JP2021059732A - Polyimide powder and method for producing polyimide powder - Google Patents

Polyimide powder and method for producing polyimide powder Download PDF

Info

Publication number
JP2021059732A
JP2021059732A JP2020205226A JP2020205226A JP2021059732A JP 2021059732 A JP2021059732 A JP 2021059732A JP 2020205226 A JP2020205226 A JP 2020205226A JP 2020205226 A JP2020205226 A JP 2020205226A JP 2021059732 A JP2021059732 A JP 2021059732A
Authority
JP
Japan
Prior art keywords
polyimide
polyimide powder
powder
solution
aromatic diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020205226A
Other languages
Japanese (ja)
Other versions
JP7045732B2 (en
Inventor
長島 豊
Yutaka Nagashima
豊 長島
山田 俊輔
Shunsuke Yamada
俊輔 山田
圭三 田中
Keizo Tanaka
圭三 田中
清水 誠吾
Seigo Shimizu
誠吾 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Sangyo Co Ltd
Original Assignee
Kawamura Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Sangyo Co Ltd filed Critical Kawamura Sangyo Co Ltd
Publication of JP2021059732A publication Critical patent/JP2021059732A/en
Application granted granted Critical
Publication of JP7045732B2 publication Critical patent/JP7045732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Abstract

To provide a polyimide powder which provides a polyimide film excellent in heat resistance and transparency and to provide a method for producing the same.SOLUTION: There is provided a polyimide powder soluble in N,N-dimethyl acetamide, which is produced through steps of: polymerization from at least one aromatic diamine compound and at least one tetracarboxylic acid dianhydride to a polyamide acid; a chemical imidization reaction; formation of a powder by precipitation of a produced polyimide; and drying, wherein the average particle diameter of the polyimide powder is in a range of 0.02 to 0.8 mm and a polyimide film having a thickness of 50 μm obtained by forming from an N,N-dimethyl acetamide solution of the polyimide powder has a light transmittance at the wavelength of 450 nm of 80% or more.SELECTED DRAWING: None

Description

本発明は、ポリイミド粉体およびその製造方法に関し、特にディスプレイ用途や電子材料用途に好適に用いられる、極めて優れた耐熱性と透明性を兼ね備えたポリイミドフィルムを与えるポリイミド粉体およびその製造方法に関するものである。 The present invention relates to a polyimide powder and a method for producing the same, and the present invention relates to the polyimide powder and the method for producing the polyimide powder, which provides a polyimide film having extremely excellent heat resistance and transparency, which is particularly preferably used for display applications and electronic material applications. Is.

ポリイミド樹脂は耐熱性に優れるプラスチックとして、航空宇宙分野、電気絶縁分野、電子分野等の耐熱性や高信頼性が要求される幅広い分野で活用されている。また、近年では耐熱性と透明性を兼ね備えた透明ポリイミドが提案されてきており、例えば特許文献1には、フッ素原子を含有する特定のモノマーから合成される、光導波路に好適な透明性に優れた可溶性のポリイミドが提案されている。特許文献2には、特定の脂環式ジアミンを用いた有機溶剤に可溶な透明ポリイミドが提案されている。しかしながら、特許文献1に記載されたポリイミドは製膜後のポリイミドに対して300℃以上の温度で熱処理を行っているため、十分な透明性の確保が困難であり、特許文献2に記載されたポリイミドは脂環式のジアミンを原料として用いているため、耐熱性に乏しく、また加熱により着色するという問題があった。 Polyimide resin is used as a plastic having excellent heat resistance in a wide range of fields such as aerospace field, electrical insulation field, and electronic field where heat resistance and high reliability are required. Further, in recent years, a transparent polyimide having both heat resistance and transparency has been proposed. For example, Patent Document 1 has excellent transparency suitable for an optical waveguide synthesized from a specific monomer containing a fluorine atom. Soluble polyimide has been proposed. Patent Document 2 proposes a transparent polyimide that is soluble in an organic solvent using a specific alicyclic diamine. However, since the polyimide described in Patent Document 1 is heat-treated at a temperature of 300 ° C. or higher with respect to the polyimide after film formation, it is difficult to ensure sufficient transparency, and it is described in Patent Document 2. Since polyimide uses an alicyclic diamine as a raw material, it has a problem of poor heat resistance and coloring by heating.

ポリイミドの粉体としては、可溶性ポリイミドのワニスに水やメタノールなどの貧溶媒を添加して塊状のポリイミド樹脂を析出させる方法が開示されている(特許文献3)。 As the polyimide powder, a method of adding a poor solvent such as water or methanol to a soluble polyimide varnish to precipitate a massive polyimide resin is disclosed (Patent Document 3).

また、特許文献4にはジアミン類と酸二無水物類を重合して得られるポリアミド酸のイミド化物の粉末が提案されている。 Further, Patent Document 4 proposes an imidized powder of polyamic acid obtained by polymerizing diamines and acid dianhydrides.

しかしながら、特許文献3や特許文献4に記載されたポリイミドの粉体は、ポリイミド粉体の粒子径に対して十分な注意が払われておらず、そのためポリイミド粉体中のイミド化剤やイミド化促進剤の除去が十分に行われず、その結果、それらのポリイミド粉体から得られるポリイミド膜への着色が起こりやすく、透明性に優れるポリイミド膜を得ることが困難であるという問題があった。 However, the polyimide powders described in Patent Documents 3 and 4 do not pay sufficient attention to the particle size of the polyimide powders, and therefore, imidizing agents and imidization in the polyimide powders. There is a problem that the accelerator is not sufficiently removed, and as a result, the polyimide film obtained from the polyimide powder is easily colored, and it is difficult to obtain a polyimide film having excellent transparency.

特開平4−235505Japanese Patent Application Laid-Open No. 4-235505 特開2000−169579JP 2000-169579 特開2004−285355JP-A-2004-285355 特表2013−523939Special table 2013-523939

本発明の目的は、耐熱性や透明性に優れたポリイミド膜を与える、着色や不純物が少なく、溶剤に可溶なポリイミド粉体及びその製造方法を与えることにある。 An object of the present invention is to provide a polyimide powder having excellent heat resistance and transparency, having less coloring and impurities, and being soluble in a solvent, and a method for producing the same.

本発明者らは、透明性を有するポリイミドを特定の平均粒子径を有する粉体とすることで、透明性に悪影響を与えるポリイミド粉体中に含まれるイミド化剤やイミド化促進剤等の残存揮発成分を極限まで低減することが可能であることを見出し、本発明を完成した。 By making the transparent polyimide into a powder having a specific average particle size, the present inventors retain imidizing agents, imidization accelerators, etc. contained in the polyimide powder which adversely affects the transparency. We have found that it is possible to reduce volatile components to the utmost limit, and completed the present invention.

本発明によれば、以下に示すポリイミド粉体及びその製造方法が提供される。
[1] 少なくとも1種類の芳香族ジアミン化合物と少なくとも1種類のテトラカルボン酸二無水物から、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造される、N,N−ジメチルアセトアミドに可溶なポリイミド粉体であって、当該ポリイミド粉体の平均粒子径が0.02〜0.8mmの範囲にあり、当該ポリイミド粉体のN,N−ジメチルアセトアミド溶液から製膜して得られる厚さ50μmのポリイミドフィルムの450nmの波長における光線透過率が80%以上であることを特徴とするポリイミド粉体。
[2] 示差熱・熱重量分析装置を用いて測定される200〜300℃の範囲での重量減少率が、0〜0.2%の範囲にあることを特徴とする[1]記載のポリイミド粉体。
[3] 芳香族ジアミン化合物として、フルオロ基を有する少なくとも1種類の芳香族ジアミン化合物が用いられるとともに、テトラカルボン酸二無水物として、フルオロ基を有する少なくとも1種類のテトラカルボン酸二無水物が用いられて製造されることを特徴とする[1]または[2]に記載のポリイミド粉体。
[4] 以下の工程を含む平均粒子径が0.02〜0.8mmのポリイミド粉体の製造方法。
(a)少なくとも1種類の芳香族ジアミン化合物と少なくとも1種類のテトラカルボン酸二無水物を準備する工程、
(b)溶剤中において攪拌しながら上記芳香族ジアミン化合物とテトラカルボン酸二無水物のポリアミド酸への重合反応を行い、ポリアミド酸溶液を得る工程、
(c)得られたポリアミド酸溶液にイミド化剤を添加して化学イミド化反応を行い、ポリイミド溶液を得る工程、
(d)得られたポリイミド溶液を攪拌しながら、ポリイミドの貧溶媒を添加して、ポリイミドを析出させて、揮発成分含有ポリイミド粉体を得る工程、
(e)得られた揮発成分含有ポリイミド粉体を揮発成分量が5%未満になるまで100℃未満の温度で乾燥した後、更に100〜350℃の温度で0.1〜24時間乾燥して、粉体中に含まれる揮発成分を取り除き、ポリイミド粉体を得る工程。
[5] 以下の工程を含むポリイミド粉体の製造方法。
(A) 溶剤中に溶解したポリイミドを含むポリイミド溶液に、ポリイミドの貧溶媒を添加することにより、ポリイミドを析出させ、揮発成分含有ポリイミド粉体を得る工程であって、
前記ポリイミド溶液対前記貧溶媒の重量比が、1:0.5〜1:10であり、
前記ポリイミドの析出開始前の一時点から析出粉体化完了までの前記貧溶媒の毎分あたりの添加量が、前記ポリイミド溶液の0.0005〜0.1倍(g/分)である工程、
(B) 前記揮発成分含有ポリイミド粉体を、粉砕することなく、100℃未満の温度で前記揮発成分含有ポリイミド粉体中の揮発成分量が5%未満になるまで乾燥した後、更に100〜350℃の温度で0.1〜24時間乾燥し、ポリイミド粉体を得る工程。
[6] 前記ポリイミド溶液を、
(A1) 少なくとも1種類の芳香族ジアミン化合物と少なくとも1種類のテトラカルボン酸二無水物を準備する工程、
(A2) 上記芳香族ジアミン化合物とテトラカルボン酸二無水物を、溶剤への溶解下で重合し、ポリアミド酸溶液を得る工程、
(A3) 得られたポリアミド酸溶液にイミド化剤を添加して化学イミド化反応を行い、
溶剤中に溶解したポリイミドを含むポリイミド溶液を得る工程
によって得る、[5]に記載の方法。
[7] 工程(A3)を10℃以上50℃未満で行う、[6]に記載の方法。
[8] 前記芳香族ジアミン化合物としてフルオロ基を有する少なくとも1種類の芳香族ジアミン化合物を用い、前記テトラカルボン酸二無水物としてフルオロ基を有する少なくとも1種類のテトラカルボン酸二無水物を用いる、[6]又は[7]に記載の方法。
[9] [5]乃至[8]のいずれかに記載の方法により製造されるポリイミド粉体。
[10] 溶剤に可溶である、[9]に記載のポリイミド粉体。
[11] 前記溶剤がN,N−ジメチルアセトアミドである、[10]に記載のポリイミド粉体。
[12] 平均粒子径が0.02〜0.8mmの範囲にある、[9]に記載のポリイミド粉体。
[13] 粒子径が0.01〜2mmの範囲にある粒子を95体積%以上含む、[9]に記載のポリイミド粉体。
[14] 200〜300℃の範囲での重量減少率が0〜0.2%の範囲にある、[9]に記載のポリイミド粉体。
[15] N,N−ジメチルアセトアミドに溶解し、当該溶液から厚さ50μmのポリイミドフィルムを製膜し、当該フィルムの450nmの波長における光線透過率を測定したとき、80%以上の光線透過率を示す、[11]記載のポリイミド粉体。
[16] N,N−ジメチルアセトアミドに溶解し、当該溶液から厚さ50μmのポリイミドフィルムを製膜し、当該フィルムの黄色度(YI)を測定したとき、−5〜5の黄色度(YI)を示す、[11]に記載のポリイミド粉体。
[17] [1]乃至[3]及び[9]乃至[16]のいずれか一項に記載のポリイミド粉体を製膜して得られるポリイミドフィルム。
According to the present invention, the following polyimide powder and a method for producing the same are provided.
[1] Steps of polymerization of at least one aromatic diamine compound and at least one tetracarboxylic acid dianhydride into polyamic acid, chemical imidization reaction, formation of powder by precipitation of produced polyimide, and drying. It is a polyimide powder soluble in N, N-dimethylacetamide, which is produced through the process, and the average particle size of the polyimide powder is in the range of 0.02 to 0.8 mm. A polyimide powder having a light transmittance of 80% or more at a wavelength of 450 nm of a polyimide film having a thickness of 50 μm obtained by forming a film from an N-dimethylacetamide solution.
[2] The polyimide according to [1], wherein the weight loss rate in the range of 200 to 300 ° C. measured using a differential thermal / thermogravimetric analyzer is in the range of 0 to 0.2%. powder.
[3] At least one aromatic diamine compound having a fluoro group is used as the aromatic diamine compound, and at least one tetracarboxylic dianhydride having a fluoro group is used as the tetracarboxylic dianhydride. The polyimide powder according to [1] or [2], which is produced by the above-mentioned product.
[4] A method for producing a polyimide powder having an average particle size of 0.02 to 0.8 mm, which comprises the following steps.
(A) A step of preparing at least one aromatic diamine compound and at least one tetracarboxylic dianhydride.
(B) A step of obtaining a polyamic acid solution by polymerizing the aromatic diamine compound and tetracarboxylic acid dianhydride into polyamic acid while stirring in a solvent.
(C) A step of adding an imidizing agent to the obtained polyamic acid solution and performing a chemical imidization reaction to obtain a polyimide solution.
(D) A step of adding a poor polyimide solvent while stirring the obtained polyimide solution to precipitate the polyimide to obtain a polyimide powder containing a volatile component.
(E) The obtained volatile component-containing polyimide powder is dried at a temperature of less than 100 ° C. until the amount of volatile components becomes less than 5%, and then further dried at a temperature of 100 to 350 ° C. for 0.1 to 24 hours. , A process of removing volatile components contained in the powder to obtain a polyimide powder.
[5] A method for producing a polyimide powder, which comprises the following steps.
(A) A step of precipitating polyimide by adding a poor solvent of polyimide to a polyimide solution containing polyimide dissolved in a solvent to obtain a polyimide powder containing a volatile component.
The weight ratio of the polyimide solution to the poor solvent is 1: 0.5 to 1:10.
A step in which the amount of the poor solvent added per minute from one time point before the start of precipitation of the polyimide to the completion of precipitation powdering is 0.0005 to 0.1 times (g / min) the amount of the polyimide solution.
(B) The volatile component-containing polyimide powder is dried at a temperature of less than 100 ° C. until the amount of the volatile component in the volatile component-containing polyimide powder is less than 5% without crushing, and then further 100 to 350. A step of drying at a temperature of ° C. for 0.1 to 24 hours to obtain a polyimide powder.
[6] The polyimide solution is used as a solution.
(A1) A step of preparing at least one aromatic diamine compound and at least one tetracarboxylic dianhydride.
(A2) A step of polymerizing the above aromatic diamine compound and tetracarboxylic dianhydride under dissolution in a solvent to obtain a polyamic acid solution.
(A3) An imidizing agent was added to the obtained polyamic acid solution to carry out a chemical imidization reaction.
The method according to [5], which is obtained by a step of obtaining a polyimide solution containing polyimide dissolved in a solvent.
[7] The method according to [6], wherein the step (A3) is performed at 10 ° C. or higher and lower than 50 ° C.
[8] At least one aromatic diamine compound having a fluoro group is used as the aromatic diamine compound, and at least one tetracarboxylic dianhydride having a fluoro group is used as the tetracarboxylic dianhydride. 6] or the method according to [7].
[9] A polyimide powder produced by the method according to any one of [5] to [8].
[10] The polyimide powder according to [9], which is soluble in a solvent.
[11] The polyimide powder according to [10], wherein the solvent is N, N-dimethylacetamide.
[12] The polyimide powder according to [9], which has an average particle size in the range of 0.02 to 0.8 mm.
[13] The polyimide powder according to [9], which contains 95% by volume or more of particles having a particle size in the range of 0.01 to 2 mm.
[14] The polyimide powder according to [9], wherein the weight loss rate in the range of 200 to 300 ° C. is in the range of 0 to 0.2%.
[15] When a polyimide film having a thickness of 50 μm was formed from the solution by dissolving it in N, N-dimethylacetamide, and the light transmittance of the film at a wavelength of 450 nm was measured, the light transmittance was 80% or more. The polyimide powder according to [11] shown.
[16] When a polyimide film having a thickness of 50 μm was formed from the solution by dissolving in N, N-dimethylacetamide, and the yellowness (YI) of the film was measured, the yellowness (YI) of -5 to 5 was measured. The polyimide powder according to [11].
[17] A polyimide film obtained by forming a film of the polyimide powder according to any one of [1] to [3] and [9] to [16].

本発明により、耐熱性や透明性に優れたポリイミドフィルムを与える、残存揮発分等の不純物や着色の極めて少ないポリイミド粉体及びその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a polyimide powder having extremely few impurities such as residual volatile matter and coloring, which gives a polyimide film having excellent heat resistance and transparency, and a method for producing the same.

本発明のポリイミド粉体は、芳香族ジアミン化合物とテトラカルボン酸二無水物を用いて、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造される。 The polyimide powder of the present invention is subjected to the steps of polymerization to polyamic acid, chemical imidization reaction, formation of powder by precipitation of produced polyimide, and drying using an aromatic diamine compound and tetracarboxylic dianhydride. Manufactured.

1.原料
1.1.芳香族ジアミン化合物
本発明のポリイミド粉体の製造に使用される芳香族ジアミン化合物としては、合わせて用いられるテトラカルボン酸二無水物との反応により、共通の溶媒(例えば、N,N−ジメチルアセトアミド(DMAC))に可溶で、所定の透明性を有するポリイミドを与える芳香族ジアミン化合物であれば、任意の芳香族ジアミン化合物を使用することができる。具体的には、m−フェニレンジアミン、p−フェニレンジアミン、3,4’−ジアミノジフェニルエ−テル、4,4’−ジアミノジフェニルエ−テル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、3,3’−ビス(4−アミノフェノキシ)ビフェニル、3,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(4−アミノフェニル)スルホン、ビス〔3−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェニル)スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕エ−テル、ビス〔4−(4−アミノフェノキシ)フェニル〕エ−テル、ビス〔3−(3−アミノフェノキシ)フェニル〕エ−テル、ビス〔4−(3−アミノフェノキシ)フェニル〕メタン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、ビス〔3−(3−アミノフェノキシ)フェニル〕メタン、ビス〔3−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス〔4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル〕ベンゼン、1,3−ビス〔4−(4−アミノ−6−フルオロメチルフェノキシ)−α,α−ジメチルベンジル〕ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルなどが挙げられる。これらの芳香族ジアミン化合物は単独で用いてもよく、2種類以上の芳香族ジアミン化合物を使用しても良い。そして、透明性や耐熱性の観点から、好ましい芳香族ジアミン化合物としては、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス〔4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル〕ベンゼン、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルなどのフルオロ基を有する芳香族ジアミン化合物が挙げられ、使用する芳香族ジアミン化合物の少なくとも1種類はフルオロ基を有する芳香族ジアミン化合物であることが好ましく、特に好ましくは2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルである。フルオロ基を有する芳香族ジアミン化合物を用いることで、透明性、耐熱性、溶剤への可溶性を得ることが容易となる。
1. 1. Ingredients 1.1. Aromatic diamine compound As the aromatic diamine compound used in the production of the polyimide powder of the present invention, a common solvent (for example, N, N-dimethylacetamide) is obtained by reacting with the tetracarboxylic acid dianhydride used together. Any aromatic diamine compound can be used as long as it is an aromatic diamine compound that is soluble in (DMAC)) and gives a polyimide having a predetermined transparency. Specifically, m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'. −Diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 3 , 3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) propane, 2 -(3-Aminophenyl) -2- (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2- Bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3 3,3-Hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4 -Bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 3,3'-bis (4-aminophenoxy) biphenyl, 3,4'-bis (3-aminophenoxy) Biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [3- (4) -Aminophenoxy) phenyl] sulfide, bis [3- (3-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenyl) sulfone, bis [ 3- (3-Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenyl) sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) Phenyl] ether, bis [3- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] Methyl, bis [3- (3-aminophenoxy) phenyl] methane, bis [3- (4-aminophenoxy) phenyl] methane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2, 2-Bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-Bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- (4-aminophenoxy) phenyl]- 1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (4-amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3- Bis [4- (4-amino-6-fluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4 Examples thereof include'-diaminobiphenyl, 3,3'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl and the like. These aromatic diamine compounds may be used alone, or two or more kinds of aromatic diamine compounds may be used. From the viewpoint of transparency and heat resistance, preferred aromatic diamine compounds include 2,2-bis (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane and 2,2. -Bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3 , 3,3-Hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-Aminophenoxy) Phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3 3,3-Hexafluoropropane, 2,2-bis [3- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- ( 4-Amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 3,3'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2'-bis (trifluoro) Examples thereof include aromatic diamine compounds having a fluoro group such as methyl) -4,4'-diaminobiphenyl, and at least one of the aromatic diamine compounds used is preferably an aromatic diamine compound having a fluoro group, in particular. It is preferably 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl. By using an aromatic diamine compound having a fluoro group, it becomes easy to obtain transparency, heat resistance, and solubility in a solvent.

1.2.テトラカルボン酸二無水物
また、本発明のポリイミド粉体の製造に使用されるテトラカルボン酸二無水物としては、上記芳香族ジアミン化合物と同様に、共通の溶媒(例えば、N,N−ジメチルアセトアミド(DMAC))に可溶で所定の透明性を有するポリイミドを与えるテトラカルボン酸二無水物であれば、任意のものを使用でき、具体的には、4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、1,4−ヒドロキノンジベンゾエ−ト−3, 3’,4,4’−テトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物などが例示される。これらのテトラカルボン酸二無水物は単独で用いてもよく、二種類以上のテトラカルボン酸二無水物を使用しても良い。そして、透明性、耐熱性及び溶剤への可溶性の観点から、4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物など、少なくとも1種類のフルオロ基を有するテトラカルボン酸二無水物を使用することが好ましい。
1.2. Tetracarboxylic dianhydride The tetracarboxylic dianhydride used in the production of the polyimide powder of the present invention includes a common solvent (for example, N, N-dimethylacetamide) as in the case of the above aromatic diamine compound. Any tetracarboxylic dianhydride that gives (DMAC)) a soluble and predetermined transparent polyimide can be used, and specifically, 4,4'-(1,1,1). , 3,3,3-hexafluoropropane-2,2-diyl) diphthalic acid dianhydride, pyromellitic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 1, 4-hydroquinonedibenzoate-3,3', 4,4'-tetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4, Examples thereof include 4'-diphenyl ether tetracarboxylic dianhydride. These tetracarboxylic dianhydrides may be used alone, or two or more types of tetracarboxylic dianhydrides may be used. From the viewpoint of transparency, heat resistance and solubility in a solvent, 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl) diphthalic acid dianhydride and the like , It is preferable to use a tetracarboxylic dianhydride having at least one kind of fluorogroup.

2.ポリアミド酸への重合
ポリアミド酸への重合は、生成するポリアミド酸が可溶な溶剤への溶解下で、上記芳香族ジアミン化合物及びテトラカルボン酸二無水物を反応させることにより行うことができる。ポリアミド酸への重合に用いる溶剤としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド等の溶剤を用いることができる。
2. Polymerization to Polyamic Acid Polymerization to polyamic acid can be carried out by reacting the aromatic diamine compound and the tetracarboxylic dianhydride in a solvent in which the polyamic acid produced is soluble. Solvents used for polymerization on polyamic acid include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and dimethyl sulfoxide. Can be used.

ポリアミド酸への重合反応は、攪拌装置を備えた反応容器で攪拌しながら行うことが好ましい。例えば、上記溶剤に所定量の芳香族ジアミン化合物を溶解させて、攪拌しながらテトラカルボン酸二無水物を投入して反応を行いポリアミド酸を得る方法、テトラカルボン酸二無水物を溶剤に溶解させて、攪拌しながら芳香族ジアミン化合物を投入して反応を行いポリアミド酸を得る方法、芳香族ジアミン化合物とテトラカルボン酸二無水物を交互に投入して反応させてポリアミド酸を得る方法などが挙げられる。 The polymerization reaction to polyamic acid is preferably carried out while stirring in a reaction vessel equipped with a stirrer. For example, a method in which a predetermined amount of an aromatic diamine compound is dissolved in the above solvent, tetracarboxylic acid dianhydride is added while stirring to carry out a reaction to obtain polyamic acid, and tetracarboxylic acid dianhydride is dissolved in the solvent. Then, a method of adding an aromatic diamine compound and reacting with stirring to obtain a polyamic acid, a method of alternately adding an aromatic diamine compound and a tetracarboxylic acid dianhydride and reacting them to obtain a polyamic acid, and the like can be mentioned. Be done.

ポリアミド酸への重合反応の温度については特に制約はないが、0〜70℃の温度で行うことが好ましく、より好ましくは10〜60℃であり、更に好ましくは20〜50℃である。重合反応を上記範囲内で行うことで、着色が少なく透明性に優れた高分子量のポリアミド酸を得ることが可能となる。 The temperature of the polymerization reaction to the polyamic acid is not particularly limited, but is preferably 0 to 70 ° C., more preferably 10 to 60 ° C., and even more preferably 20 to 50 ° C. By carrying out the polymerization reaction within the above range, it is possible to obtain a high molecular weight polyamic acid with less coloring and excellent transparency.

また、ポリアミド酸への重合に使用する芳香族ジアミン化合物とテトラカルボン酸二無水物は概ね当モル量を使用するが、得られるポリアミド酸の重合度をコントロールするために、テトラカルボン酸二無水物のモル量/芳香族ジアミン化合物のモル量(モル比率)を0.95〜1.05の範囲で変化させることも可能である。そして、テトラカルボン酸二無水物と芳香族ジアミン化合物のモル比率は、1.001〜1.02の範囲であることが好ましく、1.001〜1.01であることがより好ましい。このようにテトラカルボン酸二無水物を僅かに過剰にすることで、得られるポリアミド酸の重合度を安定させることができるとともに、テトラカルボン酸二無水物由来のユニットをポリマーの末端に配置することができ、その結果、着色が少なく透明性に優れたポリイミドを与えることが可能となる。 Further, the aromatic diamine compound and the tetracarboxylic dianhydride used for the polymerization to the polyamic acid use approximately the same molar amount, but in order to control the degree of polymerization of the obtained polyamic acid, the tetracarboxylic dianhydride is used. It is also possible to change the molar amount (molar ratio) of the aromatic diamine compound in the range of 0.95 to 1.05. The molar ratio of the tetracarboxylic dianhydride to the aromatic diamine compound is preferably in the range of 1.001 to 1.02, more preferably 1.001 to 1.01. By slightly excessing the tetracarboxylic dianhydride in this way, the degree of polymerization of the obtained polyamic acid can be stabilized, and the unit derived from the tetracarboxylic dianhydride can be arranged at the end of the polymer. As a result, it is possible to provide a polyimide having less coloring and excellent transparency.

生成するポリアミド酸溶液の濃度は、溶液の粘度を適正に保ち、その後の工程での取り扱いが容易になるよう、適切な濃度(例えば、10〜30重量%程度)に整えることが好ましい。 The concentration of the polyamic acid solution to be produced is preferably adjusted to an appropriate concentration (for example, about 10 to 30% by weight) so that the viscosity of the solution is maintained appropriately and it is easy to handle in the subsequent steps.

3.化学イミド化反応
次に得られたポリアミド酸溶液にイミド化剤を加えて化学イミド化反応を行う。イミド化剤としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水フタル酸、無水安息香酸などのカルボン酸無水物を用いることができ、コストや反応後の除去のしやすさの観点から無水酢酸を使用することが好ましい。使用するイミド化剤の当量は化学イミド化反応を行うポリアミド酸のアミド結合の当量以上であり、アミド結合の当量の1.1〜5倍であることが好ましく、1.5〜4倍であることがより好ましい。このようにアミド結合に対して少し過剰のイミド化剤を使用することで、比較的低温でも効率的にイミド化反応を行うことができる。
3. 3. Chemical imidization reaction Next, an imidizing agent is added to the obtained polyamic acid solution to carry out a chemical imidization reaction. As the imidizing agent, carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, succinic anhydride, phthalic anhydride, and benzoic anhydride can be used, and anhydrous from the viewpoint of cost and ease of removal after the reaction. It is preferable to use acetic anhydride. The equivalent of the imidizing agent to be used is equal to or more than the equivalent of the amide bond of the polyamic acid performing the chemical imidization reaction, preferably 1.1 to 5 times, preferably 1.5 to 4 times the equivalent of the amide bond. Is more preferable. By using a slightly excess imidizing agent for the amide bond in this way, the imidization reaction can be efficiently carried out even at a relatively low temperature.

また、化学イミド化反応には、イミド化促進剤として、ピリジン、ピコリン、キノリン、イソキノリン、トリメチルアミン、トリエチルアミン等の脂肪族、芳香族又は複素環式第三級アミン類を使用することができる。このようなアミン類を使用することで、低温で効率的にイミド化反応を行うことができ、その結果イミド化反応時の着色を抑えることが可能となり、より透明なポリイミドを得ることができる。 Further, in the chemical imidization reaction, aliphatic, aromatic or heterocyclic tertiary amines such as pyridine, picoline, quinoline, isoquinoline, trimethylamine and triethylamine can be used as the imidization accelerator. By using such amines, the imidization reaction can be efficiently carried out at a low temperature, and as a result, coloring during the imidization reaction can be suppressed, and a more transparent polyimide can be obtained.

化学イミド化反応温度については特に制約はないが、10℃以上50℃未満で行うことが好ましく、15℃以上45℃未満で行うことがより好ましい。10℃以上50℃未満の温度で化学イミド化反応を行うことで、イミド化反応時の着色が抑えられ、透明性に優れたポリイミドを得ることができる。 The chemical imidization reaction temperature is not particularly limited, but is preferably 10 ° C. or higher and lower than 50 ° C., and more preferably 15 ° C. or higher and lower than 45 ° C. By carrying out the chemical imidization reaction at a temperature of 10 ° C. or higher and lower than 50 ° C., coloring during the imidization reaction can be suppressed, and a polyimide having excellent transparency can be obtained.

4.生成ポリイミドの析出による粉体の形成
次に化学イミド化反応により得られたポリイミド溶液に、ポリイミドの貧溶媒を加えてポリイミドを析出させて粉体を形成させる粉体化を行う。粉体化に使用する貧溶媒としては、ポリイミドを析出することができる任意の貧溶媒が使用でき、ポリイミド溶液の溶媒とは混和性であることが望ましいので、具体的には、水、メタノール、エタノール等を用いることができる。そして、貧溶媒としてメタノールを用いることで安定した平均粒子径を有するポリイミド粉体を得ることができ好ましい。
4. Formation of Powder by Precipitating the Produced Polyimide Next, a poor solvent for polyimide is added to the polyimide solution obtained by the chemical imidization reaction to precipitate the polyimide to form a powder. As the poor solvent used for powdering, any poor solvent capable of precipitating polyimide can be used, and it is desirable that the solvent is miscible with the solvent of the polyimide solution. Ethanol or the like can be used. Then, by using methanol as a poor solvent, a polyimide powder having a stable average particle size can be obtained, which is preferable.

本発明において、ポリイミドの粉体化の工程で使用する貧溶媒の量は、ポリイミドの析出粉体化を行うのに十分な量を投入する必要があり、ポリイミドの構造、ポリイミド溶液の溶媒、ポリイミドの溶液濃度等を考慮して決定するが、通常はポリイミド溶液重量の0.5倍以上、好ましくはポリイミド溶液重量の0.8倍以上、より好ましくはポリイミド溶液重量の1倍以上の重量の貧溶媒を使用する。ポリイミド溶液重量の0.5倍以上の重量の貧溶媒を使用することで、安定した平均粒子径のポリイミド粉体を高収率で得ることができる。また、通常はポリイミド溶液重量の10倍以下、好ましくはポリイミド溶液重量の7倍以下、より好ましくはポリイミド溶液重量の5倍以下、更に好ましくはポリイミド溶液重量の4倍以下の重量の貧溶媒を使用する。 In the present invention, the amount of the poor solvent used in the step of pulverizing the polyimide needs to be a sufficient amount to carry out the precipitation powdering of the polyimide, and the structure of the polyimide, the solvent of the polyimide solution, and the polyimide Although it is determined in consideration of the solution concentration of the above, it is usually 0.5 times or more the weight of the polyimide solution, preferably 0.8 times or more the weight of the polyimide solution, and more preferably 1 times or more the weight of the polyimide solution. Use a solvent. By using a poor solvent having a weight of 0.5 times or more the weight of the polyimide solution, a polyimide powder having a stable average particle size can be obtained in a high yield. Further, usually, a poor solvent having a weight of 10 times or less the weight of the polyimide solution, preferably 7 times or less the weight of the polyimide solution, more preferably 5 times or less the weight of the polyimide solution, and further preferably 4 times or less the weight of the polyimide solution is used. To do.

ポリイミドの粉体化はポリイミド溶液に上記貧溶媒を添加することで行うが、ポリイミド溶液を攪拌しながら、貧溶媒を滴下する方法で行うことが好ましい。貧溶媒の拡散を容易にするため、ポリイミド溶液は予め好ましくは5〜30重量%、より好ましくは10〜20重量%程度の濃度に調整しておくことが望ましい。また、本発明により得られるポリイミド粉体の好ましい平均粒子径が0.02〜0.8mmであるが、平均粒子径はポリイミド溶液への貧溶媒の添加速度(毎分当たりの添加量)によりコントロールすることができる。貧溶媒の好ましい添加速度は、ポリイミドの構造や溶液中のポリイミドの濃度により若干左右されるが、遅くともポリイミドの析出が起きる直前の時点において、析出しようとするポリイミド溶液の総量をXgとした場合、貧溶媒の毎分あたりの添加量を、好ましくはXの0.0005〜0.1倍(g/分)、より好ましくはXの0.001〜0.05倍、最も好ましくはXの0.001〜0.04倍未満(g/分)とし、その添加速度をポリイミドの析出粉体化完了までこの範囲内に維持することで、安定した平均粒子径のポリイミド粉体を得ることができる。例えば、1000gのポリイミド溶液(濃度15重量%)中のポリイミドの析出粉体化を行う場合は、0.5〜100g/分が好ましい貧溶媒添加速度である。 The polyimide is powdered by adding the above-mentioned poor solvent to the polyimide solution, but it is preferable to carry out by dropping the poor solvent while stirring the polyimide solution. In order to facilitate the diffusion of the poor solvent, it is desirable to adjust the polyimide solution in advance to a concentration of preferably about 5 to 30% by weight, more preferably about 10 to 20% by weight. The preferred average particle size of the polyimide powder obtained by the present invention is 0.02 to 0.8 mm, but the average particle size is controlled by the addition rate of the poor solvent to the polyimide solution (addition amount per minute). can do. The preferable addition rate of the poor solvent depends slightly on the structure of the polyimide and the concentration of the polyimide in the solution, but when the total amount of the polyimide solution to be precipitated is Xg at the latest immediately before the precipitation of the polyimide occurs, The amount of the poor solvent added per minute is preferably 0.0005 to 0.1 times (g / min) of X, more preferably 0.001 to 0.05 times of X, and most preferably 0. By setting the value to less than 001 to 0.04 times (g / min) and maintaining the addition rate within this range until the completion of the precipitation powdering of polyimide, a polyimide powder having a stable average particle size can be obtained. For example, when precipitating and powdering polyimide in 1000 g of a polyimide solution (concentration: 15% by weight), 0.5 to 100 g / min is a preferable low solvent addition rate.

貧溶媒の毎分あたりの添加量(添加速度)がポリイミド溶液の総量の0.0005倍よりも小さい場合は、析出粉体化に要する時間が著しく大きくなり生産性が低下するとともに、生成するポリイミド粉体の平均粒子径が小さくなりすぎ、取扱いが難しくなることがある。一方で、貧溶媒の毎分あたりの添加量(添加速度)がポリイミド溶液の総量の0.1倍よりも大きい場合は、生成するポリイミド粉体の平均粒子径が大きくなり、この後に行う乾燥による揮発成分の除去を効率的に行うことが難しくなり、結果としてポリイミドの着色や耐熱性の低下といった問題を引き起こす虞が生じる。 When the amount of the poor solvent added per minute (addition rate) is smaller than 0.0005 times the total amount of the polyimide solution, the time required for precipitation powdering becomes significantly long, the productivity decreases, and the polyimide produced is produced. The average particle size of the powder may become too small, making it difficult to handle. On the other hand, when the amount of the poor solvent added per minute (addition rate) is larger than 0.1 times the total amount of the polyimide solution, the average particle size of the produced polyimide powder becomes large, and the drying is performed after that. It becomes difficult to efficiently remove volatile components, and as a result, problems such as coloring of polyimide and deterioration of heat resistance may occur.

また、貧溶媒の添加速度をコントロールするのは、ポリイミドの析出粉体化が起こる時点において配慮する必要があるが、ポリイミドの析出粉体化が始まるまでは特に配慮は必要ない。従って、貧溶媒を添加する初期の析出粉体化が起こる前までは、貧溶媒を高速で添加して、ポリイミド溶液に濁りが見られ、ポリイミドの析出粉体化が認められる以前、すなわち析出開始前の一時点までに添加速度を上記範囲内にコントロールしても良い。その後の添加速度は析出粉体化完了まで維持しなければならない。 Further, it is necessary to take care to control the addition rate of the poor solvent at the time when the polyimide is precipitated and powdered, but it is not necessary to give special consideration until the polyimide is started to be precipitated and powdered. Therefore, before the initial precipitation powder formation in which the poor solvent is added occurs, the poor solvent is added at high speed, and the polyimide solution becomes turbid, and before the precipitation powder formation of the polyimide is observed, that is, the precipitation starts. The addition rate may be controlled within the above range by the previous point in time. Subsequent addition rates must be maintained until precipitation powdering is complete.

本発明において、ポリイミドの析出粉体化の温度に特に制約はないが、使用する貧溶媒の蒸発を抑え、析出を効率的に行うという観点から、50℃以下の温度で行うことが好ましく、40℃以下で行うことがより好ましい。 In the present invention, the temperature at which the polyimide is precipitated and powdered is not particularly limited, but it is preferably performed at a temperature of 50 ° C. or lower from the viewpoint of suppressing evaporation of the poor solvent used and efficiently performing precipitation. It is more preferable to carry out at ° C or lower.

なお、ポリイミドの粉体化を過剰の貧溶媒にポリイミド溶液を添加する方法で行うと、析出するポリイミドが繊維状になる場合があり、好ましくない。 If the polyimide is powdered by adding a polyimide solution to an excessively poor solvent, the precipitated polyimide may become fibrous, which is not preferable.

5.粉体の乾燥
本発明においては、析出したポリイミド粉体を粉砕することなく、次の乾燥工程に供することができる。析出したポリイミド粉体を濾別し、更に必要に応じて洗浄することで、上記ポリイミドの溶剤、イミド化剤、イミド化促進剤をあらかた取り除いた後に、乾燥を行うことで、本発明のポリイミド粉体を得ることができる。
5. Drying of Powder In the present invention, the precipitated polyimide powder can be subjected to the next drying step without being crushed. The precipitated polyimide powder is separated by filtration, and if necessary, washed to remove the solvent, imidizing agent, and imidization accelerator of the polyimide, and then dried to obtain the polyimide powder of the present invention. You can get a body.

上記ポリイミド粉体の乾燥は、ポリイミド溶剤、イミド化剤、イミド化促進剤、貧溶媒等の残渣を除去することができれば任意の温度で行うことができるが、上記貧溶媒にメタノール、エタノール等のヒドロキシ基を有する貧溶媒を用いた場合に、いきなり100℃以上の温度で乾燥を行うと、ポリイミド中のカルボン酸基もしくはカルボン酸無水物基と上記貧溶媒が反応してエステル結合を生成してしまい、耐熱性の低下や着色といった問題を引き起こす可能性がある。従って乾燥工程は、ポリイミド粉体中の揮発成分が好ましくは5%未満、より好ましくは3%未満になるまで100℃未満の温度で乾燥を行った後に、好ましくは100〜350℃、より好ましくは150〜300℃の温度で0.1〜24時間乾燥を行い、残る揮発成分、特にイミド化剤やイミド化促進剤等の揮発し難い成分を除去することが好ましい。なお、100℃以上の高温での乾燥は、分子量低下防止、着色防止等の観点から、不活性かつ水分量の少ない雰囲気下で行うことが好ましい。また、ポリイミド粉体の乾燥は、常圧で行ってもよく、減圧下で行っても差し支えない。更には、乾燥は例えば100℃未満の低温から100℃以上の高温まで連続的に昇温しながら行っても差し支えなく、その場合は乾燥温度が100℃を超える前にポリイミド粉体中に含まれる揮発成分が5%未満になっていることが好ましい。 The polyimide powder can be dried at any temperature as long as residues such as a polyimide solvent, an imidizing agent, an imidizing accelerator, and a poor solvent can be removed. When a poor solvent having a hydroxy group is used and suddenly dried at a temperature of 100 ° C. or higher, the carboxylic acid group or carboxylic acid anhydride group in the polyimide reacts with the poor solvent to form an ester bond. This can cause problems such as reduced heat resistance and coloring. Therefore, in the drying step, after drying at a temperature of less than 100 ° C. until the volatile component in the polyimide powder is preferably less than 5%, more preferably less than 3%, the drying step is preferably 100 to 350 ° C., more preferably. It is preferable to carry out drying at a temperature of 150 to 300 ° C. for 0.1 to 24 hours to remove remaining volatile components, particularly hard-to-volatile components such as imidizing agents and imidization accelerators. Drying at a high temperature of 100 ° C. or higher is preferably carried out in an atmosphere that is inert and has a small amount of water, from the viewpoint of preventing a decrease in molecular weight and preventing coloring. Further, the polyimide powder may be dried under normal pressure or under reduced pressure. Further, the drying may be carried out while continuously raising the temperature from a low temperature of less than 100 ° C. to a high temperature of 100 ° C. or higher, in which case the drying is contained in the polyimide powder before the drying temperature exceeds 100 ° C. It is preferable that the volatile component is less than 5%.

ここでいう100℃未満の温度での乾燥後の、ポリイミド粉体中の揮発成分量とは以下の式で定義されるものである。
100℃未満の温度での乾燥後のポリイミド粉体の重量:Ag
100℃以上の温度で行う最終的な乾燥後のポリイミド粉体の重量:Bg
100℃未満の温度での乾燥後の残存揮発成分量:(A−B)/A×100%
The amount of volatile components in the polyimide powder after drying at a temperature of less than 100 ° C. is defined by the following formula.
Weight of polyimide powder after drying at a temperature of less than 100 ° C: Ag
Weight of polyimide powder after final drying performed at a temperature of 100 ° C. or higher: Bg
Amount of residual volatile components after drying at a temperature of less than 100 ° C: (AB) / A × 100%

6.粉体特性(その1 粒子特性)
このようにして得られたポリイミド粉体の平均粒子径は0.02〜0.8mmであり、好ましくは0.03〜0.6mm、より好ましくは0.04〜0.4mmである。平均粒子径が上記範囲内であれば、残存揮発成分が効率的に除去され、着色が極めて少なく透明性に優れたポリイミドとなる。
6. Powder characteristics (Part 1 Particle characteristics)
The average particle size of the polyimide powder thus obtained is 0.02 to 0.8 mm, preferably 0.03 to 0.6 mm, and more preferably 0.04 to 0.4 mm. When the average particle size is within the above range, the residual volatile components are efficiently removed, and the polyimide has extremely little coloring and excellent transparency.

また、本発明のポリイミド粉体の粒子径分布については、0.01〜2mmの範囲に粒子径分布の95体積%以上が入っていることが好ましく、99体積%以上であることがより好ましい。粒子径分布が上記のとおりであれば、取扱いが容易で、残存揮発成分が効率的に除去され、着色が少なく透明性に優れたポリイミドを得ることができる。 Further, regarding the particle size distribution of the polyimide powder of the present invention, it is preferable that 95% by volume or more of the particle size distribution is contained in the range of 0.01 to 2 mm, and more preferably 99% by volume or more. If the particle size distribution is as described above, it is easy to handle, the residual volatile components are efficiently removed, and a polyimide with less coloring and excellent transparency can be obtained.

本発明のポリイミド粉体の平均粒子径および粒子径分布はレーザ回折/散乱式粒子径分布測定装置により測定することができる。 The average particle size and particle size distribution of the polyimide powder of the present invention can be measured by a laser diffraction / scattering type particle size distribution measuring device.

本発明のポリイミド粉体の重量平均分子量は好ましくは20,000以上1,000,000以下、より好ましくは50,000以上500,000以下である。重量平均分子量が上記の下限未満だと透明性や機械特性が損なわれる虞があり、重量平均分子量が上記の上限を超える場合には、ポリイミド粉体を溶剤に溶解させた際に粘度が上昇しすぎて取扱いが難しくなることがある。ポリイミドの重量平均分子量は、サイズ排除クロマトグラフ装置により求めることができる。また、ポリイミド等の高分子の重合度を表す指標として還元粘度が用いられるが、本発明のポリイミド粉体においては、還元粘度が0.8〜4dL/gの範囲にあることが好ましく、1〜3dL/gの範囲にあることがより好ましい。還元粘度が上記の下限未満の場合には、透明性や機械特性が損なわれる虞があり、上記の上限を超える場合には、ポリイミド溶液の粘度が上昇しすぎて取扱いが難しくなることがある。 The weight average molecular weight of the polyimide powder of the present invention is preferably 20,000 or more and 1,000,000 or less, and more preferably 50,000 or more and 500,000 or less. If the weight average molecular weight is less than the above lower limit, transparency and mechanical properties may be impaired, and if the weight average molecular weight exceeds the above upper limit, the viscosity increases when the polyimide powder is dissolved in a solvent. It may be too difficult to handle. The weight average molecular weight of the polyimide can be determined by a size exclusion chromatograph device. Further, the reducing viscosity is used as an index showing the degree of polymerization of a polymer such as polyimide. In the polyimide powder of the present invention, the reducing viscosity is preferably in the range of 0.8 to 4 dL / g, and 1 to 1 More preferably, it is in the range of 3 dL / g. If the reduced viscosity is less than the above lower limit, transparency and mechanical properties may be impaired, and if it exceeds the above upper limit, the viscosity of the polyimide solution may increase too much, making handling difficult.

7.粉体特性(その2 フィルム特性)
本発明のポリイミド粉体の透明性については、ポリイミド粉体をN,N−ジメチルアセトアミド(DMAC)に溶解させた後、乾燥後50μm厚みになるようにキャスティング法により製膜したフィルムを用いて、分光色彩計により測定される光線透過率および黄色度により求めることができる。そして、本発明のポリイミド粉体より得られるポリイミドフィルムの450nmの波長における光線透過率は80%以上であり、より好ましくは85%以上である。また黄色度については、好ましくは−5〜5、より好ましくは−3〜3である。450nmの光線透過率が上記の下限未満の場合や、黄色度が上記範囲外の場合は、ディスプレイ等の光学用途に用いることができる透明性に優れたフィルムを与えることが困難となることがある。また、本発明のポリイミド粉体のイミド化率は、90%以上であることが好ましく、95%以上であることがより好ましい。イミド化率は上記方法により得られるポリイミドフィルムのフーリエ変換赤外分光法(FT−IR法)により求めることができる。
7. Powder characteristics (Part 2 Film characteristics)
Regarding the transparency of the polyimide powder of the present invention, a film obtained by dissolving the polyimide powder in N, N-dimethylacetamide (DMAC) and then drying to a thickness of 50 μm by a casting method was used. It can be determined from the light transmittance and the degree of yellowness measured by the spectrocolorimeter. The light transmittance of the polyimide film obtained from the polyimide powder of the present invention at a wavelength of 450 nm is 80% or more, more preferably 85% or more. The yellowness is preferably −5 to 5, more preferably -3 to 3. If the light transmittance at 450 nm is less than the above lower limit, or if the yellowness is outside the above range, it may be difficult to provide a film with excellent transparency that can be used for optical applications such as displays. .. The imidization ratio of the polyimide powder of the present invention is preferably 90% or more, more preferably 95% or more. The imidization ratio can be determined by Fourier transform infrared spectroscopy (FT-IR method) of the polyimide film obtained by the above method.

また、本発明のポリイミド粉体は、示差熱・熱重量分析装置を用いて測定される200〜300℃の温度範囲での重量減少率が0〜0.2%であることが好ましく、0〜0.1%であることがより好ましい。ポリイミド粉体の200〜300℃の温度範囲での重量減少率が上記範囲内であれば、着色が少なく、透明性に優れたポリイミドフィルムを与えることができる。 Further, the polyimide powder of the present invention preferably has a weight loss rate of 0 to 0.2% in the temperature range of 200 to 300 ° C. measured using a differential thermal / thermogravimetric analyzer, and is 0 to 0. More preferably, it is 0.1%. When the weight reduction rate of the polyimide powder in the temperature range of 200 to 300 ° C. is within the above range, a polyimide film having less coloring and excellent transparency can be provided.

以下、実施例により、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

(ポリイミド粉体の平均粒子径と粒子径分布の測定方法)
レーザ回折/散乱式粒子径分布測定装置(株式会社堀場製作所製LA−950V2)を用い、分散媒としてエタノールを用いて測定した。
(Measuring method of average particle size and particle size distribution of polyimide powder)
The measurement was performed using a laser diffraction / scattering particle size distribution measuring device (LA-950V2 manufactured by HORIBA, Ltd.) and ethanol as a dispersion medium.

(ポリイミドの光線透過率および黄色度の測定方法)
(1)測定用フィルムサンプルの作成方法
ポリイミド粉体を20重量%となるようにN,N−ジメチルアセトアミドに溶解させた。つぎにアプリケータを用いて、平滑なガラス板上に乾燥後厚みが50μmとなるように製膜して、熱風オーブン内で、130℃で60分保持した後、130℃から300℃まで5℃/分で昇温し、更に300℃で60分間保持して乾燥して、その後熱風オーブンから取り出し、室温まで冷却した後に、ガラス板から引き剥がして測定用のポリイミドフィルムサンプルとした。
(2)光線透過率の測定
分光色彩計(日本電色工業株式会社SD6000)を用いて、380〜780nmの波長範囲で光線透過率の測定を行い、450nmでの光線透過率を求めた。
(3)黄色度(YI)の測定
分光色彩計(日本電色工業株式会社SD6000)を用いて、380〜780nmの波長範囲でスキャンして、JIS K7373:2006に基づき、標準イルミナントD65を使用して測定し、黄色度(YI)を求めた。
(イミド化率の測定方法)
ポリイミドの光線透過率測定用と同じ方法で作成した50μm厚みのフィルムサンプルを測定用サンプルとし、当該フィルムに更に380℃30分の条件で熱処理を施してイミド化を完結させたフィルムを比較サンプルとして、フーリエ変換赤外分光光度計(株式会社島津製作所製FT−IR)を用いて、ATR法により赤外吸収スペクトルを得て、そのスペクトルに基づき、以下の方法によりイミド化率を算定した。
上記比較サンプルの赤外吸収スペクトルについて、イミドの特性吸収のひとつである1,365cm−1付近の吸収(イミド環C−N基の変角振動)と、ベンゼン環の特性吸収1,500cm−1との吸光度比をAとし、測定用サンプルの赤外吸収スペクトルの、1,365cm−1と1,500cm−1の吸光度比をBとして、以下の式よりイミド化率を求めた。
ポリイミドのイミド化率(%)=(B/A)×100
(Method for measuring light transmittance and yellowness of polyimide)
(1) Method for preparing film sample for measurement Polyimide powder was dissolved in N, N-dimethylacetamide so as to be 20% by weight. Next, using an applicator, a film is formed on a smooth glass plate so that the thickness becomes 50 μm after drying, and the film is held in a hot air oven at 130 ° C. for 60 minutes, and then from 130 ° C. to 300 ° C. at 5 ° C. The temperature was raised at / min, held at 300 ° C. for 60 minutes to dry, then taken out from a hot air oven, cooled to room temperature, and then peeled off from a glass plate to prepare a polyimide film sample for measurement.
(2) Measurement of light transmittance The light transmittance was measured in the wavelength range of 380 to 780 nm using a spectrocolorimeter (Nippon Denshoku Kogyo Co., Ltd. SD6000), and the light transmittance at 450 nm was determined.
(3) Measurement of yellowness (YI) Using a spectrocolorimeter (Nippon Denshoku Industries Co., Ltd. SD6000), scan in the wavelength range of 380 to 780 nm, and use standard Illuminant D65 based on JIS K7373: 2006. The yellowness (YI) was determined.
(Measuring method of imidization rate)
A film sample having a thickness of 50 μm prepared by the same method as for measuring the light transmittance of polyimide was used as a measurement sample, and a film obtained by further heat-treating the film at 380 ° C. for 30 minutes to complete imidization was used as a comparative sample. An infrared absorption spectrum was obtained by the ATR method using a Fourier transform infrared spectrophotometer (FT-IR manufactured by Shimadzu Corporation), and the imidization rate was calculated by the following method based on the spectrum.
Regarding the infrared absorption spectrum of the above comparative sample, the absorption near 1,365 cm -1, which is one of the characteristic absorptions of the imide (variable vibration of the imide ring CN group), and the characteristic absorption of the benzene ring 1,500 cm -1. the absorbance ratio of the a, the infrared absorption spectrum of the measurement sample, a B absorbance ratio of 1,365Cm -1 and 1,500Cm -1, was determined imidization ratio from the following equation.
Polyimide imidization rate (%) = (B / A) x 100

(ポリイミド粉体の200〜300℃での重量減少率の測定方法)
示差熱・熱重量同時測定装置(株式会社島津製作所製DTG−60)を用いて測定した。アルミニウム製のパンに25mgのポリイミド粉体を仕込み、窒素雰囲気中で10℃/分の速度で昇温して、200℃でのポリイミド粉体の重量(M1)及び300℃のときのポリイミド粉体の重量(M2)を測定し、下記の式から200〜300での重量減少率を求めた。
200〜300℃の重量減少率(%)=(M1−M2)/M1×100
(Measuring method of weight loss rate of polyimide powder at 200 to 300 ° C)
The measurement was performed using a differential thermal / thermogravimetric simultaneous measuring device (DTG-60 manufactured by Shimadzu Corporation). 25 mg of polyimide powder is charged in an aluminum pan, and the temperature is raised at a rate of 10 ° C./min in a nitrogen atmosphere. The weight of the polyimide powder at 200 ° C. (M1) and the polyimide powder at 300 ° C. The weight (M2) of the above was measured, and the weight loss rate in the range of 200 to 300 was obtained from the following formula.
Weight loss rate (%) at 200 to 300 ° C. = (M1-M2) / M1 × 100

(ポリイミドの還元粘度の測定方法)
0.5dL/gの濃度でN,N−ジメチルアセトアミド(DMAC)にポリイミド粉体を溶解して、ポリイミド溶液とした。ウベローデ粘度計を用いて、30℃の温度でポリイミド溶液の流出時間(T)と溶媒のDMACのみでの流出時間(T0)を測定し、下記の式から還元粘度を求めた。
還元粘度(dL/g)=(T−T0)/T0/0.5
(Measuring method of reducing viscosity of polyimide)
The polyimide powder was dissolved in N, N-dimethylacetamide (DMAC) at a concentration of 0.5 dL / g to prepare a polyimide solution. Using an Ubbelohde viscous meter, the outflow time (T) of the polyimide solution and the outflow time (T0) of the solvent only with DMAC were measured at a temperature of 30 ° C., and the reduced viscosity was calculated from the following formula.
Reduced viscosity (dL / g) = (T-T0) / T0 / 0.5

(ポリイミドの平均分子量及び多分散度の測定方法)
サイズ排除クロマトグラフ装置(東ソー株式会社製HLC−8320GPC)を用いて、溶離液テトラヒドロフラン、検出器示差屈折計により、標準物質として標準ポリスチレンを用いて測定した。
(Measuring method of average molecular weight and polydispersity of polyimide)
The measurement was carried out using a size exclusion chromatograph device (HLC-8320 GPC manufactured by Tosoh Corporation), eluent tetrahydrofuran, and a detector differential refractometer using standard polystyrene as a standard substance.

(実施例1)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)460gとフルオロ基を有する芳香族ジアミン化合物である2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.200モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)89.294g(0.201モル)を10分程度かけて投入し、そのまま温度が20〜40℃の温度範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用したテトラカルボン酸二無水物/芳香族ジアミン化合物のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
次に、得られたポリアミド酸溶液にDMAC409gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5g(1.20モル)を約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液1000gを、攪拌装置と攪拌翼を備えた5Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、そこにメタノール1500gを10g/分の速度で滴下させた。約800gのメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き1500g全量のメタノールを投入し、ポリイミドの析出を完了させた。
次にセパラブルフラスコの内容物を、吸引濾過装置により濾別し、更に1000gのメタノールを用いて洗浄・濾別した。
その後、濾別した揮発分の残渣を含むポリイミド粉体50gを局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させて重量を測定し、更に260℃で2時間乾燥させて、残りの揮発成分を除去して目的とするポリイミド粉体を得た。50℃で24時間乾燥させた後の重量は43.8gであり、260℃で2時間乾燥後の重量は43.3gであって、50℃24時間後の揮発成分量は1.1%であることが確認された。
得られたポリイミド粉体の平均粒子径は0.10mmであり、その粒子径分布は0.01〜2mmの範囲に100体積%含まれていた。また、還元粘度は2.1dL/g、サイズ排除クロマトグラフィーによる重量平均分子量(Mw)は210,000であり、重量平均分子量(Mw)/数平均分子量(Mn)で表される多分散度は2.1であった。また、示差熱・熱重量分析装置で200〜300℃の範囲での重量減少率を調べたところ0.03%であり、イミド化率は95%以上であった。
得られたポリイミド粉体20gを80gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの450nmの光線透過率は90%と高く、黄色度は1.5であって、目視でも変色は見られず、極めて透明性に優れたものであった。
(Example 1)
In a glass 2L separable flask equipped with a stirrer and a stirrer, 460 g of solvent N, N-dimethylacetamide (DMAC) and 2,2'-bis (trifluoromethyl), which is an aromatic diamine compound having a fluoro group, are used. ) -4,4'-Diaminobiphenyl (TFMB) 64.040 8 g (0.200 mol) was added and stirred to dissolve TFMB in DMAC. Then, while stirring in the separable flask, under a nitrogen stream, the tetracarboxylic dianhydride 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-) Diyl) 89.294 g (0.201 mol) of diphthalic acid dianhydride (6FDA) was added over about 10 minutes, and stirring was continued for 6 hours while adjusting the temperature so that it was in the temperature range of 20 to 40 ° C. The polymerization reaction was carried out to obtain a viscous polyamic acid solution. The molar ratio of the tetracarboxylic dianhydride / aromatic diamine compound used was 1.005, and the concentration of the polyamic acid solution was 25% by weight.
Next, 409 g of DMAC was added to the obtained polyimide solution to dilute it so that the concentration of the polyamic acid was 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator while stirring the polyamic acid solution. Keep the temperature in the temperature range of 30 to 40 ° C., and add 122.5 g (1.20 mol) of anhydrous acetic acid as an imidizing agent while slowly dropping it over about 10 minutes, and then add the liquid temperature to 30 to 40. The temperature was maintained at ° C. and stirring was continued for 12 hours to carry out a chemical imidization reaction to obtain a polyimide solution.
Next, 1000 g of the obtained polyimide solution containing the imidizing agent and the imidizing accelerator was transferred to a 5 L separable flask equipped with a stirrer and a stirring blade, and the mixture was stirred at a speed of 120 rpm at 15 to 25 ° C. The temperature was maintained, and 1500 g of methanol was added dropwise thereto at a rate of 10 g / min. When about 800 g of methanol was added, turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed. Subsequently, 1500 g of total amount of methanol was added to complete the precipitation of polyimide.
Next, the contents of the separable flask were filtered by a suction filtration device, and further washed and filtered using 1000 g of methanol.
Then, 50 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device to measure the weight, and further dried at 260 ° C. for 2 hours. , The remaining volatile components were removed to obtain the desired polyimide powder. The weight after drying at 50 ° C. for 24 hours is 43.8 g, the weight after drying at 260 ° C. for 2 hours is 43.3 g, and the amount of volatile components after 24 hours at 50 ° C. is 1.1%. It was confirmed that there was.
The average particle size of the obtained polyimide powder was 0.10 mm, and the particle size distribution was 100% by volume in the range of 0.01 to 2 mm. The reduced viscosity is 2.1 dL / g, the weight average molecular weight (Mw) by size exclusion chromatography is 210,000, and the degree of polydispersity expressed by weight average molecular weight (Mw) / number average molecular weight (Mn) is It was 2.1. Further, when the weight loss rate in the range of 200 to 300 ° C. was examined with a differential thermal / thermogravimetric analyzer, it was 0.03%, and the imidization rate was 95% or more.
20 g of the obtained polyimide powder is dissolved in 80 g of DMAC to prepare a uniform polyimide solution, then coated on a glass plate using an applicator, the DMAC is dried under predetermined conditions, and then pulled from the glass plate. It was peeled off to prepare a polyimide film having a thickness of 50 μm. The light transmittance of the obtained polyimide film at 450 nm was as high as 90%, the yellowness was 1.5, no discoloration was observed visually, and the transparency was extremely excellent.

(実施例2)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)484gと芳香族ジアミン化合物である2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)51.238g(0.160モル)および2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン(BAPP−F)20.738g(0.040モル)を入れて攪拌し、TFMBおよびBAPP−FをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)89.294g(0.201モル)を10分程度かけて投入し、そのまま温度が20〜40℃の範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用したテトラカルボン酸二無水物(6FDA)/芳香族ジアミン化合物(TFMBとBAPP−Fの合計)のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
次に、得られたポリアミド酸溶液にDMAC430gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5g(1.20モル)を約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液1000gを、攪拌装置と攪拌翼を備えた5Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、そこにメタノール1500gを10g/分の速度で滴下させた。約900gのメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き1500g全量のメタノールを投入し、ポリイミドの析出を完了させた。
次にセパラブルフラスコの内容物を、吸引濾過装置を用いて濾別し、更に1000gのメタノールを用いて洗浄・濾別した。
その後、濾別した揮発分の残渣を含むポリイミド粉体50gを局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させて重量を測定し、更に260℃で2時間乾燥させて、残りの揮発成分を除去して目的とするポリイミド粉体を得た。50℃で24時間乾燥させた後の重量は44.1gであり、260℃で2時間乾燥後の重量は43.7gであって、50℃24時間後の揮発成分量は0.9%であることが確認された。
得られたポリイミド粉体の平均粒子径は0.36mmであり、その粒子径分布は0.01〜2mmの範囲に100体積%含まれていた。また、還元粘度は2.4dL/g、サイズ排除クロマトグラフィーによる重量平均分子量は250,000であり、多分散度は2.4であった。また、示差熱・熱重量分析装置で200〜300℃の範囲での重量減少率を調べたところ0.05%であり、イミド化率は95%以上であった。
得られたポリイミド粉体20gを80gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの450nmの光線透過率は88%と高く、黄色度は2.6であって、目視でも変色は見られず、透明性に優れたものであった。
(Example 2)
In a glass 2 L separable flask equipped with a stirrer and a stirrer, 484 g of solvent N, N-dimethylacetamide (DMAC) and 2,2'-bis (trifluoromethyl) -4, which is an aromatic diamine compound, 51.238 g (0.160 mol) of 4'-diaminobiphenyl (TFMB) and 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane 20.738 g (0.040 mol) of (BAPP-F) was added and stirred to dissolve TFMB and BAPP-F in DMAC. Then, while stirring in the separable flask, under a nitrogen stream, the tetracarboxylic dianhydride 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-) Diyl) 89.294 g (0.201 mol) of diphthalic acid dianhydride (6FDA) was added over about 10 minutes, and stirring was continued for 6 hours while adjusting the temperature so that it was in the range of 20 to 40 ° C. The polymerization reaction was carried out to obtain a viscous polyamic acid solution. The molar ratio of the tetracarboxylic dianhydride (6FDA) / aromatic diamine compound (total of TFMB and BAPP-F) used was 1.005, and the concentration of the polyamic acid solution was 25% by weight.
Next, 430 g of DMAC was added to the obtained polyimide solution to dilute it so that the concentration of the polyamic acid was 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator while stirring the polyamic acid solution. Keep the temperature in the temperature range of 30 to 40 ° C., and add 122.5 g (1.20 mol) of anhydrous acetic acid as an imidizing agent while slowly dropping it over about 10 minutes, and then add the liquid temperature to 30 to 40. The temperature was maintained at ° C. and stirring was continued for 12 hours to carry out a chemical imidization reaction to obtain a polyimide solution.
Next, 1000 g of the obtained polyimide solution containing the imidizing agent and the imidizing accelerator was transferred to a 5 L separable flask equipped with a stirrer and a stirring blade, and the mixture was stirred at a speed of 120 rpm at 15 to 25 ° C. The temperature was maintained, and 1500 g of methanol was added dropwise thereto at a rate of 10 g / min. When about 900 g of methanol was added, turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed. Subsequently, 1500 g of total amount of methanol was added to complete the precipitation of polyimide.
Next, the contents of the separable flask were filtered using a suction filtration device, and further washed and filtered using 1000 g of methanol.
Then, 50 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device to measure the weight, and further dried at 260 ° C. for 2 hours. , The remaining volatile components were removed to obtain the desired polyimide powder. The weight after drying at 50 ° C. for 24 hours is 44.1 g, the weight after drying at 260 ° C. for 2 hours is 43.7 g, and the amount of volatile components after 24 hours at 50 ° C. is 0.9%. It was confirmed that there was.
The average particle size of the obtained polyimide powder was 0.36 mm, and the particle size distribution was 100% by volume in the range of 0.01 to 2 mm. The reduced viscosity was 2.4 dL / g, the weight average molecular weight by size exclusion chromatography was 250,000, and the polydispersity was 2.4. Further, when the weight loss rate in the range of 200 to 300 ° C. was examined with a differential thermal / thermogravimetric analyzer, it was 0.05%, and the imidization rate was 95% or more.
20 g of the obtained polyimide powder is dissolved in 80 g of DMAC to prepare a uniform polyimide solution, then coated on a glass plate using an applicator, the DMAC is dried under predetermined conditions, and then pulled from the glass plate. It was peeled off to prepare a polyimide film having a thickness of 50 μm. The light transmittance of the obtained polyimide film at 450 nm was as high as 88%, the yellowness was 2.6, no discoloration was observed visually, and the transparency was excellent.

(実施例3)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)444gと芳香族ジアミン化合物である2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.200モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)71.524g(0.161モル)を10分程度かけて投入し、続いて3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(ODPA)12.408g(0.040モル)を5分程度かけて投入し、そのまま温度が20〜40℃の範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用したテトラカルボン酸二無水物(6FDAとODPAの合計)/芳香族ジアミン化合物(TFMB)のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
次に、得られたポリアミド酸溶液にDMAC395gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5g(1.20モル)を約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保ったまま12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液1000gを、攪拌装置と攪拌翼を備えた5Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、そこにメタノール1500gを10g/分の速度で滴下させた。約850gのメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き1500g全量のメタノールを投入し、ポリイミドの析出を完了させた。
次にセパラブルフラスコの内容物を、吸引濾過装置を用いて濾別し、更に1000gのメタノールを用いて洗浄・濾別した。
その後、濾別した揮発分の残渣を含むポリイミド粉体50gを局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させて重量を測定し、更に260℃で2時間乾燥させて、残りの揮発成分を除去して目的とするポリイミド粉体を得た。50℃で24時間乾燥させた後の重量は43.9gであり、260℃で2時間乾燥後の重量は43.4gであって、50℃24時間後の揮発成分量は1.1%であることが確認された。
得られたポリイミド粉体の平均粒子径は0.25mmであり、その粒子径分布は0.01〜2mmの範囲に100体積%含まれていた。また、還元粘度は2.3dL/g、サイズ排除クロマトグラフィーによる重量平均分子量は250,000であり、多分散度は2.5であった。また、示差熱・熱重量分析装置で200〜300℃の範囲での重量減少率を調べたところ0.06%であり、イミド化率は95%以上であった。
得られたポリイミド粉体20gを80gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの光線透過率は87%と高く、黄色度は2.3であって。目視でも変色は見られず、極めて透明性に優れたものであった。
(Example 3)
In a 2 L glass separable flask equipped with a stirrer and a stirrer, 444 g of solvent N, N-dimethylacetamide (DMAC) and 2,2'-bis (trifluoromethyl) -4, which is an aromatic diamine compound, 64.048 g (0.200 mol) of 4'-diaminobiphenyl (TFMB) was added and stirred to dissolve TFMB in DMAC. Then, while stirring in the separable flask, under a nitrogen stream, the tetracarboxylic dianhydride 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-) Diyl) 71.524 g (0.161 mol) of diphthalic acid dianhydride (6FDA) was added over about 10 minutes, followed by 3,3', 4,4'-diphenyl ether tetracarboxylic dianhydride (ODPA). 12.408 g (0.040 mol) was added over about 5 minutes, and the polymerization reaction was carried out by continuing stirring for 6 hours while adjusting the temperature so that it was in the range of 20 to 40 ° C., and viscous polyamic acid. A solution was obtained. The molar ratio of tetracarboxylic dianhydride (total of 6FDA and ODPA) / aromatic diamine compound (TFMB) used was 1.005, and the concentration of the polyamic acid solution was 25% by weight.
Next, 395 g of DMAC was added to the obtained polyimide solution to dilute the polyamic acid concentration to 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator while stirring the polyamic acid solution. Keep the temperature in the temperature range of 30 to 40 ° C., and add 122.5 g (1.20 mol) of anhydrous acetic acid as an imidizing agent while slowly dropping it over about 10 minutes, and then add the liquid temperature to 30 to 40. Stirring was continued for 12 hours while keeping the temperature at ° C. to carry out a chemical imidization reaction to obtain a polyimide solution.
Next, 1000 g of the obtained polyimide solution containing the imidizing agent and the imidizing accelerator was transferred to a 5 L separable flask equipped with a stirrer and a stirring blade, and the mixture was stirred at a speed of 120 rpm at 15 to 25 ° C. The temperature was maintained, and 1500 g of methanol was added dropwise thereto at a rate of 10 g / min. When about 850 g of methanol was added, turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed. Subsequently, 1500 g of total amount of methanol was added to complete the precipitation of polyimide.
Next, the contents of the separable flask were filtered using a suction filtration device, and further washed and filtered using 1000 g of methanol.
Then, 50 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device to measure the weight, and further dried at 260 ° C. for 2 hours. , The remaining volatile components were removed to obtain the desired polyimide powder. The weight after drying at 50 ° C. for 24 hours is 43.9 g, the weight after drying at 260 ° C. for 2 hours is 43.4 g, and the amount of volatile components after 24 hours at 50 ° C. is 1.1%. It was confirmed that there was.
The average particle size of the obtained polyimide powder was 0.25 mm, and the particle size distribution was 100% by volume in the range of 0.01 to 2 mm. The reduced viscosity was 2.3 dL / g, the weight average molecular weight by size exclusion chromatography was 250,000, and the polydispersity was 2.5. Further, when the weight loss rate in the range of 200 to 300 ° C. was examined with a differential thermal / thermogravimetric analyzer, it was 0.06%, and the imidization rate was 95% or more.
20 g of the obtained polyimide powder is dissolved in 80 g of DMAC to prepare a uniform polyimide solution, then coated on a glass plate using an applicator, the DMAC is dried under predetermined conditions, and then pulled from the glass plate. It was peeled off to prepare a polyimide film having a thickness of 50 μm. The light transmittance of the obtained polyimide film was as high as 87%, and the yellowness was 2.3. No discoloration was observed visually, and the transparency was extremely excellent.

(実施例4)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)460gと芳香族ジアミン化合物である2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.200モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)89.294g(0.201モル)を10分程度かけて投入し、そのまま温度が20〜40℃の範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用したテトラカルボン酸二無水物/芳香族ジアミン化合物のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
次に、得られたポリアミド酸溶液にDMAC409gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5g(1.20モル)を約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液1000gを、攪拌装置と攪拌翼を備えた5Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、準備したメタノール1500gのうち、700gを200g/分の速度で添加し、その後10g/分の速度に落として、残りのメタノールを滴下させた。最初の700gのメタノールを添加した時点では、ポリイミド溶液に特に濁りは見られず透明なままであったが、その後メタノールの滴下を行うことでポリイミド溶液の濁りが見られるようになり、粉体状のポリイミドの析出が確認された。引き続き1500g全量のメタノールを投入し、ポリイミドの析出を完了させた。
次にセパラブルフラスコの内容物を、吸引濾過装置を用いて濾別し、更に1000gのメタノールを用いて洗浄・濾別した。
その後、濾別した揮発分の残渣を含むポリイミド粉体50gを局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させて重量を測定し、更に260℃で2時間乾燥させて、残りの揮発成分を除去して目的とするポリイミド粉体を得た。50℃で24時間乾燥させた後の重量は43.9gであり、260℃で2時間乾燥後の重量は43.4gであって、50℃24時間後の揮発成分量は1.1%であることが確認された。
得られたポリイミド粉体の平均粒子径は0.13mmであり、その粒子径分布は0.01〜2mmの範囲に100体積%含まれていた。また、還元粘度は1.9dL/g、サイズ排除クロマトグラフィーによる重量平均分子量は190,000であり、多分散度は2.1であった。また、示差熱・熱重量分析装置で200〜300℃の範囲での重量減少率を調べたところ0.03%であり、イミド化率は95%以上であった。
得られたポリイミド粉体20gを80gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの450nmの光線透過率は89%と高く、黄色度は2.4であって、目視でも変色は見られず、極めて透明性に優れたものであった。
(Example 4)
In a glass 2 L separable flask equipped with a stirrer and a stirrer, 460 g of solvent N, N-dimethylacetamide (DMAC) and 2,2'-bis (trifluoromethyl) -4, which is an aromatic diamine compound, 64.048 g (0.200 mol) of 4'-diaminobiphenyl (TFMB) was added and stirred to dissolve TFMB in DMAC. Then, while stirring in the separable flask, under a nitrogen stream, the tetracarboxylic dianhydride 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-) Diyl) 89.294 g (0.201 mol) of diphthalic acid dianhydride (6FDA) was added over about 10 minutes, and stirring was continued for 6 hours while adjusting the temperature so that it was in the range of 20 to 40 ° C. The polymerization reaction was carried out to obtain a viscous polyamic acid solution. The molar ratio of the tetracarboxylic dianhydride / aromatic diamine compound used was 1.005, and the concentration of the polyamic acid solution was 25% by weight.
Next, 409 g of DMAC was added to the obtained polyimide solution to dilute it so that the concentration of the polyamic acid was 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator while stirring the polyamic acid solution. Keep the temperature in the temperature range of 30 to 40 ° C., and add 122.5 g (1.20 mol) of anhydrous acetic acid as an imidizing agent while slowly dropping it over about 10 minutes, and then add the liquid temperature to 30 to 40. The temperature was maintained at ° C. and stirring was continued for 12 hours to carry out a chemical imidization reaction to obtain a polyimide solution.
Next, 1000 g of the obtained polyimide solution containing the imidizing agent and the imidizing accelerator was transferred to a 5 L separable flask equipped with a stirrer and a stirring blade, and the mixture was stirred at a speed of 120 rpm at 15 to 25 ° C. Keeping the temperature, 700 g of the prepared 1500 g of the methanol was added at a rate of 200 g / min, then reduced to a rate of 10 g / min, and the remaining methanol was added dropwise. When the first 700 g of methanol was added, the polyimide solution remained transparent without any particular turbidity, but after that, when methanol was added dropwise, the polyimide solution became turbid and became powdery. Precipitation of polyimide was confirmed. Subsequently, 1500 g of total amount of methanol was added to complete the precipitation of polyimide.
Next, the contents of the separable flask were filtered using a suction filtration device, and further washed and filtered using 1000 g of methanol.
Then, 50 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device to measure the weight, and further dried at 260 ° C. for 2 hours. , The remaining volatile components were removed to obtain the desired polyimide powder. The weight after drying at 50 ° C. for 24 hours is 43.9 g, the weight after drying at 260 ° C. for 2 hours is 43.4 g, and the amount of volatile components after 24 hours at 50 ° C. is 1.1%. It was confirmed that there was.
The average particle size of the obtained polyimide powder was 0.13 mm, and the particle size distribution was 100% by volume in the range of 0.01 to 2 mm. The reduced viscosity was 1.9 dL / g, the weight average molecular weight by size exclusion chromatography was 190,000, and the polydispersity was 2.1. Further, when the weight loss rate in the range of 200 to 300 ° C. was examined with a differential thermal / thermogravimetric analyzer, it was 0.03%, and the imidization rate was 95% or more.
20 g of the obtained polyimide powder is dissolved in 80 g of DMAC to prepare a uniform polyimide solution, then coated on a glass plate using an applicator, the DMAC is dried under predetermined conditions, and then pulled from the glass plate. It was peeled off to prepare a polyimide film having a thickness of 50 μm. The light transmittance of the obtained polyimide film at 450 nm was as high as 89%, the yellowness was 2.4, no discoloration was observed visually, and the transparency was extremely excellent.

(比較例1)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)460gと芳香族ジアミン化合物である2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.200モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)89.294g(0.201モル)を10分程度かけて投入し、そのまま温度が20〜40℃の範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用したテトラカルボン酸二無水物/芳香族ジアミン化合物のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
次に、得られたポリアミド酸溶液にDMAC409gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5g(1.20モル)を約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液1000gを、攪拌装置と攪拌翼を備えた5Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、そこにメタノール1500gを200g/分の速度で滴下させた。約900gのメタノールを投入したところで比較的粒子径の大きなポリイミドの析出が確認された。引き続き1500g全量のメタノールを投入し、ポリイミドの析出を完了させた。
次にセパラブルフラスコの内容物を、吸引濾過装置を用いて濾別し、更に1000gのメタノールを用いて洗浄・濾別した。
その後、濾別した揮発分の残渣を含むポリイミド粉体50gを局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させて重量を測定し、更に260℃で2時間乾燥させて、残りの揮発成分を除去して目的とするポリイミド粉体を得た。50℃で24時間乾燥させた後の重量は43.4gであり、260℃で2時間乾燥後の重量は40.8gであって、50℃24時間乾燥後の揮発成分量は6.0%であることが確認された。
得られたポリイミド粉体の平均粒子径は2.5mmと大きいものであり、その粒子径分布は0.01〜2mmの範囲に30体積%未満しか含まれていなかった。また、還元粘度は2.1dL/g、サイズ排除クロマトグラフィーによる重量平均分子量は210,000であり、多分散度は2.1であった。また、示差熱・熱重量分析装置で200〜300℃の範囲での重量減少率を調べたところ0.42%と大きな重量減少が認められた。イミド化率は95%以上であった。
得られたポリイミド粉体20gを80gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成したところ、得られたポリイミドフィルムの450nmの光線透過率は78%と低く、黄色度10.5であって、目視でもフィルムの黄変が認められた。
(Comparative Example 1)
In a glass 2 L separable flask equipped with a stirrer and a stirrer, 460 g of solvent N, N-dimethylacetamide (DMAC) and 2,2'-bis (trifluoromethyl) -4, which is an aromatic diamine compound, 64.048 g (0.200 mol) of 4'-diaminobiphenyl (TFMB) was added and stirred to dissolve TFMB in DMAC. Then, while stirring in the separable flask, under a nitrogen stream, the tetracarboxylic dianhydride 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-) Diyl) 89.294 g (0.201 mol) of diphthalic acid dianhydride (6FDA) was added over about 10 minutes, and stirring was continued for 6 hours while adjusting the temperature so that it was in the range of 20 to 40 ° C. The polymerization reaction was carried out to obtain a viscous polyamic acid solution. The molar ratio of the tetracarboxylic dianhydride / aromatic diamine compound used was 1.005, and the concentration of the polyamic acid solution was 25% by weight.
Next, 409 g of DMAC was added to the obtained polyimide solution to dilute it so that the concentration of the polyamic acid was 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator while stirring the polyamic acid solution. Keep the temperature in the temperature range of 30 to 40 ° C., and add 122.5 g (1.20 mol) of anhydrous acetic acid as an imidizing agent while slowly dropping it over about 10 minutes, and then add the liquid temperature to 30 to 40. The temperature was maintained at ° C. and stirring was continued for 12 hours to carry out a chemical imidization reaction to obtain a polyimide solution.
Next, 1000 g of the obtained polyimide solution containing the imidizing agent and the imidizing accelerator was transferred to a 5 L separable flask equipped with a stirrer and a stirring blade, and the mixture was stirred at a speed of 120 rpm at 15 to 25 ° C. The temperature was maintained, and 1500 g of methanol was added dropwise thereto at a rate of 200 g / min. When about 900 g of methanol was added, precipitation of polyimide having a relatively large particle size was confirmed. Subsequently, 1500 g of total amount of methanol was added to complete the precipitation of polyimide.
Next, the contents of the separable flask were filtered using a suction filtration device, and further washed and filtered using 1000 g of methanol.
Then, 50 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device to measure the weight, and further dried at 260 ° C. for 2 hours. , The remaining volatile components were removed to obtain the desired polyimide powder. The weight after drying at 50 ° C. for 24 hours is 43.4 g, the weight after drying at 260 ° C. for 2 hours is 40.8 g, and the amount of volatile components after drying at 50 ° C. for 24 hours is 6.0%. It was confirmed that.
The average particle size of the obtained polyimide powder was as large as 2.5 mm, and the particle size distribution contained less than 30% by volume in the range of 0.01 to 2 mm. The reduced viscosity was 2.1 dL / g, the weight average molecular weight by size exclusion chromatography was 210,000, and the polydispersity was 2.1. Further, when the weight loss rate in the range of 200 to 300 ° C. was examined with a differential thermal / thermogravimetric analyzer, a large weight loss of 0.42% was observed. The imidization rate was 95% or more.
20 g of the obtained polyimide powder is dissolved in 80 g of DMAC to prepare a uniform polyimide solution, then coated on a glass plate using an applicator, the DMAC is dried under predetermined conditions, and then pulled from the glass plate. When a polyimide film having a thickness of 50 μm was prepared by peeling off, the obtained polyimide film had a low light transmittance of 78% at 450 nm and a yellowness of 10.5, and yellowing of the film was visually observed.

(比較例2)
攪拌装置と攪拌翼を備えたガラス製の2Lのセパラブルフラスコに、溶剤N,N−ジメチルアセトアミド(DMAC)460gと芳香族ジアミン化合物である2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFMB)64.048g(0.200モル)を入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、セパラブルフラスコ内を攪拌しながら、窒素気流下で、テトラカルボン酸二無水物である4,4’−(1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジイル)ジフタル酸二無水物(6FDA)89.294g(0.201モル)を10分程度かけて投入し、そのまま温度が20〜40℃の範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。使用したテトラカルボン酸二無水物/芳香族ジアミン化合物のモル比率は1.005であり、ポリアミド酸溶液の濃度は25重量%であった。
次に、得られたポリアミド酸溶液にDMAC409gを加えてポリアミド酸の濃度が15重量%になるように希釈した後、イミド化促進剤としてイソキノリン25.83gを加えて、ポリアミド酸溶液を攪拌しながら30〜40℃の温度範囲に保ち、そこにイミド化剤として、無水酢酸122.5g(1.20モル)を約10分間かけてゆっくりと滴下しながら投入し、その後更に液温を30〜40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
次に、得られたイミド化剤およびイミド化促進剤を含むポリイミド溶液1000gを、攪拌装置と攪拌翼を備えた5Lのセパラブルフラスコに移し変え、120rpmの速度で攪拌しながら15〜25℃の温度に保ち、そこにメタノール1500gを10g/分の速度で滴下させた。約800gのメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き1500g全量のメタノールを投入し、ポリイミドの析出を完了させた。
次にセパラブルフラスコの内容物を、吸引濾過装置を用いて濾別し、更に1000gのメタノールを用いて洗浄・濾別した。
その後、濾別した揮発分の残渣を含むポリイミド粉体50gを局所排気装置のついた乾燥機を用いて、特に100℃未満の温度での乾燥を行うことなく、260℃で2時間乾燥させて、揮発成分を除去してポリイミド粉体43.6gを得た。
得られたポリイミド粉体の平均粒子径は0.10mmであり、その粒子径分布は0.01〜2mmの範囲に100体積%含まれていた。また、還元粘度は2.1dL/g、サイズ排除クロマトグラフィーによる重量平均分子量は210,000であり、多分散度は2.1であった。また、示差熱・熱重量分析装置で200〜300℃の範囲での重量減少率を調べたところ0.31%と大きな重量減少が認められた。イミド化率は95%以上であった。
得られたポリイミド粉体20gを80gのDMACに溶解させて均一なポリイミド溶液とした後、アプリケータを用いてガラス板上に塗膜し、所定の条件でDMACを乾燥させた後にガラス板から引き剥がして50μm厚みのポリイミドフィルムを作成した。得られたポリイミドフィルムの450nmの光線透過率は79%と低く、黄色度は7.5であって、目視でも黄変が認められた。
(Comparative Example 2)
In a glass 2 L separable flask equipped with a stirrer and a stirrer, 460 g of solvent N, N-dimethylacetamide (DMAC) and 2,2'-bis (trifluoromethyl) -4, which is an aromatic diamine compound, 64.048 g (0.200 mol) of 4'-diaminobiphenyl (TFMB) was added and stirred to dissolve TFMB in DMAC. Then, while stirring in the separable flask, under a nitrogen stream, the tetracarboxylic dianhydride 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-) Diyl) 89.294 g (0.201 mol) of diphthalic acid dianhydride (6FDA) was added over about 10 minutes, and stirring was continued for 6 hours while adjusting the temperature so that it was in the range of 20 to 40 ° C. The polymerization reaction was carried out to obtain a viscous polyamic acid solution. The molar ratio of the tetracarboxylic dianhydride / aromatic diamine compound used was 1.005, and the concentration of the polyamic acid solution was 25% by weight.
Next, 409 g of DMAC was added to the obtained polyimide solution to dilute it so that the concentration of the polyamic acid was 15% by weight, and then 25.83 g of isoquinoline was added as an imidization accelerator while stirring the polyamic acid solution. Keep the temperature in the temperature range of 30 to 40 ° C., and add 122.5 g (1.20 mol) of anhydrous acetic acid as an imidizing agent while slowly dropping it over about 10 minutes, and then add the liquid temperature to 30 to 40. The temperature was maintained at ° C. and stirring was continued for 12 hours to carry out a chemical imidization reaction to obtain a polyimide solution.
Next, 1000 g of the obtained polyimide solution containing the imidizing agent and the imidizing accelerator was transferred to a 5 L separable flask equipped with a stirrer and a stirring blade, and the mixture was stirred at a speed of 120 rpm at 15 to 25 ° C. The temperature was maintained, and 1500 g of methanol was added dropwise thereto at a rate of 10 g / min. When about 800 g of methanol was added, turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed. Subsequently, 1500 g of total amount of methanol was added to complete the precipitation of polyimide.
Next, the contents of the separable flask were filtered using a suction filtration device, and further washed and filtered using 1000 g of methanol.
Then, 50 g of the polyimide powder containing the residue of the volatile matter separated by filtration was dried at 260 ° C. for 2 hours using a dryer equipped with a local exhaust device, without particularly drying at a temperature lower than 100 ° C. , Volatile components were removed to obtain 43.6 g of polyimide powder.
The average particle size of the obtained polyimide powder was 0.10 mm, and the particle size distribution was 100% by volume in the range of 0.01 to 2 mm. The reduced viscosity was 2.1 dL / g, the weight average molecular weight by size exclusion chromatography was 210,000, and the polydispersity was 2.1. Further, when the weight loss rate in the range of 200 to 300 ° C. was examined with a differential thermal / thermogravimetric analyzer, a large weight loss of 0.31% was observed. The imidization rate was 95% or more.
20 g of the obtained polyimide powder is dissolved in 80 g of DMAC to prepare a uniform polyimide solution, then coated on a glass plate using an applicator, the DMAC is dried under predetermined conditions, and then pulled from the glass plate. It was peeled off to prepare a polyimide film having a thickness of 50 μm. The light transmittance of the obtained polyimide film at 450 nm was as low as 79%, the yellowness was 7.5, and yellowing was visually observed.

実施例及び比較例の条件及び結果を表1、表2にまとめる。 The conditions and results of Examples and Comparative Examples are summarized in Tables 1 and 2.

Figure 2021059732
Figure 2021059732

Figure 2021059732
Figure 2021059732

上記のとおり、実施例1〜4では、平均粒子径(mm)、0.01−2mmの範囲の粒子径分布(体積%)、200−300℃での重量減少率(%)、光線透過率(%)、黄色度(YI)のすべてにおいて良好であるが、本願発明におけるポリイミドの析出による粉体形成条件及び粉体の乾燥条件を満たさない比較例1では、これらの特性のすべてにおいて劣っており、粉体の乾燥条件を満たさない比較例2では、200−300℃での重量減少率(%)、光線透過率(%)、黄色度(YI)において劣っていることがわかる。 As described above, in Examples 1 to 4, the average particle size (mm), the particle size distribution in the range of 0.01-2 mm (volume%), the weight loss rate (%) at 200-300 ° C., and the light transmittance. It is good in all of (%) and yellowness (YI), but in Comparative Example 1 which does not satisfy the powder forming condition by the precipitation of polyimide and the drying condition of the powder in the present invention, it is inferior in all of these characteristics. It can be seen that Comparative Example 2 which does not satisfy the drying conditions of the powder is inferior in the weight loss rate (%), the light transmittance (%), and the yellowness (YI) at 200-300 ° C.

また、本発明のポリイミド粉体は、このような粉体形成条件及び粉体乾燥条件を経て製造されたことに起因して異なる特性を獲得しているため、当該ポリイミド粉体をその構造又は特性により直接特定することは不可能であるか、又はおよそ実際的でないという事情が存在する。 Further, since the polyimide powder of the present invention has acquired different characteristics due to being produced under such powder forming conditions and powder drying conditions, the polyimide powder has a structure or characteristics thereof. There are circumstances in which it is impossible or nearly impractical to identify directly by.

本発明に係るポリイミド粉体を用いれば、極めて優れた耐熱性と透明性とを兼ね備え、特にディスプレイ用途や電子材料用途に好適に用いられるポリイミドフィルムを製造することができ、産業上の価値は極めて高い。 By using the polyimide powder according to the present invention, it is possible to produce a polyimide film which has extremely excellent heat resistance and transparency and is particularly suitable for display applications and electronic material applications, and has extremely high industrial value. high.

Claims (15)

少なくとも1種類の芳香族ジアミン化合物と少なくとも1種類のテトラカルボン酸二無水物から、ポリアミド酸への重合、化学イミド化反応、生成ポリイミドの析出による粉体の形成、及び乾燥の工程を経て製造される、N,N−ジメチルアセトアミドに可溶なポリイミド粉体であって、当該ポリイミド粉体の平均粒子径が0.04〜0.4mmの範囲にあり、当該ポリイミド粉体のN,N−ジメチルアセトアミド溶液から製膜して得られる厚さ50μmのポリイミドフィルムの450nmの波長における光線透過率が85%以上であることを特徴とするポリイミド粉体。 Manufactured from at least one aromatic diamine compound and at least one tetracarboxylic acid dianhydride through steps of polymerization to polyamic acid, chemical imidization reaction, powder formation by precipitation of produced polyimide, and drying. A polyimide powder soluble in N, N-dimethylacetamide, the average particle size of the polyimide powder is in the range of 0.04 to 0.4 mm, and the N, N-dimethyl of the polyimide powder. A polyimide powder having a light transmittance of 85% or more at a wavelength of 450 nm of a polyimide film having a thickness of 50 μm obtained by forming a film from an acetamide solution. 前記光線透過率が87%以上であることを特徴とする請求項1記載のポリイミド粉体。 The polyimide powder according to claim 1, wherein the light transmittance is 87% or more. 示差熱・熱重量分析装置を用いて測定される200〜300℃の範囲での重量減少率が、0〜0.2%の範囲にあることを特徴とする請求項1または2に記載のポリイミド粉体。 The polyimide according to claim 1 or 2, wherein the weight loss rate in the range of 200 to 300 ° C. measured using a differential thermal / thermogravimetric analyzer is in the range of 0 to 0.2%. powder. 芳香族ジアミン化合物として、フルオロ基を有する少なくとも1種類の芳香族ジアミン化合物が用いられるとともに、テトラカルボン酸二無水物として、フルオロ基を有する少なくとも1種類のテトラカルボン酸二無水物が用いられて製造されることを特徴とする請求項1乃至3のいずれか一項に記載のポリイミド粉体。 Manufactured by using at least one aromatic diamine compound having a fluoro group as the aromatic diamine compound and at least one tetracarboxylic dianhydride having a fluoro group as the tetracarboxylic dianhydride. The polyimide powder according to any one of claims 1 to 3, wherein the polyimide powder is produced. 以下の工程を含むポリイミド粉体の製造方法により製造され、
平均粒子径が0.04〜0.4mmの範囲にあり、
N,N−ジメチルアセトアミドに溶解し、当該溶液から厚さ50μmのポリイミドフィルムを製膜し、当該フィルムの450nmの波長における光線透過率を測定したとき、85%以上の光線透過率を示す、ポリイミド粉体。
(A) 溶剤中に溶解したポリイミドを含むポリイミド溶液に、ポリイミドの貧溶媒を添加することにより、ポリイミドを析出させ、揮発成分含有ポリイミド粉体を得る工程であって、
前記ポリイミド溶液対前記貧溶媒の重量比が、1:0.5〜1:10であり、
前記ポリイミドの析出開始前の一時点から析出粉体化完了までの前記貧溶媒の毎分あたりの添加量が、前記ポリイミド溶液の0.0005〜0.1倍(g/分)である工程、
(B) 前記揮発成分含有ポリイミド粉体を、粉砕することなく、100℃未満の温度で前記揮発成分含有ポリイミド粉体中の揮発成分量が5%未満になるまで乾燥した後、更に100〜350℃の温度で0.1〜24時間乾燥し、ポリイミド粉体を得る工程。
Manufactured by a polyimide powder manufacturing method that includes the following steps:
The average particle size is in the range of 0.04 to 0.4 mm,
A polyimide film having a thickness of 50 μm was formed from the solution by dissolving it in N, N-dimethylacetamide, and when the light transmittance of the film at a wavelength of 450 nm was measured, the polyimide showed a light transmittance of 85% or more. powder.
(A) A step of precipitating polyimide by adding a poor solvent of polyimide to a polyimide solution containing polyimide dissolved in a solvent to obtain a polyimide powder containing a volatile component.
The weight ratio of the polyimide solution to the poor solvent is 1: 0.5 to 1:10.
A step in which the amount of the poor solvent added per minute from one time point before the start of precipitation of the polyimide to the completion of precipitation powdering is 0.0005 to 0.1 times (g / min) the amount of the polyimide solution.
(B) The volatile component-containing polyimide powder is dried at a temperature of less than 100 ° C. until the amount of the volatile component in the volatile component-containing polyimide powder is less than 5% without crushing, and then further 100 to 350. A step of drying at a temperature of ° C. for 0.1 to 24 hours to obtain a polyimide powder.
前記光線透過率が87%以上であることを特徴とする請求項5記載のポリイミド粉体。 The polyimide powder according to claim 5, wherein the light transmittance is 87% or more. 前記ポリイミド溶液を、
(A1) 少なくとも1種類の芳香族ジアミン化合物と少なくとも1種類のテトラカルボン酸二無水物を準備する工程、
(A2) 上記芳香族ジアミン化合物とテトラカルボン酸二無水物を、溶剤への溶解下で重合し、ポリアミド酸溶液を得る工程、
(A3) 得られたポリアミド酸溶液にイミド化剤を添加して化学イミド化反応を行い、
溶剤中に溶解したポリイミドを含むポリイミド溶液を得る工程
によって得る、請求項5または6に記載のポリイミド粉体。
The polyimide solution
(A1) A step of preparing at least one aromatic diamine compound and at least one tetracarboxylic dianhydride.
(A2) A step of polymerizing the above aromatic diamine compound and tetracarboxylic dianhydride under dissolution in a solvent to obtain a polyamic acid solution.
(A3) An imidizing agent was added to the obtained polyamic acid solution to carry out a chemical imidization reaction.
The polyimide powder according to claim 5 or 6, which is obtained by a step of obtaining a polyimide solution containing polyimide dissolved in a solvent.
工程(A3)を10℃以上50℃未満で行う、請求項7に記載のポリイミド粉体。 The polyimide powder according to claim 7, wherein the step (A3) is performed at 10 ° C. or higher and lower than 50 ° C. 前記芳香族ジアミン化合物としてフルオロ基を有する少なくとも1種類の芳香族ジアミン化合物を用い、前記テトラカルボン酸二無水物としてフルオロ基を有する少なくとも1種類のテトラカルボン酸二無水物を用いる、請求項7又は8に記載のポリイミド粉体。 7. or claim 7, wherein at least one aromatic diamine compound having a fluoro group is used as the aromatic diamine compound, and at least one tetracarboxylic dianhydride having a fluoro group is used as the tetracarboxylic dianhydride. 8. The polyimide powder according to 8. 溶剤に可溶である、請求項5乃至9のいずれか一項に記載のポリイミド粉体。 The polyimide powder according to any one of claims 5 to 9, which is soluble in a solvent. 前記溶剤がN,N−ジメチルアセトアミドである、請求項10に記載のポリイミド粉体。 The polyimide powder according to claim 10, wherein the solvent is N, N-dimethylacetamide. 粒子径が0.01〜2mmの範囲にある粒子を95体積%以上含む、請求項5乃至11のいずれか一項に記載のポリイミド粉体。 The polyimide powder according to any one of claims 5 to 11, which contains 95% by volume or more of particles having a particle size in the range of 0.01 to 2 mm. 200〜300℃の範囲での重量減少率が0〜0.2%の範囲にある、請求項5乃至12のいずれか一項に記載のポリイミド粉体。 The polyimide powder according to any one of claims 5 to 12, wherein the weight loss rate in the range of 200 to 300 ° C. is in the range of 0 to 0.2%. N,N−ジメチルアセトアミドに溶解し、当該溶液から厚さ50μmのポリイミドフィルムを製膜し、当該フィルムの黄色度(YI)を測定したとき、−5〜5の黄色度(YI)を示す、請求項5乃至13のいずれか一項に記載のポリイミド粉体。 When a polyimide film having a thickness of 50 μm is formed from the solution by dissolving in N, N-dimethylacetamide and the yellowness (YI) of the film is measured, the yellowness (YI) of -5 to 5 is shown. The polyimide powder according to any one of claims 5 to 13. 請求項1乃至14のいずれか一項に記載のポリイミド粉体を製膜して得られるポリイミドフィルム。 A polyimide film obtained by forming a film of the polyimide powder according to any one of claims 1 to 14.
JP2020205226A 2016-04-11 2020-12-10 Polyimide powder and its manufacturing method Active JP7045732B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016079003 2016-04-11
JP2016079003 2016-04-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018511942A Division JP6831590B2 (en) 2016-04-11 2017-03-21 Polyimide powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021059732A true JP2021059732A (en) 2021-04-15
JP7045732B2 JP7045732B2 (en) 2022-04-01

Family

ID=60041637

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018511942A Active JP6831590B2 (en) 2016-04-11 2017-03-21 Polyimide powder and its manufacturing method
JP2020205226A Active JP7045732B2 (en) 2016-04-11 2020-12-10 Polyimide powder and its manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018511942A Active JP6831590B2 (en) 2016-04-11 2017-03-21 Polyimide powder and its manufacturing method

Country Status (5)

Country Link
JP (2) JP6831590B2 (en)
KR (1) KR102282529B1 (en)
CN (1) CN108884231B (en)
TW (1) TWI783929B (en)
WO (1) WO2017179367A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133055B (en) * 2017-09-26 2022-12-06 河村产业株式会社 Polyimide powder, polyimide varnish, and polyimide film
JP2020019935A (en) 2018-07-19 2020-02-06 住友化学株式会社 Manufacturing method of polyamide resin powder and polyamide resin composition
JP6683863B2 (en) * 2018-07-19 2020-04-22 住友化学株式会社 Polyimide-based resin powder and method for producing polyimide-based resin powder
JP2020122122A (en) * 2019-01-31 2020-08-13 住友化学株式会社 Polyimide resin powder and method for producing polyimide resin powder
JP2020122121A (en) * 2019-01-31 2020-08-13 住友化学株式会社 Manufacturing method of polyimide resin pulverulent body
JP2021113275A (en) 2020-01-17 2021-08-05 住友化学株式会社 Method for producing polyamide-based resin powder
WO2021182589A1 (en) * 2020-03-13 2021-09-16 宇部興産株式会社 Aromatic polyimide powder for molded body, molded body using same, method for improving mechanical strength of molded body
TW202140626A (en) 2020-03-27 2021-11-01 日商琳得科股份有限公司 Laminate for transparent conductive film, transparent conductive film, and transparent conductive film manufacturing method
CN112300423B (en) * 2020-09-27 2022-12-16 浙江中科玖源新材料有限公司 Preparation method of colorless transparent polyimide film
CN112390949B (en) * 2020-11-05 2022-06-28 艾森半导体材料(南通)有限公司 High-refractive-index polyimide light diffusant for epoxy resin
CN113801322B (en) * 2021-10-01 2023-06-27 武汉纺织大学 Soluble high-transparency polyimide, polyimide coated fabric and preparation method thereof
CN116693927A (en) * 2022-03-03 2023-09-05 旭化成株式会社 Porous polyimide composition and polyamic acid composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231946A (en) * 2003-01-10 2004-08-19 Nitto Denko Corp Polyimide film and method for producing the same
JP2008081718A (en) * 2006-09-01 2008-04-10 Kaneka Corp Method for producing polyimide resin particles
JP2013007003A (en) * 2011-06-27 2013-01-10 Kaneka Corp Method for producing polyimide resin particle
JP2013523939A (en) * 2010-03-30 2013-06-17 コーロン インダストリーズ インク Polyimide film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345816B2 (en) * 1972-10-20 1978-12-09
JPH0710924B2 (en) * 1990-02-20 1995-02-08 新日本理化株式会社 Method for producing solvent-soluble polyimide resin powder
JP2816770B2 (en) 1991-01-11 1998-10-27 日本電信電話株式会社 Method for manufacturing polyimide optical waveguide
JP2000169579A (en) 1998-12-02 2000-06-20 Teijin Ltd Organic solvent-soluble polyimide and manufacture thereof
JP2004285355A (en) 2003-03-05 2004-10-14 Kaneka Corp Method for manufacturing polyimide resin powder
CN103044916B (en) * 2012-12-24 2015-05-27 南京依麦德光电材料科技有限公司 Flexible transparent polyimide thin film and preparation method thereof
EP3031843B1 (en) * 2013-08-06 2018-03-21 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
JP2015127124A (en) * 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Gas barrier film and gas barrier film manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231946A (en) * 2003-01-10 2004-08-19 Nitto Denko Corp Polyimide film and method for producing the same
JP2008081718A (en) * 2006-09-01 2008-04-10 Kaneka Corp Method for producing polyimide resin particles
JP2013523939A (en) * 2010-03-30 2013-06-17 コーロン インダストリーズ インク Polyimide film
JP2013007003A (en) * 2011-06-27 2013-01-10 Kaneka Corp Method for producing polyimide resin particle

Also Published As

Publication number Publication date
JP6831590B2 (en) 2021-02-17
TW201807021A (en) 2018-03-01
JPWO2017179367A1 (en) 2019-02-14
WO2017179367A1 (en) 2017-10-19
KR20180134376A (en) 2018-12-18
TWI783929B (en) 2022-11-21
JP7045732B2 (en) 2022-04-01
CN108884231A (en) 2018-11-23
KR102282529B1 (en) 2021-07-29
CN108884231B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP7045732B2 (en) Polyimide powder and its manufacturing method
JP6705840B2 (en) Polyamide-imide precursor, polyamide-imide film, and display device including the same
JP5639259B2 (en) Polyimide film
JP5597131B2 (en) Polyimide film
TWI466923B (en) Polyimide film
KR101660081B1 (en) Optical film, optical film manufacturing method, transparent substrate, image display device, and solar cell
KR20190087397A (en) Colorless polyamide-imide resin and film thereof
JP6993672B2 (en) Polyimide powder, polyimide varnish and polyimide film
JP5295195B2 (en) Colorless and transparent polyimide film with improved solvent resistance
JP6831424B2 (en) Polyamic acid, polyimide resin and polyimide film
TWI775946B (en) Polyimide powder, polyimide coating and polyimide film
JP5841735B2 (en) Polyimide film
JP2020029486A (en) Polyimide powder, polyimide varnish, polyimide film and polyimide porous membrane
JP6993673B2 (en) Polyimide powder, polyimide varnish and polyimide film
CN113439101A (en) Method for preparing polyamic acid composition containing novel dicarbonyl compound, polyamic acid composition, method for preparing polyamideimide film using the same, and polyamideimide film prepared by the same
KR102376837B1 (en) Solubility Polyimide Particle, Method of Producing The Same and Polyimide film Produced The Same
CN111675902A (en) Transparent polyimide film with high heat resistance and low thermal expansion coefficient and preparation method thereof
JPH08225645A (en) Colorless clear polyimide molding and production thereof
JP6994712B2 (en) Soluble transparent polyimide polymerized in γ-butyrolactone solvent
TWI731774B (en) Polyimide polymer, polyimide mixture and polyimide film
JPH0253825A (en) Production of soluble polyimide and polyimide resin varnish
JP2023125649A (en) Polyimide powder, polyimide varnish and method for producing the same
TW201444916A (en) Polyimide resin and polyimide film produced therefrom
JPS61141733A (en) Transparent aromatic polyimide and composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7045732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150