JP2021060612A - Element substrate - Google Patents

Element substrate Download PDF

Info

Publication number
JP2021060612A
JP2021060612A JP2020217231A JP2020217231A JP2021060612A JP 2021060612 A JP2021060612 A JP 2021060612A JP 2020217231 A JP2020217231 A JP 2020217231A JP 2020217231 A JP2020217231 A JP 2020217231A JP 2021060612 A JP2021060612 A JP 2021060612A
Authority
JP
Japan
Prior art keywords
wiring
region
layer
element substrate
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020217231A
Other languages
Japanese (ja)
Other versions
JP7002629B2 (en
Inventor
尚紀 徳田
Hisanori Tokuda
尚紀 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2020217231A priority Critical patent/JP7002629B2/en
Publication of JP2021060612A publication Critical patent/JP2021060612A/en
Application granted granted Critical
Publication of JP7002629B2 publication Critical patent/JP7002629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide an element substrate in which an adverse influence due to heat generation from a wire in a bent region is suppressed.SOLUTION: An element substrate includes a flexible base material 70 including an array region including a plurality of transistors and a bent region, a wire 116 disposed on the flexible base material and disposed ranging from the array region to the bent region, and a metal layer 108 formed in accordance with the position where the wire is disposed and overlapping with the wire through an insulating layer 96 in the bent region. The wire has narrower line width in the bent region than that outside the bent region. The metal layer is disposed in accordance with the part where the wire has the narrow line width.SELECTED DRAWING: Figure 7B

Description

本発明は、素子基板に関する。 The present invention relates to a device substrate.

有機エレクトロルミネッセンス(EL)表示装置や液晶表示装置など、表示領域を備える表示装置(素子基板)において、近年、可撓性を有する基材を用いて、表示パネルを曲げることができるフレキシブルディスプレイの開発が進められている。 In recent years, in display devices (element substrates) having a display area such as organic electroluminescence (EL) display devices and liquid crystal display devices, development of a flexible display capable of bending a display panel using a flexible base material. Is underway.

例えば、下記特許文献1に開示されるように、集積回路(IC)やフレキシブルプリント基板(FPC)の実装部を表示領域の裏側に曲げて、狭額縁化を図ることが提案されている。 For example, as disclosed in Patent Document 1 below, it has been proposed to bend the mounting portion of an integrated circuit (IC) or a flexible printed circuit board (FPC) to the back side of a display area to narrow the frame.

特開2016−31499号公報Japanese Unexamined Patent Publication No. 2016-31499

例えば、素子基板において配線は基材上に配置される。しかし、上記曲げ領域付近では配線の発熱による表示パネルの破損が生じる場合がある。 For example, in the element substrate, the wiring is arranged on the substrate. However, the display panel may be damaged due to heat generation of the wiring in the vicinity of the bending region.

本発明は、上記に鑑み、曲げ領域の配線の発熱による悪影響が抑制された素子基板の提供を目的とする。 In view of the above, an object of the present invention is to provide an element substrate in which adverse effects due to heat generation of wiring in a bent region are suppressed.

本発明に係る素子基板は、複数のトランジスタを有するアレイ領域と、曲げ領域とを有する可撓性基材と、前記可撓性基材上に配置され、前記アレイ領域から前記曲げ領域に亘って配置される配線と、前記曲げ領域において、前記配線が配置される位置に対応して形成され、前記配線と絶縁層を介して重畳する金属層と、を有する。前記配線は、前記曲げ領域外における線幅よりも、前記曲げ領域内における線幅が細く、前記金属層は、前記配線の線幅が細い部位に対応して配置される。 The element substrate according to the present invention is arranged on a flexible base material having an array region having a plurality of transistors and a bending region, and the flexible base material, and extends from the array region to the bending region. It has a wiring to be arranged and a metal layer formed corresponding to a position where the wiring is arranged in the bending region and superposed on the wiring via an insulating layer. The wiring has a narrower line width in the bending region than the line width outside the bending region, and the metal layer is arranged corresponding to a portion where the line width of the wiring is narrow.

本開示の1つの実施形態に係る有機EL表示装置の概略の構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the organic EL display device which concerns on one Embodiment of this disclosure. 図1に示す有機EL表示装置の表示パネルの一例を示す模式的な平面図である。It is a schematic plan view which shows an example of the display panel of the organic EL display apparatus shown in FIG. 図2のIII−III断面の一例を示す図である。It is a figure which shows an example of the cross section III-III of FIG. 図2のA−A断面の一例を示す図である。It is a figure which shows an example of the AA cross section of FIG. 図2のB−B断面の一例を示す図である。It is a figure which shows an example of the BB cross section of FIG. 図2の破線で囲んだ領域Cの配線の配列状態の一例を示す平面図である。It is a top view which shows an example of the arrangement state of the wiring of the area C surrounded by the broken line of FIG. 配線と放熱層との関係の一例を示す平面図である。It is a top view which shows an example of the relationship between a wiring and a heat dissipation layer. 配線と放射層との関係の一例を示す断面図である。It is sectional drawing which shows an example of the relationship between a wiring and a radiating zone. 本開示の別の実施形態における配線と放射層との関係を示す断面図である。It is sectional drawing which shows the relationship between the wiring and a radiating zone in another embodiment of this disclosure.

以下、本開示の実施形態について、図面を参照しつつ説明する。なお、本開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に評される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the present disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention are naturally included in the scope of the present invention. Further, in order to clarify the explanation, the drawings may be schematically evaluated with respect to the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is just an example and the interpretation of the present invention. Is not limited to. Further, in the present specification and each figure, the same elements as those described above with respect to the above-mentioned figures may be designated by the same reference numerals and detailed description thereof may be omitted as appropriate.

図1は、本開示の1つの実施形態に係る表示装置(素子基板を含む装置)の概略の構成を、有機EL表示装置を例にして示す模式図である。有機EL表示装置2は、画像を表示する画素アレイ部4と、画素アレイ部4を駆動する駆動部とを備える。有機EL表示装置2は、基材として樹脂フィルムを用いたフレキシブルディスプレイであり、この樹脂フィルムで構成された基材の上に薄膜トランジスタ(TFT)や有機発光ダイオード(OLED)などの積層構造が形成される。なお、図1に示した概略図は一例であって、本実施形態はこれに限定されるものではない。 FIG. 1 is a schematic diagram showing a schematic configuration of a display device (device including an element substrate) according to one embodiment of the present disclosure, using an organic EL display device as an example. The organic EL display device 2 includes a pixel array unit 4 for displaying an image and a drive unit for driving the pixel array unit 4. The organic EL display device 2 is a flexible display using a resin film as a base material, and a laminated structure such as a thin film transistor (TFT) or an organic light emitting diode (OLED) is formed on the base material made of the resin film. To. The schematic diagram shown in FIG. 1 is an example, and the present embodiment is not limited to this.

画素アレイ部4には、画素に対応してOLED6および画素回路8がマトリクス状に配置される。画素回路8は複数のTFT10,12やキャパシタ14で構成される。 In the pixel array unit 4, the OLED 6 and the pixel circuit 8 are arranged in a matrix corresponding to the pixels. The pixel circuit 8 is composed of a plurality of TFTs 10 and 12 and a capacitor 14.

上記駆動部は、走査線駆動回路20、映像線駆動回路22、駆動電源回路24および制御装置26を含み、画素回路8を駆動しOLED6の発光を制御する。 The drive unit includes a scanning line drive circuit 20, a video line drive circuit 22, a drive power supply circuit 24, and a control device 26, and drives the pixel circuit 8 to control the light emission of the OLED 6.

走査線駆動回路20は、画素の水平方向の並び(画素行)ごとに設けられた走査信号線28に接続されている。走査線駆動回路20は、制御装置26から入力されるタイミング信号に応じて走査信号線28を順番に選択し、選択した走査信号線28に、点灯TFT10をオンする電圧を印加する。 The scanning line drive circuit 20 is connected to scanning signal lines 28 provided for each horizontal arrangement (pixel row) of pixels. The scanning line drive circuit 20 sequentially selects scanning signal lines 28 according to a timing signal input from the control device 26, and applies a voltage for turning on the lighting TFT 10 to the selected scanning signal lines 28.

映像線駆動回路22は、画素の垂直方向の並び(画素列)ごとに設けられた映像信号線30に接続されている。映像線駆動回路22は、制御装置26から映像信号を入力され、走査線駆動回路20による走査信号線28の選択に合わせて、選択された画素行の映像信号に応じた電圧を各映像信号線30に出力する。当該電圧は、選択された画素行にて点灯TFT10を介してキャパシタ14に書き込まれる。駆動TFT12は、書き込まれた電圧に応じた電流をOLED6に供給し、これにより、選択された走査信号線28に対応する画素のOLED6が発光する。 The video line drive circuit 22 is connected to a video signal line 30 provided for each vertical arrangement (pixel array) of pixels. The video line drive circuit 22 receives a video signal from the control device 26, and sets a voltage corresponding to the video signal of the selected pixel line according to the selection of the scan signal line 28 by the scan line drive circuit 20 for each video signal line. Output to 30. The voltage is written to the capacitor 14 via the lighting TFT 10 at the selected pixel row. The drive TFT 12 supplies the OLED 6 with a current corresponding to the written voltage, whereby the OLED 6 having pixels corresponding to the selected scanning signal line 28 emits light.

駆動電源回路24は、画素列ごとに設けられた駆動電源線32に接続され、駆動電源線32および選択された画素行の駆動TFT12を介してOLED6に電流を供給する。 The drive power supply circuit 24 is connected to a drive power supply line 32 provided for each pixel row, and supplies a current to the OLED 6 via the drive power supply line 32 and the drive TFT 12 of the selected pixel row.

ここで、OLED6の下部電極は、駆動TFT12に接続される。一方、各OLED6の上部電極は、全画素のOLED6に共通の電極で構成される。下部電極を陽極(アノード)として構成する場合は、高電位が入力され、上部電極は陰極(カソード)となって低電位が入力される。下部電極を陰極(カソード)として構成する場合は、低電位が入力され、上部電極は陽極(アノード)となって高電位が入力される。 Here, the lower electrode of the OLED 6 is connected to the drive TFT 12. On the other hand, the upper electrode of each OLED 6 is composed of an electrode common to all pixel OLEDs 6. When the lower electrode is configured as an anode (anode), a high potential is input, and the upper electrode becomes a cathode (cathode) and a low potential is input. When the lower electrode is configured as a cathode (cathode), a low potential is input, and the upper electrode becomes an anode (anode) and a high potential is input.

図2は、図1に示す有機EL表示装置の表示パネルの一例を示す模式的な平面図である。表示パネル40の表示領域42に、図1に示した画素アレイ部4が設けられ、上述したように画素アレイ部4にはOLED6が配列される。上述したようにOLED6を構成する上部電極は、各画素に共通に形成され、表示領域42全体を覆う。 FIG. 2 is a schematic plan view showing an example of a display panel of the organic EL display device shown in FIG. The pixel array unit 4 shown in FIG. 1 is provided in the display area 42 of the display panel 40, and the OLED 6 is arranged in the pixel array unit 4 as described above. As described above, the upper electrodes constituting the OLED 6 are formed in common with each pixel and cover the entire display area 42.

矩形である表示パネル40の一辺には、部品実装領域46が設けられ、表示領域42につながる配線が配置される。部品実装領域46には、駆動部を構成するドライバIC48が搭載されたり、FPC50が接続されたりする。FPC50は、制御装置26やその他の回路20,22,24等に接続されたり、その上にICを搭載されたりする。 A component mounting area 46 is provided on one side of the rectangular display panel 40, and wiring connected to the display area 42 is arranged. A driver IC 48 constituting a drive unit is mounted on the component mounting area 46, or an FPC 50 is connected to the component mounting area 46. The FPC 50 is connected to a control device 26 or other circuits 20, 22, 24, etc., or an IC is mounted on the control device 26.

図3は、図2のIII−III断面の一例を示す図である。表示パネル40は、樹脂フィルムで構成された基材70の上に、TFT72などが形成された回路層74、OLED6およびOLED6を封止する封止層106などが積層された構造を有する。基材70を構成する樹脂フィルムとしては、例えば、ポリイミド系樹脂フィルムが用いられる。封止層106の上には保護層(図示せず)が形成される。本実施形態においては、画素アレイ部4はトップエミッション型であり、OLED6で生じた光は、基材70側とは反対側(図3において上向き)に出射される。なお、有機EL表示装置2におけるカラー化方式をカラーフィルタ方式とする場合には、例えば、封止層106と保護層(図示せず)との間、または、対向基板側にカラーフィルタが配置される。このカラーフィルタに、OLED6にて生成した白色光を通すことで、例えば、赤(R)、緑(G)、青(B)の光を作る。 FIG. 3 is a diagram showing an example of a cross section III-III of FIG. The display panel 40 has a structure in which a circuit layer 74 on which a TFT 72 or the like is formed, a sealing layer 106 for sealing the OLED 6 and the OLED 6 and the like are laminated on a base material 70 made of a resin film. As the resin film constituting the base material 70, for example, a polyimide-based resin film is used. A protective layer (not shown) is formed on the sealing layer 106. In the present embodiment, the pixel array unit 4 is a top emission type, and the light generated by the OLED 6 is emitted to the side opposite to the base material 70 side (upward in FIG. 3). When the colorization method in the organic EL display device 2 is a color filter method, for example, a color filter is arranged between the sealing layer 106 and the protective layer (not shown) or on the opposite substrate side. To. By passing the white light generated by the OLED 6 through this color filter, for example, red (R), green (G), and blue (B) light is produced.

表示領域42の回路層74には、上述した画素回路8、走査信号線28、映像信号線30、駆動電源線32などが形成される。駆動部の少なくとも一部分は、基材70上に回路層74として表示領域42に隣接する領域に形成することができる。上述したように、駆動部を構成するドライバIC48やFPC50を、部品実装領域46にて、回路層74の配線116に接続することができる。 The pixel circuit 8, the scanning signal line 28, the video signal line 30, the drive power supply line 32, and the like described above are formed in the circuit layer 74 of the display area 42. At least a part of the drive unit can be formed on the base material 70 as a circuit layer 74 in a region adjacent to the display region 42. As described above, the driver IC 48 and the FPC 50 constituting the drive unit can be connected to the wiring 116 of the circuit layer 74 in the component mounting area 46.

図3に示すように、基材70上には、無機絶縁材料で形成された下地層80が配置されている。無機絶縁材料としては、例えば、窒化シリコン(SiNy)、酸化シリコン(SiOx)およびこれらの複合体が用いられる。 As shown in FIG. 3, a base layer 80 formed of an inorganic insulating material is arranged on the base material 70. As the inorganic insulating material, for example, silicon nitride (SiNy), silicon oxide (SiOx), and a composite thereof are used.

表示領域42においては、下地層80を介して、基材70上には、トップゲート型のTFT72のチャネル部およびソース・ドレイン部となる半導体領域82が形成されている。半導体領域82は、例えば、ポリシリコン(p−Si)で形成される。半導体領域82は、例えば、基材70上に半導体層(p−Si膜)を設け、この半導体層をパターニングし、回路層74で用いる箇所を選択的に残すことにより形成される。 In the display region 42, a semiconductor region 82 serving as a channel portion and a source / drain portion of the top gate type TFT 72 is formed on the base material 70 via the base layer 80. The semiconductor region 82 is formed of, for example, polysilicon (p—Si). The semiconductor region 82 is formed, for example, by providing a semiconductor layer (p—Si film) on the base material 70, patterning the semiconductor layer, and selectively leaving a portion used in the circuit layer 74.

TFT72のチャネル部の上には、ゲート絶縁膜84を介してゲート電極86が配置されている。ゲート絶縁膜84は、代表的には、TEOSで形成される。ゲート電極86は、例えば、スパッタリング等で形成した金属膜をパターニングして形成される。ゲート電極86上には、ゲート電極86を覆うように層間絶縁層88が配置されている。層間絶縁層88は、例えば、上記無機絶縁材料で形成される。TFT72のソース・ドレイン部となる半導体領域82(p−Si)には、イオン注入により不純物が導入され、さらにそれらに電気的に接続されたソース電極90aおよびドレイン電極90bが形成され、TFT72が構成される。 A gate electrode 86 is arranged on the channel portion of the TFT 72 via a gate insulating film 84. The gate insulating film 84 is typically formed of TEOS. The gate electrode 86 is formed by patterning, for example, a metal film formed by sputtering or the like. An interlayer insulating layer 88 is arranged on the gate electrode 86 so as to cover the gate electrode 86. The interlayer insulating layer 88 is formed of, for example, the above-mentioned inorganic insulating material. Impurities are introduced into the semiconductor region 82 (p-Si), which is the source / drain portion of the TFT 72, by ion implantation, and a source electrode 90a and a drain electrode 90b electrically connected to them are formed to form the TFT 72. Will be done.

TFT72上には、層間絶縁膜92が配置されている。層間絶縁膜92の表面には、配線94が配置される。配線94は、例えば、スパッタリング等で形成した金属膜をパターニングすることにより形成される。配線94を形成する金属膜と、ゲート電極86、ソース電極90aおよびドレイン電極90bの形成に用いた金属膜とで、例えば、配線116および図1に示した走査信号線28、映像信号線30、駆動電源線32を多層配線構造で形成することができる。この上に、樹脂材料等により平坦化膜96およびパッシベーション膜98が形成され、表示領域42において、パッシベーション膜98上にOLED6が形成されている。パッシベーション膜98は、例えば、SiNy等の無機絶縁材料で形成される。 An interlayer insulating film 92 is arranged on the TFT 72. Wiring 94 is arranged on the surface of the interlayer insulating film 92. The wiring 94 is formed by, for example, patterning a metal film formed by sputtering or the like. The metal film forming the wiring 94 and the metal film used for forming the gate electrode 86, the source electrode 90a, and the drain electrode 90b include, for example, the wiring 116 and the scanning signal line 28 and the video signal line 30 shown in FIG. The drive power supply line 32 can be formed with a multi-layer wiring structure. A flattening film 96 and a passivation film 98 are formed on the flattening film 96 and a passivation film 98 by a resin material or the like, and an OLED 6 is formed on the passivation film 98 in the display region 42. The passivation film 98 is formed of, for example, an inorganic insulating material such as SiNy.

OLED6は、下部電極100、有機材料層102および上部電極104を含む。有機材料層102は、具体的には、正孔輸送層、発光層、電子輸送層等を含む。OLED6は、代表的には、下部電極100、有機材料層102および上部電極104を基材70側からこの順に積層して形成される。本実施形態では、下部電極100がOLED6の陽極(アノード)であり、上部電極104が陰極(カソード)である。 The OLED 6 includes a lower electrode 100, an organic material layer 102 and an upper electrode 104. Specifically, the organic material layer 102 includes a hole transport layer, a light emitting layer, an electron transport layer, and the like. The OLED 6 is typically formed by laminating the lower electrode 100, the organic material layer 102, and the upper electrode 104 in this order from the base material 70 side. In the present embodiment, the lower electrode 100 is the anode (anode) of the OLED 6, and the upper electrode 104 is the cathode (cathode).

図3に示すTFT72が、nチャネルを有した駆動TFT12であるとすると、下部電極100は、TFT72のソース電極90aに接続される。具体的には、上述した平坦化膜96の形成後、下部電極100をTFT72に接続するためのコンタクトホール110が形成され、例えば、平坦化膜96表面およびコンタクトホール110内に形成した導電体部111をパターニングすることにより、TFT72に接続された下部電極100が画素ごとに形成される。下部電極は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透過性導電材料、Ag、Al等の金属で形成される。 Assuming that the TFT 72 shown in FIG. 3 is a drive TFT 12 having n channels, the lower electrode 100 is connected to the source electrode 90a of the TFT 72. Specifically, after the flattening film 96 is formed, the contact hole 110 for connecting the lower electrode 100 to the TFT 72 is formed, and for example, the conductor portion formed on the surface of the flattening film 96 and in the contact hole 110. By patterning the 111, the lower electrode 100 connected to the TFT 72 is formed for each pixel. The lower electrode is formed of, for example, a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), or a metal such as Ag or Al.

上記構造上には、画素を分離するリブ112が配置されている。例えば、下部電極100の形成後、画素境界にリブ112を形成し、リブ112で囲まれた画素の有効領域(下部電極100の露出する領域)に、有機材料層102および上部電極104が積層される。上部電極104は、例えば、MgとAgの極薄合金やITO、IZO等の透過性導電材料で形成される。 Ribs 112 that separate pixels are arranged on the structure. For example, after the lower electrode 100 is formed, the rib 112 is formed at the pixel boundary, and the organic material layer 102 and the upper electrode 104 are laminated on the effective region of the pixel (the exposed region of the lower electrode 100) surrounded by the rib 112. To. The upper electrode 104 is formed of, for example, an ultrathin alloy of Mg and Ag or a permeable conductive material such as ITO or IZO.

上部電極104上には、表示領域42全体を覆うように封止層106が配置されている。封止層106は、第1封止膜161、封止平坦化膜160および第2封止膜162をこの順で含む積層構造を有している。第1封止膜161および第2封止膜162は、無機材料(例えば、無機絶縁材料)で形成される。具体的には、化学気相成長(CVD)法によりSiNy膜を成膜することにより形成される。封止平坦化膜160は、有機材料(例えば、硬化性樹脂組成物等の樹脂材料)を用いて形成される。一方、曲げ領域120および部品実装領域46では、封止層106は配置されていない。 A sealing layer 106 is arranged on the upper electrode 104 so as to cover the entire display region 42. The sealing layer 106 has a laminated structure including a first sealing film 161, a sealing flattening film 160, and a second sealing film 162 in this order. The first sealing film 161 and the second sealing film 162 are formed of an inorganic material (for example, an inorganic insulating material). Specifically, it is formed by forming a SiNy film by a chemical vapor deposition (CVD) method. The sealing flattening film 160 is formed by using an organic material (for example, a resin material such as a curable resin composition). On the other hand, the sealing layer 106 is not arranged in the bending region 120 and the component mounting region 46.

図4は図2のA−A断面の一例を示す図であり、図5は図2のB−B断面の一例を示す図であり、図6は図2の破線で囲んだ領域Cの配線の配列状態の一例を示す平面図である。 4 is a diagram showing an example of an AA cross section of FIG. 2, FIG. 5 is a diagram showing an example of a BB cross section of FIG. 2, and FIG. 6 is a wiring of a region C surrounded by a broken line in FIG. It is a top view which shows an example of the arrangement state of.

図4は、具体的には、額縁領域44周辺の概略断面図を示している。額縁領域44は、表示領域42を囲む領域であり、表示領域42と比較して、例えば、TFT72と、OLED6とを含まない点で異なっている。額縁領域44の回路層74には、電気配線等が形成されている。そして、回路層74の上にパッシベーション膜98を介して封止層106が配置されている。額縁領域44には、表示領域42を囲むダム97が形成され、ダム97を覆うように第1封止膜161および第2封止膜162が形成されている。封止平坦化膜160は、ダム97の内側(表示領域42側)に収容されている。 Specifically, FIG. 4 shows a schematic cross-sectional view around the frame area 44. The frame area 44 is an area surrounding the display area 42, and is different from the display area 42 in that, for example, the TFT 72 and the OLED 6 are not included. Electrical wiring and the like are formed in the circuit layer 74 of the frame region 44. Then, the sealing layer 106 is arranged on the circuit layer 74 via the passivation film 98. A dam 97 surrounding the display area 42 is formed in the frame region 44, and a first sealing film 161 and a second sealing film 162 are formed so as to cover the dam 97. The sealing flattening film 160 is housed inside the dam 97 (on the display region 42 side).

図5は、具体的には、曲げ領域120周辺の映像信号線30に沿った概略断面図を示している。表示パネル40は、図3に示すように、基材70を平面状に保って製造され得るが、例えば、有機EL表示装置2の筐体に格納される際には、表示領域42の外側に曲げ領域120を設けて、部品実装領域46を表示領域42の裏側に配置させる。 Specifically, FIG. 5 shows a schematic cross-sectional view along the video signal line 30 around the bending region 120. As shown in FIG. 3, the display panel 40 can be manufactured by keeping the base material 70 flat, but when it is stored in the housing of the organic EL display device 2, for example, it is outside the display area 42. A bending region 120 is provided so that the component mounting region 46 is arranged on the back side of the display region 42.

曲げ領域120においては、無機絶縁材料で形成される層(例えば、下地層80、層間絶縁層88、層間絶縁膜92、パッシベーション膜98)を省略もしくは薄膜化することが好ましい。無機絶縁材料で形成される層は曲げにより破損しやすい傾向にあるからである。図示例では、曲げ領域120において、薄膜化した(具体的には、エッチング等により部分的に薄肉領域80aが形成された)下地層80上に配線116が配置されている。 In the bending region 120, it is preferable to omit or thin the layers (for example, the base layer 80, the interlayer insulating layer 88, the interlayer insulating film 92, and the passivation film 98) formed of the inorganic insulating material. This is because the layer formed of the inorganic insulating material tends to be easily damaged by bending. In the illustrated example, in the bending region 120, the wiring 116 is arranged on the base layer 80 that has been thinned (specifically, a thin region 80a is partially formed by etching or the like).

表示パネル40の曲げに対応させ得るため、曲げ領域120において、配線116(走査信号線28、映像信号線30、駆動電源線32)は、図6に示すように、波形の屈曲形状を有する。屈曲形状は、図示例の波形以外にも、例えば、格子・メッシュ型などが採用される。 In the bending region 120, the wiring 116 (scanning signal line 28, video signal line 30, drive power supply line 32) has a curved bending shape as shown in FIG. 6 so as to correspond to the bending of the display panel 40. As the bending shape, for example, a grid / mesh type or the like is adopted in addition to the waveform shown in the illustrated example.

駆動電源線32は、通常、直線状であって、配線幅は数百μm〜数mmの幅広に設定されるが、曲げ領域120の配線幅は、例えば、数μm〜十数μmの幅細に設定される。図6に示すように、曲げ領域120を境に、駆動電源線32の幅は、幅広から幅細に切り替わっている。 The drive power supply line 32 is usually linear, and the wiring width is set to be as wide as several hundred μm to several mm, but the wiring width of the bending region 120 is, for example, as narrow as several μm to ten and several μm. Is set to. As shown in FIG. 6, the width of the drive power supply line 32 is switched from wide to narrow with the bending region 120 as a boundary.

図7Aは配線と放熱層との関係の一例を示す平面図であり、図7Bは配線と放射層との関係の一例を示す断面図である。曲げ領域120において、配線116(駆動電源線32)上に、平坦化膜(樹脂膜)96を介して放熱層108が形成されている。放熱層108は、例えば、金属材料で形成される。放熱層108は、例えば、OLED6の電極を形成する際に形成することができる。具体的には、下部電極(アノード)100を形成する際に、下部電極を構成する金属(例えば、Ag、Al)で形成することができる。 FIG. 7A is a plan view showing an example of the relationship between the wiring and the heat radiation layer, and FIG. 7B is a cross-sectional view showing an example of the relationship between the wiring and the radiation layer. In the bending region 120, a heat radiating layer 108 is formed on the wiring 116 (drive power supply line 32) via a flattening film (resin film) 96. The heat radiating layer 108 is made of, for example, a metal material. The heat radiating layer 108 can be formed, for example, when forming the electrodes of the OLED 6. Specifically, when the lower electrode (anode) 100 is formed, it can be formed of a metal (for example, Ag, Al) constituting the lower electrode.

放熱層108は、配線116の配線方向と交差する方向に沿って形成されている。図示例では、例えば、曲げによる割れを抑制する観点から、所定の間隔をあけて、複数の放熱層108が並列状に形成されている。この場合、放熱層108の幅は、例えば、数μm〜数十μmに設定される。放熱層108の長さは、例えば、駆動電源線32の幅を上回るように設定される。図示例とは異なり、例えば、1つの放熱層を幅広に形成してもよいし、所定のパターンを有する放熱層を形成してもよい。放熱層108は、少なくとも、配線幅が幅広から幅細に切り替わる部位に対応して形成するのが好ましい。 The heat radiating layer 108 is formed along a direction intersecting the wiring direction of the wiring 116. In the illustrated example, for example, from the viewpoint of suppressing cracking due to bending, a plurality of heat radiating layers 108 are formed in parallel at predetermined intervals. In this case, the width of the heat radiating layer 108 is set to, for example, several μm to several tens of μm. The length of the heat radiating layer 108 is set to exceed, for example, the width of the drive power supply line 32. Unlike the illustrated example, for example, one heat radiating layer may be formed to be wide, or a heat radiating layer having a predetermined pattern may be formed. The heat radiating layer 108 is preferably formed at least corresponding to a portion where the wiring width is switched from wide to narrow.

曲げ領域120では、例えば、配線116の屈曲により配線長が延長されて配線抵抗は増加する。また、薄膜化した下地層80上に配線116を並列させるため、配線は上述のように幅細とされ得る。よって、曲げ領域120では、発熱による悪影響が発生しやすい。特に、幅細で屈曲形状に切り替わる部位(具体的には、配線幅が細幅に切り替わってから数mm進んだ箇所)で局所的に発熱し得る。一方で、下地層80および平坦化膜96は熱容量が小さい。上述のように、放熱層108を配置することで、放熱を促し、発熱による悪影響を抑制し得る。また、放熱層108の形成によれば、例えば、放熱シート等の別部材を設ける形態に比べて、製造コストの抑制やパネルの薄型化に寄与し得る。 In the bending region 120, for example, the bending of the wiring 116 extends the wiring length and increases the wiring resistance. Further, since the wiring 116 is arranged in parallel on the thinned base layer 80, the wiring can be narrowed as described above. Therefore, in the bending region 120, an adverse effect due to heat generation is likely to occur. In particular, heat can be locally generated at a portion where the width is narrow and switches to a bent shape (specifically, a portion where the wiring width is switched to a narrow width and then advanced by several mm). On the other hand, the base layer 80 and the flattening film 96 have a small heat capacity. As described above, by arranging the heat radiating layer 108, heat radiating can be promoted and adverse effects due to heat generation can be suppressed. Further, according to the formation of the heat radiating layer 108, it is possible to contribute to the reduction of the manufacturing cost and the thinning of the panel as compared with the form in which a separate member such as a heat radiating sheet is provided.

図示例では、配線116上に配置されている樹脂膜96の厚みは、表示領域42の平坦化膜96の厚みよりも薄い。配線116上に配置される樹脂膜96の厚みは、例えば、表示パネル40の曲げ状態、配線116の発熱の放熱度合等を考慮して、適宜決定され得る。 In the illustrated example, the thickness of the resin film 96 arranged on the wiring 116 is thinner than the thickness of the flattening film 96 of the display area 42. The thickness of the resin film 96 arranged on the wiring 116 can be appropriately determined in consideration of, for example, the bending state of the display panel 40, the degree of heat dissipation of the wiring 116, and the like.

図8は、本開示の別の実施形態における曲げ領域の断面図である。本実施形態では、放熱層108が、配線116よりも基材70側に配置される点で、上記実施形態と異なる。具体的には、下地層80上に放熱層108が形成され、放熱層108を覆うように層間絶縁膜92が形成され、層間絶縁膜92上に配線116が配置されている。この場合、放熱層108は、例えば、表示領域42においてゲート電極86を形成する際に形成することができる。 FIG. 8 is a cross-sectional view of a bending region according to another embodiment of the present disclosure. The present embodiment differs from the above embodiment in that the heat radiating layer 108 is arranged closer to the base material 70 than the wiring 116. Specifically, the heat radiating layer 108 is formed on the base layer 80, the interlayer insulating film 92 is formed so as to cover the heat radiating layer 108, and the wiring 116 is arranged on the interlayer insulating film 92. In this case, the heat dissipation layer 108 can be formed, for example, when the gate electrode 86 is formed in the display region 42.

本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiment, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that exhibits the same action and effect, or a configuration that can achieve the same purpose.

2 有機EL表示装置、4 画素アレイ部、6 OLED、8 画素回路、10 点灯TFT、12 駆動TFT、14 キャパシタ、20 走査線駆動回路、22 映像線駆動回路、24 駆動電源回路、26 制御装置、28 走査信号線、30 映像信号線、32 駆動電源線、40 表示パネル、42 表示領域、44 額縁領域、46 部品実装領域、48 ドライバIC、50 FPC、70 基材、72 TFT、80 下地層、82 半導体領域、84 ゲート絶縁膜、86 ゲート電極、88 層間絶縁層、90a ソース電極、90b ドレイン電極、92 層間絶縁膜、94 配線、96 平坦化膜、98 パッシベーション膜、100 下部電極、102 有機材料層、104 上部電極、106 封止層、108 放熱層、110 コンタクトホール、111 導電体部、112 リブ、116 配線、120 曲げ領域。

2 Organic EL display device, 4 pixel array unit, 6 OLED, 8 pixel circuit, 10 lighting TFT, 12 drive TFT, 14 capacitor, 20 scanning line drive circuit, 22 video line drive circuit, 24 drive power supply circuit, 26 control device, 28 scanning signal line, 30 video signal line, 32 drive power supply line, 40 display panel, 42 display area, 44 frame area, 46 component mounting area, 48 driver IC, 50 FPC, 70 base material, 72 TFT, 80 base layer, 82 semiconductor region, 84 gate insulating film, 86 gate electrode, 88 interlayer insulating layer, 90a source electrode, 90b drain electrode, 92 interlayer insulating film, 94 wiring, 96 flattening film, 98 passivation film, 100 lower electrode, 102 organic material Layers, 104 upper electrodes, 106 sealing layers, 108 heat dissipation layers, 110 contact holes, 111 conductors, 112 ribs, 116 wirings, 120 bending regions.

Claims (6)

複数のトランジスタを有するアレイ領域と、曲げ領域とを有する可撓性基材と、
前記可撓性基材上に配置され、前記アレイ領域から前記曲げ領域に亘って配置される配線と、
前記曲げ領域において、前記配線が配置される位置に対応して形成され、前記配線と絶縁層を介して重畳する金属層と、を有し、
前記配線は、前記曲げ領域外における線幅よりも、前記曲げ領域内における線幅が細く、
前記金属層は、前記配線の線幅が細い部位に対応して配置される、素子基板。
A flexible substrate having an array region having a plurality of transistors and a bending region,
Wiring arranged on the flexible substrate and arranged from the array region to the bending region.
In the bending region, a metal layer formed corresponding to a position where the wiring is arranged and superposed on the wiring via an insulating layer is provided.
The wiring has a narrower line width inside the bending region than the line width outside the bending region.
The metal layer is an element substrate that is arranged corresponding to a portion where the line width of the wiring is narrow.
前記金属層は、曲げ方向に所定の間隔を空けて複数並置される、請求項1に記載の素子基板。 The element substrate according to claim 1, wherein a plurality of the metal layers are juxtaposed at predetermined intervals in the bending direction. 前記配線は、電源線を含み、
前記金属層は、少なくとも前記電源線と重畳するように配置される、請求項1に記載の素子基板。
The wiring includes a power line and
The element substrate according to claim 1, wherein the metal layer is arranged so as to overlap with at least the power supply line.
前記曲げ領域において、前記配線は屈曲形状を有する、請求項1に記載の素子基板。 The element substrate according to claim 1, wherein the wiring has a bent shape in the bent region. 前記曲げ領域において、前記配線の延在方向と、前記金属層の延在方向とが互いに交差する、請求項1に記載の素子基板。 The element substrate according to claim 1, wherein in the bending region, the extending direction of the wiring and the extending direction of the metal layer intersect each other. 前記絶縁層は、前記金属層の形成材料よりも熱容量の小さい材料でなる、請求項1に記載の素子基板。

The element substrate according to claim 1, wherein the insulating layer is made of a material having a heat capacity smaller than that of the material for forming the metal layer.

JP2020217231A 2020-12-25 2020-12-25 Element substrate Active JP7002629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020217231A JP7002629B2 (en) 2020-12-25 2020-12-25 Element substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020217231A JP7002629B2 (en) 2020-12-25 2020-12-25 Element substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017058438A Division JP6817862B2 (en) 2017-03-24 2017-03-24 Display device

Publications (2)

Publication Number Publication Date
JP2021060612A true JP2021060612A (en) 2021-04-15
JP7002629B2 JP7002629B2 (en) 2022-01-20

Family

ID=75380195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020217231A Active JP7002629B2 (en) 2020-12-25 2020-12-25 Element substrate

Country Status (1)

Country Link
JP (1) JP7002629B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628840A (en) * 1992-07-07 1994-02-04 Fujitsu Ltd Fifo circuit
JPH06301047A (en) * 1993-04-14 1994-10-28 Alps Electric Co Ltd Liquid crystal display device
JPH10153791A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Liquid crystal display device with bent wiring electrode
JP2001343916A (en) * 2000-03-31 2001-12-14 Minolta Co Ltd Display device and method for manufacturing the same
JP2004119871A (en) * 2002-09-27 2004-04-15 Denso Corp Multilayer printed board
JP2012123170A (en) * 2010-12-08 2012-06-28 Sony Corp Display device
WO2013051236A1 (en) * 2011-10-05 2013-04-11 パナソニック株式会社 Display device
JP2015129891A (en) * 2014-01-08 2015-07-16 パナソニック株式会社 display device and panel unit
WO2016057231A1 (en) * 2014-10-10 2016-04-14 Apple Inc. Signal trace patterns for flexible substrates
US20170287936A1 (en) * 2016-04-05 2017-10-05 Samsung Display Co., Ltd. Display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628840A (en) * 1992-07-07 1994-02-04 Fujitsu Ltd Fifo circuit
JPH06301047A (en) * 1993-04-14 1994-10-28 Alps Electric Co Ltd Liquid crystal display device
JPH10153791A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Liquid crystal display device with bent wiring electrode
JP2001343916A (en) * 2000-03-31 2001-12-14 Minolta Co Ltd Display device and method for manufacturing the same
JP2004119871A (en) * 2002-09-27 2004-04-15 Denso Corp Multilayer printed board
JP2012123170A (en) * 2010-12-08 2012-06-28 Sony Corp Display device
WO2013051236A1 (en) * 2011-10-05 2013-04-11 パナソニック株式会社 Display device
JP2015129891A (en) * 2014-01-08 2015-07-16 パナソニック株式会社 display device and panel unit
WO2016057231A1 (en) * 2014-10-10 2016-04-14 Apple Inc. Signal trace patterns for flexible substrates
US20170287936A1 (en) * 2016-04-05 2017-10-05 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
JP7002629B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US8004178B2 (en) Organic light emitting diode display with a power line in a non-pixel region
JP6872343B2 (en) Display device and manufacturing method of display device
US10923558B2 (en) Display device and method of manufacturing display device
JP7029948B2 (en) Display device
US10910464B2 (en) Electronic device including an IC
US10340327B2 (en) Display device
JP2019016504A (en) Display device and method of manufacturing display device
JP6983084B2 (en) Organic EL display device
JP2019179696A (en) Organic el display and method for manufacturing organic el display
CN110547045A (en) organic EL display device
WO2019171878A1 (en) Organic el display device
JP7002629B2 (en) Element substrate
JP6817862B2 (en) Display device
US10923536B2 (en) Organic el display device and method of manufacturing organic el display device
US20180358423A1 (en) Display device
US10777633B2 (en) Display device, display device manufacturing method, and display device manufacturing apparatus
US20220199955A1 (en) Display device and manufactring method thereof
JP2019160863A (en) Organic EL display device
JP2018106803A (en) Organic el display device and method of manufacturing organic el display device
JP2019174609A (en) Display and method for manufacturing display
JP7220084B2 (en) Display device
CN111919510B (en) Display apparatus
JP2019091660A (en) Display and method for manufacturing display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150