成され、溶接ビードWBと板材166との両方と密着することで、水冷壁管142の溶接ビードWBと板材166とを連結する。 The wall portion 140 is provided with a plate material (fin) 166 between the water-cooled wall pipe 142 and the water-cooled wall pipe 142. The wall portion 140 of the present embodiment has a tubular shape by arranging a plurality of water-cooled wall pipes 142 concentrically and closing the space between the water-cooled wall pipes 142 and the water-cooled wall pipes 142 with a plate material 166. Further, the wall portion 140 has a welded portion 168 that connects the weld bead WB of the water-cooled wall pipe 142 and the plate material 166. The welded portion 168 is formed at an end portion on the inner space 154 side and an end portion on the outer space 156 side of the contact portion between the weld bead WB and the plate material 166. The welded portion 168 is formed by welding and is in close contact with both the weld bead WB and the plate material 166 to connect the weld bead WB of the water-cooled wall pipe 142 and the plate material 166.

ガス化炉壁111は、伝熱管Tが第1材料で製作され、溶接ビードWBが第2材料で作製されている。また、板材166及び溶接部168は、第2材料で作製されていてもよい。第1材料及び第2材料は、金属である。第2材料は、第1材料よりも耐食性(耐腐食性)が高く、かつ、耐熱性が高い材料である。ガス化炉壁111は、溶接ビードWBを伝熱管Tよりも耐食性が高く、かつ、耐熱性が高い材料で形成することで、伝熱管Tを保護することができる。 In the gasification furnace wall 111, the heat transfer tube T is made of the first material, and the weld bead WB is made of the second material. Further, the plate material 166 and the welded portion 168 may be made of a second material. The first material and the second material are metals. The second material is a material having higher corrosion resistance (corrosion resistance) and higher heat resistance than the first material. The gasification furnace wall 111 can protect the heat transfer tube T by forming the weld bead WB with a material having higher corrosion resistance and heat resistance than the heat transfer tube T.

具体的には、ガス化炉壁111の内側の可燃性ガスが流れる内部空間154は、酸化剤(酸素を含むガス)と燃料が部分燃焼されてガス化した生成ガスとなって流れ、かつ高温となる。伝熱管Tの内部空間154側の面を溶接ビードWBで覆うことで、伝熱管Tを腐食や高温の使用環境から保護することができる。また、ガス化炉壁111の伝熱管Tや溶接ビードWBや板材166に石炭などのスラグが付着と脱落を発生することで、ガス化炉壁111の壁面の温度変化が発生して、伝熱管Tや溶接ビードWBで温度分布が生じると、材質の違いによる熱膨張差の影響が大きくなり、局部的な熱応力が大きくなる場合があるので溶接ビードWBは耐熱性が高い材料で形成している。 Specifically, the internal space 154 inside the gasification furnace wall 111 through which the flammable gas flows flows as a gasified product gas obtained by partially burning the oxidant (gas containing oxygen) and the fuel, and has a high temperature. It becomes. By covering the surface of the heat transfer tube T on the internal space 154 side with the weld bead WB, the heat transfer tube T can be protected from corrosion and a high temperature usage environment. Further, slag such as coal adheres to and falls off from the heat transfer tube T, the weld bead WB, and the plate material 166 of the gasification furnace wall 111, so that the temperature of the wall surface of the gasification furnace wall 111 changes, and the heat transfer tube When a temperature distribution occurs in T or the weld bead WB, the influence of the thermal expansion difference due to the difference in the material becomes large, and the local thermal stress may become large. Therefore, the weld bead WB is formed of a material having high heat resistance. There is.

さらにガス化炉壁111のコンバスタ部116、ディフューザ部117、リダクタ部118の内部空間154では、1500℃を越える高温雰囲気であることで温度差は大きくなり易い。このため本実施形態では、ガス化炉壁111の外部空間156側と内部空間154側は、伝熱管Tの軸心と板材166の板厚中心を結ぶ面に対して対称となる同じ形状としてあり、局所的な温度分布が発生しても熱膨張差による熱負荷の増大を抑制することができて、ガス化炉壁111の耐久性を向上できる。 Further, in the internal space 154 of the convertor portion 116, the diffuser portion 117, and the reducer portion 118 of the gasification furnace wall 111, the temperature difference tends to be large due to the high temperature atmosphere exceeding 1500 ° C. Therefore, in the present embodiment, the outer space 156 side and the inner space 154 side of the gasifier wall 111 have the same shape symmetrical with respect to the surface connecting the axis of the heat transfer tube T and the plate thickness center of the plate material 166. Even if a local temperature distribution occurs, it is possible to suppress an increase in heat load due to a difference in thermal expansion, and it is possible to improve the durability of the gasification furnace wall 111.

次に、伝熱管Tの外周表面に螺旋状に肉盛溶接を行う溶接装置200について、図面を参照して説明する。図4は、本開示の一実施形態に係る溶接装置200の側面図であり、伝熱管Tの外周表面に肉盛溶接を開始して溶接ビードWBが形成され始めた状態を示す。図5は、本開示の一実施形態に係る溶接装置200の側面図であり、伝熱管Tの外周表面に肉盛溶接を行って溶接ビードWBを形成している状態を示す。図6は、本開示の一実施形態に係る溶接装置200の側面図であり、伝熱管Tの外周表面への肉盛溶接を終了した状態を示す。 Next, a welding device 200 that spirally overlays welds the outer peripheral surface of the heat transfer tube T will be described with reference to the drawings. FIG. 4 is a side view of the welding apparatus 200 according to the embodiment of the present disclosure, showing a state in which overlay welding is started on the outer peripheral surface of the heat transfer tube T and the welding bead WB is started to be formed. FIG. 5 is a side view of the welding apparatus 200 according to the embodiment of the present disclosure, showing a state in which a weld bead WB is formed by overlay welding the outer peripheral surface of the heat transfer tube T. FIG. 6 is a side view of the welding apparatus 200 according to the embodiment of the present disclosure, showing a state in which overlay welding to the outer peripheral surface of the heat transfer tube T is completed.

図7は、図5に示す溶接装置200の部分拡大図である。図8は、図7に示す溶接装置200のA−A矢視断面図であり、第1下方支持部31を示す図である。図9は、図7に示す溶接装置200のB−B矢視断面図であり、第2下方支持部32および上方支持機構40を示す図である。図10は、図7に示す溶接装置200のC−C矢視断面図であり、第3下方支持部33を示す図である。図11は、図9に示す上方支持機構40の変形例を示す図である。図12は、図4に示す可動台車10の内部構造を示す斜視図である。 FIG. 7 is a partially enlarged view of the welding apparatus 200 shown in FIG. FIG. 8 is a cross-sectional view taken along the line AA of the welding apparatus 200 shown in FIG. 7, showing the first lower support portion 31. FIG. 9 is a cross-sectional view taken along the line BB of the welding apparatus 200 shown in FIG. 7, showing a second lower support portion 32 and an upper support mechanism 40. FIG. 10 is a cross-sectional view taken along the line CC of the welding apparatus 200 shown in FIG. 7, showing a third lower support portion 33. FIG. 11 is a diagram showing a modified example of the upper support mechanism 40 shown in FIG. FIG. 12 is a perspective view showing the internal structure of the movable carriage 10 shown in FIG.

図4から図6に示す溶接装置200は、ガス化炉壁111の水冷壁管142に対して、伝熱管Tの外周表面に、溶接材料を螺旋状に肉盛溶接して溶接ビードWBを形成する装置である。図4から図6に示すように、伝熱管Tは、紙面水平方向に延びる軸線Xに沿って配置される円筒状の管体である。図4から図6に示すように、溶接装置200は、可動台車10と、肉盛溶接機構20と、下方支持機構30と、上方支持機構40と、冷却機構50と、計測機構60と、本体部70と、撮像部80と、表示部85と、制御部90と、を備える。 In the welding apparatus 200 shown in FIGS. 4 to 6, the welding material is spirally overlaid on the outer peripheral surface of the heat transfer tube T with respect to the water-cooled wall tube 142 of the gasification furnace wall 111 to form a welding bead WB. It is a device to weld. As shown in FIGS. 4 to 6, the heat transfer tube T is a cylindrical tube body arranged along the axis X extending in the horizontal direction of the paper surface. As shown in FIGS. 4 to 6, the welding apparatus 200 includes a movable carriage 10, an overlay welding mechanism 20, a lower support mechanism 30, an upper support mechanism 40, a cooling mechanism 50, a measurement mechanism 60, and a main body. A unit 70, an imaging unit 80, a display unit 85, and a control unit 90 are provided.

溶接装置200は、伝熱管Tを設置面Sに平行となるように設置面Sから一定の高さに配置して下方支持機構30および上方支持機構40により支持する。溶接装置200は、可動台車10により、伝熱管Tを移動方向MDに沿って所定の速度で移動させながら軸線X回りに所定の回転数で回転させる。溶接装置200は、移動方向MDに沿って移動しながら軸線X回りに回転する伝熱管Tに対して、紙面上方に設置面Sに対して固定した位置に設置された肉盛溶接機構20により肉盛溶接を行う。 In the welding device 200, the heat transfer tube T is arranged at a constant height from the installation surface S so as to be parallel to the installation surface S, and is supported by the lower support mechanism 30 and the upper support mechanism 40. The welding device 200 rotates the heat transfer tube T around the axis X at a predetermined rotation speed while moving the heat transfer tube T along the moving direction MD at a predetermined speed by the movable carriage 10. The welding device 200 is built-up welding mechanism 20 installed at a position fixed above the paper surface with respect to the installation surface S with respect to the heat transfer tube T rotating around the axis X while moving along the moving direction MD. Perform build-up welding.

図4に示す状態で伝熱管Tの外周表面に肉盛溶接が開始され、図5に示すように螺旋状に形成される溶接ビードWBの範囲が増加し、図6に示す状態で伝熱管Tの外周表面への肉盛溶接が終了する。溶接装置200は、図4から図6までの動作を実行することにより、伝熱管Tの外周表面に溶接材料を螺旋状に肉盛溶接された溶接ビードWBを形成する。 Overlay welding is started on the outer peripheral surface of the heat transfer tube T in the state shown in FIG. 4, the range of the weld bead WB formed in a spiral shape increases as shown in FIG. 5, and the heat transfer tube T is in the state shown in FIG. Overlay welding to the outer peripheral surface of the is completed. By executing the operations of FIGS. 4 to 6, the welding apparatus 200 forms a weld bead WB in which the welding material is spirally overlaid on the outer peripheral surface of the heat transfer tube T.

可動台車10は、伝熱管Tを軸線Xに沿って所定速度で移動させながら所定速度で回転させる機構の一例である。図12に示すように、可動台車10は、伝熱管Tを軸線Xに沿って移動させる移動機構11と、伝熱管Tを軸線X回りに回転させる回転機構12とを備える。 The movable carriage 10 is an example of a mechanism that rotates the heat transfer tube T at a predetermined speed while moving it along the axis X at a predetermined speed. As shown in FIG. 12, the movable carriage 10 includes a moving mechanism 11 for moving the heat transfer tube T along the axis X, and a rotating mechanism 12 for rotating the heat transfer tube T around the axis X.

図12に示すように、移動機構11は、移動用モータ11aを駆動させることにより、駆動軸11bに連結された第1ギア11cを駆動軸11bと同軸方向に回転させ、第1ギア11cに係合した第2ギア11dを回転させる。第2ギア11dは、連結軸11eを介して連結された第3ギア11fを回転させる。第3ギア11fは、溶接装置200が設置される設置面Sに対して固定された本体部70に設けられたラックギア71と係合している。そのため、第3ギア11fが回転することにより、移動機構11の台車部11gが本体部70のレール72に沿って移動方向MDに移動する。ここで、移動方向MDは、伝熱管Tの軸線X方向と平行な方向である。 As shown in FIG. 12, the moving mechanism 11 drives the moving motor 11a to rotate the first gear 11c connected to the drive shaft 11b in the coaxial direction with the drive shaft 11b, and engages with the first gear 11c. The combined second gear 11d is rotated. The second gear 11d rotates the third gear 11f connected via the connecting shaft 11e. The third gear 11f is engaged with a rack gear 71 provided on the main body 70 fixed to the installation surface S on which the welding device 200 is installed. Therefore, as the third gear 11f rotates, the carriage portion 11g of the moving mechanism 11 moves along the rail 72 of the main body portion 70 in the moving direction MD. Here, the moving direction MD is a direction parallel to the axis X direction of the heat transfer tube T.

伝熱管Tは、回転機構12により、可動台車10に軸線X回りに回転可能な状態で、移動機構11に対して軸線X方向に移動しないように伝熱管Tの外周表面を固定部12eで保持して固定されている。そのため、移動機構11が軸線Xに沿って移動すると、伝熱管Tもそれに伴って軸線Xに沿って移動する。このように、移動機構11は、移動用モータ11aを回転させることにより、伝熱管Tを軸線Xに沿って移動させる。移動用モータ11aの駆動は、制御部90から伝達される制御信号により制御される。 The heat transfer tube T is held by the fixing portion 12e on the outer peripheral surface of the heat transfer tube T so as not to move in the axis X direction with respect to the moving mechanism 11 in a state where the movable carriage 10 can rotate around the axis X by the rotating mechanism 12. And fixed. Therefore, when the moving mechanism 11 moves along the axis X, the heat transfer tube T also moves along the axis X accordingly. In this way, the moving mechanism 11 moves the heat transfer tube T along the axis X by rotating the moving motor 11a. The drive of the moving motor 11a is controlled by a control signal transmitted from the control unit 90.

図12に示すように、回転機構12は、回転用モータ12aを駆動させることにより、駆動軸12bに連結された第1ギア12cを回転させ、第1ギア12cに係合した第2ギア12dを回転させる。第2ギア12dは、伝熱管Tの外周表面を保持して第2ギア12dに対して回転不能に固定される固定部12eと一体となるように連結されている。そのため、第2ギア12dが回転すると、伝熱管Tもそれに伴って軸線X回りに回転する。 As shown in FIG. 12, the rotation mechanism 12 drives the rotation motor 12a to rotate the first gear 12c connected to the drive shaft 12b, and causes the second gear 12d engaged with the first gear 12c. Rotate. The second gear 12d is connected so as to be integrated with a fixing portion 12e that holds the outer peripheral surface of the heat transfer tube T and is fixed to the second gear 12d so as not to rotate. Therefore, when the second gear 12d rotates, the heat transfer tube T also rotates around the axis X accordingly.

このように、回転機構12は、回転用モータ12aを回転させることにより、伝熱管Tを軸線X回りに一定の方向に所定の回転数で回転させる。回転用モータ12aの駆動は、制御部90から伝達される制御信号により制御される。 In this way, the rotation mechanism 12 rotates the rotation motor 12a to rotate the heat transfer tube T around the axis X in a fixed direction at a predetermined rotation speed. The drive of the rotary motor 12a is controlled by a control signal transmitted from the control unit 90.

肉盛溶接機構20は、図7に示すように、軸線X上の所定の溶接位置P0を通過する伝熱管Tの外周表面に溶接材料を供給しながら螺旋状に溶接ビードWBを形成する装置である。肉盛溶接機構20は、溶接装置200が設置される設置面Sに対して本体部70を介して固定されている。肉盛溶接機構20は、例えばタングステン電極21aを有する溶接トーチ21により、TIG(Tungsten Inert Gas)溶接を行う。肉盛溶接機構20は、制御部90から伝達される制御信号によりタングステン電極21aに電圧を印可して電流を供給することで、タングステン電極21aの先端と伝熱管Tの外周表面との間に溶接電流が流れてアークを形成して温度が上昇する。 As shown in FIG. 7, the overlay welding mechanism 20 is a device that spirally forms a welding bead WB while supplying a welding material to the outer peripheral surface of a heat transfer tube T passing through a predetermined welding position P0 on the axis X. is there. The overlay welding mechanism 20 is fixed to the installation surface S on which the welding device 200 is installed via the main body 70. The overlay welding mechanism 20 performs TIG (Tungsten Inert Gas) welding by, for example, a welding torch 21 having a tungsten electrode 21a. The overlay welding mechanism 20 applies a voltage to the tungsten electrode 21a by a control signal transmitted from the control unit 90 to supply an electric current, thereby welding between the tip of the tungsten electrode 21a and the outer peripheral surface of the heat transfer tube T. An electric current flows to form an arc and the temperature rises.

溶接トーチ21によって形成されたアークに対して、溶接ワイヤ(溶接材料)が供給されるようになっている。溶接ワイヤは、制御部90から伝達される制御信号によって所定の送給量が供給されるようになっており、溶接ワイヤに電流を流すことによって、ジュール熱で溶接ワイヤが加熱される。本実施形態の溶接ワイヤとしては、例えばインコネル(登録商標)等の固溶強化型ニッケル基合金や高クロム含有合金を含む耐腐食性材料などを用いることができる。 A welding wire (welding material) is supplied to the arc formed by the welding torch 21. A predetermined feed amount is supplied to the welding wire by a control signal transmitted from the control unit 90, and the welding wire is heated by Joule heat by passing an electric current through the welding wire. As the welding wire of the present embodiment, for example, a corrosion-resistant material containing a solid solution reinforced nickel-based alloy such as Inconel (registered trademark) or a high chromium-containing alloy can be used.

肉盛溶接機構20は、本体部70に固定されているが、伝熱管Tは移動方向MDに沿って移動し、かつ軸線X回りに回転している。そのため、肉盛溶接機構20は本体部70の固定された位置で伝熱管Tへの溶接を行うことで、伝熱管Tの外周表面上に耐腐食性材料が、螺旋状に肉盛溶接される。また、肉盛溶接機構20は本体部70の固定された位置であるために、溶接トーチ21と伝熱管Tの位置関係を精度高く管理することができる。 The overlay welding mechanism 20 is fixed to the main body 70, but the heat transfer tube T moves along the moving direction MD and rotates around the axis X. Therefore, the overlay welding mechanism 20 spirally overlays the corrosion-resistant material on the outer peripheral surface of the heat transfer tube T by welding the heat transfer tube T at a fixed position of the main body 70. .. Further, since the overlay welding mechanism 20 is at a fixed position of the main body 70, the positional relationship between the welding torch 21 and the heat transfer tube T can be managed with high accuracy.

下方支持機構30は、伝熱管Tを下方から支持する機構であり、設置面Sに対して固定されている。下方支持機構30は、第1下方支持部31と、第2下方支持部32と、第3下方支持部33と、を備える。以下、図面を参照して、下方支持機構30について説明する。図8は、図7に示す溶接装置200のA−A矢視断面図であり、第1下方支持部31を示す図である。図9は、図7に示す溶接装置200のB−B矢視断面図であり、第2下方支持部32および上方支持機構40を示す図である。図10は、図7に示す溶接装置200のC−C矢視断面図であり、第3下方支持部33を示す図である。 The lower support mechanism 30 is a mechanism that supports the heat transfer tube T from below, and is fixed to the installation surface S. The lower support mechanism 30 includes a first lower support portion 31, a second lower support portion 32, and a third lower support portion 33. Hereinafter, the lower support mechanism 30 will be described with reference to the drawings. FIG. 8 is a cross-sectional view taken along the line AA of the welding apparatus 200 shown in FIG. 7, showing the first lower support portion 31. FIG. 9 is a cross-sectional view taken along the line BB of the welding apparatus 200 shown in FIG. 7, showing a second lower support portion 32 and an upper support mechanism 40. FIG. 10 is a cross-sectional view taken along the line CC of the welding apparatus 200 shown in FIG. 7, showing a third lower support portion 33.

第1下方支持部31は、肉盛溶接機構20に最も近接した位置で伝熱管Tの下方を支持し、肉盛溶接機構20が固定される本体部70に対して固定されている。図8に示すように、第1下方支持部31は、伝熱管Tの下方側の外周表面の周方向の2箇所と接触する一対の球体(第1球体)31aと、一対の球体31aのそれぞれを任意方向に回転可能に保持する保持部(第1保持部)31bと、を有する。第1下方支持部31は、一対の球体31aにより、伝熱管Tの下方を周方向に2箇所の異なった位置から挟んだ状態で支持することで、伝熱管Tの中心位置(軸線Xの位置)を一定の位置に保持することができる。 The first lower support portion 31 supports the lower part of the heat transfer tube T at the position closest to the overlay welding mechanism 20, and is fixed to the main body portion 70 to which the overlay welding mechanism 20 is fixed. As shown in FIG. 8, the first lower support portion 31 is a pair of spheres (first spheres) 31a that come into contact with two points in the circumferential direction of the outer peripheral surface on the lower side of the heat transfer tube T, and a pair of spheres 31a, respectively. Has a holding portion (first holding portion) 31b, which rotatably holds the ball in an arbitrary direction. The first lower support portion 31 is supported by a pair of spheres 31a in a state where the lower part of the heat transfer tube T is sandwiched from two different positions in the circumferential direction, thereby supporting the center position of the heat transfer tube T (position of the axis X). ) Can be held in a fixed position.

第2下方支持部32は、第1下方支持部31に隣接して配置され、第1下方支持部31よりも軸線Xに沿った伝熱管Tの移動方向MDの上流側(紙面右側)に配置されている。図9に示すように、第2下方支持部32は、伝熱管Tの下方側の外周表面の周方向の2箇所と接触する一対の球体(第1球体)32aと、一対の球体32aのそれぞれを任意方向に回転可能に保持する保持部(第1保持部)32bと、を有する。第2下方支持部32は、一対の球体32aにより、伝熱管Tの下方を周方向に2箇所の異なった位置から挟んだ状態で支持することで、伝熱管Tの中心位置(軸線Xの位置)を一定の位置に保持することができる。 The second lower support portion 32 is arranged adjacent to the first lower support portion 31, and is arranged on the upstream side (right side of the paper surface) of the moving direction MD of the heat transfer tube T along the axis X from the first lower support portion 31. Has been done. As shown in FIG. 9, the second lower support portion 32 is a pair of spheres (first spheres) 32a that come into contact with two points in the circumferential direction of the outer peripheral surface on the lower side of the heat transfer tube T, and a pair of spheres 32a, respectively. Has a holding portion (first holding portion) 32b, which rotatably holds the ball in an arbitrary direction. The second lower support portion 32 is supported by a pair of spheres 32a while sandwiching the lower part of the heat transfer tube T from two different positions in the circumferential direction, thereby supporting the center position of the heat transfer tube T (position of the axis X). ) Can be held in a fixed position.

第3下方支持部33は、第1下方支持部31に対して伝熱管Tの移動方向MDの下流側(紙面左側)の複数箇所と、第2下方支持部32に対して伝熱管Tの移動方向MDの上流側(紙面右側)の複数箇所に配置される。図10に示すように、第3下方支持部33は、伝熱管Tの下方側の外周表面、または伝熱管Tの外周表面に溶接ビードWBを形成した状態(水冷壁管142)の下方側の外周表面の周方向の2箇所と接触する一対の球体(第1球体)33aと、一対の球体33aのそれぞれを任意方向に回転可能に保持する保持部(第1保持部)33bと、を有する。第3下方支持部33は、一対の球体33aにより、伝熱管Tの下方を周方向に2箇所の異なった位置から挟んだ状態で支持することで、伝熱管Tの中心位置(軸線Xの位置)を一定の位置に保持することができる。 The third lower support portion 33 has a plurality of locations on the downstream side (left side of the paper surface) of the heat transfer tube T in the moving direction MD with respect to the first lower support portion 31, and the heat transfer tube T moves with respect to the second lower support portion 32. It is arranged at a plurality of locations on the upstream side (right side of the paper) of the direction MD. As shown in FIG. 10, the third lower support portion 33 is located on the lower outer peripheral surface of the heat transfer tube T or on the lower outer surface of the heat transfer tube T in a state where a weld bead WB is formed (water-cooled wall tube 142). It has a pair of spheres (first spheres) 33a that come into contact with two points in the circumferential direction of the outer peripheral surface, and a holding portion (first holding portion) 33b that rotatably holds each of the pair of spheres 33a in an arbitrary direction. .. The third lower support portion 33 is supported by a pair of spheres 33a in a state of sandwiching the lower part of the heat transfer tube T from two different positions in the circumferential direction, thereby supporting the center position of the heat transfer tube T (position of the axis X). ) Can be held in a fixed position.

第3下方支持部33は、伝熱管Tを支持する先端位置の設置面Sに対して直交する方向(紙面上下方向)の距離を調整可能な高さ調整機構(切替機構)33cを備える。高さ調整機構33cは、伝熱管Tを支持する位置に球体33aを保持する支持状態(図6に示す状態)と、伝熱管Tを支持しない位置に球体33aを退避させた退避状態(図4および図5に示す状態)とを切り替え可能な機構である。高さ調整機構33cは、球体33aの先端位置を、設置面Sに対して直交する方向(紙面上下方向)に沿って移動させる機構である。高さ調整機構33cは、例えば、圧縮空気源(図示略)から供給される圧縮空気の圧力によって鉛直方向上下に伸縮して、図示しないストッパで球体33aの先端位置を管理する機構となっている。 The third lower support portion 33 includes a height adjusting mechanism (switching mechanism) 33c capable of adjusting the distance in the direction orthogonal to the installation surface S at the tip position supporting the heat transfer tube T (vertical direction on the paper surface). The height adjusting mechanism 33c has a supported state in which the sphere 33a is held at a position supporting the heat transfer tube T (state shown in FIG. 6) and a retracted state in which the sphere 33a is retracted to a position not supporting the heat transfer tube T (FIG. 4). And the state shown in FIG. 5) is a mechanism that can be switched. The height adjusting mechanism 33c is a mechanism for moving the tip position of the sphere 33a along a direction orthogonal to the installation surface S (vertical direction on the paper surface). The height adjusting mechanism 33c is, for example, a mechanism that expands and contracts vertically in the vertical direction by the pressure of compressed air supplied from a compressed air source (not shown), and manages the tip position of the sphere 33a with a stopper (not shown). ..

第3下方支持部33のうち、第1下方支持部31に対して伝熱管Tの移動方向MDの下流側の複数箇所に配置されるものは、可動台車10の移動方向MDへの移動に際して接触しないように高さ調整機構33cにより球体33aの先端位置を下方側へ退避状態となるように移動させる。伝熱管Tの移動方向MDの最も下流側に配置される第3下方支持部33は、図4および図5に示す状態では、可動台車10が通過していないため、可動台車10との接触を避けるために球体33aの先端位置は退避状態となる。一方、図6に示す状態では、可動台車10が通過しているため、球体33aの先端位置は支持状態となる。 Among the third lower support portions 33, those arranged at a plurality of locations on the downstream side of the moving direction MD of the heat transfer tube T with respect to the first lower supporting portion 31 come into contact with each other when the movable carriage 10 moves in the moving direction MD. The height adjusting mechanism 33c moves the tip position of the sphere 33a downward so as to prevent the sphere 33a from being retracted. In the state shown in FIGS. 4 and 5, the third lower support portion 33 arranged on the most downstream side of the moving direction MD of the heat transfer tube T does not pass through the movable carriage 10, so that the third lower support portion 33 does not come into contact with the movable carriage 10. In order to avoid this, the tip position of the sphere 33a is in the retracted state. On the other hand, in the state shown in FIG. 6, since the movable carriage 10 has passed, the tip position of the sphere 33a is in the supporting state.

第3下方支持部33のうち、第1下方支持部31に対して伝熱管Tの移動方向MDの上流側の複数箇所に配置されるものは、冷却機構50に接触しないように高さ調整機構33cにより球体33aの先端位置を退避状態となるように下方側へ移動させる。伝熱管Tの移動方向MDの最も上流側に配置される第3下方支持部33は、図4に示す状態では、冷却機構50が通過していないため、球体33aの先端位置は支持状態となる。一方、図5および図6に示す状態では、冷却機構50が通過しているため、冷却機構50との接触を避けるために球体33aの先端位置は退避状態となる。 Among the third lower support portions 33, those arranged at a plurality of locations on the upstream side of the moving direction MD of the heat transfer tube T with respect to the first lower support portion 31 are height adjusting mechanisms so as not to come into contact with the cooling mechanism 50. The tip position of the sphere 33a is moved downward by the 33c so as to be in the retracted state. In the state shown in FIG. 4, the third lower support portion 33 arranged on the most upstream side of the moving direction MD of the heat transfer tube T does not pass through the cooling mechanism 50, so that the tip position of the sphere 33a is in the support state. .. On the other hand, in the states shown in FIGS. 5 and 6, since the cooling mechanism 50 has passed through, the tip position of the sphere 33a is in the retracted state in order to avoid contact with the cooling mechanism 50.

上方支持機構40は、伝熱管Tを上方から支持する機構であり、肉盛溶接機構20が固定される本体部70に対して固定されている。上方支持機構40は、肉盛溶接機構20よりも伝熱管Tの移動方向MDの上流側かつ肉盛溶接機構20に近接した位置で伝熱管Tを支持することにより、肉盛溶接機構20の溶接トーチ21から伝熱管Tまでの距離や溶接トーチ21との角度など溶接トーチ21と伝熱管Tの位置関係が変動することを抑制する。 The upper support mechanism 40 is a mechanism that supports the heat transfer tube T from above, and is fixed to the main body 70 to which the overlay welding mechanism 20 is fixed. The upper support mechanism 40 welds the overlay welding mechanism 20 by supporting the heat transfer tube T on the upstream side of the moving direction MD of the heat transfer tube T and closer to the overlay welding mechanism 20 than the overlay welding mechanism 20. It suppresses fluctuations in the positional relationship between the welding torch 21 and the heat transfer tube T, such as the distance from the torch 21 to the heat transfer tube T and the angle with the welding torch 21.

ここでは、上方支持機構40が本体部70に固定されるものとしたが、他の態様であってもよい。例えば、上方支持機構40は、本体部70に固定されるのではなく、設置面Sに直接的に設けられた支持機構(例えば、第2下方支持部32の側方から上方に延びる一対の支持柱と、一対の支持柱を水平に連結する梁とを有する門型の機構)により、設置面Sに対して直接的に支持されるものであってもよい。 Here, the upper support mechanism 40 is fixed to the main body 70, but other embodiments may be used. For example, the upper support mechanism 40 is not fixed to the main body 70, but is a support mechanism provided directly on the installation surface S (for example, a pair of supports extending upward from the side of the second lower support 32). It may be directly supported with respect to the installation surface S by a gate-shaped mechanism (a gate-shaped mechanism having a column and a beam for horizontally connecting a pair of support columns).

図7および図9に示すように、上方支持機構40は、伝熱管Tの上方側の外周表面と接触する球体(第2球体)40aと、球体40aのそれぞれを任意方向に回転可能に保持する保持部(第2保持部)40bと、高さ調整機構40cと、を有する。高さ調整機構40cは、伝熱管Tを支持する先端位置の設置面Sに対して直交方向(紙面上下方向)の距離を調整可能な機構である。 As shown in FIGS. 7 and 9, the upper support mechanism 40 rotatably holds each of the sphere (second sphere) 40a in contact with the outer peripheral surface on the upper side of the heat transfer tube T and the sphere 40a in an arbitrary direction. It has a holding portion (second holding portion) 40b and a height adjusting mechanism 40c. The height adjusting mechanism 40c is a mechanism capable of adjusting the distance in the orthogonal direction (vertical direction on the paper surface) with respect to the installation surface S at the tip position supporting the heat transfer tube T.

高さ調整機構40cは、伝熱管Tを支持する位置に球体40aを保持する支持状態(図9に破線で示す状態)と、伝熱管Tを支持しない位置に球体40aを退避させた退避状態(図9に実線で示す状態)とを切り替え可能な機構である。高さ調整機構40cは、球体33aの先端位置を、設置面Sに対して直交方向(紙面上下方向)に沿って移動させる機構である。高さ調整機構40cは、例えば、圧縮空気源(図示略)から供給される圧縮空気の圧力によって鉛直方向に伸縮する機構となっている。高さ調整機構40cは、伝熱管Tが下方支持機構30により支持された後に、制御部90から伝達される制御信号により、球体40aの位置を退避状態から支持状態に切り替える。また、球体40aの先端位置が支持状態にある場合は、支持状態圧縮空気源(図示略)から供給される圧縮空気の圧力によって上側から下側方向に弾力を保有しつつ押さえるようにしてもよい。 The height adjusting mechanism 40c has a support state in which the sphere 40a is held at a position supporting the heat transfer tube T (state shown by a broken line in FIG. 9) and a retracted state in which the sphere 40a is retracted to a position not supporting the heat transfer tube T (a state shown by a broken line in FIG. 9). It is a mechanism that can switch between the state shown by the solid line in FIG. 9). The height adjusting mechanism 40c is a mechanism for moving the tip position of the sphere 33a along a direction orthogonal to the installation surface S (vertical direction on the paper surface). The height adjusting mechanism 40c is, for example, a mechanism that expands and contracts in the vertical direction by the pressure of compressed air supplied from a compressed air source (not shown). After the heat transfer tube T is supported by the lower support mechanism 30, the height adjusting mechanism 40c switches the position of the sphere 40a from the retracted state to the supported state by the control signal transmitted from the control unit 90. Further, when the tip position of the sphere 40a is in the supported state, the pressure of the compressed air supplied from the supported state compressed air source (not shown) may hold the sphere 40a while maintaining elasticity from the upper side to the lower side. ..

次に、図7を参照して、肉盛溶接機構20と下方支持機構30と上方支持機構40の位置関係について説明する。図7において、肉盛溶接機構20の溶接トーチ21が伝熱管Tの外周表面に肉盛溶接を行う軸線X上の位置(溶接位置)をP0とする。また、下方支持機構30の第1下方支持部31の球体31aが、肉盛溶接が行われていない伝熱管Tの下方側の外周表面を支持する軸線X上の位置をP1とする。 Next, with reference to FIG. 7, the positional relationship between the overlay welding mechanism 20, the lower support mechanism 30, and the upper support mechanism 40 will be described. In FIG. 7, the position (welding position) on the axis X where the welding torch 21 of the overlay welding mechanism 20 performs overlay welding on the outer peripheral surface of the heat transfer tube T is defined as P0. Further, the position on the axis X where the sphere 31a of the first lower support portion 31 of the lower support mechanism 30 supports the outer peripheral surface on the lower side of the heat transfer tube T in which overlay welding is not performed is defined as P1.

また、下方支持機構30の第3下方支持部33のうち第1下方支持部31の移動方向MDの下流側に隣接して配置されるものの球体33aが、肉盛溶接が行われた伝熱管Tの下方側の外周表面を支持する軸線X上の位置をP2とする。また、下方支持機構30の第2下方支持部32の球体32aが、肉盛溶接が行われていない伝熱管Tの下方側の外周表面を支持する軸線X上の位置をP3とする。 Further, of the third lower support portion 33 of the lower support mechanism 30, the sphere 33a, which is arranged adjacent to the downstream side of the first lower support portion 31 in the moving direction MD, is the heat transfer tube T to which overlay welding has been performed. Let P2 be the position on the axis X that supports the outer peripheral surface on the lower side of. Further, the position on the axis X where the sphere 32a of the second lower support portion 32 of the lower support mechanism 30 supports the outer peripheral surface on the lower side of the heat transfer tube T in which overlay welding is not performed is defined as P3.

図7において、軸線Y0はP0を通過して鉛直方向に延びる軸線であり、軸線Y1はP1を通過して鉛直方向に延びる軸線である。また、軸線Y2はP2を通過して鉛直方向に延びる軸線であり、軸線Y3はP3を通過して鉛直方向に延びる軸線である。 In FIG. 7, the axis Y0 is an axis that passes through P0 and extends in the vertical direction, and the axis Y1 is an axis that passes through P1 and extends in the vertical direction. Further, the axis Y2 is an axis that passes through P2 and extends in the vertical direction, and the axis Y3 is an axis that passes through P3 and extends in the vertical direction.

P0からP1までの軸線X方向の距離(第1距離)はL1であり、P0からP2までの軸線X方向の距離(第2距離)はL2であり、P1からP3までの軸線X方向の距離はL3である。また、上方支持機構40の球体40aが、肉盛溶接が行われていない伝熱管Tの上方側の外周表面を支持する軸線X上の位置と、P0までの軸線X方向の距離はL4である。ここで、L1,L2,L3,L4は、以下の式(1)の関係を満たす。
L1<L3<L4<L2 (1)
The distance from P0 to P1 in the axis X direction (first distance) is L1, the distance from P0 to P2 in the axis X direction (second distance) is L2, and the distance from P1 to P3 in the axis X direction. Is L3. Further, the distance between the position on the axis X where the sphere 40a of the upper support mechanism 40 supports the outer peripheral surface on the upper side of the heat transfer tube T not overlaid welded and the axis X direction to P0 is L4. .. Here, L1, L2, L3, and L4 satisfy the relationship of the following equation (1).
L1 <L3 <L4 <L2 (1)

式(1)に示すように、P0からP1までの軸線X方向の距離L1は、P0からP2までの軸線X方向の距離L2よりも短い。そのため、P0よりも伝熱管Tの移動方向MDの上流側に配置される第1下方支持部31は、移動方向MDの下流側に配置される第3下方支持部33よりも溶接位置であるP0に近接した位置P1で伝熱管Tを下方側から支持する。また、P0よりも伝熱管Tの移動方向MDの上流側に配置される第2下方支持部32は、第1下方支持部31よりも溶接位置であるP0から上流側に少し離間した位置P3で伝熱管Tを下方側から支持する。一方、P0よりも伝熱管Tの移動方向MDの下流側に配置される第3下方支持部33は、第1下方支持部31よりも溶接位置であるP0から下流側に離間した位置P2で伝熱管Tの外周表面に溶接ビードWBを形成した状態(水冷壁管142)を下方側から支持する。 As shown in the formula (1), the distance L1 in the axis X direction from P0 to P1 is shorter than the distance L2 in the axis X direction from P0 to P2. Therefore, the first lower support portion 31 arranged on the upstream side of the moving direction MD of the heat transfer tube T from P0 is a welding position of the third lower supporting portion 33 arranged on the downstream side of the moving direction MD P0. The heat transfer tube T is supported from below at a position P1 close to. Further, the second lower support portion 32 arranged on the upstream side of the moving direction MD of the heat transfer tube T from P0 is at a position P3 slightly separated from P0, which is a welding position, on the upstream side of the first lower support portion 31. The heat transfer tube T is supported from below. On the other hand, the third lower support portion 33 arranged on the downstream side of the moving direction MD of the heat transfer tube T from P0 is transmitted at a position P2 separated from P0, which is a welding position, on the downstream side of the first lower support portion 31. A state in which a weld bead WB is formed on the outer peripheral surface of the heat tube T (water-cooled wall tube 142) is supported from below.

P0よりも移動方向MDの上流側では溶接ビードWBが存在しないため、溶接の行われていない伝熱管Tの外周表面を溶接位置P0の近隣のP1と近傍のP3で支持し、肉盛溶接機構20の溶接トーチ21から伝熱管Tまでの距離や溶接トーチ21との角度など溶接トーチ21と伝熱管Tの外周表面との位置関係の変動を抑制することができる。また、移動方向MDの下流側では、肉盛溶接が行われて溶接ビードWBが形成されて表面に凹凸形状のある状態の外周表面を溶接位置P0から離れた位置P2で支持し、凹凸形状が第3下方支持部33を通過する際の振動が肉盛溶接機構20に伝達されることを抑制し、溶接ビードWBの肉厚による軸線Xの微小な位置変動による影響を抑制することができる。 Since the welding bead WB does not exist on the upstream side of the MD in the moving direction from P0, the outer peripheral surface of the heat transfer tube T in which welding is not performed is supported by P1 in the vicinity of the welding position P0 and P3 in the vicinity, and the overlay welding mechanism is used. It is possible to suppress fluctuations in the positional relationship between the welding torch 21 and the outer peripheral surface of the heat transfer tube T, such as the distance from the welding torch 21 of 20 to the heat transfer tube T and the angle with the welding torch 21. Further, on the downstream side of the moving direction MD, overlay welding is performed to form a weld bead WB, and the outer peripheral surface in a state where the surface has an uneven shape is supported at a position P2 away from the welding position P0, and the uneven shape is formed. It is possible to suppress the vibration when passing through the third lower support portion 33 from being transmitted to the overlay welding mechanism 20, and to suppress the influence of a minute positional change of the axis X due to the wall thickness of the weld bead WB.

L1は、例えば、10mm以上かつ100mm以下に設定される。L1を10mm以上に設定しているのは、P0で肉盛溶接が行われた高温の溶接ビードWBと第1下方支持部31とが接触しないようにするためである。また、L1を100mm以下に設定しているのは、P0に近接した位置で伝熱管Tを支持することでP0における溶接トーチ21の先端から伝熱管Tの外周表面までの距離や溶接トーチ21との角度の変動を抑制するためである。 L1 is set to, for example, 10 mm or more and 100 mm or less. The reason why L1 is set to 10 mm or more is to prevent the high temperature weld bead WB on which overlay welding is performed at P0 from coming into contact with the first lower support portion 31. Further, L1 is set to 100 mm or less because the heat transfer tube T is supported at a position close to P0 so that the distance from the tip of the welding torch 21 at P0 to the outer peripheral surface of the heat transfer tube T and the welding torch 21 This is to suppress the fluctuation of the angle of.

L2は、例えば、1000mm以上かつ2500mm以下に設定される。L2を1000mm以上に設定しているのは、伝熱管Tの外周表面に形成される溶接ビードWBの凹凸形状が第3下方支持部33を通過する際の振動が肉盛溶接機構20に伝達されることを抑制し、溶接ビードWBの肉厚分布による軸線Xの微小な位置変動による影響を抑制するためである。また、L2を2500mm以下に設定しているのは、P0からP2までの距離が長すぎると伝熱管Tに部分的に撓みが生じてしまい、伝熱管Tを安定して支持することができなくなるからである。 L2 is set to, for example, 1000 mm or more and 2500 mm or less. L2 is set to 1000 mm or more because the vibration when the uneven shape of the weld bead WB formed on the outer peripheral surface of the heat transfer tube T passes through the third lower support portion 33 is transmitted to the build-up welding mechanism 20. This is to suppress this and to suppress the influence of minute positional fluctuations of the axis X due to the wall thickness distribution of the weld bead WB. Further, the reason why L2 is set to 2500 mm or less is that if the distance from P0 to P2 is too long, the heat transfer tube T is partially bent, and the heat transfer tube T cannot be stably supported. Because.

式(1)に示すように、P1からP3までの軸線X方向の距離L3およびP0からP3までの距離L4は、それぞれL1よりも長くかつL2よりも短い。第2下方支持部32および上方支持機構40は、それぞれP0よりも移動方向MDの上流側に配置されるので溶接ビードWBの凹凸形状がないため、L2よりも短くしても振動による肉盛溶接機構20への影響は少ない。また、第3下方支持部33よりも溶接位置に近接した位置で伝熱管Tを支持することで、溶接トーチ21の先端から伝熱管Tの外周表面までの距離や溶接トーチ21との角度の変動を抑制することができる。 As shown in the formula (1), the distance L3 from P1 to P3 in the axial direction X direction and the distance L4 from P0 to P3 are longer than L1 and shorter than L2, respectively. Since the second lower support portion 32 and the upper support mechanism 40 are arranged on the upstream side of the MD in the moving direction from P0, respectively, there is no uneven shape of the welding bead WB. The effect on the mechanism 20 is small. Further, by supporting the heat transfer tube T at a position closer to the welding position than the third lower support portion 33, the distance from the tip of the welding torch 21 to the outer peripheral surface of the heat transfer tube T and the angle with the welding torch 21 fluctuate. Can be suppressed.

L3は、例えば、100mm以上かつ500mm以下に設定される。L4は、例えば、約300mmに設定され、L1とL3の合計と一致するように設定するのが望ましい。L4をL1とL3の合計と一致させることにより、第2下方支持部32が伝熱管Tを支持する軸線X上の位置と、上方支持機構40が伝熱管Tを支持する軸線X上の位置が一致する。このようにすることで、伝熱管Tを軸線X上の同一位置で上下から確実に支持することができる。 L3 is set to, for example, 100 mm or more and 500 mm or less. It is desirable that L4 is set to, for example, about 300 mm and is set so as to match the sum of L1 and L3. By matching L4 with the sum of L1 and L3, the position on the axis X where the second lower support portion 32 supports the heat transfer tube T and the position on the axis X where the upper support mechanism 40 supports the heat transfer tube T are aligned. Match. By doing so, the heat transfer tube T can be reliably supported from above and below at the same position on the axis X.

冷却機構50は、伝熱管Tの移動方向MDの上流側端部Tuから冷却水(冷却媒体)を伝熱管T内に流入させるとともに伝熱管Tの移動方向MDの下流側端部Tdから冷却水を伝熱管T内から流出させることにより伝熱管Tを内部から冷却する機構である。図13に示すように、冷却機構50は、流入側配管51と、流出側配管52と、冷却ユニット53と、流量計54と、流入側カップリング55と、流出側カップリング56と、を備える。ここで冷却媒体は、水の他に、熱媒体や機械作動油などの液体や、窒素などの気体を用いてもよい。 The cooling mechanism 50 causes cooling water (cooling medium) to flow into the heat transfer tube T from the upstream end Tu of the heat transfer tube T in the moving direction MD, and cool water from the downstream end Td of the heat transfer tube T in the moving direction MD. Is a mechanism for cooling the heat transfer tube T from the inside by causing the heat transfer tube T to flow out from the inside. As shown in FIG. 13, the cooling mechanism 50 includes an inflow side pipe 51, an outflow side pipe 52, a cooling unit 53, a flow meter 54, an inflow side coupling 55, and an outflow side coupling 56. .. Here, as the cooling medium, in addition to water, a liquid such as a heat medium or mechanical hydraulic oil or a gas such as nitrogen may be used.

冷却機構50は、冷却ユニット53で他の冷却媒体との熱交換等によって冷却される冷却水を、流入側配管51を介して伝熱管Tの上流側端部Tuに流入させる。流入側配管51と伝熱管Tの上流側端部Tuとは、流入側カップリング55により着脱可能に連結されている。伝熱管T内に流入した冷却水は、伝熱管Tの移動方向MDに沿って流れ、肉盛溶接機構20により溶接される位置であるP0を通過して伝熱管Tの下流側端部Tdに導かれる。 The cooling mechanism 50 causes the cooling water cooled by the cooling unit 53 to exchange heat with another cooling medium to flow into the upstream end Tu of the heat transfer tube T via the inflow side pipe 51. The inflow side pipe 51 and the upstream end portion Tu of the heat transfer pipe T are detachably connected by an inflow side coupling 55. The cooling water that has flowed into the heat transfer tube T flows along the moving direction MD of the heat transfer tube T, passes through P0, which is the position to be welded by the overlay welding mechanism 20, and reaches the downstream end Td of the heat transfer tube T. Be guided.

溶接位置であるP0の近傍で温度が上昇した冷却水は、伝熱管Tの下流側端部Tdに導かれて、流出側配管52に流出し、冷却ユニット53に導かれる。流出側配管52と伝熱管Tの下流側端部Tdとは、流出側カップリング56により着脱可能に連結されている。このように、冷却水は、冷却ユニット53から吐出された後、流入側配管51、伝熱管T、流出側配管52の順に流れ、再び冷却ユニット53に戻って循環する。 The cooling water whose temperature has risen near P0, which is the welding position, is guided to the downstream end Td of the heat transfer tube T, flows out to the outflow side pipe 52, and is guided to the cooling unit 53. The outflow side pipe 52 and the downstream end portion Td of the heat transfer tube T are detachably connected by an outflow side coupling 56. In this way, after the cooling water is discharged from the cooling unit 53, the cooling water flows in the order of the inflow side pipe 51, the heat transfer pipe T, and the outflow side pipe 52, and then returns to the cooling unit 53 to circulate.

冷却機構50は、伝熱管Tの移動方向MDに沿って、上流側端部Tuから下流側端部Tdに向けて冷却水を流通させる。伝熱管Tの上流側端部TuからP0までの領域は、溶接ビードWBが形成されていない領域である。そのため、冷却ユニット53で冷却された冷却水は、伝熱管Tの中で最も高温となるP0の近傍へは加熱されて温度上昇されない状態で供給され、P0の近傍の伝熱管Tを適切に効率的に冷却することができる。これにより、伝熱管Tの溶接ビードWBが形成時に熱影響による溶け込み量の変化や熱応力による伝熱管Tの反り変形を抑制することができる。 The cooling mechanism 50 circulates cooling water from the upstream end Tu to the downstream end Td along the moving direction MD of the heat transfer tube T. The region from the upstream end Tu to P0 of the heat transfer tube T is a region where the weld bead WB is not formed. Therefore, the cooling water cooled by the cooling unit 53 is supplied to the vicinity of P0, which has the highest temperature in the heat transfer tube T, in a state where the temperature is not raised by being heated, and the heat transfer tube T in the vicinity of P0 is appropriately efficient. Can be cooled. As a result, when the weld bead WB of the heat transfer tube T is formed, it is possible to suppress a change in the amount of penetration due to the heat effect and warpage deformation of the heat transfer tube T due to thermal stress.

冷却機構50は、流量計54により計測される冷却水の流量を制御部90に伝達する。制御部90は、流量計54が計測する流量が所定の流量範囲に維持されるように、冷却ユニット53を制御する制御信号を冷却ユニット53に伝達する。冷却ユニット53は、制御部90から伝達される制御信号に応じて流入側配管51へ吐出する冷却水の流量を制御する。また、冷却水の流量計54付近に図示しない温度計を設けて、冷却水の流量に加えて温度が所定範囲にあるかを制御してもよい。 The cooling mechanism 50 transmits the flow rate of the cooling water measured by the flow meter 54 to the control unit 90. The control unit 90 transmits a control signal for controlling the cooling unit 53 to the cooling unit 53 so that the flow rate measured by the flow meter 54 is maintained within a predetermined flow rate range. The cooling unit 53 controls the flow rate of the cooling water discharged to the inflow side pipe 51 according to the control signal transmitted from the control unit 90. Further, a thermometer (not shown) may be provided near the cooling water flow meter 54 to control whether the temperature is within a predetermined range in addition to the cooling water flow rate.

制御部90は、流量計54により計測される冷却水の流量が所定の下限値を下回る場合、冷却水による伝熱管Tの冷却が適切に行われないと判断し、肉盛溶接機構20による伝熱管Tの溶接を一時停止するよう肉盛溶接機構20を制御する。 When the flow rate of the cooling water measured by the flow meter 54 is less than a predetermined lower limit value, the control unit 90 determines that the heat transfer tube T is not properly cooled by the cooling water, and transfers the heat transfer tube T by the overlay welding mechanism 20. The overlay welding mechanism 20 is controlled so as to suspend the welding of the heat pipe T.

計測機構60は、肉盛溶接機構20が配置されるP0よりも移動方向MDの下流側の計測位置Pmに配置される機構である。計測機構60は、例えば非接触式のセンサを用いることにより、計測位置Pmを通過する伝熱管Tの外径Doを計測する機構である。図14および図15に示すように、計測機構60は、例えば上方側発光部61と、上方側受光部62と、下方側発光部63と、下方側受光部64と、を備える。 The measurement mechanism 60 is a mechanism that is arranged at the measurement position Pm on the downstream side of the movement direction MD from P0 where the overlay welding mechanism 20 is arranged. The measuring mechanism 60 is a mechanism for measuring the outer diameter Do of the heat transfer tube T passing through the measuring position Pm by using, for example, a non-contact type sensor. As shown in FIGS. 14 and 15, the measuring mechanism 60 includes, for example, an upper light emitting unit 61, an upper light receiving unit 62, a lower light emitting unit 63, and a lower light receiving unit 64.

例えば上方側発光部61は、軸線Ymと平行な鉛直方向に沿って配列される複数の発光素子を有し、各発光素子が水平方向に沿って上方側受光部62に向けて光を照射する。上方側受光部62は、軸線Ymと平行な鉛直方向に沿って配列される複数の受光素子を有し、各受光素子が上方側発光部61の複数の発光素子から照射される光を受光する。 For example, the upper light emitting unit 61 has a plurality of light emitting elements arranged along the vertical direction parallel to the axis Ym, and each light emitting element irradiates light toward the upper light receiving unit 62 along the horizontal direction. .. The upper light receiving unit 62 has a plurality of light receiving elements arranged along the vertical direction parallel to the axis Ym, and each light receiving element receives light emitted from the plurality of light emitting elements of the upper light emitting unit 61. ..

例えば下方側発光部63は、軸線Ymと平行な鉛直方向に沿って配列される複数の発光素子を有し、各発光素子が水平方向に沿って下方側受光部64に向けて光を照射する。下方側受光部64は、軸線Ymと平行な鉛直方向に沿って配列される複数の受光素子を有し、各受光素子が下方側発光部63の複数の発光素子から照射される光を受光する。 For example, the lower light emitting unit 63 has a plurality of light emitting elements arranged along the vertical direction parallel to the axis Ym, and each light emitting element irradiates light toward the lower light receiving unit 64 along the horizontal direction. .. The lower light receiving unit 64 has a plurality of light receiving elements arranged along the vertical direction parallel to the axis Ym, and each light receiving element receives light emitted from the plurality of light emitting elements of the lower light emitting unit 63. ..

計測機構60は、上方側受光部62が上方側発光部61から照射光を受光した最も下端側にある受光素子の位置と、下方側受光部64が下方側発光部63から照射光を受光した最も上端側にある受光素子の位置とに基づいて、伝熱管Tの外径Doを非接触状態で計測する。計測機構60が計測する伝熱管Tの外径Doは、制御部90に伝達される。制御部90は、計測機構60が計測した伝熱管Tの外径Doを、例えば作業者が視認して、伝熱管Tの溶接ビードWBの肉盛厚さを監視可能なように、表示部85に表示させてもよい。 In the measuring mechanism 60, the position of the light receiving element on the lowermost end side where the upper light receiving unit 62 receives the irradiation light from the upper light emitting unit 61 and the lower light receiving unit 64 receive the irradiation light from the lower light emitting unit 63. The outer diameter Do of the heat transfer tube T is measured in a non-contact state based on the position of the light receiving element on the uppermost end side. The outer diameter Do of the heat transfer tube T measured by the measuring mechanism 60 is transmitted to the control unit 90. The control unit 90 allows the operator to visually recognize the outer diameter Do of the heat transfer tube T measured by the measuring mechanism 60, for example, and monitor the build-up thickness of the weld bead WB of the heat transfer tube T. It may be displayed in.

図14は、計測機構60が肉盛溶接されていない伝熱管Tを計測する状態を示す図である。一方、図15は、計測機構60で溶接ビードWBが肉盛溶接された伝熱管Tを計測する状態を示す図である。図14に示すように、溶接ビードWBが肉盛溶接されていない伝熱管Tの外径Do1よりも、肉盛溶接がされた伝熱管Tの外径Do2の方が大きい。溶接ビードWBの肉盛厚さは、(Do2−Do1)/2となる。 FIG. 14 is a diagram showing a state in which the measuring mechanism 60 measures the heat transfer tube T that has not been overlaid welded. On the other hand, FIG. 15 is a diagram showing a state in which the welding bead WB measures the heat transfer tube T overlaid-welded by the measuring mechanism 60. As shown in FIG. 14, the outer diameter Do2 of the heat transfer tube T to which the weld bead WB is overlaid is larger than the outer diameter Do1 of the heat transfer tube T to which the weld bead WB is not overlaid welded. The overlay thickness of the weld bead WB is (Do2-Do1) / 2.

制御部90は、計測機構60から伝達される肉盛溶接がされていない伝熱管Tの外径Do1と肉盛溶接がされた伝熱管Tの外径Do2とに基づいて、溶接ビードWBの肉盛厚さが適切な厚さとなっているかどうかを判断することができる。制御部90は、例えば、溶接ビードWBの肉盛厚さ目標範囲から外れて適切な厚さでないと判断した場合、例えば肉盛厚さが適切な厚さでないことを示す情報を表示部85に表示させる。 The control unit 90 fills the weld bead WB based on the outer diameter Do1 of the heat transfer tube T that has not been overlaid welded and the outer diameter Do2 of the heat transfer tube T that has been overlaid welded, which is transmitted from the measuring mechanism 60. It is possible to judge whether or not the thickness is appropriate. When, for example, the control unit 90 determines that the thickness is out of the target range of the build-up thickness of the weld bead WB and is not an appropriate thickness, for example, information indicating that the build-up thickness is not an appropriate thickness is displayed on the display unit 85. Display it.

また、制御部90は、肉盛溶接機構20による伝熱管Tの肉盛溶接を一時停止するよう肉盛溶接機構20を制御してもよい。このとき、制御部90は、肉盛溶接機構20による伝熱管Tの各種の肉盛溶接条件を設定値との差異の情報を表示部85に表示して、肉盛厚さが適切な厚さから外れた要因を判断し易くするようにしても良い。 Further, the control unit 90 may control the overlay welding mechanism 20 so as to temporarily stop the overlay welding of the heat transfer tube T by the overlay welding mechanism 20. At this time, the control unit 90 displays information on the difference between the various overlay welding conditions of the heat transfer tube T by the overlay welding mechanism 20 and the set value on the display unit 85, and the overlay thickness is an appropriate thickness. It may be possible to make it easier to determine the factors that deviate from the above.

本体部70は、溶接装置200が設置される設置面Sに対して固定される筐体である。本体部70には、肉盛溶接機構20と、第1下方支持部31と、上方支持機構40が固定される。また、本体部70は、図12に示すラックギア71およびレール72を備え、可動台車10がレール72に沿って軸線X方向に平行な移動方向MDへ往復移動が可能となっている。 The main body 70 is a housing fixed to the installation surface S on which the welding device 200 is installed. The overlay welding mechanism 20, the first lower support portion 31, and the upper support mechanism 40 are fixed to the main body portion 70. Further, the main body 70 includes the rack gear 71 and the rail 72 shown in FIG. 12, and the movable carriage 10 can reciprocate in the moving direction MD parallel to the axis X direction along the rail 72.

撮像部80は、例えば図7に示すように、溶接トーチ21の先端に設けられるタングステン電極21aの先端と伝熱管Tの外周表面とを含む溶接位置の近傍を撮像する撮像装置である。撮像部80は、撮像した溶接位置の近傍の画像を表示部85に出力することができる。溶接装置200を操作する作業者は、表示部85に表示される画像を目視することで、肉盛溶接機構20により伝熱管Tに形成される溶接ビードWBに異常がないかどうかを確認することができる。溶接位置の近傍の画像は、コントラスト調整やRGBの各出力強度調整を行うことで溶接ビードWBの形成に異常有無を監視しやすいようにしてもよい。作業者は、溶接ビードWBに異常があると判断した場合は、溶接装置200の動作を一時停止させる。また、溶接ビードWBの異常有無の判断は、撮像部80で撮像された画像を制御部90で解析し、異常があると判断した場合は、制御部90からの信号で自動的に溶接装置200の動作を一時停止させてもよい。 As shown in FIG. 7, for example, the imaging unit 80 is an imaging device that images the vicinity of the welding position including the tip of the tungsten electrode 21a provided at the tip of the welding torch 21 and the outer peripheral surface of the heat transfer tube T. The imaging unit 80 can output an image in the vicinity of the imaged welding position to the display unit 85. The operator who operates the welding apparatus 200 visually confirms whether or not there is any abnormality in the welding bead WB formed on the heat transfer tube T by the overlay welding mechanism 20 by visually observing the image displayed on the display unit 85. Can be done. The image in the vicinity of the welding position may be easily monitored for abnormalities in the formation of the welding bead WB by adjusting the contrast and each output intensity of RGB. When the operator determines that the welding bead WB has an abnormality, the operator suspends the operation of the welding device 200. Further, in determining the presence or absence of abnormality in the welding bead WB, the control unit 90 analyzes the image captured by the imaging unit 80, and if it is determined that there is an abnormality, the welding device 200 automatically receives a signal from the control unit 90. The operation of may be suspended.

制御部90は、図16の制御構成図に示すように、移動機構11と、回転機構12と、肉盛溶接機構20とを含む溶接装置200の各部を制御する装置である。制御部90は、移動機構11が伝熱管Tを軸線Xに沿って移動方向MDに所定の一定の移動速度で移動させ、かつ回転機構12が伝熱管Tを軸線X回りに所定の一定の回転速度で回転させる状態で、肉盛溶接機構20が伝熱管Tの外周表面に螺旋状に肉盛溶接を行うよう制御する。 As shown in the control configuration diagram of FIG. 16, the control unit 90 is a device that controls each part of the welding device 200 including the moving mechanism 11, the rotating mechanism 12, and the overlay welding mechanism 20. In the control unit 90, the moving mechanism 11 moves the heat transfer tube T along the axis X in the moving direction MD at a predetermined constant moving speed, and the rotating mechanism 12 rotates the heat transfer tube T around the axis X at a predetermined constant speed. The overlay welding mechanism 20 controls the overlay welding to be spirally performed on the outer peripheral surface of the heat transfer tube T in a state of being rotated at a high speed.

制御部90は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。 The control unit 90 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. Then, as an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.

本実施形態において、伝熱管Tは、例えば、低合金鋼により形成されている。溶接されていない伝熱管Tの外径Doは、例えば、30mm以上かつ50mm以下である。また、伝熱管Tの軸線Xに沿った長さは、例えば、2000mm以上かつ8000mm以下である。溶接装置200は、伝熱管Tの外周表面に形成される溶接ビードWBの肉盛厚さが、例えば1mm以上かつ2.5mm以下となるように肉盛溶接機構20による溶接を行う。溶接ビードWBの肉盛厚さは、例えば耐腐食性と耐熱性から伝熱管Tを保護することができるものとして設定される。 In this embodiment, the heat transfer tube T is made of, for example, low alloy steel. The outer diameter Do of the unwelded heat transfer tube T is, for example, 30 mm or more and 50 mm or less. The length of the heat transfer tube T along the axis X is, for example, 2000 mm or more and 8000 mm or less. The welding apparatus 200 performs welding by the overlay welding mechanism 20 so that the overlay thickness of the weld bead WB formed on the outer peripheral surface of the heat transfer tube T is, for example, 1 mm or more and 2.5 mm or less. The overlay thickness of the weld bead WB is set so as to be able to protect the heat transfer tube T from, for example, corrosion resistance and heat resistance.

制御部90は、溶接ビードWBの肉盛厚さが、1mm以上かつ2.5mm以下となるように、移動機構11による伝熱管Tの軸線X方向の所定の移動速度が設定され、回転機構12による軸線X回りの伝熱管Tの所定の回転速度が設定されている。計測機構60から伝達される計測値に基づいた、肉盛溶接がされた伝熱管Tの外径Do2および/または溶接ビードWBの肉盛厚さが目標仕様の範囲内になるよう、伝熱管Tの軸線X方向の移動速度と、軸線X回りの伝熱管Tの回転速度を所定範囲内で制御してもよい。制御部90は、例えば、伝熱管Tの軸線X方向の移動速度(送り速度)が例えば20mm/min以上かつ50mm/min以下となるように移動機構11を制御する。また、制御部90は、例えば、伝熱管Tの軸線X回りの回転速度が例えば5rpm以上かつ10rpm以下となるように回転機構12を制御する。 In the control unit 90, a predetermined moving speed of the heat transfer tube T in the axial X direction by the moving mechanism 11 is set by the moving mechanism 11 so that the overlay thickness of the weld bead WB is 1 mm or more and 2.5 mm or less, and the rotation mechanism 12 A predetermined rotation speed of the heat transfer tube T around the axis X is set. Based on the measured value transmitted from the measuring mechanism 60, the heat transfer tube T so that the outer diameter Do2 and / or the build-up thickness of the weld bead WB of the overlaid welded heat transfer tube T is within the target specifications. The moving speed of the heat transfer tube T around the axis X and the rotation speed of the heat transfer tube T around the axis X may be controlled within a predetermined range. The control unit 90 controls the moving mechanism 11 so that the moving speed (feeding speed) of the heat transfer tube T in the axis X direction is, for example, 20 mm / min or more and 50 mm / min or less. Further, the control unit 90 controls the rotation mechanism 12 so that the rotation speed of the heat transfer tube T around the axis X is, for example, 5 rpm or more and 10 rpm or less.

〔他の実施形態〕
以上の説明において、溶接装置200は、単一の伝熱管Tに螺旋状に肉盛溶接するための単一の肉盛溶接機構20を備えるものとしたが、他の態様であってもよい。例えば、溶接装置200は、2以上の複数の伝熱管Tに螺旋状に肉盛溶接するための複数の肉盛溶接機構20を備えるものとしてもよい。
[Other Embodiments]
In the above description, the welding apparatus 200 is provided with a single overlay welding mechanism 20 for spiral overlay welding to a single heat transfer tube T, but other embodiments may be used. For example, the welding apparatus 200 may include a plurality of overlay welding mechanisms 20 for spiral overlay welding to two or more heat transfer tubes T.

この場合、溶接装置200は、単一の本体部70に対して可動台車10と、肉盛溶接機構20と、下方支持機構30と、上方支持機構40と、冷却機構50と、計測機構60と、撮像部80と、表示部85とを、伝熱管Tの軸線X方向が略平行な関係になるようにそれぞれ軸線X方向に直交する水平方向に隣接して複数備えるものとなる。この場合、制御部90は、複数設けてもよいし、単一の制御部90ですべてを制御するようにしてもよい。 In this case, the welding device 200 includes a movable carriage 10, an overlay welding mechanism 20, a lower support mechanism 30, an upper support mechanism 40, a cooling mechanism 50, and a measurement mechanism 60 with respect to a single main body 70. The imaging unit 80 and the display unit 85 are provided adjacent to each other in the horizontal direction orthogonal to the axis X direction so that the axis X direction of the heat transfer tube T is substantially parallel to each other. In this case, a plurality of control units 90 may be provided, or a single control unit 90 may control all of them.

また、溶接装置200は、隣接する伝熱管Tの間で作業者が複数の肉盛溶接機構20の溶接状態を同時に確認できるように、複数の伝熱管Tの長手方向を一致させた状態で複数の伝熱管Tを隣接させ、作業員に対して伝熱管Tを対称となるように配置してもよい。例えば、長手方向を一致させた状態で4本の伝熱管Tを配置する場合、伝熱管Tを2本ずつ作業員に対して伝熱管Tの軸線X方向と直交する方向に対称に配置してもよい。このようにすることで、作業員が対称に配置された複数の伝熱管Tの溶接状態を同時に確認することができるため、作業員の人数を低減することができる。 Further, the welding apparatus 200 is provided in a state where the longitudinal directions of the plurality of heat transfer tubes T are matched so that the operator can simultaneously confirm the welding state of the plurality of overlay welding mechanisms 20 between the adjacent heat transfer tubes T. The heat transfer tubes T may be adjacent to each other and the heat transfer tubes T may be arranged symmetrically with respect to the worker. For example, when four heat transfer tubes T are arranged in a state where the longitudinal directions are matched, two heat transfer tubes T are arranged symmetrically with respect to the worker in a direction orthogonal to the axis X direction of the heat transfer tube T. May be good. By doing so, the number of workers can be reduced because the workers can simultaneously check the welded state of the plurality of heat transfer tubes T arranged symmetrically.

また、溶接装置200は、2以上の複数の伝熱管Tに螺旋状に肉盛溶接するための複数の肉盛溶接機構20を備えるものとする場合、各肉盛溶接機構20による溶接状態を撮像部80で撮像した画像を表示する複数の表示部85を、1人の作業員が同時に視認できるように配置してもよい。このようにすることで、作業員一人あたりが監視することができる伝熱管Tの本数が増大するため、生産性の向上が可能となる。 Further, when the welding apparatus 200 is provided with a plurality of overlay welding mechanisms 20 for spirally overlay welding to two or more heat transfer tubes T, the welding state by each overlay welding mechanism 20 is imaged. A plurality of display units 85 for displaying the images captured by the unit 80 may be arranged so that one worker can visually recognize them at the same time. By doing so, the number of heat transfer tubes T that can be monitored by each worker increases, so that productivity can be improved.

また、図9に示す第2下方支持部32および上方支持機構40は、図17に示す変形例のようにしてもよい。図17に示すように、第2下方支持部32は、伝熱管Tの下方側の外周表面の周方向の2箇所と接触する一対の球体(第1球体)32aと、一対の球体32aのそれぞれを任意方向に回転可能に保持する保持部(第1保持部)32bと、を有する。 Further, the second lower support portion 32 and the upper support mechanism 40 shown in FIG. 9 may be modified as shown in FIG. As shown in FIG. 17, the second lower support portion 32 is a pair of spheres (first spheres) 32a that come into contact with two points in the circumferential direction of the outer peripheral surface on the lower side of the heat transfer tube T, and a pair of spheres 32a, respectively. Has a holding portion (first holding portion) 32b, which rotatably holds the ball in an arbitrary direction.

第2下方支持部32は、一対の球体32aにより、伝熱管Tの下方を周方向に2箇所の異なった位置から挟んだ状態で支持することで、伝熱管Tの中心位置(軸線Xの位置)を一定の位置に保持することができる。また、上方支持機構40は、伝熱管Tの上方側の外周表面と接触する球体(第2球体)40aと、球体40aのそれぞれを任意方向に回転可能に保持する保持部(第2保持部)40bと、を有する。 The second lower support portion 32 is supported by a pair of spheres 32a while sandwiching the lower part of the heat transfer tube T from two different positions in the circumferential direction, thereby supporting the center position of the heat transfer tube T (position of the axis X). ) Can be held in a fixed position. Further, the upper support mechanism 40 is a holding portion (second holding portion) that rotatably holds each of the sphere (second sphere) 40a in contact with the outer peripheral surface on the upper side of the heat transfer tube T and the sphere 40a in an arbitrary direction. It has 40b and.

以上説明した各実施形態に記載の溶接装置は、例えば以下のように把握される。
本開示に係る溶接装置(200)は、軸線(X)に沿って配置される円筒状の伝熱管(T)の外周表面に肉盛溶接を行い、前記伝熱管(T)を前記軸線(X)に沿って移動させる移動機構(11)と、前記伝熱管(T)を前記軸線(X)回りに回転させる回転機構(12)と、前記溶接装置(200)が設置される設置面(S)に対して位置が固定されるとともに所定の溶接位置(P0)を通過する前記伝熱管(T)の外周表面に溶接材料を供給しながら溶接する肉盛溶接機構(20)と、前記移動機構(11)と前記回転機構(12)と前記肉盛溶接機構(20)とを制御する制御部(90)と、を備え、前記制御部(90)は、前記移動機構(11)が前記伝熱管(T)を前記軸線(X)に沿って移動させ、かつ前記回転機構(12)が前記伝熱管(T)を前記軸線(X)回りに回転させる状態で、前記肉盛溶接機構(20)が前記伝熱管(T)の外周表面に螺旋状に肉盛溶接を行うよう制御する。
The welding apparatus described in each of the above-described embodiments is grasped as follows, for example.
The welding apparatus (200) according to the present disclosure performs overlay welding on the outer peripheral surface of a cylindrical heat transfer tube (T) arranged along the axis (X), and attaches the heat transfer tube (T) to the axis (X). ), A rotating mechanism (12) that rotates the heat transfer tube (T) around the axis (X), and an installation surface (S) on which the welding device (200) is installed. ), And the overlay welding mechanism (20) that welds while supplying the welding material to the outer peripheral surface of the heat transfer tube (T) that passes through the predetermined welding position (P0), and the moving mechanism. A control unit (90) for controlling (11), the rotation mechanism (12), and the overlay welding mechanism (20) is provided, and the control unit (90) is transmitted by the moving mechanism (11). The build-up welding mechanism (20) in a state where the heat tube (T) is moved along the axis (X) and the rotation mechanism (12) rotates the heat transfer tube (T) around the axis (X). ) Is controlled so that overlay welding is performed spirally on the outer peripheral surface of the heat transfer tube (T).

本開示に係る溶接装置によれば、溶接装置が設置される設置面に対して肉盛溶接機構が固定されているため、設置面に対する所定の溶接位置が固定される。そのため、肉盛溶接機構の溶接トーチから伝熱管の外周表面までの距離や溶接トーチとの角度など溶接トーチと伝熱管Tの位置関係の変動が抑制され、伝熱管の長手方向の各位置での溶接状態の変動が抑制される。これにより、肉盛厚さや肉盛表面粗度などの溶接仕様を適切に満たして伝熱管の外周表面にせん状の肉盛溶接を行うことが可能となる。 According to the welding apparatus according to the present disclosure, since the overlay welding mechanism is fixed to the installation surface on which the welding apparatus is installed, a predetermined welding position with respect to the installation surface is fixed. Therefore, fluctuations in the positional relationship between the welding torch and the heat transfer tube T, such as the distance from the welding torch of the overlay welding mechanism to the outer peripheral surface of the heat transfer tube and the angle with the welding torch, are suppressed, and at each position in the longitudinal direction of the heat transfer tube. Fluctuations in the welded state are suppressed. As a result, it becomes possible to appropriately satisfy the welding specifications such as the overlay thickness and the overlay surface roughness, and to perform the spiral overlay welding on the outer peripheral surface of the heat transfer tube.

本開示に係る溶接装置は、前記伝熱管を鉛直下方側から支持する下方支持機構を備え、前記下方支持機構は、前記伝熱管の外周表面の周方向の2箇所と接触する一対の第1球体と、前記第1球体を任意方向に回転可能に保持する第1保持部と、を有する。
本開示に係る溶接装置によれば、下方支持機構が備える一対の第1球体により伝熱管の下方側を外周表面の周方向の2箇所で安定して支持することができる。また、一対の第1球体が任意方向に回転可能であるため、軸線に沿った移動および軸線回りの回転を同時に行う伝熱管に過剰な摩擦力を与えることなく円滑に伝熱管の下方を支持することができる。
The welding apparatus according to the present disclosure includes a lower support mechanism that supports the heat transfer tube from the vertically lower side, and the lower support mechanism is a pair of first spheres that come into contact with two points in the circumferential direction of the outer peripheral surface of the heat transfer tube. And a first holding portion that rotatably holds the first sphere in an arbitrary direction.
According to the welding apparatus according to the present disclosure, the lower side of the heat transfer tube can be stably supported at two points in the circumferential direction of the outer peripheral surface by the pair of first spheres provided in the lower support mechanism. Further, since the pair of first spheres can rotate in an arbitrary direction, the heat transfer tube that moves along the axis and rotates around the axis at the same time is smoothly supported below the heat transfer tube without applying an excessive frictional force. be able to.

本開示に係る溶接装置において、前記下方支持機構は、前記伝熱管を支持する位置に前記第1球体を保持する支持状態と、前記伝熱管を支持しない位置に前記第1球体を退避させる退避状態とを切り替え可能な第1切替機構を備える。
本開示に係る溶接装置によれば、下方支持機構が支持状態と退避状態とを切り替え可能であるため、例えば、伝熱管の端部に他の機構が接続されている場合に、下方支持機構と移動機構など他の機構との干渉を避けるために下方支持機構を必要時に伝熱管から退避させることができる。
In the welding apparatus according to the present disclosure, the lower support mechanism has a support state in which the first sphere is held at a position supporting the heat transfer tube and a retracted state in which the first sphere is retracted to a position not supporting the heat transfer tube. It is provided with a first switching mechanism capable of switching between.
According to the welding apparatus according to the present disclosure, the lower support mechanism can switch between the support state and the retracted state. Therefore, for example, when another mechanism is connected to the end of the heat transfer tube, the lower support mechanism and the lower support mechanism The lower support mechanism can be retracted from the heat transfer tube when necessary in order to avoid interference with other mechanisms such as the moving mechanism.

本開示に係る溶接装置は、前記伝熱管を上方から支持する上方支持機構を備え、前記上方支持機構は、前記伝熱管の外周表面と接触する第2球体と、前記第2球体を任意方向に回転可能に保持する第2保持部と、前記伝熱管を支持する位置に前記第2球体を保持する支持状態と、前記伝熱管を支持しない位置に前記第2球体を退避させる退避状態とを切り替え可能な第2切替機構を備える。
本開示に係る溶接装置によれば、上方支持機構により、下方側の2点が下方支持機構で支持された伝熱管を更に上方から支持して伝熱管の位置を確実に固定することができる。また、第2球体が任意方向に回転可能であるため、軸線に沿った移動および軸線回りの回転を同時に行う伝熱管に過剰な摩擦力を与えることなく円滑に伝熱管の上方を支持することができる。
The welding apparatus according to the present disclosure includes an upper support mechanism for supporting the heat transfer tube from above, and the upper support mechanism has a second sphere in contact with the outer peripheral surface of the heat transfer tube and the second sphere in an arbitrary direction. The second holding portion that holds the heat transfer tube rotatably, the support state that holds the second sphere at a position that supports the heat transfer tube, and the retracted state that retracts the second sphere to a position that does not support the heat transfer tube are switched. It is provided with a possible second switching mechanism.
According to the welding apparatus according to the present disclosure, the position of the heat transfer tube can be reliably fixed by further supporting the heat transfer tube whose lower two points are supported by the lower support mechanism from above by the upper support mechanism. Further, since the second sphere can rotate in an arbitrary direction, it is possible to smoothly support the upper part of the heat transfer tube without applying an excessive frictional force to the heat transfer tube that moves along the axis and rotates around the axis at the same time. it can.

さらには、上方支持機構が支持状態と退避状態とを切り替え可能であるため、例えば、伝熱管の端部に他の機構が接続されている場合に、上方支持機構と他の機構との干渉を避けるために上方支持機構を伝熱管から退避させることができる。 Furthermore, since the upper support mechanism can switch between the support state and the retracted state, for example, when another mechanism is connected to the end of the heat transfer tube, the upper support mechanism interferes with the other mechanism. The upper support mechanism can be retracted from the heat transfer tube to avoid it.

本開示に係る溶接装置は、前記溶接位置から前記伝熱管の移動方向の上流側に配置される前記下方支持機構までの前記軸線に沿った第1距離は、前記溶接位置から前記移動方向の下流側に配置される前記下方支持機構までの前記軸線に沿った第2距離よりも短い。
伝熱管の移動方向の上流側に配置される下方支持機構は、下流側に配置される下方支持機構よりも溶接位置に近接した位置に配置される。
In the welding apparatus according to the present disclosure, the first distance along the axis from the welding position to the lower support mechanism arranged on the upstream side in the moving direction of the heat transfer tube is downstream from the welding position in the moving direction. It is shorter than the second distance along the axis to the downward support mechanism arranged on the side.
The lower support mechanism arranged on the upstream side in the moving direction of the heat transfer tube is arranged at a position closer to the welding position than the lower support mechanism arranged on the downstream side.

そのため、溶接の行われていない伝熱管の外周表面を溶接位置の近傍で支持し、肉盛溶接機構の溶接トーチから伝熱管の外周表面までの距離や溶接トーチとの角度など溶接トーチと伝熱管Tの位置関係の変動を抑制することができる。また、伝熱管の移動方向の下流側に配置される下方支持機構は、上流側に配置される下方支持機構よりも溶接位置から離間した位置に配置される。そのため、溶接が行われて表面に凹凸形状のある伝熱管の外周表面を溶接位置から離れた位置で支持し、凹凸形状が下方支持機構を通過する際の振動が肉盛溶接機構に伝達されることを抑制することができ、また溶接ビードの肉厚分布による伝熱管の軸線位置の微小な位置変動による影響を抑制することができる。 Therefore, the outer peripheral surface of the heat transfer tube that has not been welded is supported near the welding position, and the distance from the welding torch of the overlay welding mechanism to the outer peripheral surface of the heat transfer tube and the angle with the welding torch, etc., are the welding torch and the heat transfer tube. Fluctuations in the positional relationship of T can be suppressed. Further, the lower support mechanism arranged on the downstream side in the moving direction of the heat transfer tube is arranged at a position farther from the welding position than the lower support mechanism arranged on the upstream side. Therefore, the outer peripheral surface of the heat transfer tube having an uneven shape on the surface after welding is supported at a position away from the welding position, and the vibration when the uneven shape passes through the lower support mechanism is transmitted to the overlay welding mechanism. This can be suppressed, and the influence of minute positional fluctuations of the axial position of the heat transfer tube due to the wall thickness distribution of the weld bead can be suppressed.

本開示に係る溶接装置は、前記伝熱管の移動方向の上流側の一端から冷却媒体を前記伝熱管内に流入させるとともに前記伝熱管の移動方向の下流側の他端から前記冷却媒体を前記伝熱管内に流出させることにより前記伝熱管を冷却する冷却機構を備える。
本開示に係る溶接装置によれば、溶接位置の近傍で肉盛溶接機構により加熱される伝熱管を冷却媒体により適切に効果的に冷却し、溶接後の熱影響による溶け込み量の変化や熱応力による伝熱管の反り変形などを適切に抑制することができる。
The welding apparatus according to the present disclosure causes the cooling medium to flow into the heat transfer tube from one end on the upstream side in the moving direction of the heat transfer tube, and transfers the cooling medium from the other end on the downstream side in the moving direction of the heat transfer tube. A cooling mechanism for cooling the heat transfer tube by flowing it into the heat tube is provided.
According to the welding apparatus according to the present disclosure, the heat transfer tube heated by the build-up welding mechanism is appropriately and effectively cooled by the cooling medium in the vicinity of the welding position, and the change in the amount of penetration and the thermal stress due to the heat effect after welding are obtained. It is possible to appropriately suppress the warp deformation of the heat transfer tube due to the above.

本開示に係る溶接装置は、複数の前記伝熱管を移動させる複数の前記移動機構と、複数の前記伝熱管を回転させる複数の回転機構と、複数の前記伝熱管の外周表面に溶接を行う複数の前記肉盛溶接機構と、を備え、複数の前記伝熱管が、前記軸線方向に直交する水平方向に隣接した状態で配置される。
本開示に係る溶接装置によれば、複数の伝熱配管が、隣接した状態で配置されるため、1人の作業者が複数の肉盛溶接機構による溶接状態を同時に監視することができ、監視に必要な作業者の人数を削減することができる。
The welding apparatus according to the present disclosure includes a plurality of the moving mechanisms for moving the plurality of the heat transfer tubes, a plurality of rotation mechanisms for rotating the plurality of the heat transfer tubes, and a plurality of welding devices for welding the outer peripheral surfaces of the plurality of the heat transfer tubes. A plurality of the heat transfer tubes are arranged in a state of being adjacent to each other in the horizontal direction orthogonal to the axial direction.
According to the welding apparatus according to the present disclosure, since a plurality of heat transfer pipes are arranged adjacent to each other, one worker can simultaneously monitor the welding state by the plurality of overlay welding mechanisms. The number of workers required for welding can be reduced.

本開示に係る溶接装置は、前記溶接位置よりも前記伝熱管の移動方向の下流側の計測位置に配置されるとともに前記計測位置を通過する前記伝熱管の外径を計測する、および/または前記肉盛溶接の厚さを算定する計測機構を備える。
本開示に係る溶接装置によれば、螺旋状の肉盛溶接が行われた伝熱管の外径を測定、および/または肉盛溶接の厚さを算定することにより、伝熱管が肉盛厚さや肉盛表面粗度などの溶接仕様を適切に満たしているかどうかを適切に判断し、溶接仕様が適切になるように伝熱管を移動させる移動機構と伝熱管を回転させる回転機構を制御することができる。
The welding apparatus according to the present disclosure is arranged at a measurement position on the downstream side of the welding position in the moving direction of the heat transfer tube, and measures the outer diameter of the heat transfer tube passing through the measurement position, and / or said. It is equipped with a measuring mechanism that calculates the thickness of overlay welding.
According to the welding apparatus according to the present disclosure, by measuring the outer diameter of the heat transfer tube in which the spiral overlay welding is performed and / or calculating the thickness of the overlay welding, the heat transfer tube has the overlay thickness. It is possible to properly judge whether or not the welding specifications such as overlay surface roughness are properly satisfied, and control the moving mechanism that moves the heat transfer tube and the rotating mechanism that rotates the heat transfer tube so that the welding specifications are appropriate. it can.

以上説明した実施形態に記載の溶接装置(200)の制御方法は、例えば以下のように把握される。
本開示に係る溶接装置(200)の制御方法は、軸線に沿って配置される円筒状の伝熱管の外周表面に肉盛溶接を行う溶接装置の制御方法であって、前記溶接装置は、前記伝熱管を前記軸線に沿って移動させる移動機構と、前記伝熱管を前記軸線回りに回転させる回転機構と、前記溶接装置が設置される設置面に対して固定されるとともに所定の溶接位置を通過する前記伝熱管の外周表面に溶接材料を供給しながら溶接する肉盛溶接機構と、を備え、前記移動機構が前記伝熱管を前記軸線に沿って移動させ、かつ前記回転機構が前記伝熱管を前記軸線回りに回転させる状態で、前記肉盛溶接機構が前記伝熱管の外周表面に螺旋状に肉盛溶接を行うよう前記溶接装置を制御する制御工程を備える。
The control method of the welding apparatus (200) described in the above-described embodiment is grasped as follows, for example.
The control method of the welding apparatus (200) according to the present disclosure is a control method of a welding apparatus that performs overlay welding on the outer peripheral surface of a cylindrical heat transfer tube arranged along an axis. A moving mechanism that moves the heat transfer tube along the axis, a rotation mechanism that rotates the heat transfer tube around the axis, and a rotation mechanism that rotates the heat transfer tube around the axis are fixed to an installation surface on which the welding device is installed and pass through a predetermined welding position. A build-up welding mechanism for welding while supplying a welding material to the outer peripheral surface of the heat transfer tube is provided, the moving mechanism moves the heat transfer tube along the axis, and the rotating mechanism moves the heat transfer tube. It is provided with a control step of controlling the welding apparatus so that the overlay welding mechanism spirally overlays welds on the outer peripheral surface of the heat transfer tube in a state of being rotated around the axis.

本開示に係る溶接装置(200)の制御方法によれば、溶接装置が設置される設置面に対して肉盛溶接機構が固定されているため、設置面に対する所定の溶接位置が固定される。そのため、肉盛溶接機構の溶接トーチから伝熱管の外周表面までの距離や溶接トーチとの角度など溶接トーチと伝熱管の位置関係の変動が抑制され、伝熱管の長手方向の各位置での溶接状態の変動が抑制される。これにより、肉盛厚さや肉盛表面粗度などの溶接仕様を適切に満たして伝熱管の外周表面にせん状の肉盛溶接を行うことが可能となる。 According to the control method of the welding apparatus (200) according to the present disclosure, since the overlay welding mechanism is fixed to the installation surface on which the welding apparatus is installed, a predetermined welding position with respect to the installation surface is fixed. Therefore, fluctuations in the positional relationship between the welding torch and the heat transfer tube, such as the distance from the welding torch of the overlay welding mechanism to the outer peripheral surface of the heat transfer tube and the angle with the welding torch, are suppressed, and welding is performed at each position in the longitudinal direction of the heat transfer tube. Fluctuations in the state are suppressed. As a result, it becomes possible to appropriately satisfy the welding specifications such as the overlay thickness and the overlay surface roughness, and to perform the spiral overlay welding on the outer peripheral surface of the heat transfer tube.

本開示に係る溶接装置の制御方法において、前記溶接装置は、前記溶接位置よりも前記伝熱管の移動方向の下流側の計測位置に配置されるとともに前記計測位置を通過する前記伝熱管の外径を計測する、および/または前記肉盛溶接の厚さを算定する計測機構(60)を備え、前記制御工程は、前記計測機構により計測された前記伝熱管の外径、および/または前記計測機構により計測された前記肉盛溶接の厚さが所定範囲になるように、前記移動機構が前記伝熱管を前記軸線に沿って移動させる移動速度と、前記回転機構が前記伝熱管を前記軸線回りに回転させる回転速度と、を制御する。
本開示に係る溶接装置の制御方法によれば、計測機構による計測結果に応じて肉盛溶接の厚さが所定範囲になるように伝熱管の移動速度と回転速度とが適切に制御される。
In the method for controlling a welding device according to the present disclosure, the welding device is arranged at a measurement position on the downstream side of the welding position in the moving direction of the heat transfer tube, and the outer diameter of the heat transfer tube passing through the measurement position. The control step comprises a measuring mechanism (60) for measuring and / or calculating the thickness of the overlay weld, and the control step is the outer diameter of the heat transfer tube measured by the measuring mechanism and / or the measuring mechanism. The moving speed at which the moving mechanism moves the heat transfer tube along the axis, and the rotation mechanism moves the heat transfer tube around the axis so that the thickness of the overlay weld measured by The rotation speed to be rotated and the rotation speed are controlled.
According to the control method of the welding apparatus according to the present disclosure, the moving speed and the rotating speed of the heat transfer tube are appropriately controlled so that the thickness of the overlay welding is within a predetermined range according to the measurement result by the measuring mechanism.

10 可動台車
11 移動機構
12 回転機構
20 肉盛溶接機構
21 溶接トーチ
21a タングステン電極
30 下方支持機構
31 第1下方支持部
31a 球体(第1球体)
32 第2下方支持部
32a 球体(第1球体)
33 第3下方支持部
33a 球体(第1球体)
33c 高さ調整機構(切替機構)
40 上方支持機構
40a 球体(第2球体)
40c 高さ調整機構
50 冷却機構
60 計測機構
70 本体部
80 撮像部
85 表示部
90 制御部
200 溶接装置
MD 移動方向
S 設置面
T 伝熱管
Td 下流側端部
Tu 上流側端部
WB 溶接ビード
10 Movable trolley 11 Moving mechanism 12 Rotating mechanism 20 Overlay welding mechanism 21 Welding torch 21a Tungsten electrode 30 Lower support mechanism 31 First lower support 31a Sphere (first sphere)
32 Second lower support 32a Sphere (1st sphere)
33 Third lower support 33a Sphere (1st sphere)
33c Height adjustment mechanism (switching mechanism)
40 Upper support mechanism 40a sphere (second sphere)
40c Height adjustment mechanism 50 Cooling mechanism 60 Measuring mechanism 70 Main body 80 Imaging unit 85 Display 90 Control unit 200 Welding device MD Moving direction S Installation surface T Heat transfer tube Td Downstream end Tu Upstream end WB Welding bead

Claims (10)

軸線に沿って配置される円筒状の伝熱管の外周表面に肉盛溶接を行う溶接装置であって、
前記伝熱管を前記軸線に沿って移動させる移動機構と、
前記伝熱管を前記軸線回りに回転させる回転機構と、
前記溶接装置が設置される設置面に対して位置が固定されるとともに所定の溶接位置を通過する前記伝熱管の外周表面に溶接材料を供給しながら溶接する肉盛溶接機構と、
前記移動機構と前記回転機構と前記肉盛溶接機構とを制御する制御部と、を備え、
前記制御部は、前記移動機構が前記伝熱管を前記軸線に沿って移動させ、かつ前記回転機構が前記伝熱管を前記軸線回りに回転させる状態で、前記肉盛溶接機構が前記伝熱管の外周表面に螺旋状に肉盛溶接を行うよう制御する溶接装置。
A welding device that performs overlay welding on the outer peripheral surface of a cylindrical heat transfer tube arranged along the axis.
A moving mechanism that moves the heat transfer tube along the axis, and
A rotation mechanism that rotates the heat transfer tube around the axis, and
An overlay welding mechanism that welds while supplying welding material to the outer peripheral surface of the heat transfer tube that is fixed in position with respect to the installation surface on which the welding device is installed and passes through a predetermined welding position.
A control unit for controlling the moving mechanism, the rotating mechanism, and the overlay welding mechanism is provided.
In the control unit, the build-up welding mechanism is the outer periphery of the heat transfer tube in a state where the moving mechanism moves the heat transfer tube along the axis and the rotation mechanism rotates the heat transfer tube around the axis. A welding device that controls the surface to be spirally overlaid.
前記伝熱管を鉛直下方側から支持する下方支持機構を備え、
前記下方支持機構は、
前記伝熱管の外周表面の周方向の2箇所と接触する一対の第1球体と、
前記第1球体を任意方向に回転可能に保持する第1保持部と、を有する請求項1に記載の溶接装置。
A lower support mechanism for supporting the heat transfer tube from the vertically lower side is provided.
The downward support mechanism
A pair of first spheres that come into contact with two points in the circumferential direction of the outer peripheral surface of the heat transfer tube,
The welding apparatus according to claim 1, further comprising a first holding portion that rotatably holds the first sphere in an arbitrary direction.
前記下方支持機構は、前記伝熱管を支持する位置に前記第1球体を保持する支持状態と、前記伝熱管を支持しない位置に前記第1球体を退避させた退避状態とを切り替え可能な第1切替機構を備える請求項2に記載の溶接装置。 The lower support mechanism can switch between a support state in which the first sphere is held at a position that supports the heat transfer tube and a retracted state in which the first sphere is retracted to a position that does not support the heat transfer tube. The welding apparatus according to claim 2, further comprising a switching mechanism. 前記伝熱管を鉛直方向上方側から支持する上方支持機構を備え、
前記上方支持機構は、
前記伝熱管の外周表面の周方向の2箇所と接触する第2球体と、
前記第2球体を任意方向に回転可能に保持する第2保持部と、
前記伝熱管を支持する位置に前記第2球体を保持する支持状態と、前記伝熱管を支持しない位置に前記第2球体を退避させる退避状態とを切り替え可能な第2切替機構と、を有する請求項2または請求項3に記載の溶接装置。
It is provided with an upper support mechanism that supports the heat transfer tube from the upper side in the vertical direction.
The upper support mechanism
A second sphere that comes into contact with two points in the circumferential direction of the outer peripheral surface of the heat transfer tube,
A second holding portion that rotatably holds the second sphere in any direction,
A claim having a second switching mechanism capable of switching between a support state in which the second sphere is held at a position supporting the heat transfer tube and a retracted state in which the second sphere is retracted to a position not supporting the heat transfer tube. The welding apparatus according to claim 2 or 3.
前記溶接位置から前記伝熱管の移動方向の上流側に配置される前記下方支持機構までの前記軸線に沿った第1距離は、前記溶接位置から前記移動方向の下流側に配置される前記下方支持機構までの前記軸線に沿った第2距離よりも短い請求項2から請求項4のいずれか一項に記載の溶接装置。 The first distance along the axis from the welding position to the lower support mechanism arranged on the upstream side in the moving direction of the heat transfer tube is the downward support arranged on the downstream side in the moving direction from the welding position. The welding apparatus according to any one of claims 2 to 4, which is shorter than the second distance along the axis to the mechanism. 前記伝熱管の移動方向の上流側の一端から冷却媒体を前記伝熱管内に流入させるとともに前記伝熱管の移動方向の下流側の他端から前記冷却媒体を前記伝熱管内から流出させることにより前記伝熱管を冷却する冷却機構を備える請求項1から請求項5のいずれか一項に記載の溶接装置。 The cooling medium is allowed to flow into the heat transfer tube from one end on the upstream side in the moving direction of the heat transfer tube, and the cooling medium is discharged from the heat transfer tube from the other end on the downstream side in the moving direction of the heat transfer tube. The welding apparatus according to any one of claims 1 to 5, further comprising a cooling mechanism for cooling the heat transfer tube. 複数の前記伝熱管を移動させる複数の前記移動機構と、
複数の前記伝熱管を回転させる複数の前記回転機構と、
複数の前記伝熱管の外周表面に溶接を行う複数の前記肉盛溶接機構と、を備え、
複数の前記伝熱管が、前記軸線方向に直交する水平方向に隣接した状態で配置される請求項1から請求項6のいずれか一項に記載の溶接装置。
A plurality of the moving mechanisms for moving the plurality of heat transfer tubes, and
A plurality of the rotating mechanisms for rotating the plurality of the heat transfer tubes,
A plurality of the overlay welding mechanisms for welding the outer peripheral surfaces of the plurality of heat transfer tubes are provided.
The welding apparatus according to any one of claims 1 to 6, wherein a plurality of the heat transfer tubes are arranged adjacent to each other in a horizontal direction orthogonal to the axial direction.
前記溶接位置よりも前記伝熱管の移動方向の下流側の計測位置に配置されるとともに前記計測位置を通過する前記伝熱管の外径を計測する、および/または前記肉盛溶接の厚さを算定する計測機構を備える請求項1から請求項7のいずれか一項に記載の溶接装置。 The outer diameter of the heat transfer tube is measured at a measurement position downstream of the welding position in the moving direction of the heat transfer tube and passes through the measurement position, and / or the thickness of the overlay welding is calculated. The welding apparatus according to any one of claims 1 to 7, further comprising a measuring mechanism. 軸線に沿って配置される円筒状の伝熱管の外周表面に肉盛溶接を行う溶接装置の制御方法であって、
前記溶接装置は、
前記伝熱管を前記軸線に沿って移動させる移動機構と、
前記伝熱管を前記軸線回りに回転させる回転機構と、
前記溶接装置が設置される設置面に対して位置が固定されるとともに所定の溶接位置を通過する前記伝熱管の外周表面に溶接材料を供給しながら溶接する肉盛溶接機構と、を備え、
前記移動機構が前記伝熱管を前記軸線に沿って移動させ、かつ前記回転機構が前記伝熱管を前記軸線回りに回転させる状態で、前記肉盛溶接機構が前記伝熱管の外周表面に螺旋状に肉盛溶接を行うよう前記溶接装置を制御する制御工程を備える溶接装置の制御方法。
It is a control method of a welding device that performs overlay welding on the outer peripheral surface of a cylindrical heat transfer tube arranged along an axis.
The welding device
A moving mechanism that moves the heat transfer tube along the axis, and
A rotation mechanism that rotates the heat transfer tube around the axis, and
It is provided with a build-up welding mechanism that welds while supplying welding material to the outer peripheral surface of the heat transfer tube that is fixed in position with respect to the installation surface on which the welding device is installed and passes through a predetermined welding position.
With the moving mechanism moving the heat transfer tube along the axis and the rotating mechanism rotating the heat transfer tube around the axis, the overlay welding mechanism spirals on the outer peripheral surface of the heat transfer tube. A method for controlling a welding device, which comprises a control process for controlling the welding device so as to perform overlay welding.
前記溶接装置は、前記溶接位置よりも前記伝熱管の移動方向の下流側の計測位置に配置されるとともに前記計測位置を通過する前記伝熱管の外径を計測する、および/または前記肉盛溶接の厚さを算定する計測機構を備え、
前記制御工程は、前記計測機構により計測された前記伝熱管の外径、および/または前記計測機構により計測された前記肉盛溶接の厚さが所定範囲になるように、前記移動機構が前記伝熱管を前記軸線に沿って移動させる移動速度と、前記回転機構が前記伝熱管を前記軸線回りに回転させる回転速度と、を制御する請求項9に記載の溶接装置の制御方法。
The welding device is arranged at a measurement position on the downstream side of the welding position in the moving direction of the heat transfer tube, measures the outer diameter of the heat transfer tube passing through the measurement position, and / or overlay welding. Equipped with a measuring mechanism to calculate the thickness of
In the control step, the moving mechanism transmits the heat transfer tube so that the outer diameter of the heat transfer tube measured by the measuring mechanism and / or the thickness of the overlay welding measured by the measuring mechanism falls within a predetermined range. The method for controlling a welding apparatus according to claim 9, wherein the moving speed at which the heat pipe is moved along the axis and the rotation speed at which the rotating mechanism rotates the heat transfer tube around the axis are controlled.
JP2019191042A 2019-10-18 2019-10-18 Welding device and method for controlling the same Active JP7467066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191042A JP7467066B2 (en) 2019-10-18 2019-10-18 Welding device and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191042A JP7467066B2 (en) 2019-10-18 2019-10-18 Welding device and method for controlling the same

Publications (2)

Publication Number Publication Date
JP2021065893A true JP2021065893A (en) 2021-04-30
JP7467066B2 JP7467066B2 (en) 2024-04-15

Family

ID=75638074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191042A Active JP7467066B2 (en) 2019-10-18 2019-10-18 Welding device and method for controlling the same

Country Status (1)

Country Link
JP (1) JP7467066B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207472A (en) * 1987-02-23 1988-08-26 Kawasaki Steel Corp Build-up welding method for circular body to be welded
JPH10180467A (en) * 1996-12-24 1998-07-07 Amada Co Ltd Friction welding equipment for pipe
US6013890A (en) * 1997-10-20 2000-01-11 Welding Services, Inc. Dual pass weld overlay method and apparatus
JP2004298956A (en) * 2003-04-01 2004-10-28 Kyoji:Kk Supporting device for long-length work in laser beam machine
JP2012166234A (en) * 2011-02-14 2012-09-06 Jte Kk Method for manufacturing welded steel pipe
WO2015022943A1 (en) * 2013-08-13 2015-02-19 株式会社Ihi Support device for manufacturing cylindrical container
JP2015188933A (en) * 2014-03-31 2015-11-02 日立造船株式会社 Building-up welding method and device for tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207472A (en) * 1987-02-23 1988-08-26 Kawasaki Steel Corp Build-up welding method for circular body to be welded
JPH10180467A (en) * 1996-12-24 1998-07-07 Amada Co Ltd Friction welding equipment for pipe
US6013890A (en) * 1997-10-20 2000-01-11 Welding Services, Inc. Dual pass weld overlay method and apparatus
JP2004298956A (en) * 2003-04-01 2004-10-28 Kyoji:Kk Supporting device for long-length work in laser beam machine
JP2012166234A (en) * 2011-02-14 2012-09-06 Jte Kk Method for manufacturing welded steel pipe
WO2015022943A1 (en) * 2013-08-13 2015-02-19 株式会社Ihi Support device for manufacturing cylindrical container
JP2015188933A (en) * 2014-03-31 2015-11-02 日立造船株式会社 Building-up welding method and device for tube

Also Published As

Publication number Publication date
JP7467066B2 (en) 2024-04-15

Similar Documents

Publication Publication Date Title
CA2947673C (en) Metal making lance with spring-loaded thermocouple or camera in lance tip
US10400293B2 (en) Metal making lance with infrared camera in lance head
CN105264095A (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
CN112894087B (en) Tube plate nickel-based alloy double-tungsten-electrode single-hot-wire automatic tungsten electrode argon arc welding surfacing process
JP2021065893A (en) Welding device and control method for welding device
JP2011127925A (en) Welded structure of structural body in nuclear reactor, and method for welding the welded structure
JP2009241142A (en) Plasma arc build-up welding equipment and method
JP5582790B2 (en) Welding apparatus, tip tool guide apparatus and welding method used in nuclear facilities
JP2021067484A (en) Build-up weld crack evaluation method, tubular body manufacturing method, and evaluation material
JP6847700B2 (en) Gasifier with burner and burner and how to install the burner
US20170218470A1 (en) Burner-lance unit
KR20120064280A (en) Cladding apparatus using two hot wires
JP2017113772A (en) Welding torch and welding device
JP2019135429A (en) Tap hole structure of metal refining furnace
Copeland et al. A practical engineering approach to improving the reliability of blast furnace tuyeres
KR102594340B1 (en) Welding device and method
US6175093B1 (en) Method for applying a weld overlay to a wastage susceptible structure
JP2012200740A (en) Tig welding apparatus
CN107076410A (en) The compact burner of the airflow bed gasification furnace cooled down for no liquid
CA2388397A1 (en) Process for the metallurgical treatment of molten steel in a converter with oxygen top blown onto the molten steel and an oxygen blowing lance
JP6466827B2 (en) Reduced iron production equipment
Sessions et al. Materials development for a fast breeder reactor steam generator concept
Semyonov Methods of mathematical modelling of the processes of electrode metal drop formation and transfer in consumable electrode welding
Elmer et al. Wire Arc Additive Manufacturing Final Report for the Wire-Based AM Focused Exchange
Toulouevski et al. Increasing Scrap Melting Rate in Liquid Metal by Means of Oxygen Bath Blowing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240403

R150 Certificate of patent or registration of utility model

Ref document number: 7467066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150