JP2021059776A - Lubricant film coated aluminum sheet - Google Patents

Lubricant film coated aluminum sheet Download PDF

Info

Publication number
JP2021059776A
JP2021059776A JP2019186298A JP2019186298A JP2021059776A JP 2021059776 A JP2021059776 A JP 2021059776A JP 2019186298 A JP2019186298 A JP 2019186298A JP 2019186298 A JP2019186298 A JP 2019186298A JP 2021059776 A JP2021059776 A JP 2021059776A
Authority
JP
Japan
Prior art keywords
film
lubricating film
mass
less
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019186298A
Other languages
Japanese (ja)
Inventor
小島 徹也
Tetsuya Kojima
徹也 小島
幸毅 山路
Koki Yamaji
幸毅 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019186298A priority Critical patent/JP2021059776A/en
Priority to CN202010974849.4A priority patent/CN112647068A/en
Publication of JP2021059776A publication Critical patent/JP2021059776A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a lubricant film-coated aluminum sheet capable of showing excellent lubricity and bond durability.SOLUTION: A lubricant film-coated aluminum sheet 10 includes a substrate 1 comprising aluminum or an aluminum alloy, a chemical conversion coating 2 formed on the substrate 1, and containing at least one kind of titanium and zirconium, and a lubricant film 3 formed on the chemical conversion coating 2, in which the lubricant film 3 contains an acrylic acid-based polymer, and water-soluble ethylene oxide.SELECTED DRAWING: Figure 1

Description

本発明は、潤滑皮膜が被覆した潤滑皮膜被覆アルミニウム板に関する。 The present invention relates to a lubricating film-coated aluminum plate coated with a lubricating film.

従来、金属板をプレス加工する際には、金型や金属板の破損を防止する目的として、また、金属板の成形性向上を目的として、金属板の表面に潤滑剤を塗布するという処理が施されている。
ここで、プレス加工の対象がアルミニウム板である場合、潤滑剤を塗布した状態でプレス加工を施すと、加工時の熱や圧力によって化学反応が進行し、潤滑剤中の脂肪酸のカルボキシル基や脂肪油のエステル基と、アルミニウム板や金型に由来する金属イオンとが結合した金属石鹸が生成される。その結果、アルミニウム板は、金属石鹸の生成に伴って変色や腐食が発生するだけでなく、変色や腐食が発生した箇所を起点として破損が生じ易くなってしまう。
Conventionally, when pressing a metal plate, a process of applying a lubricant to the surface of the metal plate is performed for the purpose of preventing damage to the mold and the metal plate and for improving the moldability of the metal plate. It has been subjected.
Here, when the target of press working is an aluminum plate, if the press working is performed with the lubricant applied, the chemical reaction proceeds due to the heat and pressure during processing, and the carboxyl groups and fats of the fatty acids in the lubricant A metal soap in which the ester group of the oil and the metal ion derived from the aluminum plate or the mold are bonded is produced. As a result, the aluminum plate is not only discolored or corroded with the formation of the metal soap, but is also liable to be damaged starting from the discolored or corroded portion.

このような問題を解決すべく、アルミニウム板に好適に用いることができるとともに、アルミニウム板の加工後に脱膜可能な潤滑皮膜、及び、当該潤滑皮膜が被覆したアルミニウム板に関して研究が進められ、以下のような技術が提案されている。 In order to solve such a problem, research has been carried out on a lubricating film that can be suitably used for an aluminum plate and that can be removed after processing the aluminum plate, and an aluminum plate coated with the lubricating film. Such technology has been proposed.

具体的には、特許文献1において、親水基を含有するアルカリ脱膜型ウレタン樹脂と、金属ジルコニウム換算で1〜50mg/m2の水溶性ジルコニウム化合物と、アルカリ脱膜型ウレタン樹脂100重量部に対して1〜30重量部であって0.1〜30μmの平均粒径を有する潤滑剤と、を含有する潤滑皮膜が、基板表面に塗装された潤滑皮膜塗装アルミニウム板が開示されている。そして、この潤滑皮膜塗装アルミニウム板は、アルカリ処理によって潤滑皮膜中のアルカリ脱膜型ウレタン樹脂及び潤滑剤が除去された後に、FT−IRスペクトルの1700cm−1台に現れるピークの最大吸収率が1%以下で、且つ、金属ジルコニウム換算で0.5mg/m以上のジルコニウム化合物層が残存する、と特許文献1に記載されている。 Specifically, in Patent Document 1, an alkaline defilming type urethane resin containing a hydrophilic group, a water-soluble zirconium compound of 1 to 50 mg / m 2 in terms of metallic zirconium, and 100 parts by weight of the alkaline defilming type urethane resin are used. On the other hand, there is disclosed a lubricating film-coated aluminum plate in which a lubricating film containing 1 to 30 parts by weight and an average particle size of 0.1 to 30 μm is coated on the surface of a substrate. The lubricating aluminum plate coated with the lubricating film has a maximum absorption rate of 1 at the peak appearing in 1700 cm-1 unit of the FT-IR spectrum after the alkaline defilming type urethane resin and the lubricant in the lubricating film are removed by the alkaline treatment. It is described in Patent Document 1 that a zirconium compound layer of% or less and 0.5 mg / m 2 or more in terms of metallic zirconium remains.

また、アルミニウム板は、他部材と接合する際、接着剤を用いた接着法が採用される場合がある。この接着法は、被接合部材の厚さや接合箇所によらず接合が可能であるとともに、異種金属や樹脂などとの異材接合も可能であり、接合に制約が少ないというメリットを有している。ただ、接着剤によって接合された接合部は、水分等の侵入により劣化し、接着強度が低下し易いため、十分な接着耐久性が要求される。
そして、アルミニウム板の接着耐久性を向上させる技術としては、以下のような技術が提案されている。
Further, when joining the aluminum plate to another member, an adhesive method using an adhesive may be adopted. This bonding method has the advantage that it can be joined regardless of the thickness of the member to be joined and the joining location, and it is also possible to join different materials with dissimilar metals, resins, etc., and there are few restrictions on joining. However, the joint portion joined by the adhesive deteriorates due to the intrusion of moisture and the like, and the adhesive strength tends to decrease, so that sufficient adhesive durability is required.
The following techniques have been proposed as techniques for improving the adhesive durability of aluminum plates.

具体的には、特許文献2において、金属材料の接着剤塗布前処理方法として、被処理物を少なくとも一種のジルコニウムフッ素錯体及び/又はチタンフッ素錯体を含有する化成処理液により処理する方法が開示されている。 Specifically, Patent Document 2 discloses a method of treating an object to be treated with a chemical conversion treatment liquid containing at least one kind of zirconium fluorine complex and / or titanium fluorine complex as an adhesive application pretreatment method for a metal material. ing.

特開2011−5425号公報Japanese Unexamined Patent Publication No. 2011-5425 特開2006−152267号公報Japanese Unexamined Patent Publication No. 2006-152267

特許文献1では、潤滑皮膜被覆アルミニウム板の潤滑性が検討されているものの、接着時における各皮膜等の技術的な挙動に関しては何ら検討されておらず、接着耐久性について、検討の余地が存在する。
逆に、特許文献2では、金属材料の接着耐久性が検討されているものの、加工時における潤滑皮膜については一切検討されておらず、潤滑性について、検討の余地が存在する。
In Patent Document 1, although the lubricity of the aluminum plate coated with a lubricating film is examined, the technical behavior of each film at the time of adhesion is not examined at all, and there is room for examination about the adhesive durability. To do.
On the contrary, in Patent Document 2, although the adhesive durability of the metal material is examined, the lubricating film at the time of processing is not examined at all, and there is room for examination about the lubricity.

つまり、これまで、潤滑皮膜被覆アルミニウム板に関して、潤滑性と接着耐久性との両立を図ることができるような技術は存在しなかった。 That is, until now, there has been no technology capable of achieving both lubricity and adhesive durability with respect to an aluminum plate coated with a lubricating film.

そこで、本発明は、優れた潤滑性と接着耐久性とを発揮することができる潤滑皮膜被覆アルミニウム板を提供することを課題とする。 Therefore, an object of the present invention is to provide a lubricating film-coated aluminum plate capable of exhibiting excellent lubricity and adhesive durability.

本発明に係る潤滑皮膜被覆アルミニウム板は、アルミニウム又はアルミニウム合金からなる基板と、前記基板上に形成されたチタン及びジルコニウムの少なくとも1種を含有する化成処理皮膜と、前記化成処理皮膜上に形成された潤滑皮膜と、を備え、前記潤滑皮膜は、アクリル酸系高分子と、水溶性エチレンオキシドと、を含有する。 The lubricating film-coated aluminum plate according to the present invention is formed on a substrate made of aluminum or an aluminum alloy, a chemical conversion-treated film containing at least one of titanium and zirconium formed on the substrate, and the chemical conversion-treated film. The lubricating film contains an acrylic acid-based polymer and a water-soluble ethylene oxide.

本発明に係る潤滑皮膜被覆アルミニウム板は、潤滑性と接着耐久性とが優れている。 The lubricating film-coated aluminum plate according to the present invention is excellent in lubricity and adhesive durability.

本実施形態に係る潤滑皮膜被覆アルミニウム板の断面模式図である。It is sectional drawing of the aluminum plate coated with a lubricating film which concerns on this embodiment. 実施例における接着耐久性試験で作成した接着試験体の側面視模式図である。It is a side view schematic diagram of the adhesive test body prepared by the adhesive durability test in an Example.

以下、適宜図面を参照して、本発明に係る潤滑皮膜被覆アルミニウム板を実施するための形態(実施形態)について説明する。 Hereinafter, embodiments (embodiments) for carrying out the lubricating film-coated aluminum plate according to the present invention will be described with reference to the drawings as appropriate.

[潤滑皮膜被覆アルミニウム板]
本実施形態に係る潤滑皮膜被覆アルミニウム板は、図1に示すように、基板1と、基板1上に形成された化成処理皮膜2と、潤滑皮膜3と、を備える。そして、潤滑皮膜被覆アルミニウム板10は、潤滑皮膜3の表面にさらに液体油で構成される補助皮膜(図示せず)を備えていてもよい。
[Aluminum plate coated with lubricating film]
As shown in FIG. 1, the lubricating film-coated aluminum plate according to the present embodiment includes a substrate 1, a chemical conversion-treated film 2 formed on the substrate 1, and a lubricating film 3. The lubricating film-coated aluminum plate 10 may further include an auxiliary film (not shown) composed of liquid oil on the surface of the lubricating film 3.

なお、図1では、潤滑皮膜被覆アルミニウム板10は、基板1の両面に化成処理皮膜2、潤滑皮膜3(及び、補助皮膜)が形成された構成を示しているが、ニーズに応じて、いずれか一方の面に各皮膜が形成された構成としてもよい。さらには、潤滑皮膜被覆アルミニウム板10は、各皮膜を基板1の表面(片面又は両面)全体に備えなくてもよく、プレス加工領域等に限定的に形成されてもよいし、表面以外の領域(例えば、端部)に形成されてもよい。
以下、本実施形態に係る潤滑皮膜被覆アルミニウム板の基板、化成処理皮膜、潤滑皮膜、補助皮膜について詳細に説明する。
Note that FIG. 1 shows a configuration in which a chemical conversion coating film 2 and a lubricating film 3 (and an auxiliary film) are formed on both sides of the substrate 1 of the lubricating film-coated aluminum plate 10. Each film may be formed on one of the surfaces. Further, the lubricating film-coated aluminum plate 10 does not have to have each film on the entire surface (one side or both sides) of the substrate 1, and may be formed only in a press-processed area or the like, or a region other than the surface. It may be formed (for example, at the end).
Hereinafter, the substrate, the chemical conversion treatment film, the lubricating film, and the auxiliary film of the lubricating film-coated aluminum plate according to the present embodiment will be described in detail.

[基板]
基板は、アルミニウム又はアルミニウム合金からなる。そして、基板は、潤滑皮膜被覆アルミニウム板の用途に応じて、例えば、JIS H 4000:2014等に規定される種々の非熱処理型アルミニウム合金又は熱処理型アルミニウム合金から適宜選択される。非熱処理型アルミニウム合金は、純アルミニウム(1000系)、Al−Mn系合金(3000系)、Al−Si系合金(4000系)、及び、Al−Mg系合金(5000系)である。熱処理型アルミニウム合金としては、Al−Cu−Mg系合金(2000系)、Al−Mg−Si系合金(6000系)、及び、Al−Zn−Mg系合金(7000系)である。
なお、基板の板厚は、潤滑皮膜被覆アルミニウム板の用途に応じて、適宜設定することができる。
[substrate]
The substrate is made of aluminum or an aluminum alloy. The substrate is appropriately selected from various non-heat-treated aluminum alloys or heat-treated aluminum alloys specified in, for example, JIS H 4000: 2014, depending on the use of the lubricating film-coated aluminum plate. The non-heat-treated aluminum alloy is pure aluminum (1000 series), Al—Mn based alloy (3000 series), Al—Si based alloy (4000 series), and Al—Mg based alloy (5000 series). Examples of the heat-treated aluminum alloy include Al-Cu-Mg-based alloys (2000 series), Al-Mg-Si-based alloys (6000 series), and Al-Zn-Mg-based alloys (7000 series).
The thickness of the substrate can be appropriately set according to the use of the aluminum plate coated with the lubricating film.

潤滑皮膜被覆アルミニウム板を自動車(詳細には、自動車パネル)に用いる場合、基板は、高強度のものであることが好ましい。このような高強度の基板を構成するアルミニウム合金としては、5000系、6000系、7000系等の耐力が比較的高い汎用合金が挙げられ、必要により調質されたものであってもよい。そして、本実施形態に係る潤滑皮膜被覆アルミニウム板の基板は、5000系、6000系のアルミニウム合金であるのが非常に好ましい。 When the lubricating film-coated aluminum plate is used for an automobile (specifically, an automobile panel), the substrate is preferably of high strength. Examples of the aluminum alloy constituting such a high-strength substrate include general-purpose alloys having a relatively high yield strength such as 5000 series, 6000 series, and 7000 series, and may be tempered if necessary. The substrate of the lubricating film-coated aluminum plate according to the present embodiment is very preferably a 5000 series or 6000 series aluminum alloy.

(5000系のアルミニウム合金)
5000系のアルミニウム合金の組成の一例として、Mg:2.5〜5.5質量%を含有し、さらに適宜、Mn:0.60質量%以下、Cr:0.35質量%以下、Zr:0.50質量%以下、Cu:0.50質量%以下、Zn:0.50質量%以下、Fe:0.70質量%以下、Si:0.40質量%以下、Ti:0.30質量%以下から選択される1種以上を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金が挙げられる。
各元素の含有量の限定理由は以下のとおりである。
(5000 series aluminum alloy)
As an example of the composition of the 5000 series aluminum alloy, Mg: 2.5 to 5.5% by mass is contained, and Mn: 0.60% by mass or less, Cr: 0.35% by mass or less, Zr: 0 as appropriate. .50% by mass or less, Cu: 0.50% by mass or less, Zn: 0.50% by mass or less, Fe: 0.70% by mass or less, Si: 0.40% by mass or less, Ti: 0.30% by mass or less Examples thereof include an aluminum alloy containing one or more selected from the above, the balance of which is Al and unavoidable impurities.
The reasons for limiting the content of each element are as follows.

(Mg:2.5〜5.5質量%)
Mgは、母相内に固溶することにより加工硬化能を高め、アルミニウム合金素材板としての必要な強度や耐久性を確保する必須元素である。Mgの含有量が2.5質量%以上であれば、この作用効果を十分に発揮することができる。一方、Mgの含有量が5.5質量%以下であれば、耐粒界腐食性(耐食性)の低下を抑制することができる。
(Mg: 2.5 to 5.5% by mass)
Mg is an essential element that enhances work hardening ability by solid solution in the matrix phase and secures the required strength and durability as an aluminum alloy material plate. When the Mg content is 2.5% by mass or more, this effect can be sufficiently exerted. On the other hand, when the Mg content is 5.5% by mass or less, it is possible to suppress a decrease in intergranular corrosion resistance (corrosion resistance).

(Mn:0.60質量%以下)
Mnは、成形加工性向上に寄与する元素である。そして、Mnの含有量が0.60質量%以下であれば、この元素を含む粗大な晶出物や析出物が少なくなり、成形性が低下するのを抑制することができる。
(Mn: 0.60% by mass or less)
Mn is an element that contributes to the improvement of molding processability. When the Mn content is 0.60% by mass or less, the amount of coarse crystals and precipitates containing this element is reduced, and it is possible to suppress deterioration of moldability.

(Cr:0.35質量%以下)
Crは、成形加工性向上に寄与する元素である。そして、Crの含有量が0.35質量%以下であれば、この元素を含む粗大な晶出物や析出物が少なくなり、成形性が低下するのを抑制することができる。
(Cr: 0.35% by mass or less)
Cr is an element that contributes to the improvement of molding processability. When the Cr content is 0.35% by mass or less, the amount of coarse crystals and precipitates containing this element is reduced, and it is possible to suppress the deterioration of moldability.

(Zr:0.50質量%以下)
Zrは、成形加工性向上に寄与する元素である。そして、Zrの含有量が0.50質量%以下であれば、この元素を含む粗大な晶出物や析出物が少なくなり、成形性が低下するのを抑制することができる。
(Zr: 0.50% by mass or less)
Zr is an element that contributes to the improvement of molding processability. When the Zr content is 0.50% by mass or less, the amount of coarse crystals and precipitates containing this element is reduced, and it is possible to suppress the deterioration of moldability.

(Cu:0.50質量%以下)
Cuは、固溶強化によりアルミニウム合金板の強度を高める効果を有する元素である。そして、Cuの含有量が0.50質量%以下であれば、製造面でもスラブに割れが生じるなどのスラブ鋳造性の低下は起こらず、圧延などに供する健全なスラブが採取できなくなるのを抑制することができる。
(Cu: 0.50% by mass or less)
Cu is an element that has the effect of increasing the strength of the aluminum alloy plate by strengthening the solid solution. When the Cu content is 0.50% by mass or less, the slab castability does not deteriorate such as cracks in the slab on the manufacturing surface, and it is possible to suppress the inability to collect sound slabs to be used for rolling or the like. can do.

(Zn:0.50質量%以下)
Znは、固溶強化によりアルミニウム合金板の強度を高めるとともに、プレス加工性を向上させる効果を有する元素である。そして、Znの含有量が0.50質量%以下であれば、板製造後の時間経過とともに強度が上昇する時効硬化現象が顕著に生じてプレス加工性が低下するのを抑制することができる。
(Zn: 0.50% by mass or less)
Zn is an element having the effect of increasing the strength of the aluminum alloy plate by strengthening the solid solution and improving the press workability. When the Zn content is 0.50% by mass or less, it is possible to prevent the press workability from being lowered due to the remarkable aging hardening phenomenon in which the strength increases with the lapse of time after the plate is manufactured.

(Fe:0.70質量%以下、Si:0.40質量%以下、Ti:0.30質量%以下)
Fe、Si、Tiは、本発明の効果を妨げない範囲で含有されていてもよい。これらの元素を含有する場合、Feは、0.70質量%以下、Siは、0.40質量%以下、Tiは、0.30質量%以下であることが好ましい。
(Fe: 0.70% by mass or less, Si: 0.40% by mass or less, Ti: 0.30% by mass or less)
Fe, Si, and Ti may be contained within a range that does not interfere with the effects of the present invention. When these elements are contained, Fe is preferably 0.70% by mass or less, Si is 0.40% by mass or less, and Ti is preferably 0.30% by mass or less.

(不可避的不純物)
基板の残部はAl及び不可避的不純物である。そして、不可避的不純物としては、V、Ni、Sn、In、Ga、B、Sc等が挙げられ、本発明の効果を妨げない範囲で含有されていてもよい。この場合の元素の含有量は個々に0.1質量%以下、合計で0.3質量%以下である。
そして、前記したMn、Cr、Zr、Cu、Zn、Fe、Si、Tiも不可避的不純物として含有されていてもよく、この場合の元素の含有量は例えば、個々に0.1質量%以下、合計で0.3質量%以下である。
(Inevitable impurities)
The rest of the substrate is Al and unavoidable impurities. Examples of the unavoidable impurities include V, Ni, Sn, In, Ga, B, Sc and the like, which may be contained within a range that does not interfere with the effects of the present invention. The content of the elements in this case is 0.1% by mass or less individually, and 0.3% by mass or less in total.
The above-mentioned Mn, Cr, Zr, Cu, Zn, Fe, Si, and Ti may also be contained as unavoidable impurities, and the element content in this case is, for example, 0.1% by mass or less individually. The total is 0.3% by mass or less.

(6000系のアルミニウム合金)
6000系のアルミニウム合金の組成の一例として、Mg:0.2〜1.5質量%、Si:0.3〜2.3質量%、Cu:1.0質量%以下を含有し、さらに適宜、Ti:0.1質量%以下、B:0.06質量%以下、Be:0.2質量%以下、Mn:0.8質量%以下、Cr:0.4質量%以下、Fe:0.5質量%以下、Zr:0.2質量%以下、V:0.2質量%以下、Zn:0.5質量%未満から選択される1種以上を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金が挙げられる。
各元素の含有量の限定理由は以下のとおりである。
(6000 series aluminum alloy)
As an example of the composition of the 6000 series aluminum alloy, Mg: 0.2 to 1.5% by mass, Si: 0.3 to 2.3% by mass, Cu: 1.0% by mass or less are contained, and more appropriately. Ti: 0.1% by mass or less, B: 0.06% by mass or less, Be: 0.2% by mass or less, Mn: 0.8% by mass or less, Cr: 0.4% by mass or less, Fe: 0.5 Contains one or more selected from mass% or less, Zr: 0.2% by mass or less, V: 0.2% by mass or less, Zn: less than 0.5% by mass, and the balance consists of Al and unavoidable impurities. Examples include aluminum alloys.
The reasons for limiting the content of each element are as follows.

(Mg:0.2〜1.5質量%)
Mgは、強度を向上させる効果がある。Mgの含有量が0.2質量%未満では、強度向上の効果が小さい。一方、Mgの含有量が1.5質量%を超えると、成形性を低下させる場合がある。
(Mg: 0.2 to 1.5% by mass)
Mg has the effect of improving the strength. When the Mg content is less than 0.2% by mass, the effect of improving the strength is small. On the other hand, if the Mg content exceeds 1.5% by mass, the moldability may be lowered.

(Si:0.3〜2.3質量%)
Siは、強度を向上させる効果がある。Siの含有量が0.3質量%未満では、強度向上の効果が小さい。一方、Siの含有量が2.3質量%を超えると、成形性、熱間圧延性を低下させる場合がある。
(Si: 0.3 to 2.3% by mass)
Si has the effect of improving the strength. When the Si content is less than 0.3% by mass, the effect of improving the strength is small. On the other hand, if the Si content exceeds 2.3% by mass, the moldability and hot rollability may be deteriorated.

(Cu:1.0質量%以下)
Cuは、強度を向上させる効果がある。しかし、Cuの含有量が1.0質量%を超えると、耐食性を低下させる場合がある。なお、Cuの含有量は0質量%を超えているのが好ましい。
(Cu: 1.0% by mass or less)
Cu has the effect of improving the strength. However, if the Cu content exceeds 1.0% by mass, the corrosion resistance may be lowered. The Cu content preferably exceeds 0% by mass.

(Ti:0.1質量%以下)
Tiは、鋳塊の結晶粒を微細にし、成形性を向上させる効果がある。しかし、Tiの含有量が0.1質量%を超えると、粗大な晶出物が形成されるため、成形性を低下させる場合がある。
(Ti: 0.1% by mass or less)
Ti has the effect of making the crystal grains of the ingot finer and improving the moldability. However, if the Ti content exceeds 0.1% by mass, coarse crystallized products are formed, which may reduce moldability.

(B:0.06質量%以下)
Bは、鋳塊の結晶粒や晶出物を微細にし、成形性を向上させる効果がある。しかし、Bの含有量が0.06質量%を超えると、粗大な晶出物が形成されるため、成形性を低下させる場合がある。
(B: 0.06% by mass or less)
B has the effect of improving the moldability by making the crystal grains and crystallized products of the ingot finer. However, if the B content exceeds 0.06% by mass, coarse crystallized products are formed, which may reduce moldability.

(Be:0.2質量%以下)
Beは、アルミニウム合金の熱間圧延性、及び、成形性を向上させる効果がある。しかし、Beの含有量が0.2質量%を超えると、前記効果が飽和する。
(Be: 0.2% by mass or less)
Be has the effect of improving the hot rollability and moldability of the aluminum alloy. However, when the Be content exceeds 0.2% by mass, the effect is saturated.

(Mn:0.8質量%以下、Cr:0.4質量%以下、Fe:0.5質量%以下、Zr:0.2質量%以下、V:0.2質量%以下)
Mn、Cr、Fe、Zr、Vは、それぞれ強度を向上させる効果がある。しかし、これらの元素の含有量が所定値を超えると、具体的には、Mnは0.8質量%、Crは0.4質量%、Feは0.5質量%、Zrは0.2質量%、Vは0.2質量%をそれぞれ超えると、いずれも粗大な晶出物が形成されるため、成形性を低下させる場合がある。
(Mn: 0.8% by mass or less, Cr: 0.4% by mass or less, Fe: 0.5% by mass or less, Zr: 0.2% by mass or less, V: 0.2% by mass or less)
Mn, Cr, Fe, Zr, and V each have the effect of improving the strength. However, when the content of these elements exceeds a predetermined value, specifically, Mn is 0.8% by mass, Cr is 0.4% by mass, Fe is 0.5% by mass, and Zr is 0.2% by mass. If% and V exceed 0.2% by mass, coarse crystallized products are formed in both cases, which may reduce moldability.

(Zn:0.5質量%未満)
Znは、本発明の効果を妨げない範囲で含有されていてもよい。Znの含有量は、0.5質量%未満であることが好ましい。
(Zn: less than 0.5% by mass)
Zn may be contained within a range that does not interfere with the effects of the present invention. The Zn content is preferably less than 0.5% by mass.

(不可避的不純物)
基板の残部はAl及び不可避的不純物である。
前記したCu、Ti、B、Be、Mn、Cr、Fe、Zr、Znが不可避的不純物として含有されていてもよく、この場合の元素の含有量は例えば、個々に0.1質量%以下、合計で0.3質量%以下である。
なお、基板の作製に際して、スクラップ材や低純度のアルミニウム地金などを大量に使用した場合には、これらの元素が必然的に混入してしまうため、前記のように本発明の効果を妨げない範囲での含有を許容している。
(Inevitable impurities)
The rest of the substrate is Al and unavoidable impurities.
The above-mentioned Cu, Ti, B, Be, Mn, Cr, Fe, Zr, and Zn may be contained as unavoidable impurities, and the element content in this case is, for example, 0.1% by mass or less individually. The total is 0.3% by mass or less.
When a large amount of scrap material or low-purity aluminum bullion is used in the production of the substrate, these elements are inevitably mixed in, so that the effect of the present invention is not hindered as described above. It is allowed to be contained in the range.

[化成処理皮膜]
化成処理皮膜は、チタン及びジルコニウムの少なくとも1種を含有する皮膜である。そして、化成処理皮膜のチタンは、チタン酸化物及びチタンフッ化物の少なくとも一方であることが好ましく、化成処理皮膜のジルコニウムは、ジルコニウム酸化物及びジルコニウムフッ化物の少なくとも一方であることが好ましい。
そして、この化成処理皮膜は、チタン及びジルコニウムの少なくとも1種を含有することから、水、酸素、塩化物イオンなどの劣化因子に対する安定性を向上させ、湿潤環境での基板表面における水和を抑制し、その結果、優れた接着耐久性を発揮することができる。
なお、化成処理皮膜は、チタン及びジルコニウムのほかに、残部がアルミニウム及び不純物からなる。ここで、残部のアルミニウムにはアルミニウム酸化物、アルミニウムフッ化物などが含まれる。
[Chemical conversion coating]
The chemical conversion treatment film is a film containing at least one of titanium and zirconium. The titanium of the chemical conversion treatment film is preferably at least one of titanium oxide and titanium fluoride, and the zirconium of the chemical conversion treatment film is preferably at least one of zirconium oxide and zirconium fluoride.
Since this chemical conversion coating contains at least one of titanium and zirconium, it improves stability against deterioration factors such as water, oxygen, and chloride ions, and suppresses hydration on the substrate surface in a wet environment. As a result, excellent adhesive durability can be exhibited.
In addition to titanium and zirconium, the balance of the chemical conversion coating is composed of aluminum and impurities. Here, the remaining aluminum contains aluminum oxide, aluminum fluoride and the like.

(チタン、ジルコニウムの含有量)
化成処理皮膜のチタン皮膜量とジルコニウム皮膜量との合計量が、3mg/m未満では、基板の表面における水和の抑制効果が十分に発揮されない可能性がある。また、この合計量が、17mg/mを超えると、接着時に皮膜内部の破壊が生じ易くなる。
よって、化成処理皮膜のチタン皮膜量とジルコニウム皮膜量との合計量は、3mg/m以上17mg/m以下が好ましい。
(Titanium and zirconium content)
If the total amount of the titanium film amount and the zirconium film amount of the chemical conversion treatment film is less than 3 mg / m 2 , the effect of suppressing hydration on the surface of the substrate may not be sufficiently exhibited. Further, if this total amount exceeds 17 mg / m 2 , the inside of the film is likely to be destroyed during adhesion.
Therefore, the total amount of the titanium film amount and the zirconium film amount of the chemical conversion treatment film is preferably 3 mg / m 2 or more and 17 mg / m 2 or less.

なお、チタン皮膜量とジルコニウム皮膜量との合計量は、基板の表面における水和を抑制する観点から、5mg/m以上が好ましく、接着時の皮膜内部の破壊を抑制する観点から、15mg/m以下が好ましく、13mg/m以下がより好ましい。 The total amount of the titanium film amount and the zirconium film amount is preferably 5 mg / m 2 or more from the viewpoint of suppressing hydration on the surface of the substrate, and 15 mg / m 2 or more from the viewpoint of suppressing the destruction inside the film during adhesion. m 2 or less, and more preferably at most 13 mg / m 2.

化成処理皮膜のチタン皮膜量が、1mg/m未満では、前記した水和の抑制効果が十分に発揮されない可能性がある。また、このチタン皮膜量が、10mg/m超えると前記効果が飽和し製造コストの上昇につながるだけでなく、接着時に皮膜内部の破壊が生じ易くなる。
よって、化成処理皮膜のチタン皮膜量は、1mg/m以上10mg/m以下が好ましい。
If the amount of the titanium film of the chemical conversion treatment film is less than 1 mg / m 2 , the above-mentioned effect of suppressing hydration may not be sufficiently exhibited. Further, if the amount of the titanium film exceeds 10 mg / m 2 , the effect is saturated and not only the production cost is increased, but also the inside of the film is liable to be destroyed at the time of adhesion.
Therefore, the amount of titanium film in the chemical conversion treatment film is preferably 1 mg / m 2 or more and 10 mg / m 2 or less.

なお、チタン皮膜量は、基板の表面における水和を抑制する観点から、2mg/m以上が好ましく、製造コストの上昇や接着時の皮膜内部の破壊を抑制する観点から、8mg/m以下が好ましい。 The amount of the titanium film is preferably 2 mg / m 2 or more from the viewpoint of suppressing hydration on the surface of the substrate , and 8 mg / m 2 or less from the viewpoint of suppressing an increase in manufacturing cost and destruction inside the film during adhesion. Is preferable.

化成処理皮膜のジルコニウム皮膜量が、1mg/m未満では、前記した水和の抑制効果が十分に発揮されない可能性がある。また、このジルコニウム皮膜量が、10mg/m超えると前記効果が飽和し製造コストの上昇につながるだけでなく、接着時に皮膜内部の破壊が生じ易くなる。
よって、化成処理皮膜のジルコニウム皮膜量は、1mg/m以上10mg/m以下が好ましい。
If the amount of the zirconium film of the chemical conversion treatment film is less than 1 mg / m 2 , the above-mentioned effect of suppressing hydration may not be sufficiently exhibited. Further, if the amount of the zirconium film exceeds 10 mg / m 2 , the effect is saturated and not only the production cost is increased, but also the inside of the film is likely to be destroyed at the time of adhesion.
Therefore, the amount of zirconium film in the chemical conversion treatment film is preferably 1 mg / m 2 or more and 10 mg / m 2 or less.

なお、ジルコニウム皮膜量は、基板の表面における水和を抑制する観点から、2mg/m以上が好ましく、製造コストの上昇や接着時の皮膜内部の破壊を抑制する観点から、8mg/m以下が好ましい。 The amount of the zirconium film is preferably 2 mg / m 2 or more from the viewpoint of suppressing hydration on the surface of the substrate , and 8 mg / m 2 or less from the viewpoint of suppressing an increase in manufacturing cost and destruction inside the film during adhesion. Is preferable.

(化成処理皮膜の厚さ)
化成処理皮膜の厚さは、前記したチタン皮膜量、ジルコニウム皮膜量、又は、合計量が所定量であれば特に限定されないが、例えば、10〜150nmであることが好ましい。化成処理皮膜の厚さが10nm未満であると接着耐久性を維持し難くなり、この厚さが150nmを超えると皮膜内部の破壊が生じやすくなるからである。
(Thickness of chemical conversion coating)
The thickness of the chemical conversion treatment film is not particularly limited as long as the titanium film amount, the zirconium film amount, or the total amount is a predetermined amount, but is preferably 10 to 150 nm, for example. This is because if the thickness of the chemical conversion treatment film is less than 10 nm, it becomes difficult to maintain the adhesive durability, and if this thickness exceeds 150 nm, the inside of the film is likely to be destroyed.

[潤滑皮膜]
潤滑皮膜は、潤滑組成物を基板の表面に成膜(塗装等)した後、乾燥させることにより形成される皮膜であり、主成分として、アクリル酸系高分子と水溶性エチレンオキシドとを含有する。
そして、この潤滑皮膜は、前記した化成処理皮膜との組み合わせにおいて、化成処理皮膜が発揮する接着耐久性を抑制したり阻害したりすることなく、優れた潤滑性を発揮することができる。
[Lubricating film]
The lubricating film is a film formed by forming a lubricating composition on the surface of a substrate (painting or the like) and then drying it, and contains an acrylic acid-based polymer and water-soluble ethylene oxide as main components.
Then, in combination with the chemical conversion treatment film described above, this lubricating film can exhibit excellent lubricity without suppressing or impeding the adhesive durability exhibited by the chemical conversion treatment film.

(アクリル酸系高分子)
アクリル酸系高分子は、極性基を含有することによって基板との密着性を高める作用を有する。なお、このアクリル酸系高分子だけでは、優れた接着耐久性が発揮されないことを実験によって確認している。
そして、アクリル酸系高分子としては、アクリル酸が重合したポリアクリル酸、アクリル酸のアルカリ金属塩、アルカリ酸アンモニア塩、(ポリ)メタアクリル酸、アクリル酸エステル共重合、スチレン・ポリアクリル酸共重合物、N−メチロールアクリルアミドのアクリルアミド誘導体の重合物等が挙げられる。
(Acrylic acid-based polymer)
The acrylic acid-based polymer has an effect of enhancing the adhesion to the substrate by containing a polar group. It has been confirmed by experiments that the acrylic acid-based polymer alone does not exhibit excellent adhesive durability.
As acrylic acid-based polymers, polyacrylic acid obtained by polymerizing acrylic acid, alkali metal salt of acrylic acid, ammonia acid alkali salt, (poly) methacrylic acid, acrylic acid ester copolymerization, and styrene / polyacrylic acid both. Examples thereof include a polymer and a polymer of an acrylamide derivative of N-methylolacrylamide.

(水溶性エチレンオキシド)
水溶性エチレンオキシドは、潤滑皮膜の潤滑性を向上させる作用を有し、前記したアクリル酸系高分子との組み合わせによって、優れた潤滑性を発揮することができる。なお、この水溶性エチレンオキシドだけでは、優れた接着耐久性が発揮されないことを実験によって確認している。
そして、水溶性エチレンオキシドとしては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンベヘニルエーテル等が挙げられる。なお、ポリオキシエチレンアルキルエーテルは、「R−O−(CHCHO)−H」(式中、Rは炭素数20〜24のアルキル基を示し、nは繰り返し単位数である)で示される脂肪族系グリコールエーテル化合物である。
(Water-soluble ethylene oxide)
The water-soluble ethylene oxide has an effect of improving the lubricity of the lubricating film, and can exhibit excellent lubricity when combined with the acrylic acid-based polymer described above. It has been experimentally confirmed that this water-soluble ethylene oxide alone does not exhibit excellent adhesive durability.
Examples of the water-soluble ethylene oxide include polyoxyethylene alkyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, and polyoxyethylene behenyl ether. The polyoxyethylene alkyl ether is "RO- (CH 2 CH 2 O) n- H" (in the formula, R represents an alkyl group having 20 to 24 carbon atoms, and n is the number of repeating units). It is an aliphatic glycol ether compound represented by.

式中のエチレンオキシド(CHCHO)の繰り返し単位数であるnが40以上であると、ポリオキシエチレンアルキルエーテルの主鎖が長くなり、加工時(例えば、プレス加工時)の基板と金型との間の摩擦を本実施形態に係る潤滑皮膜によって十分に低減させることができる。その結果、潤滑皮膜被覆アルミニウム板の加工時の潤滑性が向上して良好な成形性が得られる。
したがって、式中のエチレンオキシド(CHCHO)の繰り返し単位数nは、40以上であることが好ましい。
When n, which is the number of repeating units of ethylene oxide (CH 2 CH 2 O) in the formula, is 40 or more, the main chain of the polyoxyethylene alkyl ether becomes long, and the substrate and gold during processing (for example, during press processing) become long. The friction between the mold and the mold can be sufficiently reduced by the lubricating film according to the present embodiment. As a result, the lubricity at the time of processing the lubricating film-coated aluminum plate is improved, and good moldability can be obtained.
Therefore, the number of repeating units n of ethylene oxide (CH 2 CH 2 O) in the formula is preferably 40 or more.

また、式中の繰り返し単位数nが大きくなると、ポリオキシエチレンアルキルエーテルの融点が高くなる。その結果、アルミニウム板の保管中における温度の上昇によって潤滑皮膜を介して板同士が固着してしまうといった現象の発生を抑制して耐ブロッキング性を向上させることができる。加えて、式中の繰り返し単位数nが大きくなると、前記した潤滑性についてさらに向上させることができる。
よって、耐ブロッキング性を向上させる観点から、式中の繰り返し単位数nは60以上が好ましく、70以上がより好ましく、90以上がさらに好ましく、100以上が特に好ましい。
なお、融点は、JIS K 2235:2009に準拠して測定することができる。
Further, as the number of repeating units n in the formula increases, the melting point of the polyoxyethylene alkyl ether increases. As a result, it is possible to improve the blocking resistance by suppressing the occurrence of a phenomenon in which the aluminum plates are stuck to each other via the lubricating film due to an increase in temperature during storage. In addition, as the number of repeating units n in the formula increases, the lubricity described above can be further improved.
Therefore, from the viewpoint of improving blocking resistance, the number of repeating units n in the formula is preferably 60 or more, more preferably 70 or more, further preferably 90 or more, and particularly preferably 100 or more.
The melting point can be measured according to JIS K 2235: 2009.

一方、式中の繰り返し単位数nの上限については特に限定されないが、ポリオキシエチレンアルキルエーテル自体の製造困難性やコスト上昇の観点から、例えば、450以下、300以下、200以下、150以下が挙げられる。 On the other hand, the upper limit of the number of repeating units n in the formula is not particularly limited, but from the viewpoint of manufacturing difficulty and cost increase of the polyoxyethylene alkyl ether itself, for example, 450 or less, 300 or less, 200 or less, 150 or less can be mentioned. Be done.

式中のRはアルキル基であるが、炭素数が20未満であると、潤滑性が不十分となる。一方、炭素数が24を超えると、入手自体が困難となる。
したがって、式中のRのアルキル基の炭素数は20〜24である。
R in the formula is an alkyl group, but if the number of carbon atoms is less than 20, the lubricity becomes insufficient. On the other hand, if the number of carbon atoms exceeds 24, it becomes difficult to obtain it.
Therefore, the alkyl group of R in the formula has 20 to 24 carbon atoms.

潤滑皮膜に含まれるポリオキシエチレンアルキルエーテルは、1種類であってもよいが、分子量や分子鎖長が異なる2種類以上を含有していてもよい。
ポリオキシエチレンアルキルエーテルが2種類以上である場合、其々のnの値が、前記したnの値の所定範囲内となるのが好ましいが、nの平均値が前記したnの値の所定範囲内となっていればよい。また、ポリオキシエチレンアルキルエーテルが2種類以上である場合、其々のRのアルキル基の炭素数の値が、前記した炭素数の所定範囲内となるのが好ましいが、炭素数の平均値が前記した炭素数の所定範囲内となっていればよい。
なお、nの平均値や炭素数の平均値は、例えば、クロマトグラフ等の分析によって同定したのち算出すればよい。
The polyoxyethylene alkyl ether contained in the lubricating film may contain one type, but may contain two or more types having different molecular weights and molecular chain lengths.
When there are two or more types of polyoxyethylene alkyl ethers, it is preferable that the value of each n is within a predetermined range of the above-mentioned n value, but the average value of n is within the above-mentioned predetermined range of the value of n. It suffices to be inside. When there are two or more types of polyoxyethylene alkyl ethers, the value of the carbon number of each R alkyl group is preferably within the predetermined range of the above-mentioned carbon number, but the average value of the carbon number is It suffices if it is within the predetermined range of the carbon number described above.
The average value of n and the average value of the number of carbon atoms may be calculated after being identified by, for example, analysis such as a chromatograph.

分子量や分子鎖長が異なるポリオキシエチレンアルキルエーテルを2種類以上使用することにより、潤滑組成物の融点(凝固点)を調節して、金型の形状やプレス温度、プレス圧力等、プレス加工条件に好適な潤滑性を有する潤滑組成物を得ることができる。また、潤滑組成物の融点を調節して、気温、地理的要因、保管環境等に好適な潤滑組成物を得ることができる。 By using two or more types of polyoxyethylene alkyl ethers having different molecular weights and molecular chain lengths, the melting point (freezing point) of the lubricating composition can be adjusted to control the shape of the mold, press temperature, press pressure, and other press working conditions. A lubricating composition having suitable lubricity can be obtained. Further, the melting point of the lubricating composition can be adjusted to obtain a lubricating composition suitable for temperature, geographical factors, storage environment and the like.

(潤滑皮膜:皮膜量)
潤滑皮膜の皮膜量が0.10g/m以上であると、十分な潤滑性を確保することができる。一方、潤滑皮膜の皮膜量が2.00g/m以下であると、接着耐久性の低下を回避することができる。
よって、潤滑皮膜の皮膜量は、0.10g/m以上2.00g/m以下が好ましい。
(Lubricating film: film amount)
When the amount of the lubricating film is 0.10 g / m 2 or more, sufficient lubricity can be ensured. On the other hand, when the amount of the lubricating film is 2.00 g / m 2 or less, it is possible to avoid a decrease in adhesive durability.
Therefore, the amount of the lubricating film is preferably 0.10 g / m 2 or more and 2.00 g / m 2 or less.

なお、潤滑皮膜の皮膜量は、潤滑性を確保する観点から、0.20g/m以上が好ましく、0.25g/m以上がより好ましい。また、潤滑皮膜の皮膜量は、接着耐久性を確保する観点から、1.00g/m以下が好ましく、0.60g/m以下がより好ましい。 The amount of the lubricating film is preferably 0.20 g / m 2 or more, and more preferably 0.25 g / m 2 or more, from the viewpoint of ensuring lubricity. The amount of the lubricating film is preferably 1.00 g / m 2 or less, more preferably 0.60 g / m 2 or less, from the viewpoint of ensuring adhesive durability.

(潤滑皮膜:その他の成分)
潤滑皮膜を構成する潤滑組成物は、例えば、特公S51−003702の例3に記載されているように、アクリル酸系高分子や水溶性エチレンオキシド以外にも各種化合物、スチレン/無水マレイン酸共重合体、ステアリン酸Ca、ステアリン酸Zn、カルナバ蝋等を適宜含有していてもよい。
また、潤滑皮膜を構成する潤滑組成物は、アクリル酸系高分子と水溶性エチレンオキシドとが奏する効果を妨げない範囲で、例えば、酸化防止剤、導電性添加剤、界面活性剤、増粘剤、消泡剤、レベリング剤、分散剤、乾燥剤、安定剤、皮張り防止剤、かび防止剤、防腐剤、凍結防止剤等を適宜含有していてもよい。
なお、潤滑組成物の溶媒は、水、アルコール類、ケトン類等を用いればよい。
(Lubricating film: other components)
As described in Example 3 of Japanese Patent Publication S51-003702, for example, the lubricating composition constituting the lubricating film includes various compounds other than the acrylic acid-based polymer and the water-soluble ethylene oxide, and the styrene / maleic anhydride copolymer. The coalescence, Ca stearate, Zn stearate, carnauba wax and the like may be appropriately contained.
Further, the lubricating composition constituting the lubricating film is, for example, an antioxidant, a conductive additive, a surfactant, a thickener, as long as it does not interfere with the effects of the acrylic acid-based polymer and the water-soluble ethylene oxide. Defoamers, leveling agents, dispersants, desiccants, stabilizers, anti-skin agents, anti-mold agents, preservatives, anti-freezing agents and the like may be appropriately contained.
As the solvent of the lubricating composition, water, alcohols, ketones and the like may be used.

酸化防止剤は、ポリオキシエチレンアルキルエーテルの熱分解を防止するため、潤滑組成物に含有させるのが好ましい。詳細には、基板に潤滑皮膜を形成する際、潤滑組成物を加熱溶融して長時間保持すると、ポリオキシエチレンアルキルエーテル構造中のエチレンオキシドが周囲の酸素と反応して徐々に酸化して分解していくが、酸化防止剤は、この分解反応を抑制することができる。 The antioxidant is preferably contained in the lubricating composition in order to prevent thermal decomposition of the polyoxyethylene alkyl ether. Specifically, when the lubricating composition is heated and melted and held for a long time when forming a lubricating film on a substrate, ethylene oxide in the polyoxyethylene alkyl ether structure reacts with surrounding oxygen and gradually oxidizes and decomposes. However, antioxidants can suppress this decomposition reaction.

酸化防止剤としては、例えば、セミカルバジド基を有するものやフェノール基を有するものが挙げられる。具体的には、ビュレット−トリ(ヘキサメチレン−N,N−ジメチルセミカルバジド)、1,6−ヘキサメチレンビス(N,N−メチルセミカルバジド)、2,6−ジ−t−ブチル−4−メチルフェノール、2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)等を挙げることができる。そして、酸化防止剤の含有量は、潤滑組成物全体に対して2〜3質量%が好ましい。 Examples of the antioxidant include those having a semicarbazide group and those having a phenol group. Specifically, bullet-tri (hexamethylene-N, N-dimethylsemicarbazide), 1,6-hexamethylenebis (N, N-methylsemicarbazide), 2,6-di-t-butyl-4-methylphenol. , 2,2'-Methylenebis (6-t-butyl-4-methylphenol) and the like. The content of the antioxidant is preferably 2 to 3% by mass with respect to the entire lubricating composition.

[補助皮膜]
補助皮膜は、液体油を潤滑皮膜の表面に成膜(塗装等)して形成される層であるが、本実施形態に係る潤滑皮膜被覆アルミニウム板において必須の皮膜ではない。
[Auxiliary film]
The auxiliary film is a layer formed by forming (painting, etc.) liquid oil on the surface of the lubricating film, but it is not an essential film in the lubricating film-coated aluminum plate according to the present embodiment.

(補助皮膜:成分)
補助皮膜は、石油系炭化水素を主成分とする液体油で構成される。なお、「石油系炭化水素を主成分とする」とは、詳細には、液体油における石油系炭化水素の含有量が50質量%以上のことであり、60質量%以上が好ましく、70質量%以上、80質量%以上がより好ましい。
石油系炭化水素は特に限定されないが、例えば、炭素数8〜18の鎖式飽和炭化水素等が挙げられる。また、液体油中の石油系炭化水素以外の物質としては、例えば、脂肪酸エステル、防錆剤、極圧剤、界面活性剤等が挙げられる。
(Auxiliary film: component)
The auxiliary film is composed of a liquid oil containing petroleum-based hydrocarbon as a main component. The phrase "mainly composed of petroleum-based hydrocarbons" means that the content of petroleum-based hydrocarbons in the liquid oil is 50% by mass or more, preferably 60% by mass or more, and 70% by mass or more. As mentioned above, 80% by mass or more is more preferable.
Petroleum-based hydrocarbons are not particularly limited, and examples thereof include chain-type saturated hydrocarbons having 8 to 18 carbon atoms. Examples of substances other than petroleum-based hydrocarbons in liquid oil include fatty acid esters, rust inhibitors, extreme pressure agents, and surfactants.

(補助皮膜:皮膜量)
補助皮膜の皮膜量が0.3g/m以上であると、十分な耐変色性(錆等に基づく基板の変色に対する耐性)を確保することができる。一方、補助皮膜の皮膜量が1.0g/mを超えると、耐変色性の向上の効果が飽和するとともに、塗装ムラが発生し易くなるおそれもある。
したがって、補助皮膜の皮膜量は、0.3〜1.0g/mが好ましい。そして、補助皮膜の皮膜量は、耐変色性の向上の観点から、0.4g/m以上が好ましく、塗装ムラの発生を抑制する観点から、0.8g/m以下が好ましく、0.6g/m以下がより好ましい。
(Auxiliary film: film amount)
When the amount of the auxiliary film is 0.3 g / m 2 or more, sufficient discoloration resistance (resistance to discoloration of the substrate due to rust or the like) can be ensured. On the other hand, if the amount of the auxiliary film exceeds 1.0 g / m 2 , the effect of improving the discoloration resistance is saturated and coating unevenness may easily occur.
Therefore, the amount of the auxiliary film is preferably 0.3 to 1.0 g / m 2. The amount of the auxiliary film is preferably 0.4 g / m 2 or more from the viewpoint of improving discoloration resistance, and preferably 0.8 g / m 2 or less from the viewpoint of suppressing the occurrence of coating unevenness. 6 g / m 2 or less is more preferable.

(補助皮膜:動粘度)
補助皮膜を構成する液体油の40℃における動粘度が1cSt未満であると、塗装時の皮膜量の均一性が確保できなくなるおそれがある。一方、補助皮膜を構成する液体油の40℃における動粘度が7cStを超えると、常温での静電塗布方式等での塗装がし難くなってしまう。
したがって、補助皮膜を構成する液体油の40℃における動粘度は、1〜7cStであるのが好ましい。そして、補助皮膜を構成する液体油の40℃における動粘度は、皮膜量の均一性の観点から、2cSt以上がより好ましく、塗装の容易性の観点から、6cSt以下がより好ましい。
このような液体油としては、JX製のPD4000T(動粘度2cSt)、スギムラ化学工業製のプレトンR303P(動粘度4cSt)等が挙げられる。
(Auxiliary film: kinematic viscosity)
If the kinematic viscosity of the liquid oil constituting the auxiliary film at 40 ° C. is less than 1 cSt, the uniformity of the film amount at the time of painting may not be ensured. On the other hand, if the kinematic viscosity of the liquid oil constituting the auxiliary film at 40 ° C. exceeds 7 cSt, it becomes difficult to paint by an electrostatic coating method or the like at room temperature.
Therefore, the kinematic viscosity of the liquid oil constituting the auxiliary film at 40 ° C. is preferably 1 to 7 cSt. The kinematic viscosity of the liquid oil constituting the auxiliary film at 40 ° C. is more preferably 2 cSt or more from the viewpoint of uniformity of the film amount, and more preferably 6 cSt or less from the viewpoint of ease of coating.
Examples of such liquid oil include PD4000T (kinematic viscosity 2cSt) manufactured by JX, Preton R303P (kinematic viscosity 4cSt) manufactured by Sugimura Chemical Industrial, and the like.

(各測定方法)
化成処理皮膜のチタン皮膜量(金属チタン換算量)及びジルコニウム皮膜量(金属ジルコニウム換算量)は、蛍光X線(XRF:X−ray Fluorescence Analysis)によって測定することが可能である。
また、化成処理皮膜の厚さは、グロー放電発光分析装置(GD−OES:Glow Discharge Optical Emission Spectroscopy)によって測定することが可能である。
(Each measurement method)
The titanium film amount (metal titanium equivalent amount) and the zirconium film amount (metal zirconium equivalent amount) of the chemical conversion treatment film can be measured by fluorescent X-ray (XRF: X-ray Fluorescense Analysis).
Further, the thickness of the chemical conversion-treated film can be measured by a glow discharge emission analyzer (GD-OES: Glow Discharge Optical Measurement Spectroscopy).

潤滑皮膜、補助皮膜の皮膜量の測定方法は特に限定されないものの、例えば、赤外膜厚計によって、潤滑皮膜、補助皮膜の膜厚を測定し、事前に求めた各皮膜の重量と各皮膜の膜厚との相関式に基づいて、測定して得られた膜厚の値から、各皮膜の皮膜量を算出すればよい。
また、補助皮膜を構成する液体油の40℃における動粘度の測定方法は特に限定されないものの、例えば、JIS K 2283:2000に記載の方法等が挙げられる。
The method for measuring the amount of the lubricating film and the auxiliary film is not particularly limited, but for example, the film thickness of the lubricating film and the auxiliary film is measured with an infrared film thickness meter, and the weight of each film and the weight of each film obtained in advance are measured. The amount of each film may be calculated from the measured film thickness value based on the correlation formula with the film thickness.
The method for measuring the kinematic viscosity of the liquid oil constituting the auxiliary film at 40 ° C. is not particularly limited, and examples thereof include the method described in JIS K 2283: 2000.

[用途]
本実施形態に係る潤滑皮膜被覆アルミニウム板は、軽量であるとともに、潤滑性と接着耐久性とに優れることから、軽量化が求められるとともに複雑な加工や接着処理が施される自動車の構成部材、特に自動車用パネルとして好適に用いることができる。
[Use]
Since the lubricating film-coated aluminum plate according to the present embodiment is lightweight and has excellent lubricity and adhesive durability, it is required to be lightweight and is a component member of an automobile that is subjected to complicated processing and adhesive treatment. In particular, it can be suitably used as an automobile panel.

[潤滑皮膜被覆アルミニウム板の製造方法]
次に、本実施形態に係る潤滑皮膜被覆アルミニウム板の製造方法について説明する。
潤滑皮膜被覆アルミニウム板の製造方法は、基板作製工程と、化成処理皮膜形成工程と、潤滑皮膜形成工程と、を含み、さらに、補助皮膜形成工程を含んでもよい。
以下、各工程について詳細に説明する。
[Manufacturing method of aluminum plate coated with lubricating film]
Next, a method for manufacturing the lubricating film-coated aluminum plate according to the present embodiment will be described.
The method for producing a lubricating film-coated aluminum plate includes a substrate manufacturing step, a chemical conversion treatment film forming step, and a lubricating film forming step, and may further include an auxiliary film forming step.
Hereinafter, each step will be described in detail.

(基板作製工程)
基板作製工程は、圧延によって基板を作製する工程である。具体的には、以下のような手順で基板を作製することができる。
(Substrate manufacturing process)
The substrate manufacturing process is a step of manufacturing a substrate by rolling. Specifically, the substrate can be produced by the following procedure.

所定の組成を有するアルミニウム合金を連続鋳造により溶解、鋳造して鋳塊を製造し(溶解鋳造工程)、前記製造された鋳塊に、均質化熱処理を施す(均質化熱処理工程)。次に、前記均質化熱処理された鋳塊に、熱間圧延を施して熱延板を製造する(熱間圧延工程)。次に、熱延板に300〜580℃で荒焼鈍又は中間焼鈍を行い、最終冷間圧延率5%以上の冷間圧延を少なくとも1回施して、所定の板厚の冷延板を製造する(冷間圧延工程)。荒焼鈍又は中間焼鈍の温度を300℃以上とすることで、成形性向上の効果がより発揮され、580℃以下とすることで、バーニングの発生による成形性の低下を抑制し易くなる。最終冷間圧延率を5%以上とすることで、成形性の向上の効果がより発揮される。なお、均質化熱処理、熱間圧延の条件は、特に限定されるものではなく、熱延板を通常得る場合の条件でよい。また、中間焼鈍は行わなくてもよい。 An aluminum alloy having a predetermined composition is melted and cast by continuous casting to produce an ingot (melting casting step), and the manufactured ingot is subjected to homogenization heat treatment (homogenization heat treatment step). Next, the ingot that has been homogenized and heat-treated is hot-rolled to produce a hot-rolled plate (hot-rolling step). Next, the hot-rolled plate is roughly annealed or intermediate-annealed at 300 to 580 ° C., and cold-rolled at least once with a final cold rolling ratio of 5% or more to produce a cold-rolled plate having a predetermined plate thickness. (Cold rolling process). By setting the temperature of rough annealing or intermediate annealing to 300 ° C. or higher, the effect of improving moldability is further exhibited, and by setting the temperature to 580 ° C. or lower, deterioration of moldability due to the occurrence of burning can be easily suppressed. By setting the final cold rolling ratio to 5% or more, the effect of improving moldability is further exhibited. The conditions for the homogenizing heat treatment and the hot rolling are not particularly limited, and may be the conditions when a hot-rolled sheet is usually obtained. Further, intermediate annealing does not have to be performed.

また、上記冷間圧延後に、板平坦度の矯正のためのスキンパス圧延や表面粗さ制御のための放電ダル(EDT:Electric Discharge Textured)加工ロールを用いた圧延等の低加工率の冷間圧延を行ってもよい。 Further, after the cold rolling, cold rolling with a low processing rate such as skin pass rolling for straightening plate flatness and rolling using an electric discharge textured (EDT) processing roll for surface roughness control. May be done.

(化成処理皮膜形成工程)
化成処理皮膜形成工程は、基板の上に化成処理皮膜を形成する工程である。具体的には、以下のような手順で化成処理皮膜を形成することができる。
(Chemical conversion coating film forming process)
The chemical conversion treatment film forming step is a step of forming a chemical conversion treatment film on the substrate. Specifically, a chemical conversion treatment film can be formed by the following procedure.

フッ化チタン化合物、フッ化ジルコニウム化合物の少なくとも1種を含有する処理液を基板表面に供給して所定の時間接触させた後、水洗を行うことで処理液を除去する。基板表面と接触した処理液は基板と反応することで、チタン及びジルコニウムの少なくとも1種を含有する化成処理皮膜を形成する。なお、化成処理皮膜形成工程における処理液の供給は噴霧法または浸漬法のいずれの形態であってもよく、水洗は噴霧法または浸漬法のいずれの形態であってもよい。また、処理液の濃度および接触時間は、前記したチタン皮膜量、ジルコニウム皮膜量、合計の皮膜量が所定量となるように設定すればよい。
また、上記の他に、フッ化チタン化合物、フッ化ジルコニウム化合物の少なくとも1種を含有する処理液を塗布する方法があり、どちらの方法で処理を行ってもよい。基板表面に塗布された処理液は基板と反応することで、チタン及びジルコニウムの少なくとも1種を含有する化成処理皮膜を形成する。なお、化成処理皮膜形成工程における処理液の塗布は、間接帯電式(ベル式)静電塗布法、スプレー式(電界なし)塗布方法、浸漬方法、後記する塗装法のいずれの形態であってもよい。また、処理液の塗布量は、前記したチタン皮膜量、ジルコニウム皮膜量、合計の皮膜量が所定量となるように設定すればよい。
A treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound is supplied to the surface of the substrate and brought into contact with the substrate for a predetermined time, and then washed with water to remove the treatment liquid. The treatment liquid in contact with the surface of the substrate reacts with the substrate to form a chemical conversion treatment film containing at least one of titanium and zirconium. The treatment liquid may be supplied in any form of the spraying method or the dipping method in the chemical conversion treatment film forming step, and the washing with water may be in any form of the spraying method or the dipping method. Further, the concentration and contact time of the treatment liquid may be set so that the titanium film amount, the zirconium film amount, and the total film amount described above are predetermined amounts.
In addition to the above, there is a method of applying a treatment liquid containing at least one of a titanium fluoride compound and a zirconium fluoride compound, and the treatment may be performed by either method. The treatment liquid applied to the surface of the substrate reacts with the substrate to form a chemical conversion treatment film containing at least one of titanium and zirconium. The treatment liquid in the chemical conversion coating film forming step may be applied in any of the indirect charging type (bell type) electrostatic coating method, the spray type (no electric field) coating method, the dipping method, and the coating method described later. Good. Further, the coating amount of the treatment liquid may be set so that the titanium film amount, the zirconium film amount, and the total film amount described above are predetermined amounts.

ここで、フッ化チタン化合物とは、例えば、KTiF、(NHTiFなどのフルオロチタネート、HTiFなどのフルオロチタネート酸などである。フッ化ジルコニウム化合物とは、例えば、KZrF、(NHZrFなどのフルオロジルコネート、HZrFなどのフルオロジルコネート酸などである。 Here, the titanium fluoride compound is, for example, a fluorotitanate such as K 2 TiF 6 , (NH 4 ) 2 TiF 6 , a fluoro titanate acid such as H 2 TiF 6. The zirconium fluoride compound, for example, K 2 ZrF 6, and the like fluorozirconate such (NH 4) 2 ZrF 6, fluoro zirconate acid such as H 2 ZrF 6.

そして、化成処理皮膜形成工程において基板表面に処理液を供給または塗布する前に、基板表面に残存する油分を除去するアルカリ洗浄処理、アルカリを除去する水洗処理、アルミニウム酸化被膜やマグネシウム酸化被膜を除去する酸洗浄処理、酸を除去する水洗処理、を適宜実施してもよい。
また、化成処理皮膜形成工程において基板に処理液を供給および水洗した後に、または塗布した後に、基板表面の水洗水または処理液を乾燥させる乾燥処理を適宜実施してもよい。
Then, in the chemical conversion treatment film forming step, before supplying or applying the treatment liquid to the substrate surface, an alkali cleaning treatment for removing the oil remaining on the substrate surface, a water washing treatment for removing the alkali, and removing the aluminum oxide film and the magnesium oxide film. The acid washing treatment for removing the acid and the water washing treatment for removing the acid may be carried out as appropriate.
Further, in the chemical conversion treatment film forming step, after supplying and washing the treatment liquid with water or applying the treatment liquid, a drying treatment for drying the water washing water or the treatment liquid on the surface of the substrate may be appropriately performed.

(潤滑皮膜形成工程)
潤滑皮膜形成工程は、化成処理皮膜の上に潤滑皮膜を形成する工程である。
潤滑皮膜を形成する方法としては、塗装法が挙げられる。工業的には、ロールコート等によって潤滑組成物を水溶液の状態で基板に塗装し、その後、乾燥させることにより、潤滑皮膜が形成される。
(Lubrication film forming process)
The lubricating film forming step is a step of forming a lubricating film on the chemical conversion treatment film.
Examples of the method for forming the lubricating film include a coating method. Industrially, a lubricating film is formed by coating a substrate in an aqueous solution state with a lubricating composition by roll coating or the like, and then drying the substrate.

ロールコート方式は、コーターパンに入った水溶液となっている塗料をピックアップロールで持ち上げ、これを直接アプリケーターロールに転写する、又はトランスファーロールに一度転写してからアプリケーターロールに転写し、連続通板させている基板にアプリケーターロールで塗装を行う方法である。ロールコート方式は幅方向、及び、長手方向に均一に塗装できる方式である。
なお、潤滑皮膜の皮膜量(膜厚)を制御する方法としては、塗料の濃度(水系溶媒による希釈濃度)を調整すればよい。すなわち、高濃度に調整された塗料を塗装すれば皮膜量が多く(皮膜が厚く)なり、低濃度に調整された塗料を塗装すれば皮膜量が少なく(皮膜が薄く)なる。また、ロールコート時のピックアップロールとアプリケーターロール(又はトランスファーロール)とのニップ圧を高くすると皮膜が厚くなり、ニップ圧を低くすると皮膜が薄くなる。
潤滑皮膜を形成する方法として塗装法(ロールコート式)を説明したが、特にこの方法に限定されず、例えば、間接帯電式(ベル式)静電塗布法、スプレー式(電界なし)塗布方法、浸漬方法等、従来公知の方法を採用することができる。
In the roll coating method, the paint that is the aqueous solution in the coater pan is lifted by a pickup roll and transferred directly to the applicator roll, or transferred once to the transfer roll and then transferred to the applicator roll to be continuously passed. This is a method of painting the substrate with an applicator roll. The roll coating method is a method that can uniformly coat in the width direction and the longitudinal direction.
As a method of controlling the film thickness (film thickness) of the lubricating film, the concentration of the paint (dilution concentration with an aqueous solvent) may be adjusted. That is, if a paint adjusted to a high concentration is applied, the amount of film is large (thick film), and if a paint adjusted to a low concentration is applied, the amount of film is small (thin film). Further, when the nip pressure between the pickup roll and the applicator roll (or transfer roll) at the time of roll coating is increased, the film becomes thicker, and when the nip pressure is decreased, the film becomes thinner.
The coating method (roll coating method) has been described as a method for forming the lubricating film, but the method is not particularly limited to this method, and for example, an indirect charging type (bell type) electrostatic coating method, a spray type (no electric field) coating method, and the like. Conventionally known methods such as a dipping method can be adopted.

基板に塗装された塗料は、炉等で溶媒である水分を揮発乾燥させて塗膜(潤滑皮膜)とする。このとき、加熱温度が高いと塗料(潤滑組成物)中のエチレンオキシドが熱分解するので、基板の到達温度としては120℃程度以下とすることが好ましく、効率的に揮発乾燥させるために70℃程度以上とすることが好ましい。 The paint applied to the substrate is made into a coating film (lubricating film) by volatilizing and drying the water as a solvent in a furnace or the like. At this time, if the heating temperature is high, ethylene oxide in the coating material (lubricating composition) is thermally decomposed. Therefore, the temperature reached by the substrate is preferably about 120 ° C. or lower, and about 70 ° C. for efficient volatilization and drying. The above is preferable.

(補助皮膜形成工程)
補助皮膜形成工程は、潤滑皮膜の上に補助皮膜を形成する工程である。
補助皮膜を形成する方法としては、潤滑皮膜を形成する方法と同様、塗装法等の従来公知の方法が挙げられるとともに、液体油に浸漬させる方法や、液体油を噴き付ける方法等も挙げられる。なお、補助皮膜を形成する方法は潤滑皮膜を形成する方法と異なり、補助皮膜を潤滑皮膜の上に成膜した後において、積極的に加熱し乾燥させる作業は行わない。
(Auxiliary film forming process)
The auxiliary film forming step is a step of forming an auxiliary film on the lubricating film.
Examples of the method of forming the auxiliary film include a conventionally known method such as a coating method as well as a method of forming a lubricating film, a method of immersing in liquid oil, a method of spraying liquid oil, and the like. The method of forming the auxiliary film is different from the method of forming the lubricating film, and after the auxiliary film is formed on the lubricating film, the work of actively heating and drying is not performed.

(その他の工程)
潤滑皮膜被覆アルミニウム板の製造方法は、以上説明したとおりであるが、前記各工程に悪影響を与えない範囲において、前記各工程の間、又は前後に、他の工程を含めてもよい。
(Other processes)
The method for manufacturing the lubricating film-coated aluminum plate is as described above, but other steps may be included during or before and after each of the steps as long as the steps are not adversely affected.

例えば、基板作製工程において、冷間圧延(スキンパス圧延等も含む)後に、溶体化処理を施す溶体化処理工程、および予備時効処理を施す予備時効処理工程を設けてもよい。予備時効処理は、溶体化処理終了後72時間以内に40〜120℃で8〜36時間の低温加熱することにより行うことが好ましい。この条件で予備時効処理することにより、潤滑皮膜被覆アルミニウム板(基板)の成形性、及び、潤滑皮膜を脱膜して塗装し、加熱(ベーキング)した後における強度向上を図ることができる。 For example, in the substrate manufacturing step, a solution treatment step of performing a solution treatment and a preliminary aging treatment step of performing a preliminary aging treatment may be provided after cold rolling (including skin pass rolling and the like). The pre-aging treatment is preferably carried out by low-temperature heating at 40 to 120 ° C. for 8 to 36 hours within 72 hours after the completion of the solution treatment. By performing the preliminary aging treatment under these conditions, it is possible to improve the moldability of the aluminum plate (substrate) coated with the lubricating film and the strength after the lubricating film is removed, painted, and heated (baked).

また、基板作製工程の後、潤滑皮膜形成工程の前に、長尺の基板を枚葉状に切断する切断工程を設けてもよい。この場合、潤滑皮膜形成工程、補助皮膜形成工程で、基板の切断面(端面)にも潤滑皮膜、補助皮膜を形成してもよい。
また、基板や樹脂皮膜の表面の異物を除去する異物除去工程や、不良品を除去する不良品除去工程を設けてもよい。
Further, after the substrate manufacturing step and before the lubricating film forming step, a cutting step of cutting the long substrate into a single-wafer shape may be provided. In this case, the lubricating film and the auxiliary film may be formed on the cut surface (end face) of the substrate in the lubricating film forming step and the auxiliary film forming step.
Further, a foreign matter removing step for removing foreign matter on the surface of the substrate or the resin film and a defective product removing step for removing defective products may be provided.

次に、本発明に係る潤滑皮膜被覆アルミニウム板について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して、具体的に説明する。 Next, the lubricating film-coated aluminum plate according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.

[供試材作製]
(基板)
基板として、JIS H 4000:2014に規定されている5182合金からなる厚さ1.2mmのアルミニウム合金板を準備し、幅150mm×長さ200mmとなるように切り出した。そして、このアルミニウム板に対して、アルカリ脱脂、水洗、次いで、酸洗浄、水洗を実施した。
[Preparation of test material]
(substrate)
As a substrate, an aluminum alloy plate having a thickness of 1.2 mm made of 5182 alloy specified in JIS H 4000: 2014 was prepared, and cut out so as to have a width of 150 mm and a length of 200 mm. Then, the aluminum plate was subjected to alkaline degreasing, water washing, then acid washing and water washing.

そして、酸洗浄後に水洗したアルミニウム板について、フルオロチタネート酸を150ppm及びフルオロジルコネート酸を250ppm含有する処理液(50℃)に任意の時間浸漬した。その後、水洗を行った後、室温の乾燥処理を行った。
なお、供試材5〜8については、酸洗浄後に水洗したアルミニウム板に対して、そのまま乾燥処理を行い酸洗材とした。
Then, the aluminum plate washed with water after the acid washing was immersed in a treatment liquid (50 ° C.) containing 150 ppm of fluorotitanate acid and 250 ppm of fluorozircone acid for an arbitrary time. Then, after washing with water, it was dried at room temperature.
As for the test materials 5 to 8, the aluminum plate washed with water after being pickled was directly dried to obtain a pickled material.

アクリル酸系潤滑剤と水溶性エチレンオキシド系潤滑剤を1:1で混合したものを水に溶解させ、固形分濃度が5〜15%程度の水溶液とした塗料を生成した。そして、供試材1〜3、6〜8は、この塗料をバーコーター#4〜#8を用いて評価面に塗装した後、基板の到達温度が100℃になるように炉内で乾燥させ、アクリル酸系高分子と水溶性エチレンオキシドとを含有する潤滑皮膜(表1の種類A)を備えた供試材を準備した。 A 1: 1 mixture of an acrylic acid-based lubricant and a water-soluble ethylene oxide-based lubricant was dissolved in water to produce an aqueous solution having a solid content concentration of about 5 to 15%. Then, the test materials 1 to 3 and 6 to 8 are coated on the evaluation surface using bar coaters # 4 to # 8, and then dried in a furnace so that the ultimate temperature of the substrate becomes 100 ° C. , A test material provided with a lubricating film (type A in Table 1) containing an acrylic acid-based polymer and a water-soluble ethylene oxide was prepared.

比較例として、潤滑皮膜を成膜しない供試材4、5、固形潤滑剤を潤滑皮膜(表1の種類B)として備えた供試材9、水溶性エチレンオキシド系潤滑剤のみを塗装し水溶性エチレンオキシドを含有する潤滑皮膜(表1の種類C)を備えた供試材10、アクリル酸系潤滑剤のみを塗装しアクリル酸系高分子を含有する潤滑皮膜(表1の種類D)を備えた供試材11、及び、液体油を潤滑皮膜(表1の種類E)として備えた供試材12を準備した。
なお、供試材9〜11については、供試材1〜3、6〜8と同様、各潤滑剤を塗装後に基板の到達温度が100℃になるように炉内で乾燥させた。
As a comparative example, test materials 4 and 5 that do not form a lubricating film, test material 9 that has a solid lubricant as a lubricating film (type B in Table 1), and water-soluble ethylene oxide-based lubricant are coated and water-soluble. A test material 10 having a lubricating film containing ethylene oxide (type C in Table 1) and a lubricating film containing only an acrylic acid-based lubricant and a lubricating film containing an acrylic acid-based polymer (type D in Table 1) were provided. A test material 11 and a test material 12 provided with liquid oil as a lubricating film (type E in Table 1) were prepared.
As for the test materials 9 to 11, similarly to the test materials 1 to 3 and 6 to 8, each lubricant was dried in the furnace so that the reaching temperature of the substrate reached 100 ° C. after coating.

使用した「アクリル酸系潤滑剤」は、ミルボンド(登録商標)MC560J(日油製)であり、「水溶性エチレンオキシド系潤滑剤」は、ノニオンB250(日油製)であり、「固形潤滑剤」は、E1(Zeller製)であり、「液体油」は、PD4000T(JX製)であった。
なお、ミルボンドMC560Jは、ポリアクリル酸(60〜90wt%)、スチレン/無水マレイン酸共重合体(6〜20wt%)、ステアリン酸塩(3〜23wt%)、カルバナ蝋(0〜6wt%)で構成され、ノニオンB250は、ポリオキシエチレンアルキルエーテル(R−O−(CHCHO)−H、炭素数Rが22、nが50、平均分子量2500、融点が53℃)で構成されたものを使用した。また、PD4000Tは、石油系炭化水素を主成分(約85%含有)とする液体油であって、40℃における動粘度が2cStであった。
The "acrylic acid-based lubricant" used was Milbond (registered trademark) MC560J (manufactured by Nichiyu), and the "water-soluble ethylene oxide-based lubricant" was Nonion B250 (manufactured by Nichiyu), which was a "solid lubricant". Was E1 (manufactured by Zeller), and the "liquid oil" was PD4000T (manufactured by JX).
The mill bond MC560J is composed of polyacrylic acid (60 to 90 wt%), styrene / maleic anhydride copolymer (6 to 20 wt%), stearic acid salt (3 to 23 wt%), and carbana wax (0 to 6 wt%). Nonion B250 is composed of polyoxyethylene alkyl ether (RO- (CH 2 CH 2 O) n- H, carbon number R is 22, n is 50, average molecular weight is 2500, and melting point is 53 ° C.). I used the one. Further, PD4000T was a liquid oil containing a petroleum-based hydrocarbon as a main component (containing about 85%), and had a kinematic viscosity at 40 ° C. of 2 cSt.

次に、皮膜量の測定方法、並びに、摩擦係数測定試験、及び、接着耐久性試験の内容を示す。 Next, the method of measuring the amount of the film, the friction coefficient measurement test, and the contents of the adhesive durability test are shown.

[測定方法]
(化成処理皮膜の皮膜量)
チタン皮膜量、及び、ジルコニウム皮膜量は、蛍光X線(島津製作所社製、LAB CENTER XRF−1800)によって測定した。
具体的には、処理液への浸漬時間と皮膜量の相関を事前に求め、浸漬時間から皮膜量を算出した。なお、皮膜量の測定は同一条件で処理した複数枚の供試材からランダムに1枚を選出し、幅150mm×長さ200mmの供試材の重心を中心とした30mmφの範囲で両面の皮膜量を測定し、その平均値を算出した。
[Measuring method]
(Amount of chemical conversion coating)
The amount of titanium film and the amount of zirconium film were measured by fluorescent X-rays (LAB CENTER XRF-1800, manufactured by Shimadzu Corporation).
Specifically, the correlation between the immersion time in the treatment liquid and the film amount was obtained in advance, and the film amount was calculated from the immersion time. The amount of film was measured by randomly selecting one from a plurality of test materials treated under the same conditions, and coating on both sides within a range of 30 mmφ centered on the center of gravity of the test material having a width of 150 mm and a length of 200 mm. The amount was measured and the average value was calculated.

(潤滑皮膜の皮膜量)
潤滑皮膜の皮膜量は、赤外膜厚計(AMEPA社製、TYPE:OFIS2.0、VerNr:4.1)または潤滑皮膜の剥離前後の重量変化によって測定した。
なお、赤外膜厚計により皮膜量を測定した場合は、事前に求めた潤滑皮膜の重量と潤滑皮膜の膜厚との相関式に基づいて、測定して得られた潤滑皮膜の膜厚の値から、供試材の潤滑皮膜の皮膜量を算出した。
また、重量変化により皮膜量を測定した場合は、潤滑皮膜の剥離は水洗により行った。
(Amount of lubricating film)
The amount of the lubricating film was measured by an infrared film thickness meter (manufactured by AMEPA, TYPE: OFIS2.0, VerNr: 4.1) or a weight change before and after peeling of the lubricating film.
When the film thickness is measured with an infrared film thickness meter, the film thickness of the lubricating film obtained by the measurement is based on the correlation formula between the weight of the lubricating film and the film thickness of the lubricating film obtained in advance. From the values, the amount of the lubricating film of the test material was calculated.
When the amount of the film was measured by changing the weight, the lubricating film was peeled off by washing with water.

[試験方法]
(摩擦係数試験)
前記の方法で作製した供試材について、バウデン試験機を用い、200gの荷重を付加し、3往復の摺動を行ったときの摩擦係数を測定した。
なお、摩擦係数試験は、表1に示すとおり、供試材の表面に塗油していない場合、所定の油を供試材の表面に塗油した場合について、実施した。
そして、塗油した場合において摩擦係数が0.10以下となったものを潤滑性が良好「〇」と評価し、0.10を超えたものを潤滑性が不良「×」と評価した。
なお、塗油していない場合の摩擦係数は参考値として示すが、この摩擦係数も0.10以下となるのが好ましい。
[Test method]
(Friction coefficient test)
With respect to the test material prepared by the above method, a load of 200 g was applied to the test material using a Bowden tester, and the friction coefficient when sliding three times back and forth was measured.
As shown in Table 1, the friction coefficient test was carried out when the surface of the test material was not oiled and when a predetermined oil was applied to the surface of the test material.
Then, when the oil was applied, the one having a friction coefficient of 0.10 or less was evaluated as having good lubricity "◯", and the one having a friction coefficient exceeding 0.10 was evaluated as having poor lubricity "x".
The friction coefficient when not lubricated is shown as a reference value, but it is preferable that this friction coefficient is also 0.10 or less.

(接着耐久性試験)
前記の方法で作製した2つの同じ供試材について、幅25mm×長さ100mmに切り出し、図2に示すように、一方を下側試験片11、もう一方を上側試験片12とし、両試験片を熱硬化型エポキシ樹脂系接着剤20によりラップ長10mm(接着面積:25mm×10mm)となるように重ね合わせ貼り付けて接着試験体30を準備した。このとき、接着剤20の厚さが250μmとなるようにガラスビーズ(粒径250μm)を接着剤20に添加して調節した。その後、175℃×20分で焼付、硬化させた。
なお、接着試験体30は、両試験片を接着剤で接着する前に、両試験片の表面にPD4000Tを塗油し40℃×90%RHの条件で7日間保持(接着前経時処理とする)したもの(表1の「接着前経時処理あり」)と、この接着前経時処理を施さずに両試験片を接着剤で接着させたもの(表1の「接着前経時処理なし」)と、を準備した。
(Adhesive durability test)
Two of the same test materials prepared by the above method were cut into a width of 25 mm and a length of 100 mm, and as shown in FIG. 2, one was used as the lower test piece 11 and the other was used as the upper test piece 12, and both test pieces were used. Was laminated and pasted with a thermosetting epoxy resin adhesive 20 so as to have a wrap length of 10 mm (adhesive area: 25 mm × 10 mm) to prepare an adhesive test piece 30. At this time, glass beads (particle size 250 μm) were added to the adhesive 20 to adjust the thickness of the adhesive 20 to 250 μm. Then, it was baked and cured at 175 ° C. × 20 minutes.
Before adhering both test pieces with an adhesive, the adhesive test piece 30 is coated with PD4000T on the surfaces of both test pieces and held for 7 days under the condition of 40 ° C. × 90% RH (treatment with time before adhesion). ) ("With pre-adhesion aging treatment" in Table 1) and with adhesives attached to both test pieces without this pre-adhesion aging treatment (Table 1 "Without pre-adhesion aging treatment"). , Prepared.

作製した接着試験体30を以下のサイクル条件で10日間保持した後、下側及び上側試験片11、12の未接着の部位を掴み、13mm/minの速度でせん断引張り試験を行った。そして、接着試験体30の破壊形態の観察、及び、接着強度の算出を以下の手順で行い、接着耐久性を評価した。
なお、各接着試験体30は3本ずつ作製し、以下の凝集破壊率と接着強度とは3本の平均値とした。
After holding the prepared adhesive test piece 30 under the following cycle conditions for 10 days, the unbonded parts of the lower and upper test pieces 11 and 12 were grasped, and a shear tensile test was performed at a speed of 13 mm / min. Then, the fractured form of the adhesive test piece 30 was observed and the adhesive strength was calculated according to the following procedure to evaluate the adhesive durability.
Three of each adhesive test piece 30 were prepared, and the following cohesive fracture rate and adhesive strength were taken as the average value of the three.

(サイクル条件)
・50℃SST pH3 45分
・50℃×30%RH 2時間
・50℃×95%RH 3時間15分
(Cycle condition)
・ 50 ℃ SST pH3 45 minutes ・ 50 ℃ × 30% RH 2 hours ・ 50 ℃ × 95% RH 3 hours 15 minutes

(接着耐久性試験:破壊形態)
引張り試験後の接着試験体30の剥離状態を観察し、接着剤20の内部での破壊を凝集破壊、下側試験片11と接着剤20との界面、及び、上側試験片12と接着剤20との界面での剥離を界面破壊とし、下式(1)で破壊形態の指標としての凝集破壊率を算出した。
凝集破壊率(%)=100−{(下側試験片11の界面剥離面積/下側試験片11の接着面積)×100+(上側試験片12の界面剥離面積/上側試験片12の接着面積)×100)}・・・(1)
(Adhesive durability test: fracture form)
Observe the peeled state of the adhesive test piece 30 after the tensile test, and disintegrate the internal fracture of the adhesive 20, the interface between the lower test piece 11 and the adhesive 20, and the upper test piece 12 and the adhesive 20. The peeling at the interface with and was taken as the interface failure, and the cohesive failure rate as an index of the failure form was calculated by the following equation (1).
Cohesive fracture rate (%) = 100-{(interfacial peeling area of lower test piece 11 / adhesive area of lower test piece 11) x 100 + (interfacial peeling area of upper test piece 12 / adhesive area of upper test piece 12) × 100)} ・ ・ ・ (1)

(接着耐久性試験:接着強度)
引張り試験時に得られた応力−ひずみ線図から、破断時の最大応力を接着面積で除した値を接着強度とした。
(Adhesive durability test: Adhesive strength)
From the stress-strain diagram obtained during the tensile test, the value obtained by dividing the maximum stress at break by the adhesive area was defined as the adhesive strength.

そして、「接着前経時処理なし」の場合と「接着前経時処理あり」の場合の両方について、接着強度が14.0MPa以上であり、かつ、凝集破壊率(CF率)が90%以上となったものを、接着耐久性が良好「〇」と評価し、それ以外のものを、接着耐久性が不良「×」と評価した。 The adhesive strength is 14.0 MPa or more and the cohesive fracture rate (CF rate) is 90% or more in both the case of "without aging treatment before adhesion" and the case of "with aging treatment before adhesion". Those with good adhesive durability were evaluated as "○", and those other than those with poor adhesive durability were evaluated as "×".

以下、表1には、各供試材の構成、及び、試験結果を示す。
なお、表1中の試験結果における「−」は、試験を実施していない旨を示している。
Table 1 below shows the composition of each test material and the test results.
In addition, "-" in the test result in Table 1 indicates that the test has not been carried out.

Figure 2021059776
Figure 2021059776

Figure 2021059776
Figure 2021059776

[結果の検討]
供試材1〜3は、本発明の規定する要件を全て満たしていたことから、潤滑性に優れるとともに接着耐久性にも優れることが確認できた。
一方、供試材4〜12は、本発明の規定する要件を満たしていなかったことから、潤滑性と接着耐久性のうち少なくとも一方が好ましくない結果となることが確認できた。
[Examination of results]
Since the test materials 1 to 3 satisfied all the requirements specified in the present invention, it was confirmed that they were excellent in lubricity and adhesive durability.
On the other hand, since the test materials 4 to 12 did not satisfy the requirements specified in the present invention, it was confirmed that at least one of the lubricity and the adhesive durability had an unfavorable result.

詳細には、供試材4は、潤滑皮膜自体を設けていなかったことから、摩擦係数の数値が大きくなり、潤滑性に劣るとの結果となった。
供試材5は、潤滑皮膜自体を設けていなかったことから、摩擦係数の数値が大きくなり、潤滑性に劣るとの結果となった。
供試材6〜8は、化成処理皮膜自体を設けていなかったことから、接着耐久性に劣るとの結果となった。
供試材9は、潤滑皮膜が本発明の規定するものではなく固形潤滑剤であったことから、摩擦係数の数値が大きくなり、潤滑性に劣るとの結果となった。
供試材10は、潤滑皮膜がアクリル酸系高分子を含有しなかったことから、接着耐久性に劣るとの結果となった。
供試材11は、潤滑皮膜が水溶性エチレンオキシドを含有しなかったことから、接着耐久性に劣るとの結果となった。
供試材12は、潤滑皮膜が本発明の規定するものではなく液体油であったことから、摩擦係数の数値が大きくなり、潤滑性に劣るとの結果となった。
Specifically, since the test material 4 was not provided with the lubricating film itself, the numerical value of the friction coefficient was large, resulting in inferior lubricity.
Since the test material 5 was not provided with the lubricating film itself, the numerical value of the friction coefficient was large, resulting in inferior lubricity.
Since the test materials 6 to 8 were not provided with the chemical conversion treatment film itself, the result was that the adhesive durability was inferior.
Since the lubricating film of the test material 9 was a solid lubricant rather than the one specified in the present invention, the numerical value of the friction coefficient was large, resulting in inferior lubricity.
The test material 10 was found to be inferior in adhesive durability because the lubricating film did not contain an acrylic acid-based polymer.
The test material 11 was found to be inferior in adhesive durability because the lubricating film did not contain water-soluble ethylene oxide.
Since the lubricating film of the test material 12 was a liquid oil rather than the one specified in the present invention, the numerical value of the friction coefficient was large, resulting in inferior lubricity.

なお、供試材1〜3は、潤滑皮膜がアクリル酸系高分子と水溶性エチレンオキシドとの両者を含有していたことから、両者が互いの基板表面(詳細には、化成処理皮膜表面)に対する結合力を低下させ、接着剤に適切に吸収された(混合された)結果、界面剥離が抑制されたものと推察する。加えて、供試材1〜3は、潤滑皮膜がアクリル酸系高分子と水溶性エチレンオキシドとの両者を含有していたことから、化成処理皮膜が奏する湿潤環境下での基板表面における水和抑制効果を邪魔することなく、接着前経時処理ありの場合であろうとも高い接着強度とCF率とを発揮した。 Since the lubricating film of the test materials 1 to 3 contained both an acrylic acid-based polymer and a water-soluble ethylene oxide, both of them were applied to each other's substrate surface (specifically, the surface of the chemical conversion-treated film). It is presumed that the interfacial peeling was suppressed as a result of reducing the binding force and being properly absorbed (mixed) by the adhesive. In addition, since the lubricating film of the test materials 1 to 3 contained both an acrylic acid-based polymer and a water-soluble ethylene oxide, hydration was suppressed on the substrate surface in a moist environment played by the chemical conversion treatment film. It exhibited high adhesive strength and CF rate even with pre-adhesion aging treatment without interfering with the effect.

一方、供試材10、11は、潤滑皮膜がアクリル酸系高分子、又は、水溶性エチレンオキシドの一方を含む構成であったことから、アクリル酸系高分子、又は、水溶性エチレンオキシドが基板表面(詳細には、化成処理皮膜表面)に対する結合力が強いままであり、接着剤と適切に混じり合わず、界面剥離が抑制されなかったものと推察する。 On the other hand, since the lubricating film of the test materials 10 and 11 contained one of the acrylic acid-based polymer and the water-soluble ethylene oxide, the acrylic acid-based polymer or the water-soluble ethylene oxide was present on the substrate surface ( In detail, it is presumed that the bonding force to the surface of the chemical conversion coating film) remained strong, did not mix properly with the adhesive, and the interfacial peeling was not suppressed.

また、供試材5(酸洗)、供試材6〜8(酸洗+本発明の潤滑皮膜)の結果を対比すると、本発明の潤滑皮膜による接着耐久性の大幅な低下が確認できる一方、供試材4(TiZrの化成処理皮膜)、供試材1〜3(TiZrの化成処理皮膜+本発明の潤滑皮膜)の結果を対比すると、本発明の潤滑皮膜による接着耐久性の低下はほとんど確認できなかった。
つまり、これらの結果から、本発明の潤滑皮膜による接着耐久性の低下をTiZrの化成処理皮膜が抑制していることがわかり、この化成処理皮膜と潤滑皮膜との組合せが非常に優れた効果を発揮させることがわかった。
Further, by comparing the results of the test material 5 (pickling) and the test materials 6 to 8 (pickling + the lubricating film of the present invention), it can be confirmed that the adhesive durability due to the lubricating film of the present invention is significantly reduced. Comparing the results of test material 4 (TiZr chemical conversion treatment film) and test materials 1 to 3 (TiZr chemical conversion treatment film + lubricating film of the present invention), the decrease in adhesive durability due to the lubricating film of the present invention is I could hardly confirm it.
That is, from these results, it can be seen that the TiZr chemical conversion coating film suppresses the decrease in adhesive durability due to the lubricating film of the present invention, and the combination of this chemical conversion coating film and the lubricating film has a very excellent effect. It turned out to be effective.

本発明に係る潤滑皮膜被覆アルミニウム板について実施の形態、及び、実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて解釈されなければならない。なお、本発明の内容は、前記した記載に基づいて改変、変更することができることは言うまでもない。 The lubricating film-coated aluminum plate according to the present invention has been described in detail by showing embodiments and examples, but the gist of the present invention is not limited to the above-mentioned contents, and the scope of rights thereof is the scope of claims. Must be interpreted based on the description in. Needless to say, the content of the present invention can be modified or changed based on the above description.

1 基板
2 化成処理皮膜
3 潤滑皮膜
10 潤滑皮膜被覆アルミニウム板(アルミニウム板)
11 下側試験片
12 上側試験片
20 接着剤
30 接着試験体
1 Substrate 2 Chemical conversion coating 3 Lubricating film 10 Lubricating film coated aluminum plate (aluminum plate)
11 Lower test piece 12 Upper test piece 20 Adhesive 30 Adhesive test piece

Claims (3)

アルミニウム又はアルミニウム合金からなる基板と、前記基板上に形成されたチタン及びジルコニウムの少なくとも1種を含有する化成処理皮膜と、前記化成処理皮膜上に形成された潤滑皮膜と、を備え、
前記潤滑皮膜は、アクリル酸系高分子と、水溶性エチレンオキシドと、を含有する潤滑皮膜被覆アルミニウム板。
A substrate made of aluminum or an aluminum alloy, a chemical conversion treatment film containing at least one of titanium and zirconium formed on the substrate, and a lubricating film formed on the chemical conversion treatment film are provided.
The lubricating film is a lubricating film-coated aluminum plate containing an acrylic acid-based polymer and water-soluble ethylene oxide.
前記潤滑皮膜の皮膜量が0.10g/m以上2.00g/m以下である請求項1に記載の潤滑皮膜被覆アルミニウム板。 The lubricating film-coated aluminum plate according to claim 1, wherein the amount of the lubricating film is 0.10 g / m 2 or more and 2.00 g / m 2 or less. 自動車パネル用である請求項1又は請求項2に記載の潤滑皮膜被覆アルミニウム板。 The lubricating film-coated aluminum plate according to claim 1 or 2, which is used for an automobile panel.
JP2019186298A 2019-10-09 2019-10-09 Lubricant film coated aluminum sheet Pending JP2021059776A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019186298A JP2021059776A (en) 2019-10-09 2019-10-09 Lubricant film coated aluminum sheet
CN202010974849.4A CN112647068A (en) 2019-10-09 2020-09-16 Aluminum plate coated with lubricating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019186298A JP2021059776A (en) 2019-10-09 2019-10-09 Lubricant film coated aluminum sheet

Publications (1)

Publication Number Publication Date
JP2021059776A true JP2021059776A (en) 2021-04-15

Family

ID=75346212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186298A Pending JP2021059776A (en) 2019-10-09 2019-10-09 Lubricant film coated aluminum sheet

Country Status (2)

Country Link
JP (1) JP2021059776A (en)
CN (1) CN112647068A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150190A (en) * 2021-11-12 2022-03-08 烟台南山学院 Al-Mg-Mn-Cr-Zr-Ti aluminum alloy and preparation process of plate thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133639A (en) * 2008-12-04 2010-06-17 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2014000534A (en) * 2012-06-19 2014-01-09 Nippon Paint Co Ltd Hydrophilic coating film covering method of aluminum fin material, aluminum fin material and aluminum heat exchanger
JP2018087375A (en) * 2016-11-24 2018-06-07 株式会社神戸製鋼所 Aluminum alloy sheet having lubrication coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260361A (en) * 2001-03-02 2002-09-13 Kobe Steel Ltd Aluminum alloy sheet for recording medium case shutter
JP2005008975A (en) * 2003-06-20 2005-01-13 Nippon Paint Co Ltd Metal surface treatment method, surface-treated aluminum based metal and pretreatment method to hydrophilic treatment
JP2011230311A (en) * 2010-04-23 2011-11-17 Sumitomo Light Metal Ind Ltd Resin coated aluminum alloy plate
WO2018096952A1 (en) * 2016-11-24 2018-05-31 株式会社神戸製鋼所 Aluminum alloy sheet with lubrication film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133639A (en) * 2008-12-04 2010-06-17 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2014000534A (en) * 2012-06-19 2014-01-09 Nippon Paint Co Ltd Hydrophilic coating film covering method of aluminum fin material, aluminum fin material and aluminum heat exchanger
JP2018087375A (en) * 2016-11-24 2018-06-07 株式会社神戸製鋼所 Aluminum alloy sheet having lubrication coating

Also Published As

Publication number Publication date
CN112647068A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CA2360070C (en) Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer
US9702033B2 (en) Magnesium-lithium alloy, rolled material, molded article, and process for producing same
CA2818296C (en) Hot-dip al-zn coated steel sheet and method for manufacturing the same
KR101051253B1 (en) Magnesium alloy plate and method for production thereof
JP6600641B2 (en) Cold rolled flat steel product and manufacturing method thereof
KR101679159B1 (en) Hot-dip galvanized steel sheet
WO2014119268A1 (en) HOT-DIP Al-Zn GALVANIZED STEEL PLATE AND METHOD FOR PRODUCING SAME
WO2000050659A1 (en) Steel plate, hot-dip steel plate and alloyed hot-dip steel plate and production methods therefor
CA2933679A1 (en) Steel plate for hot forming and manufacturing method of hot press formed steel member
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
WO2014119263A1 (en) HOT-DIP Al-Zn GALVANIZED STEEL PLATE AND METHOD FOR PRODUCING SAME
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
JP2021059776A (en) Lubricant film coated aluminum sheet
JP4888200B2 (en) High tensile hot dip galvanized steel sheet and manufacturing method
EP3178961B1 (en) High-strength hot-dip-galvanized steel sheet
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR100274301B1 (en) Process for producing plated steel sheet
JPH0441658A (en) Galvannealed steel sheet excellent in powdering resistance and having baking hardenability and high strength and its production
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JP2020062822A (en) Aluminum sheet coated with lubricating coating
EP3178960A1 (en) High-strength hot-dip-galvanized steel sheet
JP7453583B2 (en) Al-plated hot stamping steel material
EP4079928A2 (en) Aluminum alloy-plated steel sheet having excellent workability and corrosion resistance and method for manufacturing same
JP7264783B2 (en) Lubricating film coated aluminum plate
JP5790540B2 (en) Method for judging chemical conversion treatment of steel and method for producing steel excellent in chemical conversion treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307