JP2021059813A - Method for improving effect of paper strength enhancer in papermaking process - Google Patents

Method for improving effect of paper strength enhancer in papermaking process Download PDF

Info

Publication number
JP2021059813A
JP2021059813A JP2019184747A JP2019184747A JP2021059813A JP 2021059813 A JP2021059813 A JP 2021059813A JP 2019184747 A JP2019184747 A JP 2019184747A JP 2019184747 A JP2019184747 A JP 2019184747A JP 2021059813 A JP2021059813 A JP 2021059813A
Authority
JP
Japan
Prior art keywords
paper strength
strength enhancer
paper
oxidizing agent
papermaking process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019184747A
Other languages
Japanese (ja)
Other versions
JP6664627B1 (en
Inventor
澪樹 宮内
Shizuki Miyauchi
澪樹 宮内
薫麗 藤槻
Kaori Fujitsuki
薫麗 藤槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
Original Assignee
Katayama Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc filed Critical Katayama Chemical Inc
Priority to JP2019184747A priority Critical patent/JP6664627B1/en
Application granted granted Critical
Publication of JP6664627B1 publication Critical patent/JP6664627B1/en
Publication of JP2021059813A publication Critical patent/JP2021059813A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Abstract

To provide a method for improving the effect of a paper strength enhancer having a cation group used in a papermaking process.SOLUTION: A method for improving the effect of a paper strength enhancer having a cationic group in a papermaking process comprises the steps of: adding an oxidizing agent to papermaking process water; and adding the paper strength enhancer, wherein the contact concentration of the oxidizing agent when the paper strength enhancer comes into contact with the oxidizing agent is 0.1 to 35 mg/L.SELECTED DRAWING: None

Description

本発明は製紙工程における紙力増強剤の効果向上方法に関する。 The present invention relates to a method for improving the effect of a paper strength enhancer in a papermaking process.

従来から、製紙工場では紙に強度を付与する紙力増強剤が使用されている。
近年、製紙工場では古紙の使用比率の増加により古紙由来の短繊維が含まれた紙力強度の弱い原料パルプが使用されている。また、古紙の使用により、抄紙白水中に含まれる金属イオンが抄紙系内の電気伝導度を上昇させ、原料パルプへ添加される紙力増強剤の効果を発揮しにくくしている。このような環境下で、紙力増強剤の効果を向上させる必要が生じているが、紙力増強剤の添加量を多くすることは水質の悪化を招き、環境上好ましくない。
Traditionally, paper mills have used paper strength enhancers that give strength to paper.
In recent years, due to the increase in the usage ratio of used paper, raw material pulp containing short fibers derived from used paper and having low paper strength is used in paper mills. In addition, due to the use of used paper, metal ions contained in the white water of the papermaking increase the electrical conductivity in the papermaking system, making it difficult to exert the effect of the paper strength enhancer added to the raw material pulp. In such an environment, it is necessary to improve the effect of the paper strength enhancer, but increasing the amount of the paper strength enhancer added causes deterioration of water quality, which is not environmentally preferable.

また、ティッシュペーパー、洋紙、包装紙等の原料としては、主に針葉樹パルプや広葉樹パルプ等のバージンパルプが用いられるが、最終シートの紙力を保つためには、紙力増強の対策が必要となる。そのため、原料として古紙を用いない場合においても紙力増強剤は用いられており、環境面から、紙力増強剤の添加量を増やすことなく、その効果を向上させる必要が生じている。 In addition, virgin pulp such as softwood pulp and broadleaf pulp is mainly used as a raw material for tissue paper, western paper, wrapping paper, etc., but in order to maintain the paper strength of the final sheet, it is necessary to take measures to increase the paper strength. Become. Therefore, the paper strength enhancer is used even when the used paper is not used as the raw material, and from the environmental point of view, it is necessary to improve the effect without increasing the amount of the paper strength enhancer added.

ここで、紙力増強剤の添加量を低減させる方法としては、例えば、特許文献1に、古紙を主原料とする板紙の製造におけるパルプ化工程水に、次亜塩素酸ナトリウム水溶液のような次亜塩素酸塩の水溶液と硫酸アンモニウム水溶液のような水溶性の無機アンモニウム塩の水溶液またはアンモニア水とを添加することにより、調成工程における紙力増強剤の添加量を効果的に低減できる方法が開示されている。 Here, as a method for reducing the amount of the paper strength enhancer added, for example, in Patent Document 1, the following, such as an aqueous solution of sodium hypochlorite, is added to the pulping process water in the production of paperboard using used paper as a main raw material. Disclosure of a method capable of effectively reducing the amount of a paper strength enhancer added in the preparation process by adding an aqueous solution of chlorite and an aqueous solution of a water-soluble inorganic ammonium salt such as an aqueous solution of ammonium sulfate or aqueous ammonia. Has been done.

また、特許文献2には、紙の製造工程における澱粉の分解を抑制し、紙製品の強度劣化の生じない紙の製造方法を提供することが開示されている。具体的に、古紙が配合されている紙の製造方法において、(1)連続的又は間欠的に水質測定を行う工程、(2)前記(1)工程で得られた水質測定結果に基づいて澱粉分解能を有する微生物を不活化させる工程を含むことが開示されている。さらに、微生物を不活化させうる薬剤として、各種抗菌剤が開示されている。特許文献3にも、古紙やブロークパルプや内添の澱粉等を栄養源として微生物汚染が進行し、澱粉分解は紙製品の強度劣化を招くため、原料に対し酸化作用を有する殺菌剤を添加することで、微生物汚染による障害を制御することが開示されている。 Further, Patent Document 2 discloses that a method for producing paper, which suppresses the decomposition of starch in the paper manufacturing process and does not cause deterioration in the strength of the paper product, is provided. Specifically, in the method for producing paper containing used paper, (1) a step of continuously or intermittently measuring water quality, and (2) starch based on the water quality measurement results obtained in the above (1) step. It is disclosed to include a step of inactivating a microorganism having a resolution. Further, various antibacterial agents are disclosed as agents capable of inactivating microorganisms. In Patent Document 3, microbial contamination progresses using used paper, broke pulp, starch as a nutrient source, etc., and starch decomposition causes deterioration of the strength of paper products. Therefore, a bactericidal agent having an oxidizing action is added to the raw material. By doing so, it is disclosed to control the damage caused by microbial contamination.

また、特許文献4には、紙力増強剤として使用されているポリアクリルアミドのホフマン分解反応物(ホフマンPAM)をパルプスラリーに添加する際に、マンニッヒ変性したカチオン性ポリアクリルアミド、及び、アルカリ性領域下でアクリルアミド系重合体と次亜ハロゲン酸塩とを反応して得られるアクリルアミド重合体を併用して添加することにより、濾水性の水準を下げることなく紙力強度を向上させることができることが開示されている。 Further, in Patent Document 4, when a Hoffmann decomposition reaction product (Hoffmann PAM) of polyacrylamide used as a paper strength enhancer is added to a pulp slurry, mannich-modified cationic polyacrylamide and under alkaline region. It is disclosed that the paper strength can be improved without lowering the level of drainage by adding an acrylamide polymer obtained by reacting an acrylamide polymer and a hypohalide salt in combination. ing.

特許第5621082号公報Japanese Patent No. 5621082 特開2010−100945号公報Japanese Unexamined Patent Publication No. 2010-100945 特開2011−226043号公報Japanese Unexamined Patent Publication No. 2011-226043 特許第2955330号公報Japanese Patent No. 2955330

上記引用文献1では、調成工程で添加される紙力増強剤の添加量を低減させるためにパルプ化工程のパルプ化工程水に薬剤を添加することが開示されている。また、上記引用文献2及び3には、紙の製造工程で微生物による澱粉分解を抑制するために酸化剤等の抗菌剤を添加することで、微生物障害の一種である紙力低下を防止できることが開示されている。これらはいずれも、紙力増強剤を添加する前の製紙工程水に対し薬剤を添加するものであり、紙力増強剤の効果自体を向上させるものではなかった。 In Cited Document 1 above, it is disclosed that a chemical is added to the pulping step water of the pulping step in order to reduce the amount of the paper strength enhancer added in the conditioning step. Further, in the above-mentioned cited documents 2 and 3, it is possible to prevent a decrease in paper strength, which is a kind of microbial disorder, by adding an antibacterial agent such as an oxidizing agent in order to suppress starch decomposition by microorganisms in the paper manufacturing process. It is disclosed. In each of these, the chemical was added to the papermaking process water before the addition of the paper strength enhancer, and the effect of the paper strength enhancer itself was not improved.

本発明は、製紙工程で使用されるカチオン基を有する紙力増強剤の効果を向上させる方法を提供することを課題とする。 An object of the present invention is to provide a method for improving the effect of a paper strength enhancer having a cationic group used in a papermaking process.

本発明の発明者は、上記の課題を解決するために鋭意研究を重ねた結果、製紙工程で添加される紙力増強剤に、特定の濃度の酸化剤を接触させることで、紙力増強剤の効果が大きく向上するという事実を見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the inventor of the present invention brings a paper strength enhancer added in the papermaking process into contact with an oxidizing agent having a specific concentration, thereby causing the paper strength enhancer. We have found the fact that the effect of the above is greatly improved, and have completed the present invention.

本発明は、製紙工程におけるカチオン基を有する紙力増強剤の効果向上方法であって、製紙工程水に、酸化剤を添加する工程と、上記紙力増強剤を添加する工程とを有し、上記紙力増強剤と上記酸化剤とが接触する際の上記酸化剤の接触濃度が、0.1〜35mg/Lであることを特徴とする紙力増強剤の効果向上方法である。
上記製紙工程水に、酸化剤を添加する工程と、紙力増強剤を添加する工程とは、同時又は別々に行われることが好ましい。
上記酸化剤を添加する工程と同一箇所及び/又は上流側に、上記紙力増強剤を添加する工程を有することが好ましい。
酸化剤は、ハロゲンを有する酸化剤及び/又は過酸化水素であることが好ましい。
酸化剤はハロゲンを有する酸化剤であることが好ましい。
また、酸化剤は結合ハロゲンであり、上記酸化剤の接触濃度が1.0〜35mg/Lであることが好ましい。
また、酸化剤は遊離ハロゲンであり、上記酸化剤の接触濃度が0.1〜20mg/Lであることが好ましい。
以下、本発明を詳細に説明する。
The present invention is a method for improving the effect of a paper strength enhancer having a cationic group in a papermaking process, and includes a step of adding an oxidizing agent to the papermaking process water and a step of adding the above-mentioned paper strength enhancer. This is a method for improving the effect of a paper strength enhancer, characterized in that the contact concentration of the oxidant when the paper strength enhancer and the oxidant come into contact with each other is 0.1 to 35 mg / L.
It is preferable that the step of adding the oxidizing agent and the step of adding the paper strength enhancer to the papermaking process water are performed simultaneously or separately.
It is preferable to have a step of adding the paper strength enhancer at the same location and / or on the upstream side as the step of adding the oxidizing agent.
The oxidizing agent is preferably a halogen-containing oxidizing agent and / or hydrogen peroxide.
The oxidizing agent is preferably a halogen-containing oxidizing agent.
The oxidizing agent is a bound halogen, and the contact concentration of the oxidizing agent is preferably 1.0 to 35 mg / L.
The oxidizing agent is a free halogen, and the contact concentration of the oxidizing agent is preferably 0.1 to 20 mg / L.
Hereinafter, the present invention will be described in detail.

本発明によれば、製紙工程で使用される紙力増強剤の効果を向上させる方法を提供することができる。 According to the present invention, it is possible to provide a method for improving the effect of a paper strength enhancer used in a papermaking process.

以下、本発明の実施形態を説明するが、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示すものであり、これにより本発明の範囲が狭く解釈されることは無い。 Hereinafter, embodiments of the present invention will be described, but the embodiments described below are examples of typical embodiments of the present invention, and the scope of the present invention is not narrowly interpreted by this. ..

本発明の紙力増強剤の効果向上方法は、製紙工程におけるカチオン基を有する紙力増強剤の効果向上方法であって、製紙工程水に、酸化剤を添加する工程と、上記紙力増強を添加する工程とを有し、上記紙力増強剤と上記酸化剤とが接触する際の上記酸化剤の接触濃度が、0.1〜35mg/Lであることを特徴とする。 The method for improving the effect of the paper strength enhancer of the present invention is a method for improving the effect of the paper strength enhancer having a cationic group in the papermaking process, in which the step of adding an oxidizing agent to the papermaking process water and the above-mentioned paper strength enhancement are performed. It has a step of adding, and the contact concentration of the oxidizing agent when the paper strength enhancer and the oxidizing agent come into contact with each other is 0.1 to 35 mg / L.

以下、本明細書において、カチオン基を有する紙力増強剤を、単に紙力増強剤とのみ記載する場合もあるが、本明細書における紙力増強剤は、カチオン基を有する紙力増強剤を意味するものとする。 Hereinafter, in the present specification, the paper strength enhancer having a cationic group may be simply referred to as a paper strength enhancer, but the paper strength enhancer in the present specification refers to a paper strength enhancer having a cationic group. It shall mean.

また、本明細書において、「紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度」は、紙力増強剤と酸化剤とが接触する際の酸化剤の濃度を意味するものである。具体的に説明すると、紙力増強剤と酸化剤とが直接接触するように、製紙工程水に酸化剤を添加する工程と紙力増強剤を添加する工程とを有する場合は、添加される酸化剤の、製紙工程水に対する添加濃度を示す。また、紙力増強剤と酸化剤とが製紙工程水中で接触するように、製紙工程水に酸化剤を添加する工程の後に製紙工程水に紙力増強剤を添加する工程を有する場合は、紙力増強剤と接触する製紙工程水中の酸化剤の残留濃度を示す。また、製紙工程水に紙力増強剤を添加する工程の後に製紙工程水に酸化剤を添加する工程を有する場合は、紙力増強剤が添加された製紙工程水に添加される酸化剤の、製紙工程水に対する添加濃度を示す。なお、酸化剤の接触濃度は、ハロゲンを有する酸化剤において残留塩素濃度に換算して得られる値である。 Further, in the present specification, the "contact concentration of the oxidant when the paper strength enhancer and the oxidant come into contact" means the concentration of the oxidant when the paper strength enhancer and the oxidant come into contact with each other. Is. Specifically, when the papermaking process water has a step of adding the oxidizing agent and a step of adding the paper strength enhancing agent so that the paper strength enhancing agent and the oxidizing agent come into direct contact with each other, the oxidation added. The concentration of the agent added to the papermaking process water is shown. If the paper has a step of adding the paper strength enhancer to the papermaking process water after the step of adding the oxidizing agent to the papermaking process water so that the paper strength enhancer and the oxidizing agent come into contact with each other in the papermaking process water, the paper The residual concentration of the oxidizing agent in the papermaking process water that comes into contact with the force enhancer is shown. Further, when there is a step of adding an oxidizing agent to the papermaking process water after the step of adding the paper strength enhancing agent to the papermaking process water, the oxidizing agent added to the papermaking process water to which the paper strength enhancing agent is added The concentration added to the papermaking process water is shown. The contact concentration of the oxidizing agent is a value obtained in terms of the residual chlorine concentration of the oxidizing agent having a halogen.

本明細書中、「X〜Y」は、「X以上、Y以下」を意味する。 In the present specification, "XY" means "X or more, Y or less".

本発明において上記製紙工程は、パルプに薬品配合を行う調成工程、抄紙工程、仕上げ工程を含み、上記調成工程の前に、紙原料からパルプを得るパルプ化工程を有していてもよい。本発明の紙力増強剤の効果向上方法は、紙原料から紙を製造するまでの製紙工程、又は、パルプから紙を製造するまでの製紙工程のいずれの場合にも用いることができる。なお、上記紙原料は、古紙及び木材のいずれであってもよい。 In the present invention, the paper making step includes a preparation step, a paper making step, and a finishing step of blending pulp with chemicals, and may have a pulping step of obtaining pulp from a paper raw material before the preparation step. .. The method for improving the effect of the paper strength enhancer of the present invention can be used in either a papermaking process from a paper raw material to paper production or a papermaking process from pulp to paper production. The paper raw material may be either used paper or wood.

例えば、古紙を紙原料とする場合、製紙工程は、上記パルプ化工程として、古紙のパルプ化工程を含んでもよい。古紙のパルプ化工程は、主として離解工程、粗選・精選工程および脱水・洗浄工程を含んでなる。さらに、古紙に含まれるインクを除去する脱墨工程及びパルプを化学的に漂白する漂白工程を含む場合もある。各工程について具体的に説明すると、原料となる古紙を水と混合しながら機械力でパルプスラリーとする離解(パルパー)工程、古紙に含まれる異物を除去する粗選(除塵)工程、脱墨剤を加えてインキ成分を除去する脱墨工程、古紙に含まれる異物とパルプ分とをスクリーンで分離する精選工程、パルプスラリーを水洗する洗浄工程、及びパルプの脱水を行う脱水工程、漂白剤を加えてパルプの漂白を行う漂白工程である。上記各工程で用いられる水、及び排水される水を白水といい、上記パルパー工程において原料である古紙と白水とが混合されたものをパルプスラリーという。 For example, when used paper is used as a paper raw material, the papermaking process may include a pulping step of used paper as the pulping step. The pulping process of used paper mainly includes a disintegration process, a rough selection / selection process, and a dehydration / cleaning process. Further, it may include a deinking step of removing the ink contained in the used paper and a bleaching step of chemically bleaching the pulp. To explain each process in detail, a pulper step of mixing waste paper as a raw material with water to make a pulp slurry by mechanical force, a rough selection (dust removal) step of removing foreign substances contained in the waste paper, and a deinking agent. Deinking process to remove ink components by adding, selection process to separate foreign matter and pulp contained in waste paper with a screen, washing process to wash pulp slurry with water, dehydration process to dehydrate pulp, add bleaching agent This is a bleaching process for bleaching pulp. The water used in each of the above steps and the drained water are referred to as white water, and the mixture of used paper and white water as raw materials in the above pulper step is referred to as pulp slurry.

また、木材を紙原料とする場合、製紙工程は、上記パルプ化工程として、化学パルプのパルプ化工程や機械パルプのパルプ化工程を含んでもよい。化学パルプのパルプ化工程は、主として調木工程、蒸解工程、精選・洗浄工程及び脱水工程を含んでなる。さらに、パルプを化学的に漂白する漂白工程を含む場合もある。上記蒸解工程では、チップに薬品を加え、高温・高圧で煮て、樹脂(リグニン)を溶かし繊維分を取り出し、チップをパルプ化する。すなわち、パルプ原料は蒸解工程を経てパルプスラリーとなる。また、機械パルプのパルプ化工程は、主として砕木工程、除塵工程及び濃縮工程を含んでなる。さらに、パルプを化学的に漂白する漂白工程を含む場合もある。上記工程では機械的に繊維化することでパルプスラリーとなる。 When wood is used as a paper raw material, the paper making step may include a pulping step of chemical pulp and a pulping step of mechanical pulp as the pulping step. The pulping step of chemical pulp mainly includes a wood preparation step, a cooking step, a selection / washing step and a dehydration step. In addition, it may include a bleaching step that chemically bleaches the pulp. In the above-mentioned cooking step, chemicals are added to the chips, and the chips are boiled at high temperature and high pressure to dissolve the resin (lignin), take out the fiber content, and pulp the chips. That is, the pulp raw material becomes a pulp slurry through a cooking step. Further, the pulping step of mechanical pulp mainly includes a crushing step, a dust removing step and a concentration step. In addition, it may include a bleaching step that chemically bleaches the pulp. In the above process, it is mechanically fiberized to form a pulp slurry.

本発明において上記製紙工程水とは、紙原料であるパルプを含む水である。ここで、製紙工程では大量の水を媒体として各工程が進行するため、水の再利用が行われている。本発明において紙原料であるパルプを含む水とは、各工程の原料ラインを移動する水(以下、パルプスラリーともいう)であって、各工程の原料ラインから排出される水ではない。ただし、原料ラインから排出された水であっても、白水ピット等に貯留され、製紙工程で再利用される水(白水)は、原料ラインに戻ってくるため、これも上記製紙工程水に含まれる。すなわち、再利用される白水のうち白水ピット等のタンクから原料ラインまでの循環ラインを移動する白水も上記製紙工程水に含まれる。 In the present invention, the papermaking process water is water containing pulp, which is a raw material for paper. Here, in the papermaking process, since each process proceeds using a large amount of water as a medium, water is reused. In the present invention, the water containing pulp, which is a raw material for paper, is water that moves through the raw material lines of each process (hereinafter, also referred to as pulp slurry), and is not water discharged from the raw material lines of each process. However, even if the water is discharged from the raw material line, the water (white water) that is stored in the white water pit and reused in the papermaking process returns to the raw material line, so this is also included in the papermaking process water. Is done. That is, among the recycled white water, the white water that moves on the circulation line from the tank such as the white water pit to the raw material line is also included in the papermaking process water.

上記製紙工程水に、酸化剤を添加する工程と、紙力増強剤を添加する工程とは、各工程の前後は問わず、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度が、0.1〜35mg/Lであれば同時又は別々に行われてもよい。詳細に説明すると、酸化剤と紙力増強剤とが直接接触する場合であっても、製紙工程水中で接触する場合であっても、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度が、0.1〜35mg/Lであればよく、上記工程が同時又は別々に行われてもよい。すなわち、上記製紙工程水に、酸化剤を添加する工程の後に紙力増強剤を添加する工程を有しても、酸化剤を添加する工程の前に紙力増強剤を添加する工程を有しても、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度が上記特定の濃度であればよい。このような特定の濃度の酸化剤と紙力増強剤とを接触させることにより紙力増強効果が得られるためである。 The step of adding the oxidant to the papermaking process water and the step of adding the paper strength enhancer are the contact of the oxidant when the paper strength enhancer and the oxidant come into contact with each other regardless of before or after each step. If the concentration is 0.1 to 35 mg / L, it may be performed simultaneously or separately. More specifically, the oxidant when the paper strength enhancer and the oxidant come into contact with each other, whether the oxidant and the paper strength enhancer are in direct contact with each other or in the water of the papermaking process. The contact concentration of the above may be 0.1 to 35 mg / L, and the above steps may be performed simultaneously or separately. That is, even if there is a step of adding the paper strength enhancer after the step of adding the oxidizing agent to the papermaking process water, there is a step of adding the paper strength enhancer before the step of adding the oxidizing agent. However, the contact concentration of the oxidizing agent when the paper strength enhancer and the oxidizing agent come into contact with each other may be the above-mentioned specific concentration. This is because the paper strength enhancing effect can be obtained by bringing the oxidizing agent having such a specific concentration into contact with the paper strength enhancing agent.

なお、本発明の紙力増強剤の効果向上方法において、紙の強度が向上する詳細は明らかではないが、メカニズムとしては次のようなことが考えられる。1つは、製紙工程水に添加された酸化剤が、製紙工程水に含まれるパルプ繊維上のアニオンと結合しているカチオン性のカルシウムイオンなどを剥離させ、繊維のアニオンをむき出しにすることで、カチオン基を有するカチオン性の紙力増強剤の定着を促進させていると考えられる。
もう一つは、製紙工程水に酸化剤が添加されると、塩素や臭素などのマイナスの電荷を帯びた成分を中心に、カチオン基を有する紙力増強剤が引き寄せられ、パルプ繊維と紙力増強剤とが凝集し、紙力増強効果が向上することが考えられる。
但し、本開示はこれらの考え方に限定されなくてもよい。
In the method for improving the effect of the paper strength enhancer of the present invention, the details of improving the strength of the paper are not clear, but the following can be considered as the mechanism. One is that the oxidizer added to the papermaking process water peels off the cationic calcium ions that are bound to the anions on the pulp fibers contained in the papermaking process water, exposing the anions of the fibers. , It is considered that the fixation of the cationic paper strength enhancer having a cationic group is promoted.
The other is that when an oxidizing agent is added to the papermaking process water, a paper strength enhancer having a cation group is attracted mainly to negatively charged components such as chlorine and bromine, and pulp fibers and paper strength are attracted. It is considered that the enhancer and the enhancer aggregate to improve the paper strength enhancing effect.
However, the present disclosure does not have to be limited to these ideas.

なお、上記製紙工程水に酸化剤を添加する工程と紙力増強剤を添加する工程とが行われるタイミングは、製紙工程水の条件によって設定することができる。例えば、製紙工程水のORPが−400mV以下の過酷な条件である場合は、酸化剤を添加する工程と紙力増強剤を添加する工程とは、同時、又は、各工程が1分以内に行われることが好ましい。一方、製紙工程水において酸化剤の消費が少ない環境下(例えば、製紙工程水に対して清水の供給量が豊富な系)では、酸化剤を添加する工程と紙力増強剤を添加する工程とは、120分以内に行われてもよい。上記製紙工程水に酸化剤を添加する工程と紙力増強剤を添加する工程とは、同時又は各工程が60分以内に行われることが好ましく、同時又は各工程が10分以内に行われることがより好ましく、同時又は各工程が5分以内に行われることがさらに好ましく、同時又は各工程が1分以内に行われることが特に好ましい。より濃度の濃い紙力増強剤と、接触濃度が0.1〜35mg/Lの酸化剤と又は酸化剤の残留濃度が0.1〜35mg/Lの製紙工程水とを、接触させることができるためである。 The timing at which the step of adding the oxidizing agent to the papermaking process water and the step of adding the paper strength enhancer are performed can be set according to the conditions of the papermaking process water. For example, when the ORP of the papermaking process water is -400 mV or less, the step of adding the oxidizing agent and the step of adding the paper strength enhancer are performed at the same time or each step is performed within 1 minute. It is preferable to be On the other hand, in an environment where the consumption of the oxidant is low in the papermaking process water (for example, a system in which the amount of fresh water supplied is abundant with respect to the papermaking process water), the step of adding the oxidant and the step of adding the paper strength enhancer May be done within 120 minutes. The step of adding the oxidizing agent to the papermaking process water and the step of adding the paper strength enhancer are preferably performed simultaneously or within 60 minutes, and at the same time or each step is performed within 10 minutes. Is more preferable, and it is more preferable that the simultaneous or each step is carried out within 5 minutes, and it is particularly preferable that the simultaneous or each step is carried out within 1 minute. A paper strength enhancer having a higher concentration can be brought into contact with an oxidant having a contact concentration of 0.1 to 35 mg / L or a papermaking process water having a residual concentration of the oxidant of 0.1 to 35 mg / L. Because.

上記製紙工程水に酸化剤を添加する工程と、製紙工程の同一箇所及び/又は製紙工程の上流側に、紙力増強剤を添加する工程を有することが好ましい。酸化剤は、製紙工程水に添加されると同時に、製紙工程水中の微生物により消費され始める可能性があるためである。なお、本明細書においては、製紙工程の上流側とは、製紙工程水の流れ方向に対する上流側を意味する。具体的に、製紙工程水に、酸化剤を添加する工程と紙力増強剤を添加する工程とが、原料ラインに構成されている場合、上流側とは古紙や木材などの原料(又は原料パルプ)に近い方を意味する。一方、製紙工程水に、酸化剤を添加する工程と紙力増強剤を添加する工程とが白水を再利用するための循環ラインに構成されている場合、上流側とは、白水ピット等のタンクに近い方を意味する。また、本明細書において、製紙工程の同一箇所とは、同一の機器、同一のタンク、同一の配管(機器と機器との間の配管)を意味する。 It is preferable to have a step of adding an oxidizing agent to the papermaking process water and a step of adding a paper strength enhancer at the same location in the papermaking process and / or on the upstream side of the papermaking process. This is because the oxidant may start to be consumed by microorganisms in the papermaking process water at the same time as it is added to the papermaking process water. In the present specification, the upstream side of the papermaking process means the upstream side with respect to the flow direction of the papermaking process water. Specifically, when the process of adding an oxidizing agent and the process of adding a paper strength enhancer to the papermaking process water are configured in the raw material line, the upstream side is the raw material (or raw material pulp) such as used paper or wood. ) Means the one closer to. On the other hand, when the process of adding an oxidizing agent and the process of adding a paper strength enhancer to the papermaking process water are configured as a circulation line for reusing white water, the upstream side is a tank such as a white water pit. Means the one closer to. Further, in the present specification, the same location in the papermaking process means the same equipment, the same tank, and the same piping (piping between equipment).

上記製紙工程水に、酸化剤を添加する工程と、紙力増強剤を添加する工程とは、製紙工程の同一か所にて上記2つの工程のうち一方の工程の薬剤添加が開始された後60分以内に他方の工程の薬剤添加が開始されることが好ましい。また、上記2つの工程における薬剤添加のタイミングが、10分以内に開始されることがより好ましく、5分以内に開始されることがさらに好ましく、1分以内に開始されることが特に好ましい。 The step of adding the oxidizing agent and the step of adding the paper strength enhancer to the papermaking process water are performed after the chemical addition of one of the above two steps is started at the same place in the papermaking process. It is preferable that the drug addition in the other step is started within 60 minutes. Further, the timing of drug addition in the above two steps is more preferably started within 10 minutes, further preferably within 5 minutes, and particularly preferably within 1 minute.

また、上記製紙工程水に酸化剤を添加する工程と紙力増強剤を添加する工程とが、製紙工程の同一箇所で行われ、紙力増強剤の添加工程が酸化剤の添加工程よりも上流側である場合、上記2つの工程で薬剤添加が開始されるタイミングは、製紙工程水の流速によって決定されることが好ましい。製紙工程の上流側で添加された紙力増強剤が酸化剤の添加位置に到達したタイミングで、酸化剤を添加することにより、より濃度の濃い紙力増強剤と、接触濃度が0.1〜35mg/Lの酸化剤と又は酸化剤の残留濃度が0.1〜35mg/Lの製紙工程水とを、より確実に接触させることができるためである。 Further, the step of adding the oxidant to the papermaking process water and the step of adding the paper strength enhancer are performed at the same place in the papermaking process, and the step of adding the paper strength enhancer is upstream from the step of adding the oxidant. On the side, the timing at which the chemical addition is started in the above two steps is preferably determined by the flow velocity of the papermaking process water. By adding the oxidant at the timing when the paper strength enhancer added on the upstream side of the papermaking process reaches the addition position of the oxidant, the contact concentration with the higher concentration paper strength enhancer is 0.1 to 0.1. This is because the 35 mg / L oxidant or the papermaking process water having a residual concentration of the oxidant of 0.1 to 35 mg / L can be brought into contact with each other more reliably.

本発明で用いられる上記酸化剤は、ハロゲンを有する酸化剤及び/又は過酸化水素であることが好ましい。これらの成分は酸化力により、パルプ繊維及び/又はカチオン基を有する紙力増強剤に作用して、結果として紙力増強剤のパルプ繊維への定着を促進させていると考えられるためである。ハロゲンを有する酸化剤は結合ハロゲン及び遊離ハロゲンである。結合ハロゲンとしては結合塩素及び結合臭素等が挙げられ、遊離ハロゲンとしては、亜塩素酸塩、次亜塩素酸塩及び二酸化塩素が挙げられる。 The oxidizing agent used in the present invention is preferably a halogen-containing oxidizing agent and / or hydrogen peroxide. This is because it is considered that these components act on the pulp fiber and / or the paper strength enhancer having a cationic group by the oxidizing power, and as a result, promote the fixation of the paper strength enhancer to the pulp fiber. Oxidizing agents with halogens are bound halogens and free halogens. Examples of the bound halogen include bound chlorine and bound bromine, and examples of the free halogen include chlorite, hypochlorite and chlorine dioxide.

上記結合ハロゲンとしては、結合塩素及び結合臭素等が挙げられ、具体的には、モノクロラミン、モノブロラミン、クロロスルファマート、及び/又は、ブロモスルファマートであることが好ましい。
上記モノクロラミン及びモノブロラミンは、OCl−(Br−)+NH+→NHCl(Br)+HOのような反応で生成される穏やかな酸化剤である。例えば、次亜塩素酸ナトリウムとアンモニウム化合物とを混合することによりモノクロラミンを生成でき、アンモニウム化合物としては、具体的に、硫酸アンモニウム、臭化アンモニウム、塩化アンモニウム、スルファミン酸アンモニウムが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。
次亜塩素酸塩とアンモニウム化合物とのモル比は、一又は複数の実施形態において、残留塩素量と窒素とのモル比として1:1〜1:2であることが好ましい。
Examples of the bound halogen include bound chlorine and bound bromine, and specific examples thereof are monochlorolamin, monobrolamin, chlorosulfamate, and / or bromosulfamate.
The monochloramine and monochloramine are mild oxidizing agents produced by a reaction such as OCl- (Br-) + NH 4 + → NH 2 Cl (Br) + H 2 O. For example, monochloroamine can be produced by mixing sodium hypochlorite and an ammonium compound, and specific examples of the ammonium compound include ammonium sulfate, ammonium bromide, ammonium chloride, and ammonium sulfamate, which are used alone. Or two or more types can be used in combination.
The molar ratio of hypochlorite to the ammonium compound is preferably 1: 1 to 1: 2 as the molar ratio of residual chlorine to nitrogen in one or more embodiments.

上記クロロスルファマート及びブロモスルファマートは、塩素系酸化剤または臭素系酸化剤と、スルファミン酸化合物又はその塩と、の反応生成物である。上記塩素系酸化剤としては、一又は複数の実施形態において、次亜塩素酸又はその塩が挙げられ、中でも次亜塩素酸ナトリウムが好ましい。上記臭素系酸化剤としては、一又は複数の実施形態において、次亜臭素酸又はその塩が挙げられ、中でも次亜臭素酸ナトリウムが好ましい。上記スルファミン酸化合物としては、一又は複数の実施形態において、スルファミン酸、クロロスルファミン酸及びブロモスルファミン酸等が挙げられる。上記クロロ/ブロモスルファマートとしては、特に限定されない一又は複数の実施形態において、「水酸化ナトリウム及びスルファミン酸の反応生成物」と「次亜塩素酸/次亜臭素酸ナトリウム」との反応生成物が挙げられる。クロロ/ブロモスルファマートは、一又は複数の実施形態において、水酸化ナトリウム、スルファミン酸、及び次亜塩素酸ナトリウム又は次亜臭素酸ナトリウムを配合して得ることができる。 The chlorosulfamate and bromosulfamate are reaction products of a chlorine-based oxidizing agent or a bromine-based oxidizing agent and a sulfamic acid compound or a salt thereof. Examples of the chlorine-based oxidizing agent include hypochlorous acid or a salt thereof in one or more embodiments, and sodium hypochlorite is preferable. Examples of the bromine-based oxidizing agent include hypobromous acid or a salt thereof in one or more embodiments, and sodium hypobromous acid is preferable. Examples of the sulfamic acid compound include sulfamic acid, chlorosulfamic acid, bromosulfamic acid and the like in one or more embodiments. The chloro / bromosulfamate is not particularly limited, and in one or more embodiments, a reaction product of "reaction product of sodium hydroxide and sulfamic acid" and "hypochlorous acid / sodium hypobromous acid" is produced. Things can be mentioned. Chloro / bromosulfamate can be obtained in one or more embodiments by blending sodium hydroxide, sulfamic acid, and sodium hypochlorite or sodium hypobromite.

また、上記亜塩素酸塩としては、具体的には、亜塩素酸ナトリウム、亜塩素酸カリウム及び亜塩素酸カルシウム等が挙げられ、本発明ではこれらの1種を単独でまたは2種以上を組み合せて用いることができる。
上記次亜塩素酸塩としては、具体的には、次亜塩素酸ナトリウム、次亜塩素酸カリウム及び次亜塩素酸カルシウム等が挙げられ、本発明ではこれらの1種を単独でまたは2種以上を組み合せて用いることができる。
Specific examples of the chlorite include sodium chlorite, potassium chlorate, calcium chlorite, and the like. In the present invention, one of these chlorites may be used alone or in combination of two or more. Can be used.
Specific examples of the hypochlorite include sodium hypochlorite, potassium hypochlorite, calcium hypochlorite and the like, and in the present invention, one of these may be used alone or in combination of two or more. Can be used in combination.

上記二酸化塩素は、極めて不安定な化学物質であるため、その貯蔵や輸送は非常に困難である。したがって、その場で公知の方法により二酸化塩素を製造(生成)し、添加濃度に調整して用いるのが好ましい。
例えば、次のような反応により二酸化塩素を製造することができ、市販の二酸化塩素発生器(装置)を用いることもできる。
(1)次亜塩素酸ナトリウムと塩酸と亜塩素酸ナトリウムとの反応
NaOCl+2HCl+2NaClO → 2ClO+3NaCl+H
(2)亜塩素酸ナトリウムと塩酸との反応
5NaClO+4HCl → 4ClO+5NaCl+2H
(3)塩素酸ナトリウム、過酸化水素および硫酸との反応
2NaClO+H2O+HSO → 2ClO+NaSO+O+2H
Since chlorine dioxide is an extremely unstable chemical substance, it is extremely difficult to store and transport it. Therefore, it is preferable to produce (produce) chlorine dioxide on the spot by a known method and adjust the addition concentration before use.
For example, chlorine dioxide can be produced by the following reaction, and a commercially available chlorine dioxide generator (equipment) can also be used.
(1) Reaction of sodium hypochlorite with hydrochloric acid and sodium chlorite NaOCl + 2HCl + 2NaClO 2 → 2ClO 2 + 3NCl + H 2 O
(2) Reaction of sodium chlorite with hydrochloric acid 5NaClO 2 + 4HCl → 4ClO 2 + 5 NaCl + 2H 2 O
(3) Reaction with sodium chlorate, hydrogen peroxide and sulfuric acid 2NaClO 3 + H2O 2 + H 2 SO 4 → 2ClO 2 + Na 2 SO 4 + O 2 + 2H 2 O

なお、上記酸化剤の添加量は、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度が、0.1〜35mg/Lとなるよう設定されればよい。例えば、紙力増強剤と酸化剤とが製紙工程水中で接触する場合、紙力増強剤が酸化剤の残留濃度が0.1〜35mg/Lの製紙工程水と接触するように、酸化剤の添加量が設定される。なお、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度を上記特定の範囲とすることにより、紙力増強効果を得ることができる。 The amount of the oxidizing agent added may be set so that the contact concentration of the oxidizing agent when the paper strength enhancer and the oxidizing agent come into contact with each other is 0.1 to 35 mg / L. For example, when the paper strength enhancer and the oxidant come into contact with each other in the papermaking process water, the oxidant is used so that the paper strength enhancer comes into contact with the papermaking process water having a residual concentration of the oxidant of 0.1 to 35 mg / L. The amount to be added is set. The paper strength enhancing effect can be obtained by setting the contact concentration of the oxidizing agent when the paper strength enhancing agent and the oxidizing agent come into contact with each other within the above-mentioned specific range.

また、上記紙力増強剤は、対パルプ固形分100重量%に対して、紙力増強剤の固形分として0.01〜2.0重量%添加されることが好ましく、0.05〜1.0重量%添加されることが好ましい。紙力増強剤の添加量が上記0.01重量%未満であると、紙力増強効果が充分に得られない可能性があり、2.0重量%を超えると、パルプシートや最終製品として得られる紙に紙力増強剤が付着し、欠点が生じる可能性があるためである。 Further, the paper strength enhancer is preferably added in an amount of 0.01 to 2.0% by weight as the solid content of the paper strength enhancer with respect to 100% by weight of the pulp solid content, and 0.05 to 1. It is preferable to add 0% by weight. If the amount of the paper strength enhancer added is less than 0.01% by weight, the paper strength enhancement effect may not be sufficiently obtained, and if it exceeds 2.0% by weight, it is obtained as a pulp sheet or a final product. This is because the paper strength enhancer may adhere to the paper to be used, which may cause defects.

本発明の紙力増強剤の効果向上方法に用いられる紙力増強剤は、カチオン基を有する紙力増強剤であれば特に限定されず、市販の紙力増強剤を用いることができる。
カチオン基を有する紙力増強剤として、内添紙力増強剤及び表面紙力増強剤が挙げられ、内添紙力増強剤はさらに乾燥紙力増強剤と湿潤紙力増強剤に分類される。内添紙力増強剤としてはポリアクリルアミド及びポリアミドポリアミン・エピクロロヒドリン等が挙げられる。表面紙力増強剤としてはポリアクリルアミド及びポリビニルアルコール等が挙げられる。好ましくは、乾燥紙力増強剤としてポリアクリルアミド、湿潤紙力増強剤としてポリアミドポリアミン・エピクロロヒドリンが好ましく、表面紙力増強剤としてポリアクリルアミドが好ましい。
The paper strength enhancer used in the method for improving the effect of the paper strength enhancer of the present invention is not particularly limited as long as it is a paper strength enhancer having a cationic group, and a commercially available paper strength enhancer can be used.
Examples of the paper strength enhancer having a cation group include an inner paper strength enhancer and a surface paper strength enhancer, and the inner paper strength enhancer is further classified into a dry paper strength enhancer and a wet paper strength enhancer. Examples of the inner paper strength enhancer include polyacrylamide, polyamide polyamine, epichlorohydrin and the like. Examples of the surface paper strength enhancer include polyacrylamide and polyvinyl alcohol. Preferably, polyacrylamide is preferable as the dry paper strength enhancer, polyamide polyamine / epichlorohydrin is preferable as the wet paper strength enhancer, and polyacrylamide is preferable as the surface paper strength enhancer.

また上記酸化剤は、ハロゲンを有する酸化剤であることが好ましい。ハロゲンを有する酸化剤としては、結合ハロゲン及び/又は遊離ハロゲンが挙げられる。酸化剤が結合ハロゲンである場合、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度が、1.0〜35mg/Lであることが好ましい。また、酸化剤が遊離ハロゲンである場合、紙力増強剤と酸化剤とが接触する際の酸化剤の接触濃度が、0.1〜20mg/Lであることが好ましい。紙力増強効果の向上率が高まるためである。 Further, the oxidizing agent is preferably a halogen-containing oxidizing agent. Oxidizing agents having halogens include bound halogens and / or free halogens. When the oxidizing agent is a bound halogen, the contact concentration of the oxidizing agent at the time of contact between the paper strength enhancer and the oxidizing agent is preferably 1.0 to 35 mg / L. When the oxidizing agent is a free halogen, the contact concentration of the oxidizing agent when the paper strength enhancer and the oxidizing agent come into contact is preferably 0.1 to 20 mg / L. This is because the improvement rate of the paper power enhancement effect is increased.

本発明の紙力増強剤の効果向上方法は、酸化剤が結合ハロゲンであることが好ましい。酸化剤が添加された製紙工程水において、酸化剤の残留濃度が持続するためである。 In the method for improving the effect of the paper strength enhancer of the present invention, it is preferable that the oxidizing agent is a bound halogen. This is because the residual concentration of the oxidant is maintained in the papermaking process water to which the oxidant is added.

なお、本発明における「残留塩素量」の記載は、モノブロラミンである場合には「残留塩素量換算値」を意味する。 The description of "residual chlorine amount" in the present invention means "residual chlorine amount conversion value" in the case of monobrolamin.

以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例1〜13、比較例1及び2、参考例1〜3)
[ろ紙を用いた紙の強度測定方法]
(1)前日からろ紙(No.41 GEヘルスケア・ジャパン株式会社製)をイオン交換水に浸漬し、室温(約20〜35℃)で保管した。
(2)ポリチャック袋(No.KG−4 ジャパックス社製)に室温で1日保管した(1)のイオン交換水浸漬ろ紙を入れた。
(3)(2)のポリチャック袋に1%紙力増強剤(ポリアクリルアミド系乾燥紙力増強剤:星光PMC株式会社製、商品名「DS410」またはポリアミドエピクロロヒドリン系湿潤紙力増強剤:星光PMC株式会社製、商品名「WS570」)を100mL入れた。
(4)下記表1に示す供試薬剤を、下記表1に示す濃度でそれぞれ(3)のポリチャック袋に添加し、薬剤が混ざる程度に袋を上から10回指で押した後、密封し室温で1時間静置した。
(5)(4)のポリチャック袋からろ紙のみを取り出し、70℃で30分乾燥後デシケーターに3時間以上静置して、3cm×5cmの紙片を作成し(n=3)、各実施例、各比較例及び各参考例に係る試験片を得た。
(6)1cm幅の両面テープを、(5)で得られた紙片の短辺(3cm辺)に張り付け、50ml遠沈管ラックのマスの中央に張り付けた。短辺を50ml遠沈管ラックの柵に巻き付けるように張り付けた。(この時、試験面は3cm×3cmである)遠沈管ラックは、マスが3.5cm×3.5cmであった。
(7)デジタルフォースゲージFGP−2(日本電産SIMPO製)にマイナスドライバー型アダプタをセットし、(6)の試験管立てのマスに固定した紙片を突き破るまでの突刺し強度を測定した。
(8)紙力増強剤以外の供試薬剤を添加していない試験区(参考例2、ブランク(紙力増強剤あり))の突刺し強度を0とした時の各突刺し強度を強度向上率(%)として下記表1に記載した。
なお、参考例1では紙力増強剤を添加しなかったため、上記(3)の操作を行わなかった。
(Examples 1 to 13, Comparative Examples 1 and 2, Reference Examples 1 to 3)
[Paper strength measurement method using filter paper]
(1) From the previous day, filter paper (No. 41 manufactured by GE Healthcare Japan Co., Ltd.) was immersed in ion-exchanged water and stored at room temperature (about 20 to 35 ° C.).
(2) The ion-exchanged water-immersed filter paper of (1) stored at room temperature for 1 day was placed in a polychuck bag (No. KG-4 manufactured by Japax).
(3) 1% paper strength enhancer in the polychuck bag of (2) (polyacrylamide-based dry paper strength enhancer: manufactured by Seiko PMC Corporation, trade name "DS410" or polyamide epichlorohydrin-based wet paper strength enhancer : 100 mL of Seiko PMC Corporation, trade name "WS570") was added.
(4) Add the reagents shown in Table 1 below to the polychuck bag of (3) at the concentrations shown in Table 1 below, press the bag with a finger 10 times from the top to the extent that the drugs are mixed, and then seal. The mixture was allowed to stand at room temperature for 1 hour.
(5) Only the filter paper is taken out from the polychuck bag of (4), dried at 70 ° C. for 30 minutes, and then allowed to stand in a desiccator for 3 hours or more to prepare a 3 cm × 5 cm piece of paper (n = 3). , Each comparative example and each reference example were obtained.
(6) A 1 cm wide double-sided tape was attached to the short side (3 cm side) of the piece of paper obtained in (5), and attached to the center of the mass of the 50 ml centrifuge tube rack. The short side was attached so as to be wrapped around the fence of a 50 ml centrifuge tube rack. (At this time, the test surface is 3 cm × 3 cm) The centrifuge tube rack had a mass of 3.5 cm × 3.5 cm.
(7) A flat-blade screwdriver type adapter was set in the digital force gauge FGP-2 (manufactured by Nidec SIMPO), and the piercing strength until the piece of paper fixed to the mass of the test tube rack in (6) was pierced was measured.
(8) Strength improvement of each piercing strength when the piercing strength of the test plot (Reference Example 2, blank (with paper strength enhancing agent)) to which no reagent agent other than the paper strength enhancing agent is added is set to 0. The rates (%) are listed in Table 1 below.
In Reference Example 1, since the paper strength enhancer was not added, the above operation (3) was not performed.

(供試薬剤)
モノクロラミン及びモノブロラミンは、公知の方法(例えば、特開2017−53054号公報に記載の方法)によって、生成させた後、適宜純水で希釈することで、下記表1に記載の薬剤濃度に調整し、添加した。
クロロスルファマートは、公知の方法(例えば、特開2017−159276号公報に記載の方法)によって、生成させた後、適宜純水で希釈することで、下記表1に記載の薬剤濃度に調整し、添加した。
二酸化塩素は、公知の方法(例えば、特許第5879596号公報に記載の方法)によって、生成させた後、適宜純水で希釈することで、下記表1に記載の薬剤濃度に調整し、添加した。また、硫酸アンモニウム、次亜塩素酸ナトリウム、過酸化水素、リン酸は、試薬メーカーから購入したものを用いた。なお、他の試験においても、共通する供試薬剤は本記載の供試薬剤と同様である。
(Liquid agent)
Monochlorolamin and monobrolamin are produced by a known method (for example, the method described in JP-A-2017-53054), and then diluted with pure water as appropriate to obtain the drug concentrations shown in Table 1 below. Adjusted and added.
Chlorosulfamate is produced by a known method (for example, the method described in JP-A-2017-159276) and then appropriately diluted with pure water to adjust to the drug concentration shown in Table 1 below. And added.
Chlorine dioxide was produced by a known method (for example, the method described in Japanese Patent No. 58795996) and then appropriately diluted with pure water to adjust the concentration to the chemicals shown in Table 1 below and added. .. As ammonium sulfate, sodium hypochlorite, hydrogen peroxide, and phosphoric acid, those purchased from a reagent manufacturer were used. In other tests, the common reagent agent is the same as that described in this description.

Figure 2021059813
Figure 2021059813

上記表1の強度向上率から確認されるように、酸化力の弱いクロロスルファマートの接触濃度が5〜35mg/Lである実施例1及び2では、紙の強度向上率が15%より大きく、紙の強度が向上していることを確認した。また、酸化力の強い二酸化塩素の接触濃度が0.1〜15mg/Lである実施例7及び8でも、紙の強度向上率が15%より大きく、紙の強度が向上していることを確認した。一方、アニオン成分であるリン酸やハロゲンを有する塩化ナトリウムであっても、酸化力を有していない供試薬剤を接触させた比較例1〜2では、紙の強度に変化が見られなかった。
よって、クロロスルファマートなどの酸化剤と紙力増強剤とを特定の濃度で接触させることにより、紙力増強効果が得られることが確認できた。
As can be confirmed from the strength improvement rate in Table 1 above, in Examples 1 and 2 in which the contact concentration of chlorosulfamate having a weak oxidizing power is 5 to 35 mg / L, the strength improvement rate of the paper is larger than 15%. , It was confirmed that the strength of the paper was improved. Further, it was confirmed that the strength improvement rate of the paper was larger than 15% and the strength of the paper was improved even in Examples 7 and 8 in which the contact concentration of chlorine dioxide having a strong oxidizing power was 0.1 to 15 mg / L. did. On the other hand, even with sodium chloride having phosphoric acid or halogen as an anionic component, no change was observed in the strength of the paper in Comparative Examples 1 and 2 in which a reagent agent having no oxidizing power was brought into contact with the sodium chloride. ..
Therefore, it was confirmed that the paper strength enhancing effect can be obtained by contacting the oxidizing agent such as chlorosulfamate with the paper strength enhancing agent at a specific concentration.

(実施例14、比較例3、参考例4及び5)
[古紙パルプを用いた紙の強度測定]
(1)パルプ濃度3%のパルプスラリー30mLを300mLポリビーカーに入れ、ここに紙力増強剤(「DS410」)を固形分濃度として対パルプ0.2%添加し、スリーワンモーター(新東科学株式会社製 BL1200型番)で5分間撹拌した後に、下記表2に示す各供試薬剤を添加し、再度スリーワンモーターで3分間攪拌した。
(2)さらに白水を(1)のポリビーカーに添加してパルプ濃度1%とし、再度スリーワンモーターで3分間攪拌した。
(3)抄紙機(テスター産業株式会社製 丸形シートマシン)にてシートを作成し、乾燥後、3cm×5cmの紙片を作成し(n=3)、実施例14、比較例3及び参考例4及び5に係る試験片を得た。
(4)実施例1で行った紙の強度測定方法の工程(6)〜(8)と同様にして、得られた試験片の紙の強度を測定し、参考例5に係る試験片の紙の強度を0%として、各試験片の紙の強度向上率(%)を求めた。測定結果を下記表2に示す。
(Example 14, Comparative Example 3, Reference Examples 4 and 5)
[Measurement of paper strength using recycled pulp]
(1) 30 mL of pulp slurry with a pulp concentration of 3% was placed in a 300 mL polybeaker, and a paper strength enhancer (“DS410”) was added as a solid content concentration of 0.2% to pulp, and Three One Motor (Shinto Kagaku Co., Ltd.) After stirring for 5 minutes with BL1200 model number manufactured by the company, each reagent agent shown in Table 2 below was added, and the mixture was stirred again with a three-one motor for 3 minutes.
(2) Further, white water was added to the polybeaker of (1) to adjust the pulp concentration to 1%, and the mixture was stirred again with a three-one motor for 3 minutes.
(3) A sheet is prepared with a paper machine (round sheet machine manufactured by Tester Sangyo Co., Ltd.), dried, and a 3 cm × 5 cm piece of paper is prepared (n = 3). Test pieces according to 4 and 5 were obtained.
(4) The paper strength of the obtained test piece was measured in the same manner as in steps (6) to (8) of the paper strength measuring method performed in Example 1, and the paper of the test piece according to Reference Example 5 was measured. The strength improvement rate (%) of the paper of each test piece was determined by setting the strength of each test piece to 0%. The measurement results are shown in Table 2 below.

(供試薬剤)
水酸化ナトリウムは、試薬メーカーから購入したものを用いた。
(Liquid agent)
As the sodium hydroxide, the one purchased from the reagent manufacturer was used.

Figure 2021059813
Figure 2021059813

酸化剤を添加しなかった参考例5の結果と比較し、実施例14のように紙力増強剤とモノクロラミンとが接触する際のモノクロラミンの接触濃度が0.1〜35mg/Lの場合に、紙の強度が39%上昇していることを確認した。一方で、比較例3から分るように、実施例14で用いたモノクロラミンの代わりに、実施例14と同様のpHとなるように水酸化ナトリウムを用いた場合は、紙の強度向上率が15%未満であり、強度向上率が小さいものであった。 Compared with the result of Reference Example 5 in which no oxidizing agent was added, when the contact concentration of monochrome lamin at the time of contact between the paper strength enhancer and monochrome lamin is 0.1 to 35 mg / L as in Example 14. It was confirmed that the strength of the paper was increased by 39%. On the other hand, as can be seen from Comparative Example 3, when sodium hydroxide was used so as to have the same pH as in Example 14 instead of the monochlorolamin used in Example 14, the strength improvement rate of the paper was increased. It was less than 15%, and the strength improvement rate was small.

(実施例15、比較例4、参考例6)
実施例14と同様にして、パルプ濃度3%のパルプスラリー30mLに、紙力増強剤(「DS410」)を固形分濃度として対パルプ0.6%と下記表3に示す濃度の供試薬剤とを添加し、スリーワンモーターで攪拌した。ただし、上記紙力増強剤と上記供試薬剤との添加順は下記表3に記載の通りとし、先に添加した薬剤をスリーワンモーターで5分間攪拌した後に、次の薬剤を添加し3分間攪拌した。次に、実施例14の試験操作(2)、(3)と同様にして、薬剤を添加したパルプスラリーに、さらに濾過した白水を添加して、パルプ濃度1%とし、抄紙機を用いて実施例15、比較例4及び参考例6に係る試験片を作製した。次に、実施例1で行った紙の強度測定方法の工程(6)〜(8)と同様にして、得られた試験片の紙の強度を測定し、参考例6に係る試験片の紙の強度を0%として、各試験片の紙の強度向上率(%)を求めた。測定結果を下記表3に示す。
(Example 15, Comparative Example 4, Reference Example 6)
In the same manner as in Example 14, 30 mL of pulp slurry having a pulp concentration of 3% was mixed with a paper strength enhancer (“DS410”) as a solid content concentration of 0.6% with respect to pulp and a reagent agent having a concentration shown in Table 3 below. Was added and stirred with a three-one motor. However, the order of addition of the paper strength enhancer and the reagent agent is as shown in Table 3 below, and after stirring the previously added drug with a three-one motor for 5 minutes, the next drug is added and stirred for 3 minutes. did. Next, in the same manner as in the test operations (2) and (3) of Example 14, further filtered white water was added to the pulp slurry to which the chemical was added to bring the pulp concentration to 1%, and the pulp slurry was used in a paper machine. Test pieces according to Example 15, Comparative Example 4 and Reference Example 6 were prepared. Next, the paper strength of the obtained test piece was measured in the same manner as in steps (6) to (8) of the paper strength measuring method performed in Example 1, and the paper of the test piece according to Reference Example 6 was measured. The strength improvement rate (%) of the paper of each test piece was determined by setting the strength of each test piece to 0%. The measurement results are shown in Table 3 below.

Figure 2021059813
Figure 2021059813

比較例4に示すように、供試薬剤を紙力増強剤の前に添加した場合は、供試薬剤であるモノクロラミン(5mg/L)を攪拌混合している間に有効成分である酸化剤(モノクロラミン)が消費され、紙力増強効果が確認されなかった。
一方、モノクロラミン(5mg/L)を、紙力増強剤添加後5分後に添加した場合には、紙の強度向上率が15%を超えており、紙力増強剤の効果が有意に向上したことを確認した。

As shown in Comparative Example 4, when the reagent agent was added before the paper strength enhancer, the oxidizing agent which is the active ingredient while the monochrome lamin (5 mg / L) which is the reagent agent was stirred and mixed. (Monochrome lamin) was consumed, and the paper power enhancement effect was not confirmed.
On the other hand, when monochloramine (5 mg / L) was added 5 minutes after the addition of the paper strength enhancer, the strength improvement rate of the paper exceeded 15%, and the effect of the paper strength enhancer was significantly improved. It was confirmed.

本発明は、製紙工程におけるカチオン基を有する紙力増強剤の効果向上方法であって、製紙工程水に、酸化剤を添加する工程と、上記紙力増強剤を添加する工程とを有し、上記酸化剤と上記紙力増強剤とは接触するものであり、上記酸化剤は、ハロゲンを有する酸化剤及び/又は過酸化水素であり、上記紙力増強剤と上記酸化剤とが接触する際の上記酸化剤の接触濃度が、0.1〜35mg/Lであることを特徴とする紙力増強剤の効果向上方法である。
上記製紙工程水に、酸化剤を添加する工程と、紙力増強剤を添加する工程とは、同時又は別々に行われることが好ましい。
上記酸化剤を添加する工程と同一箇所及び/又は上流側に、上記紙力増強剤を添加する工程を有することが好ましい。
化剤はハロゲンを有する酸化剤であることが好ましい。
また、酸化剤は結合ハロゲンであり、上記酸化剤の接触濃度が1.0〜35mg/Lであることが好ましい。
また、酸化剤は遊離ハロゲンであり、上記酸化剤の接触濃度が0.1〜20mg/Lであることが好ましい。
以下、本発明を詳細に説明する。
The present invention is a method for improving the effect of a paper strength enhancer having a cationic group in a papermaking process, and includes a step of adding an oxidizing agent to the papermaking process water and a step of adding the above-mentioned paper strength enhancer. The oxidant and the paper strength enhancer come into contact with each other. The oxidant is a halogen-containing oxidant and / or hydrogen peroxide, and when the paper strength enhancer and the paper strength enhancer come into contact with each other. This is a method for improving the effect of a paper strength enhancer, characterized in that the contact concentration of the above-mentioned oxidizing agent is 0.1 to 35 mg / L.
It is preferable that the step of adding the oxidizing agent and the step of adding the paper strength enhancer to the papermaking process water are performed simultaneously or separately.
It is preferable to have a step of adding the paper strength enhancer at the same location and / or on the upstream side as the step of adding the oxidizing agent.
Preferably has an acid agent is an oxidizing agent having a halogen.
The oxidizing agent is a bound halogen, and the contact concentration of the oxidizing agent is preferably 1.0 to 35 mg / L.
The oxidizing agent is a free halogen, and the contact concentration of the oxidizing agent is preferably 0.1 to 20 mg / L.
Hereinafter, the present invention will be described in detail.

Claims (7)

製紙工程におけるカチオン基を有する紙力増強剤の効果向上方法であって、
製紙工程水に、酸化剤を添加する工程と、前記紙力増強剤を添加する工程とを有し、
前記紙力増強剤と前記酸化剤とが接触する際の前記酸化剤の接触濃度が、0.1〜35mg/Lであることを特徴とする紙力増強剤の効果向上方法。
A method for improving the effect of a paper strength enhancer having a cationic group in a papermaking process.
It has a step of adding an oxidizing agent and a step of adding the paper strength enhancer to the papermaking process water.
A method for improving the effect of a paper strength enhancer, wherein the contact concentration of the oxidizing agent when the paper strength enhancer and the oxidizing agent come into contact with each other is 0.1 to 35 mg / L.
製紙工程水に、酸化剤を添加する工程と、紙力増強剤を添加する工程とは、同時又は別々に行われる請求項1に記載の紙力増強剤の効果向上方法。 The method for improving the effect of a paper strength enhancer according to claim 1, wherein the step of adding the oxidizing agent to the papermaking process water and the step of adding the paper strength enhancer are performed simultaneously or separately. 酸化剤を添加する工程と同一箇所及び/又は上流側に、紙力増強剤を添加する工程を有する請求項1又は2に記載の紙力増強剤の効果向上方法。 The method for improving the effect of a paper strength enhancer according to claim 1 or 2, further comprising a step of adding the paper strength enhancer at the same location as the step of adding the oxidizing agent and / or on the upstream side. 酸化剤は、ハロゲンを有する酸化剤及び/又は過酸化水素である請求項1、2又は3に記載の紙力増強剤の効果向上方法。 The method for improving the effect of a paper strength enhancer according to claim 1, 2 or 3, wherein the oxidizing agent is a halogen-containing oxidizing agent and / or hydrogen peroxide. 酸化剤はハロゲンを有する酸化剤である請求項1、2、3又は4に記載の紙力増強剤の効果向上方法。 The method for improving the effect of a paper strength enhancer according to claim 1, 2, 3 or 4, wherein the oxidizing agent is an oxidizing agent having a halogen. 酸化剤は結合ハロゲンであり、前記酸化剤の接触濃度が1.0〜35mg/Lである請求項1、2、3、4又は5に記載の紙力増強剤の効果向上方法。 The method for improving the effect of a paper strength enhancer according to claim 1, 2, 3, 4 or 5, wherein the oxidizing agent is a bound halogen and the contact concentration of the oxidizing agent is 1.0 to 35 mg / L. 酸化剤は遊離ハロゲンであり、前記酸化剤の接触濃度が0.1〜20mg/Lである請求項1、2、3、4又は5に記載の紙力増強剤の効果向上方法。

The method for improving the effect of a paper strength enhancer according to claim 1, 2, 3, 4 or 5, wherein the oxidizing agent is a free halogen and the contact concentration of the oxidizing agent is 0.1 to 20 mg / L.

JP2019184747A 2019-10-07 2019-10-07 Method of improving the effect of paper strength enhancer in papermaking process Active JP6664627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019184747A JP6664627B1 (en) 2019-10-07 2019-10-07 Method of improving the effect of paper strength enhancer in papermaking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184747A JP6664627B1 (en) 2019-10-07 2019-10-07 Method of improving the effect of paper strength enhancer in papermaking process

Publications (2)

Publication Number Publication Date
JP6664627B1 JP6664627B1 (en) 2020-03-13
JP2021059813A true JP2021059813A (en) 2021-04-15

Family

ID=70000353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184747A Active JP6664627B1 (en) 2019-10-07 2019-10-07 Method of improving the effect of paper strength enhancer in papermaking process

Country Status (1)

Country Link
JP (1) JP6664627B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219518B1 (en) 2022-03-31 2023-02-08 株式会社片山化学工業研究所 Method for improving effect of paper strength agent
JP7219517B1 (en) 2022-03-31 2023-02-08 株式会社片山化学工業研究所 Method for improving effect of paper strength agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423810A (en) * 1990-05-18 1992-01-28 Mitsui Toatsu Chem Inc Continuously producing equipment of cationic polyacrylamide-based polymer and inhibition of deterioration of the same polymer with elapse of time
JPH0455405A (en) * 1990-06-25 1992-02-24 Mitsui Toatsu Chem Inc Cationic polyacrylamide
JP2010100945A (en) * 2008-10-21 2010-05-06 Kurita Water Ind Ltd Method for producing paper
WO2014002945A1 (en) * 2012-06-25 2014-01-03 株式会社片山化学工業研究所 Process for manufacturing paperboard
JP2017506707A (en) * 2014-02-27 2017-03-09 エコラブ ユーエスエイ インク Preservation of recycled fiber using biocides in paper manufacturing and paper manufacturing method using recycled fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423810A (en) * 1990-05-18 1992-01-28 Mitsui Toatsu Chem Inc Continuously producing equipment of cationic polyacrylamide-based polymer and inhibition of deterioration of the same polymer with elapse of time
JPH0455405A (en) * 1990-06-25 1992-02-24 Mitsui Toatsu Chem Inc Cationic polyacrylamide
JP2010100945A (en) * 2008-10-21 2010-05-06 Kurita Water Ind Ltd Method for producing paper
WO2014002945A1 (en) * 2012-06-25 2014-01-03 株式会社片山化学工業研究所 Process for manufacturing paperboard
JP2017506707A (en) * 2014-02-27 2017-03-09 エコラブ ユーエスエイ インク Preservation of recycled fiber using biocides in paper manufacturing and paper manufacturing method using recycled fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219518B1 (en) 2022-03-31 2023-02-08 株式会社片山化学工業研究所 Method for improving effect of paper strength agent
JP7219517B1 (en) 2022-03-31 2023-02-08 株式会社片山化学工業研究所 Method for improving effect of paper strength agent
JP2023150630A (en) * 2022-03-31 2023-10-16 株式会社片山化学工業研究所 Method for improving effectiveness of paper strength enhancing agent
JP2023150631A (en) * 2022-03-31 2023-10-16 株式会社片山化学工業研究所 Method for improving effectiveness of paper strength enhancing agent

Also Published As

Publication number Publication date
JP6664627B1 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
AU731377B2 (en) A process for stabilizing the pH of a pulp suspension and for producing paper from the stabilized pulp
US10422079B2 (en) Method for preserving recycled fiber by using biocides in paper manufacturing and method for manufacturing paper using recycled fibers
JP5556838B2 (en) Slime control method in pulp and paper manufacturing process
JP5621082B2 (en) Paperboard manufacturing method
JP6664627B1 (en) Method of improving the effect of paper strength enhancer in papermaking process
JP2011226043A (en) Method for suppressing generation of slime
JP4735117B2 (en) Paper making method
EP2834407B1 (en) A method for bleaching pulp
RU2747664C2 (en) Paper pulp bleaching method
WO2012015452A1 (en) Effect of low dose xylanase on pulp in prebleach treatment process
JP2009249296A (en) Extermination agent for harmful microorganism and method for extermination of harmful microorganism using the same
JP6023953B2 (en) Waste paper pulp bleaching method
JP7219517B1 (en) Method for improving effect of paper strength agent
JP5800545B2 (en) How to control slime
HUT64119A (en) Method for enzyme-bleaching cellulose
JP7219518B1 (en) Method for improving effect of paper strength agent
JP2022167545A (en) Effect improvement method of paper-strengthening agent in paper making step
JP2020128601A (en) White water modifying method and method for producing wastepaper pulp
JP2022072306A (en) Manufacturing method of recycled pulp including paper sludge as raw material
JP2006299460A (en) Method for producing paper and additive for producing the paper
JP6865936B2 (en) Manufacturing method of used paper pulp
JP6806336B2 (en) Method for promoting disintegration of used paper pulp
KR20130046279A (en) Preparation of a surface-sizing composition with high solid content
JP2004124265A (en) Method for improving chlorine dioxide bleaching efficiency
JP2004270092A (en) Method for disintegrating paper stock containing wet paper strength-enhancing paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191023

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6664627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250