JP2021065119A - Seaweed raising method and seaweed raising device - Google Patents

Seaweed raising method and seaweed raising device Download PDF

Info

Publication number
JP2021065119A
JP2021065119A JP2019191432A JP2019191432A JP2021065119A JP 2021065119 A JP2021065119 A JP 2021065119A JP 2019191432 A JP2019191432 A JP 2019191432A JP 2019191432 A JP2019191432 A JP 2019191432A JP 2021065119 A JP2021065119 A JP 2021065119A
Authority
JP
Japan
Prior art keywords
seaweed
water
container
fronds
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019191432A
Other languages
Japanese (ja)
Other versions
JP7276772B2 (en
Inventor
元志 高野
Motoshi Takano
元志 高野
諭 弘中
Satoshi Hironaka
諭 弘中
智郎 山本
Tomoo Yamamoto
智郎 山本
聡志 吉田
Satoshi Yoshida
聡志 吉田
智治 中村
Tomoharu Nakamura
智治 中村
智恵 堀田
Chie Hotta
智恵 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Umino Co Ltd
Original Assignee
Nippon Steel Corp
Umino Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Umino Co Ltd filed Critical Nippon Steel Corp
Priority to JP2019191432A priority Critical patent/JP7276772B2/en
Publication of JP2021065119A publication Critical patent/JP2021065119A/en
Application granted granted Critical
Publication of JP7276772B2 publication Critical patent/JP7276772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Cultivation Of Seaweed (AREA)

Abstract

To provide a seaweed raising method and a seaweed raising device in which the growing speed of seaweed can be accelerated and seaweed can be raised at high work efficiency.SOLUTION: In a seaweed raising method, oxygen and carbon dioxide are supplied to water in a container 30 by aeration, and the water to which oxygen and carbon dioxide has been supplied is allowed to flow in one direction in the container 30, by which while maintaining a state in which a leaf body of seaweed 40 is swayed in the one direction in the container 30, the leaf body is irradiated with light from a direction approximately perpendicular to the one direction.SELECTED DRAWING: Figure 1

Description

本発明は、海藻育成方法および海藻育成装置に関する。 The present invention relates to a seaweed growing method and a seaweed growing device.

海藻類は、藻類の中でも目視により確認可能な大きさに成長する生物である。海藻類は、日本国内の海域において、コンブ、ワカメ、ヒジキ、テングサ、アマノリ、またはモズクなど様々な種類が大量に収穫されている。しかし、近年の温暖化による海水温の上昇または沿岸部近傍における栄養塩の偏在などによる、海藻類の育成環境の悪化により、海藻類の収穫量が低下している。 Seaweeds are organisms that grow to a size that can be visually confirmed among algae. Various types of seaweed such as kelp, wakame seaweed, hijiki, gelidiaceae, amanori, or mozuku are harvested in large quantities in the waters of Japan. However, the yield of seaweed is decreasing due to the deterioration of the seaweed growing environment due to the rise in seawater temperature due to recent warming or the uneven distribution of nutrients near the coast.

沿岸部における海藻類の育成環境を改善するためには、海藻類の育成試験を通じ、海藻の育成に及ぼす水環境の影響を基礎的に調査することが重要である。また、海藻類を安定的に収穫するためには、人工的に制御された水槽内で海藻類を養殖する事業も重要となっている。 In order to improve the seaweed growth environment in the coastal areas, it is important to basically investigate the effect of the aquatic environment on the seaweed growth through seaweed growth tests. In addition, in order to stably harvest seaweed, it is also important to cultivate seaweed in an artificially controlled aquarium.

そのため、水産資源として重要な海藻類を対象に、育成試験および調査を行ない、問題解決のための基礎データを構築するとともに、海藻類の水槽養殖事業への展開の可能性を模索していくことが重要であり、海藻類を陸上で安定的且つ効率よく育成する方法が求められている。 Therefore, we will conduct breeding tests and surveys on seaweeds, which are important as marine resources, to build basic data for problem solving, and to explore the possibility of expanding seaweeds into aquaculture business. Is important, and there is a need for a method for growing seaweeds on land in a stable and efficient manner.

人工的に制御された水槽内などで海藻類を養殖する方法として、例えば、特許文献1では、海藻の胞子同士を互いに付着させた集塊を水槽内に浮遊させることにより、網または糸などの基質に海藻を付着させることなく海藻を育成させる方法が開示されている。また、特許文献2では、水槽に浮遊した海藻の育成方法として、エアレーション(曝気)により水槽内の水を循環させ、海藻の成長効率を高めて育成させる方法が開示されている。さらに、特許文献3では、浮遊した海藻を低コストで循環させる方法として、壁面が湾曲した水槽を用い、湾曲部に沿うように養殖用海水を旋回させる方法が開示されている。 As a method of culturing seaweeds in an artificially controlled aquarium, for example, in Patent Document 1, agglomerates of seaweed spores attached to each other are suspended in the aquarium to form a net or a thread. A method for growing seaweed without attaching seaweed to a substrate is disclosed. Further, Patent Document 2 discloses a method of growing seaweed floating in a water tank by circulating water in the water tank by aeration (aeration) to increase the growth efficiency of seaweed. Further, Patent Document 3 discloses a method of circulating seaweed for aquaculture along a curved portion by using a water tank having a curved wall surface as a method of circulating floating seaweed at low cost.

特開2002−176866号公報Japanese Unexamined Patent Publication No. 2002-176866 特開2002−320426号公報JP-A-2002-320426 特開2012−213351号公報Japanese Unexamined Patent Publication No. 2012-213351

しかしながら、上述のような従来文献1から3に開示された海藻の育成方法のように、海藻を浮遊させて育成する方法では、高度な技術が必要であり、作業工程も多く、人手を要するという問題がある。 However, the method of floating and growing seaweed, such as the method of growing seaweed disclosed in the conventional documents 1 to 3 as described above, requires advanced technology, many work processes, and manpower. There's a problem.

また、育成する海藻の種類によっては、珪藻類が海藻に付着することによって、海藻の成長速度が低下する場合がある。そのような場合には、海藻の乾燥あるいは水槽に薬液を添加することにより珪藻類を除去するため、海藻を一旦回収する必要がある。しかし、浮遊する海藻では、水槽内の液体(海水など)と海藻とを分離するために多大な時間を要するという問題がある。 In addition, depending on the type of seaweed to be grown, the growth rate of seaweed may decrease due to the adhesion of diatoms to the seaweed. In such a case, it is necessary to collect the seaweed once in order to remove the diatoms by drying the seaweed or adding a chemical solution to the aquarium. However, floating seaweed has a problem that it takes a long time to separate the liquid (seawater or the like) in the aquarium from the seaweed.

本発明の一態様は、海藻の成長速度を速め、かつ、高い作業効率で海藻を育成することができる海藻育成方法および海藻育成装置を実現することを目的とする。 One aspect of the present invention is to realize a seaweed growing method and a seaweed growing device capable of accelerating the growth rate of seaweed and growing seaweed with high work efficiency.

上記の課題を解決するために、本発明の一態様に係る海藻育成方法は、容器内に設けられた基質に海藻を採苗させる採苗工程と、前記基質に着生した海藻を成長させる成長工程と、を含み、前記成長工程では、曝気によって、前記容器内の水に酸素および二酸化炭素を供給するとともに、酸素および二酸化炭素が供給された前記水を前記容器内で一方向に流動させることにより、前記容器内において前記海藻の葉体を前記一方向になびかせた状態を維持しつつ、前記葉体に対して前記一方向と略垂直な方向から光を照射する。 In order to solve the above problems, the seaweed growing method according to one aspect of the present invention includes a seedling collecting step of collecting seaweed on a substrate provided in a container and growth of growing seaweed that has settled on the substrate. Including the step, in the growth step, oxygen and carbon dioxide are supplied to the water in the container by exposure, and the water to which the oxygen and carbon dioxide are supplied is made to flow in one direction in the container. As a result, while maintaining the state in which the seaweed fronds are fluttered in the one direction in the container, light is irradiated from the direction substantially perpendicular to the one direction with respect to the fronds.

上記構成によれば、海藻がなびいた方向に対して略垂直な方向から光を照射するため、海藻に吸収される光の量が増加する。よって、海藻において活発に光合成が行われるため、海藻の成長速度を速めることができる。 According to the above configuration, since the light is irradiated from a direction substantially perpendicular to the direction in which the seaweed flutters, the amount of light absorbed by the seaweed increases. Therefore, since photosynthesis is actively carried out in seaweed, the growth rate of seaweed can be accelerated.

また、基質に着生した海藻を成長させるため、排水時に水の流動により海藻が容器から流出することを抑制できる。さらに、水に酸素および二酸化炭素を供給するため、海藻の呼吸による酸素不足、および光合成による二酸化炭素不足を抑制できる。よって、高い作業効率で海藻を育成することができる。 In addition, since the seaweed that has settled on the substrate grows, it is possible to prevent the seaweed from flowing out of the container due to the flow of water during drainage. Furthermore, since oxygen and carbon dioxide are supplied to water, oxygen deficiency due to respiration of seaweed and carbon dioxide deficiency due to photosynthesis can be suppressed. Therefore, seaweed can be grown with high work efficiency.

上記の課題を解決するために、本発明の一態様に係る海藻育成装置は、容器内の水を曝気することにより、前記水に酸素および二酸化炭素を供給する、気体吐出部と、前記容器内に設けられる、海藻が採苗される基質と、前記気体吐出部によって前記酸素および二酸化炭素が供給された前記水を一方向に流動させることにより、前記海藻の葉体を前記一方向になびかせる流動部と、前記流動部によって前記一方向になびかせられた状態の前記葉体に対して、前記一方向と略垂直な方向から光を照射する光照射部と、を備える。上記構成によれば、本発明の一態様に係る海藻育成方法が奏する効果と同様の効果を奏する。 In order to solve the above problems, the seaweed growing device according to one aspect of the present invention has a gas discharge unit that supplies oxygen and carbon dioxide to the water by aerating the water in the container, and the inside of the container. The seaweed fronds are fluttered in one direction by flowing the substrate from which the seaweed is collected and the water to which the oxygen and carbon dioxide are supplied by the gas discharge portion in one direction. It includes a flow unit and a light irradiation unit that irradiates the leaf body in a state of being fluttered in one direction by the flow unit with light from a direction substantially perpendicular to the one direction. According to the above configuration, the same effect as that of the seaweed growing method according to one aspect of the present invention is obtained.

本発明の一態様によれば、海藻の成長速度を速め、かつ、高い作業効率で海藻を育成できる。 According to one aspect of the present invention, the growth rate of seaweed can be increased and seaweed can be grown with high work efficiency.

本発明の実施形態1に係る海藻育成装置の模式図である。It is a schematic diagram of the seaweed growing apparatus which concerns on Embodiment 1 of this invention. 上記海藻育成装置を用いた海藻育成方法の一例を示すフローチャートである。It is a flowchart which shows an example of the seaweed growth method using the said seaweed growth apparatus. 本発明の実施形態2に係る海藻育成装置の模式図である。It is a schematic diagram of the seaweed growing apparatus which concerns on Embodiment 2 of this invention.

[実施形態1]
以下、本発明の一実施形態に係る海藻育成装置および海藻育成方法について、図1および図2を用いて詳細に説明する。図1は、本実施形態における海藻育成装置1の模式図である。図2は、本実施形態における海藻育成方法の一例を示すフローチャートである。
[Embodiment 1]
Hereinafter, the seaweed growing apparatus and the seaweed growing method according to the embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic view of the seaweed growing device 1 in the present embodiment. FIG. 2 is a flowchart showing an example of the seaweed growing method in the present embodiment.

<海藻育成装置>
海藻育成装置1は、図1に示すように、気送管10(気体吐出部、流動部)と、基質20と、容器30と、光照射部60とを備える。
<Seaweed growing device>
As shown in FIG. 1, the seaweed growing device 1 includes a pneumatic tube 10 (gas discharge unit, flow unit), a substrate 20, a container 30, and a light irradiation unit 60.

(容器)
容器30は、海藻40を育成させるために用いる。容器30には、水(海水)が入れられる。容器30の形状および大きさは特に限定されず、費用、設置場所および育成する海藻40の大きさなどに応じてどのようなものを用いてもよい。例えば図1では、鉛直方向に延伸した容器30を一例として示している。なお、後述するように、海藻育成装置1では、海藻40の葉体を容器30の鉛直方向に延伸させて育成するため、容器30を小型化できる。
(container)
The container 30 is used for growing the seaweed 40. Water (seawater) is put in the container 30. The shape and size of the container 30 are not particularly limited, and any container 30 may be used depending on the cost, the installation location, the size of the seaweed 40 to be grown, and the like. For example, FIG. 1 shows a container 30 stretched in the vertical direction as an example. As will be described later, in the seaweed growing device 1, since the leaves of the seaweed 40 are stretched in the vertical direction of the container 30 and grown, the container 30 can be miniaturized.

(水)
水は、海水または人工的に海水に含まれる成分を模した液体(以降、「人工海水」と称する)であってよく、海藻40を育成できる水であれば特に限定されない。水に含まれる成分は、特に限定されず育成する海藻40の種類に応じて変更してよい。具体的には、水は、海藻40の種類に応じて水温、栄養塩を含む成分、溶存酸素、電気伝導率(EC)、水素イオン指数(pH)および酸化還元電位(ORP)を適宜調整してよい。
(water)
The water may be seawater or a liquid that imitates the components artificially contained in seawater (hereinafter referred to as "artificial seawater"), and is not particularly limited as long as it is water capable of growing seaweed 40. The components contained in the water are not particularly limited and may be changed according to the type of seaweed 40 to be grown. Specifically, the water temperature, components containing nutrients, dissolved oxygen, electrical conductivity (EC), hydrogen ion index (pH) and redox potential (ORP) are appropriately adjusted according to the type of seaweed 40. It's okay.

海藻40を効率よく成長させるには、容器30内の水を、育成する海藻40が本来生息する海域と同様の水質に調整することが好ましい。また、海藻40が特に吸収する栄養塩(PおよびN)の濃度を適切な濃度に保つため、液肥、または実海域から採取した海水を濾過した水を用いてもよい。 In order to grow the seaweed 40 efficiently, it is preferable to adjust the water quality in the container 30 to the same water quality as the sea area where the seaweed 40 to be grown originally inhabits. Further, in order to maintain the concentration of nutrients (P and N) particularly absorbed by the seaweed 40 at an appropriate concentration, liquid fertilizer or water obtained by filtering seawater collected from the actual sea area may be used.

(基質)
基質20は、海藻40を採苗することにより着生させ、育成させるために用いる。基質20は、糸、ロープ、網またはブロックなどであってよく、網またはロープであることがより好ましい。基質20として網またはロープを用いることにより、基質20の回収および入手が容易となる。さらに、基質20として網またはロープを用いることにより、基質20を軽量化することができる。
(Substrate)
The substrate 20 is used for growing and growing the seaweed 40 by collecting seedlings. The substrate 20 may be a thread, rope, net or block, and more preferably a net or rope. By using a net or rope as the substrate 20, the substrate 20 can be easily recovered and obtained. Further, by using a net or a rope as the substrate 20, the weight of the substrate 20 can be reduced.

基質20に用いる材質は、プラスチック、金属、セラミックス、または天然繊維など、どのような素材を使用してもよいが、軽量化の観点からプラスチックまたは天然繊維であることが好ましい。以上のことから、基質20は、プラスチックまたは天然繊維で形成される網またはロープであることが最も好ましい。 The material used for the substrate 20 may be any material such as plastic, metal, ceramics, or natural fiber, but from the viewpoint of weight reduction, plastic or natural fiber is preferable. From the above, the substrate 20 is most preferably a net or rope formed of plastic or natural fibers.

海藻育成装置1において育成する海藻40は、コンブ、ワカメ、ヒジキ、テングサ、アマノリ、モズクなど様々な海藻類であってよく、アマノリ属の海藻であることが好ましい。アマノリ属の海藻は、アマノリ、スサビノリ、アサクサノリ、ウップルイノリおよびマルバアサクサノリなどを含み、海苔として広く養殖されており、水槽養殖事業へ展開できる。 The seaweed 40 to be grown in the seaweed growing device 1 may be various seaweeds such as kelp, wakame seaweed, hijiki seaweed, gelidiaceae, porphyra, and mozuku, and is preferably a seaweed of the genus Porphyra. Seaweeds of the genus Pyropia, including Pyropia yezoensis, Neopyropia yezoensis, Pyropia pseudolinearis, Pyropia pseudolinearis, and Pyropia pseudolinearis, are widely cultivated as seaweed and can be expanded to aquaculture business.

(気送管)
気送管10は、容器30内の水に空気を供給する管である。気送管10の下端部は、容器30の下方であって基質20の近傍に位置しており、下端部から容器30内の水に空気を供給する。気送管10から供給された空気により、容器30内の水に酸素および二酸化炭素が供給される。すなわち、気送管10は、気体吐出部として機能する。酸素および二酸化炭素を水に供給することにより、海藻40が呼吸または光合成することで水中に含まれる酸素または二酸化炭素が減少した場合であっても、海藻40の育成を促進させることができる。
(Pneumatic tube)
The air supply pipe 10 is a pipe that supplies air to the water in the container 30. The lower end of the air supply pipe 10 is located below the container 30 and in the vicinity of the substrate 20, and supplies air to the water in the container 30 from the lower end. Oxygen and carbon dioxide are supplied to the water in the container 30 by the air supplied from the air supply pipe 10. That is, the air supply pipe 10 functions as a gas discharge unit. By supplying oxygen and carbon dioxide to water, the growth of the seaweed 40 can be promoted even when the oxygen or carbon dioxide contained in the water is reduced by the respiration or photosynthesis of the seaweed 40.

気送管10から供給された空気は、容器30の下方から上方へ向けて移動する。これに伴い、容器30内の水のうち気送管10の近傍の領域の水(換言すれば、基質20に着生された海藻40がある領域の水)を下から上へ向かう方向に流動する。その結果、海藻40の葉体は、下から上へ向かう方向になびく。すなわち、気送管10は、水を下から上へ向かう方向(一方向)に流動させ、海藻40の葉体を下から上へ向かう方向になびかせる流動部としての機能を有する。 The air supplied from the air supply pipe 10 moves from the lower side to the upper side of the container 30. Along with this, the water in the region of the water in the container 30 near the air supply pipe 10 (in other words, the water in the region where the seaweed 40 settled on the substrate 20 is present) flows from the bottom to the top. To do. As a result, the fronds of seaweed 40 flutter in the direction from bottom to top. That is, the air supply pipe 10 has a function as a flow portion that allows water to flow in the direction from bottom to top (one direction) and the fronds of seaweed 40 to flow in the direction from bottom to top.

なお、水の流動は、上述のように容器30の内部にて水を循環させてよく、容器30の外部にポンプなどを設置し、容器30とポンプとの間を含めて水を循環させてもよい。さらに、水を容器30に連続的に供給し、容器30から余剰の水を排水し、水を循環させずに水を流動させてよい。 As for the flow of water, water may be circulated inside the container 30 as described above, and a pump or the like may be installed outside the container 30 to circulate the water including between the container 30 and the pump. May be good. Further, water may be continuously supplied to the container 30, excess water may be drained from the container 30, and the water may flow without circulating the water.

(光照射部)
光照射部60は、海藻40の葉体に対して光を照射する。光照射部60は、海藻40に光を照射できれば光源は特に限定されるものではなく、蛍光灯、LED、または太陽からの自然光の何れを選択してもよい。例えば、屋外にて海藻育成装置1を用いる場合では、光照射部60に要する費用および海藻の成長効率の観点から、光照射部60の光源として太陽からの自然光を用いることが好ましい。
(Light irradiation part)
The light irradiation unit 60 irradiates the fronds of the seaweed 40 with light. The light source is not particularly limited as long as the light irradiation unit 60 can irradiate the seaweed 40 with light, and any of fluorescent lamps, LEDs, and natural light from the sun may be selected. For example, when the seaweed growing device 1 is used outdoors, it is preferable to use natural light from the sun as the light source of the light irradiation unit 60 from the viewpoint of the cost required for the light irradiation unit 60 and the growth efficiency of the seaweed.

また、光照射部60から放射される光は、一方向になびいた状態の海藻40の葉体を、前記の一方向と略垂直な方向から照射する。ここで、「略垂直な方向」とは、海藻40の葉体がなびいた一方向に対して垂直な方向の他、前記の垂直な方向を0°として誤差の範囲内で角度がついた方向のことを指す。前記の誤差が生まれる要因としては、水の流れの変化により、海藻40の葉体がなびく方向が変化する場合、および、光照射部60の放射方向の設定に誤差がある場合などが想定される。 Further, the light emitted from the light irradiation unit 60 irradiates the fronds of the seaweed 40 in a unidirectional state from a direction substantially perpendicular to the above-mentioned one direction. Here, the "substantially vertical direction" is a direction perpendicular to one direction in which the fronds of the seaweed 40 flutter, and a direction in which the vertical direction is 0 ° and an angle is formed within an error range. Refers to. As a factor that causes the above error, it is assumed that the direction in which the leaf body of the seaweed 40 flutters changes due to a change in the flow of water, or that there is an error in the setting of the radiation direction of the light irradiation unit 60. ..

室内で海藻を育成させ、海藻の育成におよぼす育成環境の調査などを実施する場合では、再現性の観点から、光照射部60の光源として高輝度蛍光灯を用いることが望ましい。なお、室内で海藻を育成させる場合、当該海藻に光を照射する条件は、育成する海藻の種類、海藻の成長段階、および育成後に評価する品質など、に応じて適宜変更してもよい。 When growing seaweed indoors and investigating the growing environment for growing seaweed, it is desirable to use a high-intensity fluorescent lamp as the light source of the light irradiation unit 60 from the viewpoint of reproducibility. When growing seaweed indoors, the conditions for irradiating the seaweed with light may be appropriately changed depending on the type of seaweed to be grown, the growth stage of the seaweed, the quality to be evaluated after the growth, and the like.

光を照射する条件として、例えば、アマノリの葉体が1cm以上の葉長に成長したアマノリの葉体を更に大きく育成する場合では、葉体において100μmol/m/s以上の光合成光量子束密度で光を照射し、1日(24時間)において、14時間海藻に光を照射しない期間(暗期)を設けてよい。それにより、アマノリの葉体が十分に光合成でき、アマノリの葉体の成長を速くできる。また、葉体が1cm以上に成長したアマノリを用いて光を照射する条件以外の影響因子の調査を行う場合では、上述の光を照射する条件(アマノリの葉体において100μmol/m/s以上の光合成光量子束密度で光を照射し、1日において14時間暗期を設ける条件)にてアマノリの葉体に光を照射する。これにより、アマノリの成長を早めることができるので効率よく、光を照射する条件以外の影響因子の調査を行うことができる。 As a condition for irradiating light, for example, when the frond of a manori grows to a leaf length of 1 cm or more and grows larger, the frond has a photosynthetic photon flux density of 100 μmol / m 2 / s or more. A period (dark period) in which the seaweed is not irradiated with light for 14 hours may be provided in one day (24 hours) by irradiating with light. As a result, the fronds of Amanori can be sufficiently photosynthesized, and the fronds of Amanori can grow faster. In addition, when investigating influencing factors other than the condition of irradiating light using a manori whose fronds have grown to 1 cm or more, the above-mentioned conditions of irradiating light (100 μmol / m 2 / s or more in the fronds of a manori). Light is irradiated with the photosynthetic photon flux density of the above, and the fronds of Amanori are irradiated with light under the condition of setting a dark period for 14 hours in one day). As a result, the growth of Amanori can be accelerated, so that it is possible to efficiently investigate influencing factors other than the conditions of irradiating light.

以上のように、本実施形態における海藻育成装置1は、気体吐出部および流動部としての機能を有する気送管10と、海藻40が採苗される基質20と、海藻40の葉体に対して海藻40の葉体がなびく方向に略垂直な方向から光を照射する光照射部60とを備える。 As described above, the seaweed growing device 1 in the present embodiment is for the air supply pipe 10 having a function as a gas discharge part and a flow part, the substrate 20 on which the seaweed 40 is collected, and the fronds of the seaweed 40. It is provided with a light irradiation unit 60 that irradiates light from a direction substantially perpendicular to the direction in which the fronds of the seaweed 40 flutter.

上記の構成によれば、海藻40の葉体に対して海藻40の葉体がなびく方向に略垂直な方向から光を照射することができるので、海藻の成長速度を速めることができる。 According to the above configuration, it is possible to irradiate light from a direction substantially perpendicular to the direction in which the leaf body of the seaweed 40 flutters with respect to the leaf body of the seaweed 40, so that the growth rate of the seaweed can be accelerated.

また、海藻育成装置1では、海藻40を基質20に採苗することにより着生させているため、容器30内の水を排水する際に、海藻40の容器30からの流出を抑制することができる。また、育成する海藻40への珪藻類の付着が問題となる場合においても、海藻40を基質20に着生させることにより、海藻40を流出させることなく、容易に容器30内の水を抜き取ることができる。それにより、水が抜き取られた容器30内で、海藻40を自然乾燥処理することができるので、珪藻類の低減処理が可能となり、珪藻類の付着の問題を容易に解消できる。すなわち、作業効率よく海藻40を育成することができる。 Further, in the seaweed growing device 1, since the seaweed 40 is grown by collecting seedlings on the substrate 20, it is possible to suppress the outflow of the seaweed 40 from the container 30 when draining the water in the container 30. it can. Further, even when the adhesion of diatoms to the growing seaweed 40 becomes a problem, the water in the container 30 can be easily drained by allowing the seaweed 40 to grow on the substrate 20 without causing the seaweed 40 to flow out. Can be done. As a result, the seaweed 40 can be naturally dried in the container 30 from which the water has been drained, so that the diatoms can be reduced and the problem of diatom adhesion can be easily solved. That is, the seaweed 40 can be grown efficiently.

なお、図1に示すように、海藻育成装置1では、容器30内に、海藻40の設置位置の近傍において、水を一方向に流動させるために仕切板50を備えてもよい。仕切板50を備えることにより、容器30内にて水を循環させることができる。なお、仕切板50の形状および素材は限定されないが、水を一方向に流動させるために、開口部51が形成されていることが好ましい。 As shown in FIG. 1, in the seaweed growing device 1, a partition plate 50 may be provided in the container 30 in order to allow water to flow in one direction in the vicinity of the installation position of the seaweed 40. By providing the partition plate 50, water can be circulated in the container 30. The shape and material of the partition plate 50 are not limited, but it is preferable that the opening 51 is formed in order to allow water to flow in one direction.

なお、海藻育成装置1では、海藻40の葉体を容器30の鉛直方向に延伸させて育成する。すなわち、海藻40が育成するにしたがい、海藻40の育成に要する、水平方向の面積が変化しない。これにより、海藻育成装置1を小型化することができ、海藻40を育成する水平方向の面積当たりに回収できる海藻40の量を増加させることができる。 In the seaweed growing device 1, the fronds of the seaweed 40 are stretched in the vertical direction of the container 30 and grown. That is, as the seaweed 40 grows, the area required for growing the seaweed 40 does not change in the horizontal direction. As a result, the seaweed growing device 1 can be miniaturized, and the amount of seaweed 40 that can be recovered per horizontal area for growing the seaweed 40 can be increased.

また、海藻40から離脱した葉体および気送管10から発生する気泡は、上昇した後、水面で停滞する。そのため、海藻40の葉体を容器30の鉛直方向に延伸させて育成することにより、海藻40から離脱した葉体および気送管10から発生する気泡による、光照射部60から海藻40への光の照射を遮蔽する量が少なくでき、海藻に照射される光の量を高く維持できる。すなわち、作業効率よく海藻を育成することができる。 In addition, the bubbles generated from the fronds separated from the seaweed 40 and the air supply pipe 10 rise and then stagnate on the water surface. Therefore, by stretching the fronds of the seaweed 40 in the vertical direction of the container 30 and growing them, the light from the light irradiation unit 60 to the seaweed 40 due to the bubbles generated from the fronds separated from the seaweed 40 and the air supply tube 10 The amount of light that shields the seaweed can be reduced, and the amount of light that is applied to the seaweed can be maintained high. That is, seaweed can be grown efficiently.

また、海藻育成装置1では、気送管10による曝気によって水を流動させることにより、水を流動させるとともに、酸素および二酸化炭素などを水に供給でき、海藻の育成を促進することができる。すなわち、海藻育成装置1では、気体吐出部と流動部とを気送管10によって実現することができる。これにより、海藻育成装置1の構成を簡素化することができ、製造コストを削減することができる。なお、曝気により容器30内部で気泡が発生する場合では、発生する気泡が海藻40への光の照射を遮蔽しないよう、海藻40の設置位置、曝気条件または曝気位置などを調整することが好ましい。 Further, in the seaweed growing device 1, by aerating the water by the air supply pipe 10, the water can be flowed and oxygen, carbon dioxide and the like can be supplied to the water, and the growing of seaweed can be promoted. That is, in the seaweed growing device 1, the gas discharge part and the flow part can be realized by the air supply pipe 10. As a result, the configuration of the seaweed growing device 1 can be simplified, and the manufacturing cost can be reduced. When bubbles are generated inside the container 30 due to aeration, it is preferable to adjust the installation position, aeration condition, aeration position, etc. of the seaweed 40 so that the generated bubbles do not block the irradiation of the seaweed 40 with light.

また、本実施形態における海藻育成装置1では、気体吐出部として気送管10を備える構成であったが、本発明はこれに限られず、水中へ酸素および二酸化炭素を供給する方法はどのような方法であってもよい。水中へ酸素および二酸化炭素を供給する方法として、例えば、供給水を空気へ噴霧させた吸収塔などを設けてよく、撹拌機を用いて水と空気とを撹拌させてよい。さらに、酸素および二酸化炭素の供給源として、空気以外の気体を用いてもよく、例えば酸素および二酸化炭素を高濃度に含む排ガスまたは精製ガスを用いてもよい。 Further, the seaweed growing device 1 in the present embodiment has a configuration in which the air supply pipe 10 is provided as a gas discharge unit, but the present invention is not limited to this, and what kind of method is used to supply oxygen and carbon dioxide into water? It may be a method. As a method of supplying oxygen and carbon dioxide to water, for example, an absorption tower in which the supplied water is sprayed onto air may be provided, and water and air may be agitated using a stirrer. Further, as a source of oxygen and carbon dioxide, a gas other than air may be used, and for example, an exhaust gas or a purified gas containing a high concentration of oxygen and carbon dioxide may be used.

<海藻育成方法>
次に、海藻育成装置1を用いた海藻育成方法について図2を用いて説明する。本実施形態における海藻育成方法は、まず、網などの基質20に海藻を採苗する(採苗工程)。本発明に係る海藻育成方法における採苗工程では、基質20に海藻40を採苗できれば採苗方法は特に限定されない。
<How to grow seaweed>
Next, a seaweed growing method using the seaweed growing device 1 will be described with reference to FIG. In the seaweed growing method in the present embodiment, first, seaweed is collected on a substrate 20 such as a net (seedling step). In the seedling collection step in the seaweed growing method according to the present invention, the seedling collection method is not particularly limited as long as the seaweed 40 can be collected on the substrate 20.

次に、基質20に採苗した海藻が所望の大きさに成長するまで育苗する(S102、育苗工程)。育苗工程における海藻の育苗方法は、特に限定されず、実海域において干出などを行うことにより育苗してよく、人工的に干出などを行うことにより育苗してよい。育苗した海藻の大きさは、海藻の葉体がおよそ1〜2cmになるまで育苗を行なうことが好ましく、育苗する期間は約1か月であってよい。育苗した海藻は、そのまま育成してよく、育苗した海藻を半乾燥させ、-20℃程度で冷凍保管した後、育成してもよい。海藻の育苗を行う時期は特に限定されないが、実海域において育苗する場合では、10月に採苗を行なってよい。そして、育苗した海藻を冷凍保管することにより、通年において育成する海藻を一度にまとめて用意できる。 Next, seedlings are raised until the seaweed collected on the substrate 20 grows to a desired size (S102, seedling raising step). The method of raising seaweed in the seedling raising step is not particularly limited, and the seedlings may be raised by drying out in the actual sea area, or by artificially drying out. The size of the raised seaweed is preferably such that the seedlings are raised until the fronds of the seaweed are about 1 to 2 cm, and the seedling raising period may be about one month. The raised seaweed may be grown as it is, or the raised seaweed may be semi-dried, frozen and stored at about −20 ° C., and then grown. The time for raising seaweed seedlings is not particularly limited, but when raising seedlings in the actual sea area, seedlings may be raised in October. Then, by freezing and storing the raised seaweed, the seaweed to be raised throughout the year can be prepared all at once.

次に、所望の大きさに成長した海藻を基質20ごと冷凍保管する(S103)。そして、冷凍保管した基質20を、所望の大きさに分割する(S104)。 Next, the seaweed grown to a desired size is frozen and stored together with the substrate 20 (S103). Then, the substrate 20 stored frozen is divided into desired sizes (S104).

次に、分割した基質20に着生した海藻を成長させる(S105、成長工程)。成長工程では、容器30内に、気送管10による曝気により、水に対して酸素および二酸化炭素を供給するとともに、水を一方向に流動させる。これにより、海藻40の葉体を一方向になびかせた状態を維持する。そして、一方向になびいた海藻40の葉体に対して一方向に略垂直な方向から光を照射する。 Next, the seaweed that has settled on the divided substrate 20 is grown (S105, growth step). In the growth step, oxygen and carbon dioxide are supplied to the water by aeration by the air supply pipe 10 into the container 30, and the water is made to flow in one direction. As a result, the state in which the fronds of the seaweed 40 are fluttered in one direction is maintained. Then, light is irradiated from a direction substantially perpendicular to the leaf body of the seaweed 40 that has fluttered in one direction.

以上のように、本実施形態における海藻育成方法は、容器30内に設けられた基質20に海藻40を採苗させる採苗工程と、基質20の着生した海藻40を成長させる成長工程と、を含む。そして、成長工程では、曝気によって、容器30内の水に酸素および二酸化炭素を供給するとともに、酸素および二酸化炭素が供給された水を容器30内で一方向に流動させることにより、容器30内において海藻40の葉体を一方向になびかせた状態を維持しつつ、葉体に対して一方向に略垂直な方向から光を照射する。 As described above, the seaweed growing method in the present embodiment includes a seedling collecting step of collecting the seaweed 40 on the substrate 20 provided in the container 30, a growing step of growing the settled seaweed 40 of the substrate 20. including. Then, in the growth step, oxygen and carbon dioxide are supplied to the water in the container 30 by aeration, and the water supplied with oxygen and carbon dioxide is made to flow in one direction in the container 30 so as to be in the container 30. While maintaining the state in which the fronds of the seaweed 40 are fluttered in one direction, light is irradiated from a direction substantially perpendicular to the fronds.

これにより、海藻40の葉体に対して、葉体がなびく方向に略垂直な方向から光を照射することができるので、海藻40の成長速度を速めることができる。また、海藻40を基質20に採苗することにより着生させているため、容器30内の水を排水する際に海藻40の容器30からの流出を抑制できる。そのため、栄養塩補給または温度調整などのための水交換および/または海藻40の回収作業において、海藻40が容器30から流出することなく排水でき、作業効率よく海藻40を育成できる。 As a result, it is possible to irradiate the fronds of the seaweed 40 with light from a direction substantially perpendicular to the direction in which the fronds flutter, so that the growth rate of the seaweed 40 can be accelerated. Further, since the seaweed 40 is grown by collecting seedlings on the substrate 20, the outflow of the seaweed 40 from the container 30 can be suppressed when the water in the container 30 is drained. Therefore, in the water exchange for nutrient supplementation or temperature control and / or the recovery work of the seaweed 40, the seaweed 40 can be drained without flowing out from the container 30, and the seaweed 40 can be grown efficiently.

[実施形態2]
以下、本発明の一実施形態に係る海藻育成装置2について、図3を用いて海藻育成装置1との違いを主に説明する。
[Embodiment 2]
Hereinafter, the difference between the seaweed growing device 2 according to the embodiment of the present invention and the seaweed growing device 1 will be mainly described with reference to FIG.

図3は、海藻育成装置2の模式図である。図3は、流動部として気送管10を使用せず、注水管70から水を供給し排水管71から水を排水することにより水を流動させる。そのため、海藻育成装置2では注水管70および排水管71を流動部として実現し、気送管10を気体吐出部として実現する点で海藻育成装置1と異なる。さらに、容器31の鉛直方向に対して略垂直な方向(水平方向)に仕切板52を設置し、基質21に着生した海藻41の葉体を水平方向になびかせた状態にて海藻41を育成する点でも海藻育成装置1と異なる。また、海藻育成装置2は、海藻41の葉体がなびく方向に略垂直な方向(具体的には、上方)から海藻41の葉体に対して光を照射する光照射部60を備えている。 FIG. 3 is a schematic view of the seaweed growing device 2. In FIG. 3, the air supply pipe 10 is not used as the flow unit, and water is flowed by supplying water from the water injection pipe 70 and draining the water from the drain pipe 71. Therefore, the seaweed growing device 2 is different from the seaweed growing device 1 in that the water injection pipe 70 and the drain pipe 71 are realized as the flow part and the air supply pipe 10 is realized as the gas discharge part. Further, the partition plate 52 is installed in a direction (horizontal direction) substantially perpendicular to the vertical direction of the container 31, and the seaweed 41 is placed in a state where the leaves of the seaweed 41 settled on the substrate 21 are fluttered in the horizontal direction. It is also different from the seaweed growing device 1 in that it grows. Further, the seaweed growing device 2 includes a light irradiation unit 60 that irradiates the leaf body of the seaweed 41 with light from a direction substantially perpendicular to the direction in which the leaf body of the seaweed 41 flutters (specifically, above). ..

以上のように、本実施形態における海藻育成装置2は、気体吐出部としての機能を有する気送管10と、流動部としての機能を有する注水管70および排水管71と、海藻41が採苗される基質21と、海藻41の葉体に対して海藻41の葉体がなびく方向に略垂直な方向から光を照射する光照射部60とを備える。 As described above, in the seaweed growing device 2 of the present embodiment, the air supply pipe 10 having a function as a gas discharge part, the water injection pipe 70 and the drainage pipe 71 having a function as a flow part, and the seaweed 41 collect seedlings. The substrate 21 is provided, and a light irradiation unit 60 that irradiates light from a direction substantially perpendicular to the direction in which the leaf body of the seaweed 41 flutters with respect to the leaf body of the seaweed 41.

上記の構成によれば、海藻41の葉体に対して海藻41の葉体がなびく方向に略垂直な方向から光を照射することができるので、海藻の成長速度を速めることができる。また、海藻育成装置2では、光照射部60の光源として太陽からの自然光を利用することができ、海藻41の育成に要するコストを低減できる。 According to the above configuration, it is possible to irradiate light from a direction substantially perpendicular to the direction in which the leaf body of the seaweed 41 flutters with respect to the leaf body of the seaweed 41, so that the growth rate of the seaweed can be accelerated. Further, in the seaweed growing device 2, natural light from the sun can be used as a light source of the light irradiation unit 60, and the cost required for growing the seaweed 41 can be reduced.

また、排水管71から排出した水を注水管70から供給する(換言すれば水を循環させて用いる)ことにより、使用する水の量を低減でき、水に含まれる成分の調整に要するコストを低減できる。 Further, by supplying the water discharged from the drain pipe 71 from the water injection pipe 70 (in other words, the water is circulated and used), the amount of water used can be reduced, and the cost required for adjusting the components contained in the water can be reduced. Can be reduced.

また、注水管70から容器31への注水を停止し、容器31に存在する水を排水管71から排水し続けることにより水位を低下させることによって、海藻41を空気に曝し乾燥処理を行うことができる。これにより、海藻41への珪藻類の付着を容易に抑制できる。そのため、アマノリ属の海藻など珪藻類の付着防止が必要な海藻の育成において、薬液による珪藻類の処理を省略でき、珪藻類の処理に要するコストを低減できる。 Further, the seaweed 41 can be exposed to air for drying treatment by stopping the water injection from the water injection pipe 70 to the container 31 and continuing to drain the water existing in the container 31 from the drain pipe 71 to lower the water level. it can. As a result, the adhesion of diatoms to the seaweed 41 can be easily suppressed. Therefore, in the cultivation of seaweeds such as Porphyra seaweeds that need to prevent the adhesion of diatoms, the treatment of diatoms with a chemical solution can be omitted, and the cost required for the treatment of diatoms can be reduced.

また、海藻育成装置2では、気送管10が海藻41から離れた位置に配置されているので、気送管10から発生した気泡は、海藻41から離れた位置に発生する。その結果、光照射部60から海藻41へ照射される光が気泡によって遮断されることがなく、また、当該気泡が海藻41に衝突し、海藻41を基質21から離脱させることも抑制できる。さらに、海藻41は、気送管10から発生した気泡から十分離れているため、海藻41近傍の水の流動は、気泡の複雑な動きによる乱流の影響が少なく直線性を持つ。そのため、海藻41は水平方向になびいた状態が乱れることなく、より均一に広がることができる。その結果、海藻41の光照射部60から照射される光を吸収する面積を増加させることができるので、海藻41が光を効率的に吸収でき、海藻41を効率よく育成することができる。 Further, in the seaweed growing device 2, since the air supply pipe 10 is arranged at a position away from the seaweed 41, the bubbles generated from the air supply pipe 10 are generated at a position away from the seaweed 41. As a result, the light emitted from the light irradiation unit 60 to the seaweed 41 is not blocked by the air bubbles, and it is possible to prevent the air bubbles from colliding with the seaweed 41 and separating the seaweed 41 from the substrate 21. Further, since the seaweed 41 is sufficiently separated from the bubbles generated from the air supply pipe 10, the flow of water in the vicinity of the seaweed 41 is less affected by the turbulent flow due to the complicated movement of the bubbles and has a linearity. Therefore, the seaweed 41 can spread more uniformly without disturbing the horizontal fluttering state. As a result, the area that absorbs the light emitted from the light irradiation unit 60 of the seaweed 41 can be increased, so that the seaweed 41 can efficiently absorb the light and the seaweed 41 can be efficiently grown.

また、注水管70から供給される水は、海から汲み上げた海水へ適宜切り替えることにより、水温および水中の栄養塩濃度を調整でき、効率的に海藻41を育成できる。 Further, by appropriately switching the water supplied from the water injection pipe 70 to seawater pumped from the sea, the water temperature and the nutrient concentration in the water can be adjusted, and the seaweed 41 can be efficiently grown.

[付記事項]
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.

本発明の一実施例に係る海藻の育成方法について以下の海藻の育成試験を通じて説明する。 The method for growing seaweed according to an embodiment of the present invention will be described through the following seaweed growing test.

[実施例1]
〔海藻の用意〕
海藻はアマノリ属のアマノリ(Pyropia SP.)を用い、高さ約40cmの円柱状のガラス製容器を用いて海藻を育成した。アマノリは、母藻から放出された胞子を水槽内で網に付着させることにより採苗した。網に採苗したアマノリを、10月中旬に兵庫県沿岸近傍の海面(実海域)で約1か月間育苗することにより、葉体が1〜2cm程度に成長させた。アマノリを育苗した網を回収して、アマノリを網ごと冷凍保管した。冷凍保管した、アマノリを育苗した網から、アマノリの葉体が均一に成長した箇所を約50mmの長さの糸状に切出すことにより、海藻を用意した。
[Example 1]
[Preparation of seaweed]
As the seaweed, Pyropia SP. Was used as the seaweed, and the seaweed was grown using a columnar glass container having a height of about 40 cm. Amanori was collected by attaching spores released from the mother algae to the net in the aquarium. By raising seedlings of Amanori collected in the net on the sea surface (actual sea area) near the coast of Hyogo Prefecture for about one month in mid-October, the fronds grew to about 1 to 2 cm. The nets from which the seedlings of Amanori were raised were collected, and the Amanori was frozen and stored together with the nets. Seaweed was prepared by cutting out the part where the fronds of the amanori grew uniformly into a thread having a length of about 50 mm from the net in which the amanori seedlings were raised, which had been stored frozen.

〔育成試験〕
(試験液の調製)
海藻の育成試験では、試験液として、国立研究開発法人国立環境研究所微生物系統保存施設推奨培地であるmSWM−3を用いた。なお、mSWM−3の作製では、Red Sea Salt(Red Sea製)を用いて作製した人工海水にて定容した。
[Training test]
(Preparation of test solution)
In the seaweed growth test, mSWM-3, which is a medium recommended by the National Institute for Environmental Studies, National Institute for Environmental Studies, was used as the test solution. In the preparation of mSWM-3, the volume was fixed with artificial seawater prepared using Red Sea Salt (manufactured by Red Sea).

(育成試験)
育成試験では、円柱状のガラス容器に試験液を2L注水した。試験液を注水したガラス容器は、循環水の水温が14℃以下になるように設定したウォーターバスを用いて、ガラス容器内の試験液を約14℃に冷却した。
(Training test)
In the growing test, 2 L of the test solution was injected into a cylindrical glass container. In the glass container into which the test solution was injected, the test solution in the glass container was cooled to about 14 ° C. using a water bath set so that the temperature of the circulating water was 14 ° C. or lower.

約50mmの長さに切出した糸を、プラスチック製の板状の基質の端部に貼り付けた。そして、アマノリがガラス容器最下部に位置するよう当該基質を水没させた。なお、ガラス容器には、予め当該ガラス容器内部の空間を2つに仕切るように寸法を調製した仕切板を設置した。当該仕切板のガラス容器の最下部側に位置する部分には試験液が循環するための開口部を設けた。 A thread cut to a length of about 50 mm was attached to the end of a plastic plate-shaped substrate. Then, the substrate was submerged so that the amanori was located at the bottom of the glass container. The glass container was provided with a partition plate whose dimensions were adjusted in advance so as to divide the space inside the glass container into two. An opening for circulating the test liquid was provided in the portion of the partition plate located on the lowermost side of the glass container.

そして、水没させた基質の近傍であって、ガラス容器の最下部にポンプを連結したガラス製の気送管を挿入した。また、気送管と連結したポンプとは異なる、循環ポンプを連結した排水管の先端を、当該基質の略鉛直上方であって水面直下に設置した。さらに、上述した循環ポンプを連結した注水管の先端を、当該基質近傍の最下部へ設置した。換言すれば、当該基質の近傍に気送管および注水管を設置し、当該基質の略鉛直上方の水面直下に排水管を設置し、排水管から排水した試験液を注水管から供給する。それにより、試験液がアマノリの近傍において、ガラス容器の鉛直下方から鉛直上方に向けて流れる、鉛直上方に向けての水流が生じ、アマノリの葉体がガラス容器の鉛直上方向になびくことを確認できた。 Then, a glass air supply tube to which a pump was connected was inserted at the bottom of the glass container in the vicinity of the submerged substrate. Further, the tip of the drain pipe connected to the circulation pump, which is different from the pump connected to the air supply pipe, was installed substantially vertically above the substrate and directly below the water surface. Further, the tip of the water injection pipe to which the above-mentioned circulation pump was connected was installed at the lowermost part in the vicinity of the substrate. In other words, a pneumatic tube and a water injection pipe are installed in the vicinity of the substrate, a drainage pipe is installed immediately above the water surface substantially vertically above the substrate, and the test liquid drained from the drainage pipe is supplied from the water injection pipe. As a result, in the vicinity of the amanori, it was confirmed that a water flow was generated in the vicinity of the glass container, in which the test solution flowed from the vertically lower part to the upper part of the glass container, and the leaf body of the amanori fluttered in the vertical direction of the glass container. did it.

光源として高輝度蛍光灯をガラス容器の側面に設置した。設置した高輝度蛍光灯からは、ガラス容器の中心部に対し、200μmol/m/sの光合成光量子束密度の光を1日に10時間照射した。なお、残りの14時間は、アマノリに光を照射しない、暗期とした。なお、光は、アマノリの葉体がなびいた方向に対して略垂直な方向から照射した。 A high-intensity fluorescent lamp was installed on the side of the glass container as a light source. From the installed high-intensity fluorescent lamp, the central portion of the glass container was irradiated with light having a photosynthetic photon flux density of 200 μmol / m 2 / s for 10 hours a day. The remaining 14 hours was a dark period in which the amanori was not irradiated with light. The light was emitted from a direction substantially perpendicular to the direction in which the fronds of Amanori fluttered.

試験液は、試験開始から4日経過毎に交換し、13日目(試験液の交換を3サイクル実施後)にアマノリの最大葉長を計測することにより、育成期間中におけるアマノリの成長量(cm/day)を求めた。 The test solution was changed every 4 days from the start of the test, and the maximum leaf length of the amanori was measured on the 13th day (after 3 cycles of the test solution change), so that the amount of growth of the amanori during the growing period ( cm / day) was calculated.

[実施例2]
実施例2では、注水管および排水管を用いたポンプ循環を行わなかった以外は、実施例1と同様に試験を行った。なお、気送管による曝気により、アマノリの葉体はガラス容器の鉛直上方に向かってなびくことが確認できた。そのため、光はアマノリの葉体がなびいた方向に対して略垂直な方向から照射した。
[Example 2]
In Example 2, the test was carried out in the same manner as in Example 1 except that the pump circulation using the water injection pipe and the drain pipe was not performed. It was confirmed that the fronds of Amanori fluttered vertically upward in the glass container due to aeration by the air supply tube. Therefore, the light was emitted from a direction substantially perpendicular to the direction in which the fronds of Amanori fluttered.

[比較例1]
比較例1では、気送管を用いた曝気を行わなかった以外は、実施例1と同様に試験を行った。なお、注水管および排水管を用いたポンプ循環により、アマノリの葉体はガラス容器の鉛直上方に向かってなびくことが確認できた。そのため、光はアマノリの葉体がなびいた方向に対して略垂直な方向から照射した。
[Comparative Example 1]
In Comparative Example 1, the test was carried out in the same manner as in Example 1 except that aeration using a pneumatic tube was not performed. It was confirmed that the fronds of Amanori fluttered vertically upward in the glass container by pump circulation using the water injection pipe and the drainage pipe. Therefore, the light was emitted from a direction substantially perpendicular to the direction in which the fronds of Amanori fluttered.

[比較例2]
比較例2では、気送管を用いた曝気と、注水管および排水管を用いたポンプ循環とを行わなかった以外は、実施例1と同様に試験を行った。なお、アマノリの葉体は、基質から放射状に展開した状態で静止したことが確認できた。そのため、光はアマノリの葉体が静止した方向に対して略垂直な方向から照射できなかった。
[Comparative Example 2]
In Comparative Example 2, the test was carried out in the same manner as in Example 1 except that the aeration using the air supply pipe and the pump circulation using the water injection pipe and the drainage pipe were not performed. It was confirmed that the fronds of Amanori were stationary in a state of being radially expanded from the substrate. Therefore, the light could not be emitted from a direction substantially perpendicular to the direction in which the fronds of Amanori were stationary.

[比較例3]
比較例3では、光源をガラス容器上部に設置し、ガラス容器上部から光を照射した以外は、実施例1と同様に試験を行った。アマノリの葉体はガラス容器の鉛直上方に向かってなびくことが確認できた。そのため、光はアマノリの葉体がなびいた方向に対して略垂直な方向から照射できなかった。
[Comparative Example 3]
In Comparative Example 3, the test was carried out in the same manner as in Example 1 except that the light source was installed on the upper part of the glass container and the light was irradiated from the upper part of the glass container. It was confirmed that the fronds of Amanori fluttered vertically upward in the glass container. Therefore, the light could not be emitted from a direction substantially perpendicular to the direction in which the fronds of Amanori fluttered.

[比較例4]
比較例4では、光源をガラス容器上部に設置し、ガラス容器上部から光を照射した以外は、実施例2と同様に試験を行った。アマノリの葉体はガラス容器の鉛直上方に向かってなびくことが確認できた。そのため、光はアマノリの葉体がなびいた方向に対して略垂直な方向から照射できなかった。
[Comparative Example 4]
In Comparative Example 4, the test was carried out in the same manner as in Example 2 except that the light source was installed on the upper part of the glass container and the light was irradiated from the upper part of the glass container. It was confirmed that the fronds of Amanori fluttered vertically upward in the glass container. Therefore, the light could not be emitted from a direction substantially perpendicular to the direction in which the fronds of Amanori fluttered.

[結果]
実施例1、2および比較例1〜4の方法により育成したアマノリの葉体の成長量(cm/day)について表1に示す。

Figure 2021065119
[result]
Table 1 shows the growth amount (cm / day) of the fronds of Amanori grown by the methods of Examples 1 and 2 and Comparative Examples 1 to 4.
Figure 2021065119

表1に示すように、実施例1の方法により育成したアマノリの葉体の成長量は、1.20cm/dayであり、アマノリの成長量は良好であった。また、実施例2の方法により育成したアマノリの葉体の成長量は、1.21cm/dayであり、アマノリの成長量は良好であった。 As shown in Table 1, the growth amount of the fronds of the amanori grown by the method of Example 1 was 1.20 cm / day, and the growth amount of the amanori was good. The growth amount of the fronds of the amanori grown by the method of Example 2 was 1.21 cm / day, and the growth amount of the amanori was good.

比較例1の方法により育成したアマノリの葉体の成長量は、0.80cm/dayであり、アマノリの葉体の成長は良好ではなかった。これは、曝気をしていないため、試験液に供給される酸素および二酸化炭素の量が少なく、アマノリが十分に光合成できなかったことにより、アマノリの成長量が低くなったと考えられる。 The growth amount of the fronds of the amanori grown by the method of Comparative Example 1 was 0.80 cm / day, and the growth of the fronds of the amanori was not good. It is considered that this is because the amount of oxygen and carbon dioxide supplied to the test solution was small because the test solution was not aerated, and the amount of growth of the amanori was low because the amanori could not be sufficiently photosynthesized.

比較例2の方法により育成したアマノリの葉体の成長量は、0.63cm/dayであり、アマノリの葉体の成長は良好ではなかった。これは、比較例1と同様に曝気していないため、試験液に供給される酸素および二酸化炭素の量が少なかったためと考えられる。さらに、光を葉体がなびく方向に対して略垂直な方向から照射されず、光が効率よく葉体に照射されなかったことにより、アマノリが十分に光合成できず、アマノリの成長量が低くなったと考えられる。 The growth amount of the fronds of Amanori grown by the method of Comparative Example 2 was 0.63 cm / day, and the growth of the fronds of Amanori was not good. It is probable that this is because the amount of oxygen and carbon dioxide supplied to the test solution was small because the aeration was not performed as in Comparative Example 1. Furthermore, the light was not irradiated from a direction substantially perpendicular to the direction in which the fronds fluttered, and the fronds were not efficiently irradiated with light, so that the amanori could not sufficiently photosynthesize and the amount of growth of the amanori became low. It is thought that it was.

比較例3の方法により育成したアマノリの葉体の成長量は、0.91cm/dayであり、比較例4の方法により育成したアマノリの葉体の成長量は、0.94cm/dayであった。比較例3および4いずれの方法においても、葉体がなびく方向に対して略垂直な方向から光が照射されず、アマノリが十分に光合成できず、アマノリの成長量が低くなったと考えられる。 The growth amount of the fronds of Amanori grown by the method of Comparative Example 3 was 0.91 cm / day, and the growth amount of the fronds of Amanori grown by the method of Comparative Example 4 was 0.94 cm / day. .. In any of the methods of Comparative Examples 3 and 4, it is considered that the light was not irradiated from the direction substantially perpendicular to the direction in which the fronds fluttered, the amanori could not sufficiently photosynthesize, and the amount of growth of the amanori was lowered.

以上をまとめると、アマノリの葉体を良好に成長させるために、曝気により酸素および二酸化炭素を供給しながらアマノリを育成させることが好ましい。そして、葉体に対して効率よく光を吸収させるよう、アマノリの葉体のなびいた方向に対して略垂直な方向から光を照射することが好ましい。 Summarizing the above, in order to grow the fronds of Amanori well, it is preferable to grow Amanori while supplying oxygen and carbon dioxide by aeration. Then, it is preferable to irradiate the light from a direction substantially perpendicular to the direction in which the fronds of Amanori flutter so that the fronds absorb the light efficiently.

10 気送管(気体吐出部、流動部)
20、21 基質
30、31 容器
40、41 海藻
60 光照射部
70 注水管(流動部)
71 排水管(流動部)
10 Pneumatic tube (gas discharge part, flow part)
20, 21 Substrate 30, 31 Container 40, 41 Seaweed 60 Light irradiation part 70 Water injection pipe (flow part)
71 Drainage pipe (flow section)

Claims (3)

容器内に設けられた基質に海藻を採苗させる採苗工程と、
前記基質に着生した海藻を成長させる成長工程と、を含み、
前記成長工程では、
曝気によって、前記容器内の水に酸素および二酸化炭素を供給するとともに、
酸素および二酸化炭素が供給された前記水を前記容器内で一方向に流動させることにより、前記容器内において前記海藻の葉体を前記一方向になびかせた状態を維持しつつ、前記葉体に対して前記一方向と略垂直な方向から光を照射することを特徴とする、海藻育成方法。
A seedling collection process in which seaweed is collected on the substrate provided in the container,
Including a growth step of growing seaweeds that have settled on the substrate.
In the growth process,
By aeration, oxygen and carbon dioxide are supplied to the water in the container, and at the same time,
By flowing the water supplied with oxygen and carbon dioxide in one direction in the container, the fronds of the seaweed are kept fluttering in the one direction in the container, and the fronds are brought into the fronds. On the other hand, a seaweed growing method characterized by irradiating light from a direction substantially perpendicular to the one direction.
前記海藻は、アマノリ属であることを特徴とする、請求項1に記載の海藻育成方法。 The seaweed growing method according to claim 1, wherein the seaweed belongs to the genus Porphyra. 容器内の水を曝気することにより、前記水に酸素および二酸化炭素を供給する、気体吐出部と、
前記容器内に設けられる、海藻が採苗される基質と、
前記気体吐出部によって酸素および二酸化炭素が供給された前記水を一方向に流動させることにより、前記海藻の葉体を前記一方向になびかせる流動部と、
前記流動部によって前記一方向になびかせられた状態の前記葉体に対して、前記一方向と略垂直な方向から光を照射する光照射部と、を備えることを特徴とする海藻育成装置。
A gas discharge unit that supplies oxygen and carbon dioxide to the water by aerating the water in the container.
A substrate on which seaweed is collected, which is provided in the container,
A flow part that causes the seaweed fronds to flow in one direction by flowing the water to which oxygen and carbon dioxide are supplied by the gas discharge part in one direction.
A seaweed growing device comprising: a light irradiation unit that irradiates the leaf body in a state of being fluttered in one direction by the flow unit with light from a direction substantially perpendicular to the one direction.
JP2019191432A 2019-10-18 2019-10-18 Seaweed growing method and seaweed growing apparatus Active JP7276772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191432A JP7276772B2 (en) 2019-10-18 2019-10-18 Seaweed growing method and seaweed growing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191432A JP7276772B2 (en) 2019-10-18 2019-10-18 Seaweed growing method and seaweed growing apparatus

Publications (2)

Publication Number Publication Date
JP2021065119A true JP2021065119A (en) 2021-04-30
JP7276772B2 JP7276772B2 (en) 2023-05-18

Family

ID=75635976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191432A Active JP7276772B2 (en) 2019-10-18 2019-10-18 Seaweed growing method and seaweed growing apparatus

Country Status (1)

Country Link
JP (1) JP7276772B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200496631Y1 (en) * 2021-11-03 2023-03-17 국립해양생물자원관 Cultivation container for marine plants and cultivation kit having the same
KR102566544B1 (en) * 2022-06-08 2023-08-10 어업회사법인 주식회사 레인보우랩스 Land aquaculture system for laver
JP7404605B2 (en) 2021-09-28 2023-12-26 株式会社養殖屋 Seaweed land cultivation equipment and cultivation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435094A (en) * 1977-08-11 1979-03-14 Hokkaido Giyogiyou Kiyoudoukum Land culturing method of seaweeds
JPS63254931A (en) * 1987-04-09 1988-10-21 関根 敏朗 Adhesive algae culture apparatus
JPH1084800A (en) * 1996-09-19 1998-04-07 Sanyo Electric Co Ltd Culture device
WO2005102031A1 (en) * 2004-04-20 2005-11-03 Technical Office Ltd. Algae intensive-cultivation apparatus and cultivating method
JP2005328810A (en) * 2004-05-17 2005-12-02 Masatoshi Hamamoto Onshore culture apparatus of marine algae including laver and culture method therefor
JP2006320292A (en) * 2005-05-20 2006-11-30 Mie Prefecture Method for culturing laver
JP2008022740A (en) * 2006-07-19 2008-02-07 Graduate School For The Creation Of New Photonics Industries Seaweed cultivation device and seaweed cultivation method
JP2009112249A (en) * 2007-11-06 2009-05-28 Nippon N U S Kk Method for culturing seed and seedling of enteromorpha prolifera through direct sowing, and seawater-circulating culturing apparatus for enteromorpha prolifera

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435094A (en) * 1977-08-11 1979-03-14 Hokkaido Giyogiyou Kiyoudoukum Land culturing method of seaweeds
JPS63254931A (en) * 1987-04-09 1988-10-21 関根 敏朗 Adhesive algae culture apparatus
JPH1084800A (en) * 1996-09-19 1998-04-07 Sanyo Electric Co Ltd Culture device
WO2005102031A1 (en) * 2004-04-20 2005-11-03 Technical Office Ltd. Algae intensive-cultivation apparatus and cultivating method
JP2005328810A (en) * 2004-05-17 2005-12-02 Masatoshi Hamamoto Onshore culture apparatus of marine algae including laver and culture method therefor
JP2006320292A (en) * 2005-05-20 2006-11-30 Mie Prefecture Method for culturing laver
JP2008022740A (en) * 2006-07-19 2008-02-07 Graduate School For The Creation Of New Photonics Industries Seaweed cultivation device and seaweed cultivation method
JP2009112249A (en) * 2007-11-06 2009-05-28 Nippon N U S Kk Method for culturing seed and seedling of enteromorpha prolifera through direct sowing, and seawater-circulating culturing apparatus for enteromorpha prolifera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404605B2 (en) 2021-09-28 2023-12-26 株式会社養殖屋 Seaweed land cultivation equipment and cultivation method
KR200496631Y1 (en) * 2021-11-03 2023-03-17 국립해양생물자원관 Cultivation container for marine plants and cultivation kit having the same
KR102566544B1 (en) * 2022-06-08 2023-08-10 어업회사법인 주식회사 레인보우랩스 Land aquaculture system for laver

Also Published As

Publication number Publication date
JP7276772B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7276772B2 (en) Seaweed growing method and seaweed growing apparatus
JP4747303B2 (en) Algal forcing cultivation apparatus and cultivation method
JP5905589B2 (en) Seaweed reverse culture method and apparatus
CN110301345B (en) Suspension bed device for indoor submerged plant planting
CN104126494B (en) The indoor long-period culture method of a kind of Zostera marina and device
WO2015131830A1 (en) Photosynthetic organism cultivation device
KR101413324B1 (en) The horizontal track-type tank for seaweed seedling production
JP3227885U (en) Shellfish farming system
CN110713919B (en) Marine algae culture device and application thereof
US7587858B2 (en) Method and apparatus for cultivation of subaquatic vegetation
EP2540814A1 (en) Photobioreactor for the continuous culture of microalgae and a modular system comprising said photobioreactors
CN112625891A (en) Large-scale photobioreactor floating in wide water area
KR20190033819A (en) Hydroponic cultivation and fish farming equipment combined water purification system
CN210528913U (en) Ecological floating bed photobioreactor
CN107746819A (en) A kind of method of efficiently pilot scale culture algae
JP5095716B2 (en) Method and apparatus for cultivating suizenjinori
CN110291984A (en) Raft frame and system for large-scale waters deep water plantation water plant
WO2016060892A1 (en) Systems and methods for cultivating algae
CN209711130U (en) The intercropping net cage of one main laminaria and shellfish
CN204634758U (en) A kind of fresh water seed semi-aerobic landfill system
CN112680331A (en) Photobioreactor operating in large water body
JP2007049944A (en) Device for discriminating seaweed culturing method, and method for discriminating seaweed culture method using the same
JP2021036778A (en) On-land aquaculture method for red alga pyropia
CN111087079A (en) Attached algae dominantly growing water body biological purification treatment device
RU2290784C1 (en) Method for increasing operational efficiency of fish-rearing ponds

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230425

R150 Certificate of patent or registration of utility model

Ref document number: 7276772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150