JP2021057413A - 掃引圧縮装置 - Google Patents

掃引圧縮装置 Download PDF

Info

Publication number
JP2021057413A
JP2021057413A JP2019177688A JP2019177688A JP2021057413A JP 2021057413 A JP2021057413 A JP 2021057413A JP 2019177688 A JP2019177688 A JP 2019177688A JP 2019177688 A JP2019177688 A JP 2019177688A JP 2021057413 A JP2021057413 A JP 2021057413A
Authority
JP
Japan
Prior art keywords
optical
sweep
dispersion
compression device
dispersion compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019177688A
Other languages
English (en)
Inventor
長谷川 雄大
Takehiro Hasegawa
雄大 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2019177688A priority Critical patent/JP2021057413A/ja
Publication of JP2021057413A publication Critical patent/JP2021057413A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)

Abstract

【課題】予め定められた帯域内において波長及び周波数が掃引された光の掃引周波数を高めることである。【解決手段】掃引圧縮装置(10)は、波長及び周波数における分散特性を有する分散補償器(12)と、分散補償器(12)に光学的に結合された光複製器(13)と、を備えている。【選択図】図1

Description

本発明は、予め定められた帯域内において波長及び周波数が掃引された光を圧縮する掃引圧縮装置に関する。
撮影する対象物を侵襲することなく断層撮影することが可能な光干渉断層計(Optical coherence tomography,OCT)が、多くの医療機関に普及している。その中でも、撮影に用いる光の周波数(波長と言い換えることもできる)を掃引し、光の干渉をフーリエ空間で行う掃引型OCT(Swept source OCT,SS−OCT)が注目を集めている。SS−OCTは、光の周波数を掃引しないOCTと比較して、機械駆動がないため高速な撮影が可能である。
特許文献1の図19Bには、SS−OCTに利用可能な光複製器と、光複製器に光学的に結合された掃引光源と、が図示されている。
掃引光源は、予め定められた帯域内において波長及び周波数が掃引された光を繰り返し出射する光源である。
光複製器は、直列に結合された2つのマッハツェンダ干渉計を備えている。各マッハツェンダ干渉計において、2つのアーム部の各々を構成する導波路のうち、一方の導波路には余長部が設けられている。したがって、各マッハツェンダ干渉計において、2つのアーム部の各々を構成する導波路の光路長は、互いに異なっている。また、各マッハツェンダ干渉計の各々の余長部の光路長は、互いに異なっている。
掃引光源が出射した光は、合計4つに分波される。分波された4つの光の各々は、それぞれ、長さが異なる4つの導波経路を伝搬する。その後、長さが異なる4つの導波経路を伝搬した4つの光は、1つの光に合波される。その結果、このように構成された光複製器は、掃引光源が出射した光をあたかも4つの光に複製することができる。
特表2012−506636号公報(2012年3月15日公開)
断層撮影に要する時間を更に短縮するためには、掃引光源が出射した光において、1回の掃引に要する時間である掃引時間を短縮し、単位時間内に掃引できる回数である掃引周波数を高めることが求められる。しかしながら、特許文献1の図19Bに図示された光複製器は、掃引光源が出射した光を複製できるものの、掃引時間を短縮できない。そのため、該光複製器は、掃引周波数を高めることはできない。
本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、掃引光源が出射した光であって、予め定められた帯域内において波長及び周波数が掃引された光の掃引周波数を高めることである。
上述した課題を解決するために、本発明の第1の態様に係る掃引圧縮装置は、波長及び周波数における分散特性を有する分散補償器と、上記分散補償器に光学的に結合された光複製器と、を備えている。
分散補償器は、内部を伝搬する波長及び周波数が異なる光の各々の速度を、それぞれ、異ならせることができる。したがって、分散補償器は、その分散特性を適宜設定されることによって、予め定められた帯域内において波長及び周波数が掃引された光を結合された場合に、その光の1回の掃引に要する時間である掃引時間を短縮することができる。また、光複製器は、上記光を複製することができる。したがって、上記の構成によれば、予め定められた帯域内において波長及び周波数が掃引された光において、単位時間内に掃引できる回数である掃引周波数を高めることができる。
本発明の第2の態様に係る掃引圧縮装置は、上述した第1の態様において、上記光複製器は、各々の光路長が異なっている複数の光導波経路を備えており、上記複数の光導波経路を構成する光導波路の各々は、光ファイバにより構成されている。
上記の構成によれば、光複製器が備えている複数の光導波経路を光ファイバにより構成することができるので、容易に光複製器を実現することができる。また、光ファイバは、その長さを任意に定めることができるため、複数の光導波経路の経路長を所定の長さにすることが容易である。また、光ファイバは、束ねることができるため、光複製器のコンパクト化が容易である。
本発明の第3の態様に係る掃引圧縮装置は、上述した第1の態様又は第2の態様において、上記分散補償器は、チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの何れかを備えている。
チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの各々は、何れも、設計パラメータを変更することにより、予め定められた帯域内における分散特性を所望の分散特性に近づけることができる。したがって、チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの各々は、分散補償器として好適である。
本発明の第4の態様に係る掃引圧縮装置は、上述した第1の態様〜第3の態様の何れか一態様において、予め定められた帯域内において波長及び周波数を掃引された光を周期的に出射する掃引光源を更に備え、該掃引光源は、上記分散補償器のポートのうち上記光複製器が結合されているポートと逆側のポート、又は、上記光複製器のポートのうち上記分散補償器が結合されているポートと逆側のポートに光学的に接続されている。
上記の構成によれば、掃引圧縮装置は、掃引光源から出射され、且つ、予め定められた帯域内において波長及び周波数を掃引された光における掃引周波数を高めることができる。
本発明の第5の態様に係る掃引圧縮装置は、上述した第4の態様において、上記掃引光源、上記分散補償器、及び上記光複製器の各々は、上記掃引光源、上記分散補償器、上記光複製器の順番で配置されている。
本発明の第6の態様に係る掃引圧縮装置は、上述した第4の態様において、上記掃引光源、上記分散補償器、及び上記光複製器の各々は、上記掃引光源、上記光複製器、上記分散補償器の順番で配置されている。
分散補償器を光複製器の前段に配置した場合、分散補償器を光複製器の後段に配置した場合に比べて、時間領域で見たとき光強度が大きくなる領域ができる。光強度が大きくなると自己位相変調等の非線形効果の影響を受けやすくなり想定外の周波数遷移が発生する恐れがある。そのため、分散補償器は、光複製器の後段に配置されていることが好ましい。
本発明の第7の態様に係る掃引圧縮装置は、上述した第4の態様〜第6の態様の何れか一態様において、上記周波数が時間の経過に伴い高くなる場合、上記分散特性は、上記帯域内において異常分散であり、上記周波数が時間の経過に伴い低くなる場合、上記分散特性は、上記帯域内において正常分散である。
上記の構成によれば、分散補償器は、予め定められた帯域内において波長及び周波数が掃引された光における掃引周波数を確実に高めることができる。
本発明の第8の態様に係る掃引圧縮装置は、上述した第7の態様において、上記光複製器は、n段(nは、任意の正の整数)の並列光導波路を直列に接続することにより構成され、且つ、上記n段の並列光導波路のうちk段目(kは、1≦k≦nの正の整数)の並列光導波路は、f(k)個の光導波路を並列に接続することにより構成されており、上記n段の並列光導波路による光複製の倍率Nは、N=f(1)×f(2)×・・・×f(k)×・・・×f(n)であり、上記掃引光源が出射した光において、該光の繰り返し周期をTrとして、該光の予め定められた帯域の帯域幅をfbとして、該光の掃引時間をTsとして、上記分散特性であるDは、|D|≧|(Ts−Tr/N)/fb|〔s/Hz〕を満たすように構成されている。
上述したように構成された掃引圧縮装置においては、出射光の強度を高めるために光増幅器を更に備えている場合がある。光増幅器の例としては、半導体光増幅器が挙げられる。半導体光増幅器のゲインは、非線形光学効果(例えば四光波混合)を示す傾向を有する。そのため、半導体光増幅器に対して波長が異なる複数の光を同時に結合させた場合、非線形光学効果に起因する光であって、もともとの波長とは異なる波長を有する光が発生する場合がある。上記の構成によれば、予め定められた帯域内において波長及び周波数が掃引された光であって、掃引周波数が高められた後の光の各々が、時系列において重なり合うことを防ぐことができる。したがって、掃引圧縮装置が光増幅器を更に備えている場合であっても、非線形光学効果が生じる可能性を低減することができる。
本発明の第9の態様に係る掃引圧縮装置は、上述した第4の態様〜第8の態様の何れか一態様において、光学的に結合された上記第1の分散補償器及び上記光複製器から出射される光において、周波数の時間依存性の形状が線形になるように、上記掃引光源における掃引特性と、上記分散特性とが定められている。
上記の構成によれば、予め定められた帯域内において波長及び周波数が掃引された光であって、掃引周波数が高められた後の光は、周波数の時間依存性の形状が線形になる。したがって、本掃引圧縮装置をSS−OCTに適用した場合に、撮影後のデータ処理を容易且つ高精度に行うことができる。
本発明の第10の態様に係る掃引圧縮装置は、上述した第4の態様〜第9の態様の何れか一態様において、光学的に結合された上記分散補償器及び上記光複製器から出射される光の一部を電気信号に変換するためのフィルタ素子及び光電変換素子を更に備えている。
上記の構成によれば、予め定められた帯域内において波長及び周波数が掃引された光であって、掃引周波数が高められた後の光のクロックを、例えば制御部が容易に取得することができる。
本発明の第11の態様に係る掃引圧縮装置は、上述した第1の態様〜第10の態様の何れか一態様において、上記分散補償器を第1の分散補償器として、上記光複製器は、各々の光路長が異なっている複数の光導波路により構成された複数の光導波経路を備えており、上記複数の光導波路のうち少なくとも1つの光導波路には、該光導波路における波長及び周波数における分散特性とは異なる分散特性を有する第2の分散補償器が設けられている、ように構成されている。
上記の構成によれば、光複製器が備えている複数の光導波経路を構成する複数の光導波路の光路長の差に起因する波長分散差による波長掃引波形の変化を抑えることができる。
本発明の第12の態様に係る掃引圧縮装置は、上述した第11の態様において、上記複数の光導波路のうち上記第2の分散補償器が設けられている光導波路の光路長は、上記複数の光導波路のうち基準となる光導波路の光路長である基準光路長よりも長く、上記第2の分散補償器の分散特性の符号は、上記第2の分散補償器が設けられている光導波路の分散特性の符号と異なる、ように構成されている。
上記の構成によれば、第2の分散補償器が設けられている光導波路の光路長が、基準光路長よりも長いことに起因して生じる波長分散差を、相殺する、又は、小さくすることができる。したがって、光複製器が備えている複数の光導波経路を構成する複数の光導波路の光路長の差に起因する波長分散差による波長掃引波形の変化を確実に抑えることができる。
本発明の第13の態様にかかる掃引圧縮装置は、上述した第1の態様〜第10の態様の何れかにおいて、上記光複製器は、各々の光路長が異なっている複数の光導波路により構成された複数の光導波経路を備えており、上記複数の光導波路のうち2つの光導波路を比較した場合に、該2つの光導波路の各々における波長及び周波数における分散特性は、符号が同じであり、且つ、光路長が短い光導波路の上記分散特性は、光路長が長い光導波路の上記分散特性よりも大きい、ように構成されている。
上記の構成によれば、光導波路の一部に第2の分散補償器を設けることなく、複数の光導波路の光路長の差に起因する波長分散差による波長掃引波形の変化を抑えることができる。
本発明の第14の態様に係る掃引圧縮装置は、上述した第2の態様において、上記光ファイバは、偏波保持ファイバである、ように構成されている。
上述したように構成された掃引圧縮装置においては、出射光の強度を高めるために光増幅器を更に備えている場合がある。光増幅器のゲインは、光増幅器に結合される光の偏波方向に依存する場合が多いため、光増幅器に結合される光の偏波方向は、揃っていることが好ましい。上記の構成によれば、複数の光導波路の各々が偏波保持ファイバではない光ファイバにより構成されている場合と比較して、光増幅器に結合される光の偏波方向を揃えることができる。したがって、光増幅器において生じ得るゲインの不安定さを抑制することができる。
本発明の一態様によれば、掃引光源が出射した光であって、予め定められた帯域内において波長及び周波数が掃引された光の掃引周波数を高めることができる。
(a)は、本発明の第1の実施形態に係る掃引圧縮装置の構成を示すブロック図である。(b)は、(a)に示した掃引圧縮装置が生成する掃引光における周波数の時間依存性を示すグラフである。(c)は、(a)に示した掃引圧縮装置の第1の変形例の構成を示すブロック図である。(d)は、(c)に示した第1の変形例が生成する掃引光における周波数の時間依存性を示すグラフである。 (a)は、図1に示した掃引圧縮装置の第2の変形例が備えている掃引光源が出射する掃引光における周波数の時間依存性を示すグラフである。(b)は、(a)に示した第2の変形例が出射する掃引光における周波数の時間依存性を示すグラフである。
〔第1の実施形態〕
本発明の第1の実施形態に係る掃引圧縮装置10について、図1の(a)及び(b)を参照して説明する。図1の(a)は、掃引圧縮装置10の構成を示すブロック図であり、図1の(b)は、掃引圧縮装置10が生成する光における周波数の時間依存性を示すグラフである。図1の(b)において、@P1は、掃引光源11と、分散補償器12との間の点である点P1における光の周波数の時間依存性を示し、@P2は、分散補償器12と、光複製器13が備えている1段目のマッハツェンダ干渉計13aとの間の点である点P2における光の周波数の時間依存性を示し、@P3は、マッハツェンダ干渉計13aと、光複製器13が備えている2段目のマッハツェンダ干渉計13bとの間の点である点P3における光の周波数の時間依存性を示し、@P4は、マッハツェンダ干渉計13bの後段に位置する点P4における光の周波数の時間依存性を示す。
なお、図1の(c)は、掃引圧縮装置10の第1の変形例である掃引圧縮装置10Aの構成を示すブロック図であり、図1の(d)は、掃引圧縮装置10Aが生成する光における周波数の時間依存性を示すグラフである。掃引圧縮装置10Aについては、後述する。
<掃引圧縮装置10>
掃引圧縮装置10は、後述する掃引光源11が周期的に出射する光であって、予め定められた帯域内において波長及び周波数が掃引された光(以下において掃引光とも称する)の1回の掃引に要する時間である掃引時間を短縮する。また、掃引圧縮装置10は、1つの掃引光を複数の掃引光に複製し、複数の掃引光の各々を異なるタイミングで出射する。
すなわち、掃引圧縮装置10は、掃引光において、単位時間(例えば1秒)の間に掃引できる回数である掃引周波数を高める。このような機能を有する掃引圧縮装置10は、例えば、掃引型光干渉断層計(Swept source optical coherence tomography,SS−OCT)のプローブ光を生成するために好適に用いることができる。
図1の(a)に示すように、掃引圧縮装置10は、掃引光源11と、分散補償器12と、光複製器13と、コンバイナ14と、光増幅器15と、フィルタ素子16と、光電変換素子17と、上述した各構成部材同士を光学的に接続する光ファイバと、を備えている。
(掃引光源11)
掃引光源11は、予め定められた帯域であって、周波数f1以上、周波数f2以下の帯域である掃引帯域内(図1の(b)の@P1のグラフ参照)において、波長及び周波数を掃引された掃引光を周期的に出射するレーザ光源である。掃引帯域の帯域幅fbは、fb=f2−f1である。
なお、本実施形態においては、周波数を用いて掃引帯域を定義している。しかし、掃引帯域は、掃引光の波長を用いて定義してもよい。本実施形態においては、f1<f2であり、f1=272.5THzであり、f2=293.9THzであるものとして説明する。しかし、周波数f1,f2は、撮影する対象物における光の吸収特性に応じて適宜選択することができる。
また、本実施形態において、掃引光源11は、低い周波数f1から高い周波数f2に向かって連続的に周波数を掃引するように構成されている。しかし、掃引光源11が掃引する周波数の方向は、限定されない。すなわち、掃引光源11は、周波数f2から周波数f1に向かって周波数を掃引するように構成されていてもよい。
掃引光源11が、掃引帯域において掃引光を1回掃引するのに要する時間を掃引時間Tsとする。また、本実施形態において、掃引光源11は、掃引時間Tsの後に掃引光を出射しない休止期間を設けている。休止期間の時間を休止時間Tiとすれば、掃引光の繰り返し周期Trは、Tr=Ts+Tiで表される。このように掃引光源11は、繰り返し周期Trにて掃引光を繰り返し出射する。
掃引光源11の構成は、特に限定されず、既存の掃引光源の中から好適なものを適宜選択して用いることができる。
また、本実施形態において、掃引光源11は、シングルモードのレーザ光を出射するように構成されており、後述する分散補償器12、光複製器13、コンバイナ14、光増幅器15、フィルタ素子16、光電変換素子17、及び、上述した各構成部材同士を光学的に接続する光ファイバも、シングルモードのレーザ光を導波するように構成されている。すなわち、掃引圧縮装置10は、シングルモードの掃引光を出射することができる。この構成によれば、より鮮明な断層の画像を生成することができる。ただし、撮影する対象物によっては、プローブ光のパワーがより高い方が好ましい場合もある。このような場合には、掃引光源11は、マルチモードのレーザ光を出射するように構成されており、分散補償器12、光複製器13、コンバイナ14、光増幅器15、フィルタ素子16、光電変換素子17、及び、上述した各構成部材同士を光学的に接続する光ファイバは、マルチモードのレーザ光を導波するように構成されていてもよい。
掃引光源11は、分散補償器12が有する2つのポートのうち一方のポート(光複製器13が結合されているポートと逆側のポート)に光学的に結合されている。したがって、掃引光源11が出射した掃引光は、分散補償器12に結合する。なお、分散補償器12については、後述する。
なお、掃引光源11として採用される掃引光源の態様は、限定されず、既存の掃引光源のなかから適宜選択することができる。
(分散補償器12)
分散補償器12は、第1の分散補償器の一態様である。図1に示すように、分散補償器12は、2つのポートを有している。分散補償器12の一方のポートには、掃引光源11が光学的に結合されている。分散補償器12の他方のポートには、光複製器13が有する2つのポートのうち一方のポートが光学的に結合されている。
分散補償器12は、波長及び周波数における分散特性を有するように構成されている。本実施形態において、掃引光源11は、周波数f1から周波数f2(本実施形態において、f1<f2)に向かって周波数を掃引するように構成されている。そのため、分散補償器12の分散特性は、周波数f1の光と周波数f2の光とを比較した場合に、周波数f1の光の方が分散補償器12を通過するために要する時間が長く、周波数f2の光の方が分散補償器12を通過するために要する時間が短くなるように構成されている。
上述したような分散特性は、分散補償器12の内部において掃引光が伝搬する媒質の屈折率に、掃引帯域の範囲内において波長依存性を持たせることによって実現することもできる。また、上述したような分散特性は、分散補償器12の内部において掃引光が伝搬する光路の長さである光路長に、掃引帯域の範囲内において波長依存性を持たせることによって実現することもできる。
前者の原理を利用する場合、分散補償器12としては、一般的な光ファイバ、分散補償ファイバ、及び分散シフトファイバの何れを採用することができる。ここで、一般的な光ファイバは、波長が1300nmの近傍において分散がゼロとなる光ファイバのことを指し、分散シフトファイバは、波長が1500nmの近傍において分散がゼロとなる光ファイバのことを指す。これらの光ファイバを用いた分散補償器12においては、光ファイバのコア及びクラッドの各々に添加する添加物の種類及び濃度を適宜設計することによって、掃引帯域内における分散特性を所望の分散特性に近づけることができる。また、これらの光ファイバを用いた分散補償器12においては、分散補償器12の長さを調節することによって、分散の大きさを調節することができる。光ファイバにおいて、分散の大きさは、光ファイバの長さに比例するためである。
後者の原理を利用する場合、分散補償器12としては、(1)サーキュレーターとチャープファイバブラッググレーティングとの組み合わせ、又は、(2)グレーティングペアを採用することができる。チャープファイバブラッググレーティングを用いた分散補償器12においては、光ファイバに形成するファイバブラッググレーティングの格子間隔の変化のさせ方を、光ファイバの長手方向に沿って適宜設計することによって、掃引帯域内における分散特性を所望の分散特性に近づけることができる。グレーティングペアを用いた分散補償器12においては、各グレーティングに刻む溝及び一対のグレーティングの配置を適宜設計することによって、掃引帯域内における分散特性を所望の分散特性に近づけることができる。
上述したように、分散補償器12の分散特性は、周波数f1の光と周波数f2の光とを比較した場合に、周波数f1の光の方が分散補償器12を通過するために要する時間が長く、周波数f2の光の方が分散補償器12を通過するために要する時間が短くなるように構成されている。したがって、分散補償器12を通過した掃引光を1回掃引するに要する時間である掃引時間Ts’は、上述した繰り返し周期Trよりも短くなる(図1の(b)の@P2のグラフ参照)。
本実施形態において、分散補償器12の分散特性は、掃引時間Ts’がTs<Tr/4を満たすように定められている。すなわち、掃引時間Ts’の繰り返し周期Trに対する比は、0.25を下回る。なお、掃引時間Ts’の繰り返し周期Trに対する比は、少なくとも1未満であればよい。また、掃引時間Ts’の繰り返し周期Trに対する比は、後述する光複製器13におけるn段の並列光導波路による光複製の倍率をNとして、1/N未満であることが好ましい。本実施形態においては、後述するようにN=4であるので、掃引時間Ts’の繰り返し周期Trに対する比は、0.25未満であることが好ましい。
以上のように、分散補償器12は、その分散特性を適宜設定されることによって、掃引帯域内において波長及び周波数が掃引された掃引光を結合された場合に、その光の1回の掃引に要する時間である掃引時間Ts’を掃引時間Tr(本実施形態においては繰り返し周期Trと等しい)から短縮することができる。
(光複製器13)
図1に示すように、光複製器13は、2つのポートを有している。光複製器13の一方のポートには、分散補償器12の他方のポートが光学的に結合されている。光複製器13の他方のポートには、1ポート×2ポートのコンバイナ14を介して、光増幅器15と、フィルタ素子16及び光電変換素子17が光学的に結合されている。
本実施形態において、光複製器13は、2段のマッハツェンダ干渉計13a,13bにより構成されている。マッハツェンダ干渉計13a,13bの各々は、並列光導波路の一態様である。マッハツェンダ干渉計13aは、1段目のマッハツェンダ干渉計であり、マッハツェンダ干渉計13bは、2段目のマッハツェンダ干渉計である。
マッハツェンダ干渉計13aの一対のアーム部の各々は、それぞれ、光ファイバ13a1及び光ファイバ13a2により構成されている。また、マッハツェンダ干渉計13bの一対のアーム部の各々は、それぞれ、光ファイバ13b1及び光ファイバ13b2により構成されている。光ファイバ13a1,13a2及び光ファイバ13b1,13b2の各々は、光導波路の一態様である。なお、本実施形態において、光ファイバ13a1の光路長La1と、光ファイバ13b1の光路長Lb1とは、等しいが、光路長La1,Lb1の大小関係は、これに限定されない。すなわち、光路長La1が光路長Lb1よりも長くてもよいし、光路長Lb1が光路長La1よりも長くてもよい。
光ファイバ13a2は、余長部13aeを含んでいる。したがって、光ファイバ13a2の光路長La2は、光ファイバ13a1の光路長La1よりも長い。同様に、光ファイバ13b2は、余長部13beを含んでいる。したがって、光ファイバ13b2の光路長Lb2は、光ファイバ13b1の光路長Lb1よりも長い。そのうえで、余長部13aeの光路長は、余長部13beの光路長よりも長い。すなわち、光路長La2は、光路長Lb2よりも長い。
したがって、光ファイバ13a1,13a2,13b1,13b2の各々の光路長の大小関係は、La1<La2、Lb1<Lb2、及びLa2−La1=2×(Lb2−Lb1)になっている。
上述したように、光複製器13は、2段のマッハツェンダ干渉計13a,13bを直列に接続することにより構成されている。1段目のマッハツェンダ干渉計13aは、2つの光ファイバ13a1,13a2を並列に接続することにより構成されている。同様に、2段目のマッハツェンダ干渉計13bは、2つの光ファイバ13b1,13b2を並列に接続することにより構成されている。
したがって、光複製器13において取り得る掃引光の経路は、(1)光ファイバ13a1及び光ファイバ13b1を通る経路、(2)光ファイバ13a1及び光ファイバ13b2を通る経路、(3)光ファイバ13a2及び光ファイバ13b1を通る経路、及び(4)光ファイバ13a2及び光ファイバ13b2を通る経路の4つである。すなわち、光複製器13は、上述した(1)〜(4)の4つの光導波路により構成されている。したがって、光複製器13において、光複製の倍率Nは、N=4である。
以上の関係は、以下のように一般化できる。すなわち、光複製器13がn段(nは、任意の正の整数)の並列光導波路を直列に接続することにより構成され、且つ、上記n段の並列光導波路のうちk段目(kは、1≦k≦nの正の整数)の並列光導波路がf(k)個の光導波路を並列に接続することにより構成されている場合、光複製の倍率Nは、N=f(1)×f(2)×・・・×f(k)×・・・×f(n)である。
マッハツェンダ干渉計13aにおいて、光路長La2は、光路長La1よりも余長部13aeの光路長の分だけ長い。余長部13aeの光路長は、余長部13aeを伝搬するのに要する所要時間がTr/2になるように定められている。しがって、光ファイバ13a2を伝搬した掃引光は、光ファイバ13a1を伝搬した掃引光と比較して、Tr/2だけ遅れて点P3に到達する(図1の(b)の@P3のグラフ参照)。換言すれば、1つの掃引光は、マッハツェンダ干渉計13aを通過することによって、タイミングが互いにTr/2ずれた2つの掃引光に複製される。
マッハツェンダ干渉計13bにおいて、光路長Lb2は、光路長Lb1よりも余長部13beの光路長の分だけ長い。余長部13beの光路長は、余長部13beを伝搬するのに要する所要時間がTr/4になるように定められている。しがって、光ファイバ13b2を伝搬した掃引光は、光ファイバ13b1を伝搬した掃引光と比較して、Tr/4だけ遅れて点P4に到達する(図1の(b)の@P4のグラフ参照)。換言すれば、マッハツェンダ干渉計13aを通過することによって2つに複製された掃引光は、マッハツェンダ干渉計13bを通過することによって、タイミングが互いにTr/4ずれた4つの掃引光に複製される。
なお、光複製器13において、総数N及び総数Nを実現するための複数の導波路の構成は、限定されない。光複製器13は、本実施形態のように複数段のマッハツェンダ干渉計を直列に結合することによって構成されていてもよいし、2以上の光導波路を並列に結合してなる並列光導波路によって構成されていてもよいし、複数段の並列光導波路を直列に結合することによって構成されていてもよい。直列に結合する場合、光路長差は前段が大きくてもいいし、後段が大きくてもよい。
(コンバイナ14)
図1の(a)に示すように、光複製器13の他方のポートには、一方の側が1ポートであり、他方の側が2ポートである(いわゆる1ポート×2ポート)コンバイナ14が光学的に結合されている。本実施形態において、コンバイナ14は、1ポートの側を入射側とし、2ポートの側を出射側として用いる。すなわち、コンバイナ14は、入射側の1ポートに結合された掃引光(図1の(b)の@P4のグラフ参照)を、2つに分岐したうえで、出射側の2ポートの各々に結合させる。
出射側の2ポートのうち、一方のポートには、光増幅器15が光学的に結合されており、他方のポートには、フィルタ素子16と光電変換素子17とがこの順番で光学的に結合されている。
なお、コンバイナ14における分配比は、限定されない。しかし、出射側の2ポートのうち一方のポートに結合された掃引光は、強度を増幅したうえで出力ポートに結合され、掃引圧縮装置10の外部へ出射される。出射側の2ポートのうち他方のポートに結合された掃引光は、掃引光のクロックを取得するためのモニター用として利用される。これらの用途に鑑みれば、コンバイナ14は、一方のポートに対して他方のポートよりも強度が高い掃引光を結合させることが好ましい。
(光増幅器15)
光増幅器15は、掃引光の強度を増幅したうえで、掃引圧縮装置10の出力ポートPoに掃引光を結合させる。なお、光増幅器15として採用される光増幅器の態様は、限定されないが、例えば、半導体光増幅器が挙げられる。
なお、本実施形態において、光増幅器15は、出力ポートPoの直前に設けられている。しかし、掃引圧縮装置10においては、光増幅器15を設ける位置は、出力ポートPoの直前に限定されず、点P1、点P2、点P3、及び点P4の何れであってもよい。ただし、光ファイバに代表される光導波路の内部にハイパワーな光が伝搬した場合、非線形光学効果が生じやすくなる。そのため、光導波路において非線形光学効果が生じにくくするという観点では、光増幅器15は、出力ポートPoの直前に設けられていることが好ましい。
(フィルタ素子16及び光電変換素子17)
フィルタ素子16は、掃引帯域の一部の帯域であるサブ帯域に含まれる光を概ね透過させ、サブ帯域以外の帯域に含まれる光を概ね遮断するバンドパスフィルタである。図1の(b)の@P4のグラフに示すように、掃引時間Tsが短縮され、且つ、複製された掃引光は、時間軸に沿ってみた場合に、周波数が周期的に変化しているもののほぼ連続的な(定常的な)波形を有する。フィルタ素子16は、このように連続的な波形を有する掃引光を、パルス的な不連続な波形を有する掃引光に変換することができる。
なお、フィルタ素子16として採用されるフィルタ素子の態様は、限定されないが、例えば、ファイバブラッググレーティングが挙げられる。
光電変換素子17は、フィルタ素子16を通過した掃引光を電気信号に変換し、その電気信号を掃引圧縮装置10の制御部(不図示)に提供する。
なお、光電変換素子17として採用される光電変換素子の態様は、限定されないが、例えば、フォトダイオードが挙げられる。
以上のように、光電変換素子17の前段にフィルタ素子16が挿入されていることによって、光電変換素子17は、掃引光のタイミングを示すクロック信号を確実に出力することができる。
<掃引圧縮装置10の効果>
上述したように、掃引圧縮装置10は、少なくとも分散補償器12及び光複製器13を備えている。
分散補償器12は、内部を伝搬する波長及び周波数が異なる光の各々の速度を、それぞれ、異ならせることができる。したがって、分散補償器12は、その分散特性を適宜設定されることによって、予め定められた帯域である掃引帯域内において波長及び周波数が掃引された掃引光を結合された場合に、掃引光の1回の掃引に要する時間である掃引時間を短縮することができる。また、光複製器13は、掃引光を複製することができる。したがって、掃引圧縮装置10は、掃引光において、単位時間内に掃引できる回数である掃引周波数を高めることができる。
上述したように、光複製器13は、各々の光路長が異なっている4つの光導波経路を備えており、上記4つの光導波経路を構成する光導波路の各々は、偏波保持ファイバにより構成されていることが好ましい。光複製器13の4つの光導波経路の各経路は、(1)光ファイバ13a1及び光ファイバ13b1を通る経路、(2)光ファイバ13a1及び光ファイバ13b2を通る経路、(3)光ファイバ13a2及び光ファイバ13b1を通る経路、及び(4)光ファイバ13a2及び光ファイバ13b2を通る経路、である。
掃引圧縮装置10は、出射光の強度を高めるために光増幅器15を更に備えていてもよい。光増幅器15のゲインは、光増幅器15に結合される光の偏波方向に依存する場合が多いため、光増幅器15に結合される光の偏波方向は、揃っていることが好ましい。上記の構成によれば、4つの光導波経路を構成する光導波路の各々が偏波保持ファイバではないファイバにより構成されている場合と比較して、光増幅器15に結合される光の偏波方向を揃えることができる。したがって、光増幅器15において生じ得るゲインの不安定さを抑制することができる。
上述したように、分散補償器12は、チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの何れかを備えていることが好ましい。
チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの各々は、何れも、設計パラメータを変更することにより、予め定められた帯域内における分散特性を所望の分散特性に近づけることができる。したがって、チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの各々は、分散補償器12として好適である。
上述したように、掃引圧縮装置10は、予め定められた帯域である掃引帯域内において波長及び周波数を掃引された光である掃引光を周期的に出射する掃引光源11を更に備えている。掃引光源11は、分散補償器12のポートのうち光複製器13が結合されているポートと逆側のポート、又は、後述する第1の変形例のように、光複製器13のポートのうち分散補償器12が結合されているポートと逆側のポートに光学的に接続されている。
上記の構成によれば、掃引圧縮装置10は、掃引光源11から出射された掃引光における掃引周波数を高めることができる。
上述したように、掃引圧縮装置10において、掃引光源11、分散補償器12、及び光複製器13の各々は、掃引光源11、分散補償器12、光複製器13の順番で配置されていてもよいし、後述する第1の変形例のように、掃引光源11、光複製器13、分散補償器12の順番で配置されていてもよい。
なお、分散補償器12を光複製器13の前段に配置した場合、分散補償器12を光複製器13の後段に配置した場合に比べて、時間領域で見たとき光強度が大きくなる領域ができる。光強度が大きくなると自己位相変調等の非線形効果の影響を受けやすくなり想定外の周波数遷移が発生する恐れがある。そのため、分散補償器12は、光複製器13の後段に配置されていることが好ましい。
上述したように、掃引光源11は、掃引帯域内において、掃引光の周波数を、時間の経過に伴い高くなるように構成されていてもよいし、又は、時間の経過に伴い低くなるように構成されていてもよい。掃引光の周波数が時間の経過に伴い高くなる場合、分散補償器12は、分散特性が掃引帯域において異常分散となるように定められている。一方、掃引光の周波数が時間の経過に伴い低くなる場合、分散補償器12は、分散特性が掃引帯域において正常分散となるように定められている。
上記の構成によれば、分散補償器12は、掃引帯域内において掃引光の掃引周波数を確実に高めることができる。
光複製器13は、n段(nは、任意の正の整数)の並列光導波路を直列に接続することにより構成されている。上記n段の並列光導波路のうちk段目(kは、1≦k≦nの正の整数)の並列光導波路は、f(k)個の光導波路を並列に接続することにより構成されている。
この場合、n段の並列光導波路による光複製の倍率Nは、N=f(1)×f(2)×・・・×f(k)×・・・×f(n)であり、掃引光源11が出射した光において、該光の繰り返し周期をTrとして、該光の掃引帯域の帯域幅をfbとして、該光の掃引時間をTsとして、分散補償器12の分散特性Dは、|D|≧|(Ts−Tr/N)/fb|〔s/Hz〕を満たすように構成されていることが好ましい。
上述したように、掃引圧縮装置10は、出射光の強度を高めるために光増幅器15を更に備えている場合がある。光増幅器15の例としては、半導体光増幅器が挙げられる。半導体光増幅器のゲインは、非線形光学効果(例えば四光波混合)を示す傾向を有する。そのため、半導体光増幅器に対して波長が異なる複数の光を同時に結合させた場合、非線形光学効果に起因する光であって、もともとの波長とは異なる波長を有する光が発生する場合がある。上記の構成によれば、掃引周波数が高められた後の複数の掃引光の各々が、時系列において重なり合うことを防ぐことができる。したがって、掃引圧縮装置10が光増幅器15を更に備えている場合であっても、非線形光学効果が生じる可能性を低減することができる。
光学的に結合された分散補償器12及び光複製器13を通過した後の掃引光において、周波数の時間依存性の形状が線形になるように、掃引光源11における掃引特性と、分散補償器12の分散特性とが定められていることが好ましい。
上記の構成によれば、掃引周波数が高められた後の掃引光は、周波数の時間依存性の形状が線形になる。したがって、掃引圧縮装置10をSS−OCTに適用した場合に、撮影後のデータ処理を容易且つ高精度に行うことができる。
上述したように、掃引圧縮装置10は、光学的に結合された分散補償器12及び光複製器13を通過した後の掃引光の一部を電気信号に変換するためのフィルタ素子16及び光電変換素子17を更に備えていることが好ましい。
上記の構成によれば、掃引周波数が高められた後の掃引光のクロックを、例えば制御部が容易に取得することができる。
掃引圧縮装置10において、分散補償器12を第1の分散補償器として、光複製器13は、各々の光路長が異なっている複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)により構成された複数の光導波経路を備えている。複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)のうち少なくとも1つの光導波路(例えば、光ファイバ13a2,13b2)には、光導波路(例えば、光ファイバ13a2,13b2)における波長及び周波数における分散特性とは異なる分散特性を有する第2の分散補償器(図1の(a)には不図示)が設けられている、ことが好ましい。
上記の構成によれば、光複製器13が備えている複数の光導波経路を構成する複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)の光路長の差(すなわち余長部13ae,13beの光路長)に起因する波長分散差による波長掃引波形の変化を抑えることができる。
掃引圧縮装置10において、上記複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)のうち上記第2の分散補償器が設けられている光導波路(例えば、光ファイバ13a2,13b2)の光路長は、上記複数の光導波路のうち基準となる光導波路(例えば、光ファイバ13a1,13b1)の光路長である基準光路長よりも長い。上記第2の分散補償器の分散特性の符号は、上記第2の分散補償器が設けられている光導波路の分散特性の符号と異なる、ことが好ましい。
例えば、マッハツェンダ干渉計13aに着目した場合、光ファイバ13a2の光路長は、余長部13aeの分だけ光ファイバ13a1の光路長よりも長い。したがって、マッハツェンダ干渉計13aにおいては、光ファイバ13a1を基準となる光導波路として、光ファイバ13a1の光路長を基準光路長とすればよい。そのうえで、光ファイバ13a1よりも光路長が長い光ファイバ13a2に上記第2の分散補償器を設ければよい。このとき、上記第2の分散補償器が設けられている光ファイバ13a2が正常分散を有するのであれば、上記第2の分散補償器は、異常分散を有するように構成されていればよい。この点は、マッハツェンダ干渉計13bにおいても同様である。
上記の構成によれば、第2の分散補償器が設けられている光導波路(例えば、光ファイバ13a2,13b2)の光路長が、余長部13ae,13beの分だけ基準光路長よりも長いことに起因して生じる波長分散差を、相殺する、又は、小さくすることができる。したがって、光複製器13が備えている複数の光導波経路を構成する複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)の光路長の差に起因する波長分散差による波長掃引波形の変化を確実に抑えることができる。
掃引圧縮装置10において、光複製器13は、各々の光路長が異なっている複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)により構成された複数の光導波経路を備えている。上記複数の光導波路のうち2つの光導波路(例えば、光ファイバ13a1及び13a2、あるいは、光ファイバ13b1及び13b2)を比較した場合に、該2つの光導波路の各々における波長及び周波数における分散特性は、符号が同じであり、且つ、光路長が短い光導波路(例えば、光ファイバ13a1、あるいは、光ファイバ13b1)の上記分散特性は、光路長が長い光導波路(例えば、光ファイバ13a2、あるいは、光ファイバ13b2)の上記分散特性よりも大きい、ように構成されている。なお、掃引圧縮装置10のように光複製器13が直列に接続されたn段の並列光導波路により構成されている場合、ここで分散特性を比較する2つの光導波路は、n段の並列光導波路のうち同じkにより表される並列光導波路に含まれている2つの光導波路である。
上記の構成によれば、光複製器13を構成する複数の光導波路の一部に第2の分散補償器を設けることなく、複数の光導波路(光ファイバ13a1,13a2,13b1,13b2)の光路長の差に起因する波長分散差による波長掃引波形の変化を抑えることができる。
〔第1の変形例〕
上述した掃引圧縮装置10の第1の変形例である掃引圧縮装置10Aについて、図1の(c)及び(d)を参照して説明する。図1の(c)は、掃引圧縮装置10Aの構成を示すブロック図であり、図1の(d)は、掃引圧縮装置10Aが生成する光における周波数の時間依存性を示すグラフである。図1の(d)において、@P1Aは、掃引光源11と、マッハツェンダ干渉計13aとの間の点である点P1Aにおける光の周波数の時間依存性を示し、@P2Aは、マッハツェンダ干渉計13aと、マッハツェンダ干渉計13bとの間の点である点P2Aにおける光の周波数の時間依存性を示し、@P3Aは、マッハツェンダ干渉計13bと、分散補償器12との間の点である点P3Aにおける光の周波数の時間依存性を示し、@P4Aは、分散補償器12の後段に位置する点P4Aにおける光の周波数の時間依存性を示す。
図1の(c)に示すように、掃引圧縮装置10Aは、掃引圧縮装置10をベースにして、分散補償器12と光複製器13との前後関係を入れ替えることによって得られる。すなわち、掃引圧縮装置10Aにおいて、掃引光源11、分散補償器12、及び光複製器13の各々は、掃引光源11、光複製器13、分散補償器12の順番で結合されている。したがって、本変形例では、掃引光源11、分散補償器12、光複製器13、コンバイナ14、光増幅器15、フィルタ素子16、及び光電変換素子17の各々についての説明を省略する。
掃引圧縮装置10Aにおいて掃引光源11が出射する掃引光、すなわち、図1の(d)の@P1Aのグラフに示した掃引光は、掃引圧縮装置10において掃引光源11が出射する掃引光と同じである。
上述したように、マッハツェンダ干渉計13aは、1つの掃引光をタイミングが互いにTr/2ずれた2つの掃引光に複製する(図1の(d)の@P2Aのグラフ参照)。このとき、2つの掃引光の各々の掃引時間は、掃引時間Trのままである。
同様に、マッハツェンダ干渉計13bは、マッハツェンダ干渉計13aを通過することによって2つに複製された掃引光を、タイミングが互いにTr/4ずれた4つの掃引光に複製する(図1の(d)の@P3Aのグラフ参照)。このとき、4つの掃引光の各々の掃引時間は、繰り返し周期Trのままである。
上述したように、分散補償器12は、掃引時間Tsを、上述した繰り返し周期Trから短縮する(図1の(d)の@P4Aのグラフ参照)。
以上のように、本発明の一態様において、分散補償器12及び光複製器13は、第1の実施形態のように、分散補償器12が光複製器13の前段に配置されていてもよいし、本変形例のように、光複製器13が分散補償器12の前段に配置されていてもよい。
なお、本変形例において、光増幅器15は、出力ポートPoの直前に設けられている。しかし、掃引圧縮装置10Aにおいても、光増幅器15を設ける位置は、出力ポートPoの直前に限定されず、点P1A、点P2A、点P3A、及び点P4Aの何れであってもよい。ただし、光増幅器15として半導体光増幅器を用いる場合、半導体光増幅器のゲインは、非線形光学効果(例えば四光波混合)を示す傾向を有する。
そのため、半導体光増幅器に対して波長が異なる複数の光を同時に結合させた場合、非線形光学効果に起因する光であって、もともとの波長とは異なる波長を有する光が発生する場合がある。そのため、半導体光増幅器における非線形光学効果が生じにくくするという観点では、光増幅器15は、点P1A、点P4A、及び出力ポートPoの直前の何れかの位置に設けられていることが好ましい。
また、光導波路において非線形光学効果が生じにくくするという観点では、光増幅器15は、出力ポートPoの直前に設けられていることが好ましい。
〔第2の変形例〕
上述した掃引圧縮装置10の第2の変形例である掃引圧縮装置10Bについて、図2の(a)及び(b)を参照して説明する。図2の(a)は、掃引圧縮装置10Bが備えている掃引光源11Bが出射する掃引光における周波数の時間依存性を示すグラフである。(b)は、(a)に示した第2の変形例である掃引圧縮装置10Bが出射する光における周波数の時間依存性を示すグラフである。
掃引圧縮装置10Bは、掃引圧縮装置10,10Aをベースにして、掃引圧縮装置10,10Aが備えていた掃引光源11を掃引光源11Bに変更することによって得られる。したがって、本変形例では、掃引光源11Bについて説明し、それ以外の構成部材に関する説明を省略する。
掃引光源11は、図1の(b)の@P1又は図1の(d)の@P1Aのグラフに示すように、低い周波数f1から高い周波数f2に向かって連続的に周波数が変化する掃引光を生成する。
それに対して、掃引光源11Bは、図2の(a)に示すように、低い周波数f1から高い周波数f2に向かって離散的に周波数が変化する掃引光を生成する。本変形例において、掃引光源11Bが生成する掃引光は、周波数f1から周波数f2に向かって、6段階に周波数を変化させる。これらの6段階の各々において、それぞれの周波数は、一定であることが好ましい。
掃引光源11Bの構成は、図2の(a)に示すように、周波数が離散的に変化する掃引光を生成可能であれば、特に限定されない。掃引光源11Bとしては、既存の掃引光源の中から好適なものを適宜選択して用いることができる。
上述したように、分散補償器12は、掃引光の掃引時間を掃引時間Tsから掃引時間Ts’に短縮する。また、光複製器13は、タイミングが互いにTr/4ずれた4つの掃引光に複製する。したがって、掃引光源11Bは図2の(b)に示すように、周波数が離散的に変化する掃引光において、単位時間内に掃引できる回数である掃引周波数を高めることができる。
以上のように、離散的に周波数が変化する掃引光を用いることによって、掃引時間を短縮した後の掃引光をOCT用の掃引光として使用する場合において、光電変換が実施されている期間(換言すればサンプリング期間)中における周波数変動を抑制することができる。その結果、掃引光のコヒーレンス長を延ばすことができるので、SS−OCTを用いて断層撮影を行う場合に、より深いところに関する情報を得ることができる。
また、掃引光において離散的に周波数を変化させる場合に、掃引光源11Bは、j段目(jは、1≦j≦6の整数)の周波数の光と、j+1段目の周波数の光との間に、光を生成しない休止期間を設けるように構成されていてもよい。図2の(a)においては、2段目の周波数の光と3段目の周波数の光との間に設けられた休止期間を、一点鎖線により図示している。この構成によれば、光学的に結合された分散補償器12及び光複製器13を通過したあとの掃引光(すなわち掃引周波数を高められた後の掃引光)において、j段目の周波数の光と、j+1段目の周波数の光とが時系列において重なり合うことを確実に防ぐことができる。
また、休止期間の時間である休止時間Tiは、分散補償器12の分散の平均値をD(s/Hz)として、j段目の周波数と、j+1段目の周波数との周波数差をΔf(Hz)として、Ti=D×Δf(s)とするとよい。休止時間Tiをこのように設定することによって、掃引圧縮装置10Bは、j段目の周波数の光と、j+1段目の周波数の光とが時系列において重なり合うことを防ぐとともに、1段目〜6段目の周波数の光を連続的に出射することができる。
〔付記事項〕
本発明は上述した実施形態及び変形例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態及び変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
10,10A,10B 掃引圧縮装置
11,11B 掃引光源
12 分散補償器(第1の分散補償器)
13 光複製器
13a マッハツェンダ干渉計(n段の並列光導波路の一例、1段目)
13ae 余長部
13b マッハツェンダ干渉計(n段の並列光導波路の一例、2段目)
13be 余長部
15 光増幅器
16 フィルタ素子
17 光電変換素子
N n段の並列光導波路による光複製の倍率
Tr 繰り返し周期
fb 帯域幅
Ts,Ts’ 掃引時間

Claims (14)

  1. 波長及び周波数における分散特性を有する分散補償器と、
    上記分散補償器に光学的に結合された光複製器と、を備えている、
    ことを特徴とする掃引圧縮装置。
  2. 上記光複製器は、各々の光路長が異なっている複数の光導波経路を備えており、
    上記複数の光導波経路を構成する光導波路の各々は、光ファイバにより構成されている、
    ことを特徴とする請求項1に記載の掃引圧縮装置。
  3. 上記分散補償器は、チャープファイバブラッググレーティング、グレーティングペア、及び分散補償ファイバの何れかを備えている、
    ことを特徴とする請求項1又は2に記載の掃引圧縮装置。
  4. 予め定められた帯域内において波長及び周波数を掃引された光を周期的に出射する掃引光源を更に備え、
    該掃引光源は、上記分散補償器のポートのうち上記光複製器が結合されているポートと逆側のポート、又は、上記光複製器のポートのうち上記分散補償器が結合されているポートと逆側のポートに光学的に接続されている、
    ことを特徴とする請求項1〜3の何れか1項に記載の掃引圧縮装置。
  5. 上記掃引光源、上記分散補償器、及び上記光複製器の各々は、上記掃引光源、上記分散補償器、上記光複製器の順番で配置されている、
    ことを特徴とする請求項4に記載の掃引圧縮装置。
  6. 上記掃引光源、上記分散補償器、及び上記光複製器の各々は、上記掃引光源、上記光複製器、上記分散補償器の順番で配置されている、
    ことを特徴とする請求項4に記載の掃引圧縮装置。
  7. 上記周波数が時間の経過に伴い高くなる場合、上記分散特性は、上記帯域内において異常分散であり、
    上記周波数が時間の経過に伴い低くなる場合、上記分散特性は、上記帯域内において正常分散である、
    ことを特徴とする請求項4〜6の何れか1項に記載の掃引圧縮装置。
  8. 上記光複製器は、n段(nは、任意の正の整数)の並列光導波路を直列に接続することにより構成され、且つ、上記n段の並列光導波路のうちk段目(kは、1≦k≦nの正の整数)の並列光導波路は、f(k)個の光導波路を並列に接続することにより構成されており、
    上記n段の並列光導波路による光複製の倍率Nは、N=f(1)×f(2)×・・・×f(k)×・・・×f(n)であり、
    上記掃引光源が出射した光において、該光の繰り返し周期をTrとして、該光の予め定められた帯域の帯域幅をfbとして、該光の掃引時間をTsとして、
    上記分散特性であるDは、|D|≧|(Ts−Tr/N)/fb|〔s/Hz〕を満たす、
    ことを特徴とする請求項7に記載の掃引圧縮装置。
  9. 光学的に結合された上記分散補償器及び上記光複製器から出射される光において、周波数の時間依存性の形状が線形になるように、上記掃引光源における掃引特性と、上記分散特性とが定められている、
    ことを特徴とする請求項4〜8の何れか1項に記載の掃引圧縮装置。
  10. 光学的に結合された上記分散補償器及び上記光複製器から出射される光の一部を電気信号に変換するためのフィルタ素子及び光電変換素子を更に備えている、
    ことを特徴とする請求項4〜9の何れか1項に記載の掃引圧縮装置。
  11. 上記分散補償器を第1の分散補償器として、
    上記光複製器は、各々の光路長が異なっている複数の光導波路により構成された複数の光導波経路を備えており、
    上記複数の光導波路のうち少なくとも1つの光導波路には、該光導波路における波長及び周波数における分散特性とは異なる分散特性を有する第2の分散補償器が設けられている、
    ことを特徴とする請求項1〜10の何れか1項に記載の掃引圧縮装置。
  12. 上記複数の光導波路のうち上記第2の分散補償器が設けられている光導波路の光路長は、上記複数の光導波路のうち基準となる光導波路の光路長である基準光路長よりも長く、
    上記第2の分散補償器の分散特性の符号は、上記第2の分散補償器が設けられている光導波路の分散特性の符号と異なる、
    ことを特徴とする請求項11に記載の掃引圧縮装置。
  13. 上記光複製器は、各々の光路長が異なっている複数の光導波路により構成された複数の光導波経路を備えており、
    上記複数の光導波路のうち2つの光導波路を比較した場合に、該2つの光導波路の各々における波長及び周波数における分散特性は、符号が同じであり、且つ、光路長が短い光導波路の上記分散特性は、光路長が長い光導波路の上記分散特性よりも大きい、
    ことを特徴とする請求項1〜10の何れか1項に記載の掃引圧縮装置。
  14. 上記光ファイバは、偏波保持ファイバである、
    ことを特徴とする請求項2に記載の掃引圧縮装置。
JP2019177688A 2019-09-27 2019-09-27 掃引圧縮装置 Pending JP2021057413A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177688A JP2021057413A (ja) 2019-09-27 2019-09-27 掃引圧縮装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177688A JP2021057413A (ja) 2019-09-27 2019-09-27 掃引圧縮装置

Publications (1)

Publication Number Publication Date
JP2021057413A true JP2021057413A (ja) 2021-04-08

Family

ID=75271092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177688A Pending JP2021057413A (ja) 2019-09-27 2019-09-27 掃引圧縮装置

Country Status (1)

Country Link
JP (1) JP2021057413A (ja)

Similar Documents

Publication Publication Date Title
JP3546917B2 (ja) 超短光パルスの伝達装置、発生装置および伝達方法
Peng et al. Breathing dissipative solitons in mode-locked fiber lasers
US6249630B1 (en) Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US8126299B2 (en) Production of optical pulses at a desired wavelength utilizing higher-order-mode (HOM) fiber
Chen et al. Ultrashort pulse reflection from fiber gratings: A numerical investigation
US8948228B2 (en) Methods, systems, and devices for timing control in electromagnetic radiation sources
US8934507B2 (en) Wavelength-tunable light source
JP5361243B2 (ja) 光断層画像撮像装置
EP2113798B1 (en) All-fiber module for femtosecond pulse compression and supercontinuum generation
JP2006324613A (ja) 受動モード同期短パルス光ファイバレーザおよびスキャニングパルスレーザ
JP6112289B2 (ja) 光断層計測装置
Chen et al. Applications of ultrashort pulse propagation in Bragg gratings for wavelength-division multiplexing and code-division multiple access
Longhi et al. Propagation, manipulation, and control of picosecond optical pulses at 1.5 µm in fiber Bragg gratings
JP2013072962A (ja) 広帯域光源
JP2021057413A (ja) 掃引圧縮装置
JP5384978B2 (ja) 光パルス発生装置を含む光学システム
Serkland et al. Rate multiplication of a 59-GHz soliton source at 1550 nm
JP3291466B2 (ja) 光信号波形測定方法
JP2001060734A (ja) 超短パルス広帯域光波発生方法及びその装置
JP2612080B2 (ja) 光ソリトン発生方法およびソリトン伝送方法
Curatu et al. Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation
Remesh et al. Compact chirped fiber Bragg gratings for single-photon generation from quantum dots
JPWO2019073701A1 (ja) デュアル光周波数コム生成光学系、レーザー装置、計測装置
Dong et al. Dispersion Engineering for Advanced Temporal Imaging Modalities
Al-Younis et al. Pulse compression using Fiber Bragg gratings