JP2021057317A - Thin film lithium secondary battery and manufacturing method thereof - Google Patents

Thin film lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2021057317A
JP2021057317A JP2019182121A JP2019182121A JP2021057317A JP 2021057317 A JP2021057317 A JP 2021057317A JP 2019182121 A JP2019182121 A JP 2019182121A JP 2019182121 A JP2019182121 A JP 2019182121A JP 2021057317 A JP2021057317 A JP 2021057317A
Authority
JP
Japan
Prior art keywords
electrode layer
positive electrode
negative electrode
layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019182121A
Other languages
Japanese (ja)
Inventor
弘実 中澤
Hiromi Nakazawa
弘実 中澤
石井 博
Hiroshi Ishii
石井  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019182121A priority Critical patent/JP2021057317A/en
Publication of JP2021057317A publication Critical patent/JP2021057317A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a thin film lithium secondary battery that can increase the charge/discharge capacity by increasing the thickness of a positive electrode layer and a negative electrode layer, does not decrease the charge/discharge capacity much even when charging/discharging is performed with a large current, has high visible light transmittance, and excellent transparency, and a manufacturing method thereof.SOLUTION: A thin film lithium secondary battery includes a laminated body including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, and at least one of the positive electrode layer and the negative electrode layer includes nitrogen, and the laminated body has a visible light transmittance of 60% or more.SELECTED DRAWING: Figure 2

Description

本発明は、薄膜リチウム二次電池、およびその製造方法に関する。 The present invention relates to a thin film lithium secondary battery and a method for manufacturing the same.

小型の電子機器やICカードなどの分野では、バックアップ電源として、容積が小さく厚みが薄い薄膜二次電池が開発されている(例えば、特許文献1〜3を参照)。こうした薄膜二次電池としては、リチウムイオンを用いた薄膜リチウム二次電池が主に利用されている。
また、可視光透過性を有する薄膜によって集電体層、正極層、固体電解質層、および負極層を形成した、可視光透過性を有する薄膜リチウム二次電池も開発されている(例えば、特許文献4を参照)。
In the fields of small electronic devices and IC cards, thin-film secondary batteries having a small volume and a thin thickness have been developed as backup power sources (see, for example, Patent Documents 1 to 3). As such a thin-film secondary battery, a thin-film lithium secondary battery using lithium ions is mainly used.
Further, a thin film lithium secondary battery having visible light transmittance has also been developed in which a current collector layer, a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are formed by a thin film having visible light transmittance (for example, Patent Documents). 4).

こうした薄膜リチウム二次電池は、正極層、電解質層、負極層なとが順に積層された積層体から構成されている。正極層としては、LiCoO、LiNiO、LiMnなどが用いられる。電解質層としては、例えば、窒素が添加されたリン酸リチウム(LiPON)が用いられる。負極層としては、例えば、金属Li、V、Nb、Inなどが用いられる。 Such a thin-film lithium secondary battery is composed of a laminate in which a positive electrode layer, an electrolyte layer, and a negative electrode layer are laminated in this order. As the positive electrode layer, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, and the like are used. As the electrolyte layer, for example, lithium phosphate (LiPON) to which nitrogen has been added is used. As the negative electrode layer, for example, metal Li, V 2 O 5 , Nb 2 O 5 , In 2 O 3, and the like are used.

特許第5461561号公報Japanese Patent No. 5461561 特許第4213474号公報Japanese Patent No. 421374 特許第4381176号公報Japanese Patent No. 4381176 特許第5002852号公報Japanese Patent No. 5002852

特許文献1〜4に示すような従来の薄膜リチウム二次電池は、正極層、負極層の膜厚を厚くしても、充放電容量を大きくすることが難しいという課題があった。これは、正極層や負極層の膜厚を厚くすると、内部抵抗が大きくなり、リチウムイオンの動きが低下するためと考えられる。また、正極層や負極層の膜厚を厚くした薄膜リチウム二次電池は、内部抵抗が大きくなるために、大電流で充放電を行うと充放電容量が低下するという課題があった。 Conventional thin-film lithium secondary batteries as shown in Patent Documents 1 to 4 have a problem that it is difficult to increase the charge / discharge capacity even if the film thicknesses of the positive electrode layer and the negative electrode layer are increased. It is considered that this is because when the film thickness of the positive electrode layer and the negative electrode layer is increased, the internal resistance increases and the movement of lithium ions decreases. Further, a thin-film lithium secondary battery having a thick positive electrode layer and a negative electrode layer has a problem that the charge / discharge capacity decreases when charging / discharging is performed with a large current because the internal resistance becomes large.

一方、薄膜リチウム二次電池を、例えば小型のソーラーパネルの受光面側に設けて、小型で充電が可能なソーラーバッテリーとして用いたり、ICカードの表面に設けて、ICカードに電力を供給するバッテリーとして用いることか考えられる。
しかしながら、特許文献4に示すような、従来の透明薄膜リチウム二次電池は、可視光透過率が十分ではなく、ソーラーパネルの受光面側に設けると、ソーラーパネルに到達する光量の低下による発電量の低下が懸念される。また、ICカードの表面に設けた場合、カード表面に施されたデザインが見えにくく、デザイン性が低下するという課題があった。
On the other hand, a thin-film lithium secondary battery is provided, for example, on the light receiving surface side of a small solar panel to be used as a small and rechargeable solar battery, or is provided on the surface of an IC card to supply power to the IC card. It is conceivable to use it as.
However, the conventional transparent thin-film lithium secondary battery as shown in Patent Document 4 does not have sufficient visible light transmittance, and when it is provided on the light receiving surface side of the solar panel, the amount of power generated due to a decrease in the amount of light reaching the solar panel. There is concern that the number will decline. Further, when the IC card is provided on the surface of the IC card, the design applied to the surface of the card is difficult to see, and there is a problem that the design property is deteriorated.

本発明は、上述した課題に鑑みてなされたものであり、正極層や負極層の膜厚を増加させることで充放電容量を大きくすることができ、大電流で充放電を行っても充放電容量の低下が少なく、可視光透過率が高く透明性に優れた薄膜リチウム二次電池、およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and the charge / discharge capacity can be increased by increasing the thickness of the positive electrode layer and the negative electrode layer, and even if charging / discharging is performed with a large current, charging / discharging is performed. An object of the present invention is to provide a thin-film lithium secondary battery having a small decrease in capacity, a high visible light transmittance, and excellent transparency, and a method for manufacturing the same.

上記課題を解決するために、本発明の薄膜リチウム二次電池は、正極層、固体電解質層、負極層を有する積層体を備え、前記正極層または前記負極層のうち、少なくともいずれか一方は窒素を含み、前記積層体は、可視光透過率が60%以上であることを特徴とする。 In order to solve the above problems, the thin-film lithium secondary battery of the present invention includes a laminate having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, and at least one of the positive electrode layer and the negative electrode layer is nitrogen. The laminated body is characterized by having a visible light transmittance of 60% or more.

本発明によれば、正極層または負極層のうち、少なくともいずれか一方は窒素(N)を含むことにより、正極層や負極層のイオン伝導度が向上し、正極層や負極層の膜厚を増加させることによって充放電容量を大きくすることができる。また、本発明の薄膜リチウム二次電池は、正極層または負極層のうち、少なくともいずれか一方は窒素(N)を含むことにより、構成材料の非晶質化が促進され、結晶化した場合の粒界散乱による光線拡散の影響が低減し、可視光透過性を向上させることができる。薄膜リチウム二次電池を構成する積層体の可視光透過率が60%以上であることによって、可視光の入出射が必要なデバイスの表面にも配置可能な薄膜リチウム二次電池を提供できる。 According to the present invention, by containing nitrogen (N) in at least one of the positive electrode layer and the negative electrode layer, the ionic conductivity of the positive electrode layer and the negative electrode layer is improved, and the thickness of the positive electrode layer and the negative electrode layer is increased. The charge / discharge capacity can be increased by increasing the charge / discharge capacity. Further, in the thin film lithium secondary battery of the present invention, when at least one of the positive electrode layer and the negative electrode layer contains nitrogen (N), the amorphization of the constituent material is promoted and crystallized. The influence of light diffusion due to grain boundary scattering can be reduced, and visible light transmission can be improved. When the visible light transmittance of the laminate constituting the thin film lithium secondary battery is 60% or more, it is possible to provide a thin film lithium secondary battery that can be arranged on the surface of a device that requires the input and output of visible light.

また、本発明では、前記正極層または前記負極層は、可視光透過性の金属酸化物を含む化合物からなることを特徴とする。 Further, the present invention is characterized in that the positive electrode layer or the negative electrode layer is made of a compound containing a metal oxide that transmits visible light.

また、本発明では、前記可視光透過性の金属酸化物は、リチウム−チタン酸化物、ニオブ酸化物のうちのいずれか一つを含むことを特徴とする。 Further, in the present invention, the visible light transmissive metal oxide is characterized by containing any one of a lithium-titanium oxide and a niobium oxide.

また、本発明では、前記固体電解質層は、リン酸リチウムに窒素(N)が添加されたLiPONからなることを特徴とする。 Further, in the present invention, the solid electrolyte layer is characterized by being composed of LiPON in which nitrogen (N) is added to lithium phosphate.

また、本発明では、前記積層体は、最上層および最下層に、可視光透過性を有する導電性酸化物からなる集電体層を有することを特徴とする。 Further, in the present invention, the laminated body is characterized by having a current collector layer made of a conductive oxide having visible light transmission in the uppermost layer and the lowermost layer.

本発明の薄膜リチウム二次電池の製造方法は、前記各項に記載の薄膜リチウム二次電池の製造方法であって、窒素を含むスパッタリングガスを用いて、前記正極層または前記負極層のうち、少なくともいずれか一方を成膜する成膜工程を備えたことを特徴とする。 The method for manufacturing a thin-film lithium secondary battery of the present invention is the method for manufacturing a thin-film lithium secondary battery according to each of the above items, wherein a sputtering gas containing nitrogen is used to among the positive electrode layer and the negative electrode layer. It is characterized by including a film forming step of forming at least one of them.

本発明によれば、正極層や負極層の膜厚を増加させることで充放電容量を大きくすることができ、大電流で充放電を行っても充放電容量の低下が少なく、可視光透過率が高く透明性に優れた薄膜リチウム二次電池、およびその製造方法を提供することができる。 According to the present invention, the charge / discharge capacity can be increased by increasing the thickness of the positive electrode layer and the negative electrode layer, the charge / discharge capacity does not decrease much even when charging / discharging is performed with a large current, and the visible light transmission rate is small. It is possible to provide a thin-film lithium secondary battery having a high degree of transparency and excellent transparency, and a method for producing the same.

本発明の一実施形態の薄膜リチウム二次電池を示す断面図である。It is sectional drawing which shows the thin film lithium secondary battery of one Embodiment of this invention. 充放電電圧カーブの測定結果を示すグラフである。It is a graph which shows the measurement result of the charge / discharge voltage curve. 充放電容量のサイクル特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the cycle characteristic of charge / discharge capacity.

以下に、本発明の実施形態について添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that each of the embodiments shown below is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. In addition, the drawings used in the following description may be shown by enlarging the main parts for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components are the same as the actual ones. Is not always the case.

本発明に係る薄膜リチウム二次電池は、正極層と、固体電解質層と、負極層とを有する積層体を備え、前記正極層または前記負極層のうち、少なくともいずれか一方は窒素(N)を含む。すなわち薄膜リチウム二次電池は、正極層または負極層がNを含む場合と、正極層および負極層の両方がNを含む場合がある。薄膜リチウム二次電池は、前記正極層または前記負極層のうち、少なくともいずれか一方は窒素(N)を含むことにより、前記正極層や前記負極層のイオン伝導度が向上し、前記正極層や前記負極層の膜厚を増加させることによって充放電容量を大きくすることができる。 The thin-film lithium secondary battery according to the present invention includes a laminate having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, and at least one of the positive electrode layer and the negative electrode layer contains nitrogen (N). Including. That is, in the thin film lithium secondary battery, the positive electrode layer or the negative electrode layer may contain N, or both the positive electrode layer and the negative electrode layer may contain N. In the thin film lithium secondary battery, at least one of the positive electrode layer and the negative electrode layer contains nitrogen (N), so that the ionic conductivity of the positive electrode layer and the negative electrode layer is improved, and the positive electrode layer and the negative electrode layer The charge / discharge capacity can be increased by increasing the thickness of the negative electrode layer.

また、薄膜リチウム二次電池は、前記正極層または前記負極層のうち、少なくともいずれか一方は窒素(N)を含む(ドープする)ことにより、Nをドープしない場合と比較して可視光透過性が向上する。これは、Nをドープすると正極層または負極層の構成材料の非晶質化が促進され、結晶化した場合の粒界散乱による光線拡散の影響が低減したことによる。 Further, in the thin film lithium secondary battery, at least one of the positive electrode layer and the negative electrode layer contains (dopes) nitrogen (N), so that the visible light transmittance is higher than that in the case where N is not doped. Is improved. This is because when N is doped, the amorphization of the constituent materials of the positive electrode layer or the negative electrode layer is promoted, and the influence of light diffusion due to intergranular scattering when crystallized is reduced.

また、本発明に係る薄膜リチウム二次電池は、正極層と固体電解質層と負極層とを備えた積層体は、可視光透過率が60%以上である。薄膜リチウム二次電池は、前記積層体が可視光透過性を有することにより、正極層と負極層との間で可視光(波長:約380nm〜810nm(後述する実施例においては400nm〜700nm))を透過させることができる。 Further, in the thin film lithium secondary battery according to the present invention, the laminated body provided with the positive electrode layer, the solid electrolyte layer and the negative electrode layer has a visible light transmittance of 60% or more. In the thin film lithium secondary battery, the laminated body has visible light transmittance, so that visible light (wavelength: about 380 nm to 810 nm (400 nm to 700 nm in the examples described later)) between the positive electrode layer and the negative electrode layer). Can be made transparent.

本発明の薄膜リチウム二次電池を構成する積層体は、正極集電体層、正極層、固体電解質層、負極層、および負極集電体層とを順に備える場合を含む。この場合、積層体は基板の一面に設けられるのが好ましい。積層体は、基板に一面側から正極集電体層、正極層、固体電解質層、負極層、および負極集電体層が順に設けられている場合と、基板の一面側から負極集電体層、負極層、固体電解質層、正極層、正極集電体層が順に設けられている場合とを含む。 The laminate constituting the thin film lithium secondary battery of the present invention includes a case where a positive electrode current collector layer, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector layer are provided in this order. In this case, the laminate is preferably provided on one surface of the substrate. In the laminated body, the positive electrode current collector layer, the positive electrode layer, the solid electrolyte layer, the negative electrode layer, and the negative electrode current collector layer are sequentially provided on the substrate from one side, and the negative electrode current collector layer is provided from one side of the substrate. , The case where the negative electrode layer, the solid electrolyte layer, the positive electrode layer, and the positive electrode current collector layer are provided in this order.

薄膜リチウム二次電池の積層体が正極集電体層および負極集電体層を備える場合、正極集電体層および負極集電体層も可視光透過性を有している。また、薄膜リチウム二次電池が基板を備える場合、基板も可視光透過性を有している。なお、薄膜リチウム二次電池は、正極集電体層または負極集電体層を基板として用いてもよく、この場合、基板を省略することができる。 When the laminate of the thin-film lithium secondary battery includes a positive electrode current collector layer and a negative electrode current collector layer, the positive electrode current collector layer and the negative electrode current collector layer also have visible light transmittance. Further, when the thin film lithium secondary battery includes a substrate, the substrate also has visible light transmission. The thin-film lithium secondary battery may use a positive electrode current collector layer or a negative electrode current collector layer as a substrate, and in this case, the substrate can be omitted.

また、正極集電体層や負極集電体層は、必ずしも必要ではなく、例えば、正極層が正極集電体層を兼ねる場合もあるし、負極層が負極集電体層を兼ねる場合もある。すなわち正極層と正極集電体層は、一体であって1層で形成される場合を含む。また負極層と負極集電体層は、一体であって1層で形成される場合を含む。 Further, the positive electrode current collector layer and the negative electrode current collector layer are not always necessary. For example, the positive electrode layer may also serve as the positive electrode current collector layer, and the negative electrode layer may also serve as the negative electrode current collector layer. .. That is, the case where the positive electrode layer and the positive electrode current collector layer are integrated and formed as one layer is included. Further, the case where the negative electrode layer and the negative electrode current collector layer are integrated and formed by one layer is included.

(薄膜リチウム二次電池)
以下、図面を参照して本発明の実施形態について詳細に説明する。
図1は、本発明の一実施形態の薄膜リチウム二次電池を示す断面図である。
図1に示す薄膜リチウム二次電池10は、正極集電体層14、正極層16、固体電解質層18、負極層20、および負極集電体層22とを有する積層体11を備えている。積層体11は、基板12の一面12aに設けられ、基板12に接する側から正極集電体層14、正極層16、固体電解質層18、負極層20、および負極集電体層22が順に積層されている。
(Thin film lithium secondary battery)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a thin film lithium secondary battery according to an embodiment of the present invention.
The thin-film lithium secondary battery 10 shown in FIG. 1 includes a laminate 11 having a positive electrode current collector layer 14, a positive electrode layer 16, a solid electrolyte layer 18, a negative electrode layer 20, and a negative electrode current collector layer 22. The laminate 11 is provided on one surface 12a of the substrate 12, and the positive electrode current collector layer 14, the positive electrode layer 16, the solid electrolyte layer 18, the negative electrode layer 20, and the negative electrode current collector layer 22 are laminated in this order from the side in contact with the substrate 12. Has been done.

薄膜リチウム二次電池10を構成する積層体11は、積層方向Dに沿って可視光透過性を有している。積層体11の積層方向Dに沿った可視光(波長:約380nm〜810nm(後述する実施例においては400nm〜700nm))の透過率は、例えば60%以上とされている。積層体11を構成する正極集電体層14、正極層16、固体電解質層18、負極層20、および負極集電体層22は、それぞれ可視光透過性を有する透明な薄膜から構成されている。また、基板12も可視光透過性を有する透明な薄板から構成されている。 The laminated body 11 constituting the thin-film lithium secondary battery 10 has visible light transmission along the stacking direction D. The transmittance of visible light (wavelength: about 380 nm to 810 nm (400 nm to 700 nm in the examples described later)) along the stacking direction D of the laminated body 11 is set to, for example, 60% or more. The positive electrode current collector layer 14, the positive electrode layer 16, the solid electrolyte layer 18, the negative electrode layer 20, and the negative electrode current collector layer 22 constituting the laminate 11 are each composed of a transparent thin film having visible light transmission. .. Further, the substrate 12 is also composed of a transparent thin plate having visible light transmission.

基板12は、可視光透過性を有し、更に耐熱性や可撓性を有する基板を用いることができる。可視光透過性、および耐熱性を有する基板の材料は、例えば、ガラスなどが挙げられる。可視光透過性、および可撓性を有する基板の材料は、例えば、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などから選択できる。 As the substrate 12, a substrate having visible light transmittance and further having heat resistance and flexibility can be used. Examples of the substrate material having visible light transmission and heat resistance include glass and the like. The material of the substrate having visible light transmission and flexibility can be selected from, for example, polycarbonate (PC), polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET) and the like.

正極集電体層14と、負極集電体層22は、可視光透過性を有し、かつ電気抵抗が低い金属酸化物、即ち透明導電体で形成されている。正極集電体層14と負極集電体層22とは、互いに同じ材料で形成されていても、異なる材料で形成されていてもよい。正極集電体層14や負極集電体層22を構成する具体的な材料例としては、錫ドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、アンチモンドープ酸化錫(ATO)などの可視光透過性を有する金属酸化物が挙げられる。 The positive electrode current collector layer 14 and the negative electrode current collector layer 22 are formed of a metal oxide having visible light transmittance and low electrical resistance, that is, a transparent conductor. The positive electrode current collector layer 14 and the negative electrode current collector layer 22 may be formed of the same material or different materials. Specific examples of materials constituting the positive electrode current collector layer 14 and the negative electrode current collector layer 22 include tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and antimony-doped. Examples thereof include metal oxides having visible light transmittance such as tin oxide (ATO).

正極層16は、リチウム(Li)を含み、リチウムの吸蔵と、吸蔵されたリチウムの脱離が可能な材料で形成され、さらにNを含み、可視光透過性を有する材料から構成されている。正極層16の構成材料の具体例としては、リチウム−チタン酸化物(LiTi12など)にNがドープされた透明な材料を用いることができる。 The positive electrode layer 16 contains lithium (Li), is formed of a material capable of occluding lithium and desorbing the occluded lithium, and further contains N and is composed of a material having visible light transmittance. As a specific example of the constituent material of the positive electrode layer 16, a transparent material obtained by doping lithium-titanium oxide (Li 4 Ti 5 O 12 or the like) with N can be used.

正極層16におけるNのドープ量は、例えば0.1at%〜10.0at%であるのが好ましく、1.0at%〜5.0at%であるのがより好ましい。Nのドープ量が0.1at%以上であることにより、より確実にイオン伝導度を向上する効果が得られる。Nのドープ量が10.0at%を超えると、イオン伝導度を向上する効果が飽和する。 The doping amount of N in the positive electrode layer 16 is preferably, for example, 0.1 at% to 10.0 at%, and more preferably 1.0 at% to 5.0 at%. When the doping amount of N is 0.1 at% or more, the effect of more reliably improving the ionic conductivity can be obtained. When the doping amount of N exceeds 10.0 at%, the effect of improving the ionic conductivity is saturated.

固体電解質層18は、リチウムイオンを含有し、リチウムイオンが移動可能で、かつ可視光透過性を有する材料から構成される。固体電解質層18の構成材料の具体例としては、例えば、リン酸リチウム(LiPO)にNをドープしたLiPO4−x(LiPON)からなるアモルファス薄膜を用いるのが好ましい。 The solid electrolyte layer 18 is made of a material that contains lithium ions, is capable of moving lithium ions, and has visible light transmittance. As a specific example of the constituent material of the solid electrolyte layer 18, for example, it is preferable to use an amorphous thin film made of Li 3 PO 4-x N x (LiPON) in which lithium phosphate (Li 3 PO 4 ) is doped with N.

負極層20は、可視光透過性を有し、リチウムイオンを吸蔵及び脱離し得る材料で形成され、酸化ニオブ(Nbなど)、酸化インジウム(Inなど)、酸化亜鉛(ZnO)、酸化錫(SnOなど)、錫ドープ酸化インジウム(ITO))、リチウム−チタン酸化物(LiTi12など)の金属酸化物薄膜によって形成されるのが好ましい。 The negative electrode layer 20 is made of a material that has visible light transmission and is capable of storing and desorbing lithium ions, and contains niobide oxide (Nb 2 O 5 and the like), indium oxide (In 2 O 3 and the like), and zinc oxide (Zn O). ), Tin oxide (SnO 2, etc.), tin-doped indium oxide (ITO)), lithium-titanium oxide (Li 4 Ti 5 O 12, etc.), preferably formed from a metal oxide thin film.

負極層20は、さらにNがドープされているのがより好ましい。負極層20におけるNのドープ量は、0.1at%〜10.0at%であるのが好ましく、1.0at%〜5.0at%であるのがより好ましい。Nのドープ量が0.1at%以上であることにより、より確実にイオン伝導度を向上する効果が得られる。Nのドープ量が10.0at%を超えると、イオン伝導度を向上する効果が飽和する。 It is more preferable that the negative electrode layer 20 is further doped with N. The doping amount of N in the negative electrode layer 20 is preferably 0.1 at% to 10.0 at%, more preferably 1.0 at% to 5.0 at%. When the doping amount of N is 0.1 at% or more, the effect of more reliably improving the ionic conductivity can be obtained. When the doping amount of N exceeds 10.0 at%, the effect of improving the ionic conductivity is saturated.

薄膜リチウム二次電池10は、スパッタリング法、蒸着法、塗布法などにより作製することができる。塗布法は、有機金属化合物を有機溶媒とともに基板12の一面12aに塗布し、加熱、分解することによって所望の酸化物層が得られる。本実施形態の場合、組成のずれが少なく、比較的大きな面積に均一に膜を形成できるスパッタリング法が好ましい。 The thin-film lithium secondary battery 10 can be manufactured by a sputtering method, a vapor deposition method, a coating method, or the like. In the coating method, a desired oxide layer is obtained by coating an organometallic compound on one surface 12a of the substrate 12 together with an organic solvent, heating and decomposing the compound. In the case of the present embodiment, a sputtering method is preferable in which there is little deviation in composition and a film can be uniformly formed over a relatively large area.

積層体11を構成する各層の厚さは数10nm〜数μmであるのが好ましい。正極層16および負極層20の厚さは、それぞれの層の単位体積当たりの容量に膜厚と面積を乗じて得られるお互いの層全体の容量が一致するようにするのが好ましい。正極層16の厚さは、100nm〜1000nmがより好ましい。 The thickness of each layer constituting the laminated body 11 is preferably several tens of nm to several μm. The thicknesses of the positive electrode layer 16 and the negative electrode layer 20 are preferably set so that the capacities of the entire layers obtained by multiplying the capacity per unit volume of each layer by the film thickness and the area are the same. The thickness of the positive electrode layer 16 is more preferably 100 nm to 1000 nm.

正極層16の厚さは、固体電解質層18の厚さに対し、50%〜1000%であるのが好ましい。固体電解質層18の厚さは10nm〜1000nmであることが好ましく、抵抗を下げて伝導度を上げるために、ピンホール等の欠陥によるショートが生じない範囲で、できる限り薄くすることがより好ましい。 The thickness of the positive electrode layer 16 is preferably 50% to 1000% with respect to the thickness of the solid electrolyte layer 18. The thickness of the solid electrolyte layer 18 is preferably 10 nm to 1000 nm, and in order to reduce the resistance and increase the conductivity, it is more preferable to make the solid electrolyte layer as thin as possible within a range where short circuits due to defects such as pinholes do not occur.

負極層20の厚さは、その層全体の容量が正極層16の層全体の容量と一致するようにすることが好ましい。例えば、負極層20の単位体積あたりの容量が正極層16の単位体積あたりの容量より大きい場合、負極層20の厚さは正極層16の厚さより薄いのが好ましい。具体的には、負極層20の単位体積あたりの容量が正極層16の単位体積あたりの容量の2倍であって、正極層16の厚さが100nm〜1000nmの場合、負極層20の厚さは、50nm〜500nmで正極層16の厚さの半分であるのがより好ましい。負極層20の厚さは、固体電解質層18の厚さに対し、50%〜1000%であるのが好ましい。 The thickness of the negative electrode layer 20 is preferably such that the capacity of the entire layer matches the capacity of the entire layer of the positive electrode layer 16. For example, when the capacity of the negative electrode layer 20 per unit volume is larger than the capacity of the positive electrode layer 16 per unit volume, the thickness of the negative electrode layer 20 is preferably thinner than the thickness of the positive electrode layer 16. Specifically, when the capacity of the negative electrode layer 20 per unit volume is twice the capacity of the positive electrode layer 16 per unit volume and the thickness of the positive electrode layer 16 is 100 nm to 1000 nm, the thickness of the negative electrode layer 20 Is more preferably half the thickness of the positive electrode layer 16 at 50 nm to 500 nm. The thickness of the negative electrode layer 20 is preferably 50% to 1000% with respect to the thickness of the solid electrolyte layer 18.

薄膜リチウム二次電池10を充電する際には、正極集電体層14と負極集電体層22を図示しない電源に接続し、正極集電体層14と負極集電体層22間に電圧が印加される。これにより、正極層16におけるリチウムが正極層16から脱離してリチウムイオンとなって固体電解質層18を介して負極層20へ移動する。上記反応が継続することによって、正極層16ではリチウムが減り、負極層20ではリチウムイオンが電子と結びついて負極層20内に蓄積する。 When charging the thin-film lithium secondary battery 10, the positive electrode current collector layer 14 and the negative electrode current collector layer 22 are connected to a power source (not shown), and a voltage is applied between the positive electrode current collector layer 14 and the negative electrode current collector layer 22. Is applied. As a result, lithium in the positive electrode layer 16 is desorbed from the positive electrode layer 16 to become lithium ions and moves to the negative electrode layer 20 via the solid electrolyte layer 18. By continuing the above reaction, lithium is reduced in the positive electrode layer 16, and lithium ions are combined with electrons in the negative electrode layer 20 and accumulated in the negative electrode layer 20.

薄膜リチウム二次電池10を放電する際には、正極集電体層14と負極集電体層22を図示しない外部回路に接続すると、正極集電体層14と負極集電体層22間に電位差が生じる。これにより、負極層20のリチウムがリチウムイオンとなって固体電解質層18を介して正極層16へ移動するとともに、電子が外部回路を通って負極層20から正極層16へ移動する。正極層16では、リチウムイオンと電子が結びついて正極層16内に蓄積される。上記の反応によって外部回路に電流が流れる。 When the thin-film lithium secondary battery 10 is discharged, if the positive electrode current collector layer 14 and the negative electrode current collector layer 22 are connected to an external circuit (not shown), the positive electrode current collector layer 14 and the negative electrode current collector layer 22 are separated from each other. A potential difference occurs. As a result, lithium in the negative electrode layer 20 becomes lithium ions and moves to the positive electrode layer 16 via the solid electrolyte layer 18, and electrons move from the negative electrode layer 20 to the positive electrode layer 16 through an external circuit. In the positive electrode layer 16, lithium ions and electrons are combined and accumulated in the positive electrode layer 16. A current flows through the external circuit by the above reaction.

本来的にNがドープされていない金属酸化物で形成した正極層は、微結晶の集合体である。Nがドープされることによって、正極層16はアモルファス化し、イオン伝導度が向上すると考えられる。本実施形態に係る薄膜リチウム二次電池10は、Nがドープされた正極層16を備えることによって、正極層16のイオン伝導度が向上し、正極層16の膜厚を厚くしても、内部抵抗の上昇が抑制される。 The positive electrode layer formed of a metal oxide that is not originally doped with N is an aggregate of microcrystals. It is considered that the positive electrode layer 16 is amorphized by doping with N, and the ionic conductivity is improved. The thin-film lithium secondary battery 10 according to the present embodiment includes the positive electrode layer 16 doped with N, so that the ionic conductivity of the positive electrode layer 16 is improved, and even if the thickness of the positive electrode layer 16 is increased, the inside thereof is increased. The increase in resistance is suppressed.

したがって正極層16において厚さ方向にリチウムイオンがスムーズに移動することができるので、薄膜リチウム二次電池10は、正極層16を有効に活用することができ、結果として充放電容量を大きくすることができる。また薄膜リチウム二次電池10は、内部抵抗が低いので、大きな電流で充放電を行っても充放電容量の低下が少なく、素早く充放電でき、従来にくらべ高出力化を実現することができる。 Therefore, since lithium ions can smoothly move in the thickness direction in the positive electrode layer 16, the thin-film lithium secondary battery 10 can effectively utilize the positive electrode layer 16, and as a result, the charge / discharge capacity is increased. Can be done. Further, since the thin-film lithium secondary battery 10 has a low internal resistance, the charge / discharge capacity does not decrease much even when charging / discharging is performed with a large current, and the charging / discharging capacity can be quickly charged and discharged, so that higher output can be realized as compared with the conventional case.

薄膜リチウム二次電池10は、Nをドープした金属酸化物によって負極層20を形成すれば、負極層20においてもイオン伝導度が向上し、充放電容量をより大きくすることができる。このように、正極層16及び負極層20の両方にNをドープすることも好ましい。 In the thin film lithium secondary battery 10, if the negative electrode layer 20 is formed of the metal oxide doped with N, the ionic conductivity of the negative electrode layer 20 can be improved and the charge / discharge capacity can be further increased. As described above, it is also preferable to dope N in both the positive electrode layer 16 and the negative electrode layer 20.

また薄膜リチウム二次電池10は、正極層16ではなく、負極層20のみにNをドープしてもよい。薄膜リチウム二次電池10は、Nがドープされた負極層20を備えることによって、負極層20のイオン伝導度が向上し、負極層20の膜厚を厚くしても、内部抵抗の上昇が抑制される。 Further, in the thin film lithium secondary battery 10, N may be doped only in the negative electrode layer 20 instead of the positive electrode layer 16. By providing the negative electrode layer 20 doped with N, the thin film lithium secondary battery 10 improves the ionic conductivity of the negative electrode layer 20, and even if the thickness of the negative electrode layer 20 is increased, the increase in internal resistance is suppressed. Will be done.

従って、負極層20において厚さ方向にリチウムイオンがスムーズに移動することができるので、薄膜リチウム二次電池10は、負極層20を有効に活用することができ、結果として充放電容量を大きくすることができる。Nのドープ量は、上述した実施形態と同様に、0.1at%〜10.0at%であるのが好ましく、1.0at%〜5.0at%であるのがより好ましい。 Therefore, since lithium ions can smoothly move in the thickness direction in the negative electrode layer 20, the thin film lithium secondary battery 10 can effectively utilize the negative electrode layer 20, and as a result, the charge / discharge capacity is increased. be able to. The doping amount of N is preferably 0.1 at% to 10.0 at%, more preferably 1.0 at% to 5.0 at%, as in the above-described embodiment.

薄膜リチウム二次電池10は、積層体11を構成する各層、即ち正極集電体層14、正極層16、固体電解質層18、負極層20、および負極集電体層22を、それぞれ可視光透過性を有する材料によって形成することにより、可視光透過性を有する薄膜リチウム二次電池10にすることができる。 The thin-film lithium secondary battery 10 transmits visible light through each layer constituting the laminated body 11, that is, the positive electrode current collector layer 14, the positive electrode layer 16, the solid electrolyte layer 18, the negative electrode layer 20, and the negative electrode current collector layer 22, respectively. By forming the battery from a material having a property, the thin-film lithium secondary battery 10 having a visible light transmittance can be obtained.

一般的に、可視光透過性でない金属酸化物であっても、極めて薄く成膜することによって、ある程度の可視光透過性は生じるが、正極層16や負極層20の厚みが薄いと、充放電容量が限られてしまう。本実施形態の薄膜リチウム二次電池10は、積層体11を構成する各層を可視光透過性を有する材料から構成することで、正極層16や負極層20の厚みを厚くして充放電容量を高めても、積層体11の可視光透過率を例えば60%以上などと高く維持することができる。 In general, even a metal oxide that is not transparent to visible light can be charged and discharged to some extent by forming an extremely thin film, but if the positive electrode layer 16 and the negative electrode layer 20 are thin. The capacity is limited. In the thin-film lithium secondary battery 10 of the present embodiment, each layer constituting the laminated body 11 is made of a material having visible light transmittance to increase the thickness of the positive electrode layer 16 and the negative electrode layer 20 to increase the charge / discharge capacity. Even if it is increased, the visible light transmittance of the laminated body 11 can be maintained as high as 60% or more, for example.

また、本実施形態のように、正極層16や固体電解質層18にNをドープした材料を用いることによって、積層体11の可視光透過性がNをドープしない場合と比較してより一層向上する。これは、Nをドープすると正極層16や固体電解質層18の非晶質化が促進され、結晶化した膜での粒界散乱による光線拡散の影響が低減したことによるものと考えられる。 Further, by using a material in which the positive electrode layer 16 and the solid electrolyte layer 18 are doped with N as in the present embodiment, the visible light transmittance of the laminated body 11 is further improved as compared with the case where N is not doped. .. It is considered that this is because when N is doped, the amorphization of the positive electrode layer 16 and the solid electrolyte layer 18 is promoted, and the influence of light diffusion due to intergranular scattering in the crystallized film is reduced.

こうした積層体11の可視光透過性によって、本実施形態の薄膜リチウム二次電池10は、基板12の他面12b側に、可視光の入出射が必要なデバイス、例えば、表示装置や太陽電池も形成することができる。 Due to the visible light transmission of the laminated body 11, the thin-film lithium secondary battery 10 of the present embodiment also includes devices that require the input and output of visible light on the other surface 12b side of the substrate 12, such as a display device and a solar cell. Can be formed.

以上のとおり、本実施形態の薄膜リチウム二次電池10によれば、正極層や負極層に窒素を含むことで充放電容量が大きく、かつ、可視光透過率が高く透明性に優れた薄膜リチウム二次電池を実現できる。 As described above, according to the thin-film lithium secondary battery 10 of the present embodiment, the thin-film lithium having a large charge / discharge capacity, a high visible light transmittance, and excellent transparency because the positive electrode layer and the negative electrode layer contain nitrogen. A secondary battery can be realized.

なお、本実施形態では、積層体11は、基板12の一面12aから上層に向かって正極集電体層14、正極層16、固体電解質層18、負極層20、および負極集電体層22の順に積層しているが、これとは逆向きに各層を積層した構成であってもよい。 In the present embodiment, the laminated body 11 is composed of the positive electrode current collector layer 14, the positive electrode layer 16, the solid electrolyte layer 18, the negative electrode layer 20, and the negative electrode current collector layer 22 from one surface 12a of the substrate 12 toward the upper layer. Although they are laminated in order, each layer may be laminated in the opposite direction.

また、1つの積層体を正極層、固体電解質層、負極層から構成し、この積層体を2つ以上重ねるように配して薄膜リチウム二次電池を構成してもよい。これにより、複数の薄膜リチウム二次電池を直列に接続する構成となり、放電電圧を高めることができる。 Further, one laminate may be composed of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, and two or more of these laminates may be arranged so as to form a thin film lithium secondary battery. As a result, a plurality of thin-film lithium secondary batteries are connected in series, and the discharge voltage can be increased.

また、積層体11を構成する正極集電体層14、正極層16、固体電解質層18、負極層20、および負極集電体層22の任意の層間に、別な機能層を設けることもできる。 Further, another functional layer may be provided between any layers of the positive electrode current collector layer 14, the positive electrode layer 16, the solid electrolyte layer 18, the negative electrode layer 20, and the negative electrode current collector layer 22 constituting the laminated body 11. ..

また、用いる正極層と負極層の組み合わせによっては、充放電電圧が0Vを横切って正極と負極が反転しても安定に動作し、極性の区別がつかなくなることもある。本出願の実施例では、最初の測定電位の極性を正極、負極としている。 Further, depending on the combination of the positive electrode layer and the negative electrode layer used, even if the charge / discharge voltage crosses 0 V and the positive electrode and the negative electrode are inverted, the operation is stable and the polarities may not be distinguishable. In the examples of the present application, the polarity of the first measurement potential is a positive electrode and a negative electrode.

(薄膜リチウム二次電池の製造方法)
次に、本発明の薄膜リチウム二次電池の製造方法を説明する。
本実施形態の薄膜リチウム二次電池10の製造方法として、スパッタリング法によって積層体11を形成する際には、可視光透過性の基板12の一面に、積層体11の各層の構成材料をスパッタリングターゲットとしてスパッタリングを行い、所定の厚みまで順に各層を成膜することで行われる。
(Manufacturing method of thin-film lithium secondary battery)
Next, a method for manufacturing the thin-film lithium secondary battery of the present invention will be described.
As a method for manufacturing the thin film lithium secondary battery 10 of the present embodiment, when the laminated body 11 is formed by a sputtering method, the constituent materials of each layer of the laminated body 11 are sputtered on one surface of the visible light transmissive substrate 12. Sputtering is performed to form a film of each layer in order up to a predetermined thickness.

こうしたスパッタリング法による成膜のうち、Nを含む材料からなる正極層16を成膜する際には、スパッタリングガスとして、Nを含むガスを用いて成膜を行う(成膜工程)。
より具体的には、例えば、正極層16を成膜する際には、スパッタリングターゲットとして、リチウム−チタン酸化物(LiTi12)を用い、このスパッタリングターゲットに対して、Arに窒素(N)を混合した混合ガスをスパッタリングガスとして、スパッタリングを行う。これにより、リチウム−チタン酸化物(LiTi12)に対して、スパッタリングガスのNがドープされたNドープリチウム−チタン酸化物(LiTi12+N)の薄膜が成膜できる。
Among the film formations by the sputtering method, when the positive electrode layer 16 made of a material containing N is formed, the film formation is performed using a gas containing N as the sputtering gas (deposition step).
More specifically, for example, when the positive electrode layer 16 is formed, a lithium-titanium oxide (Li 4 Ti 5 O 12 ) is used as a sputtering target, and Nitrogen (Li 4 Ti 5 O 12) is added to Ar for this sputtering target. Sputtering is performed using the mixed gas mixed with N 2) as a sputtering gas. Thus, a lithium - can thin deposition of titanium oxide (Li 4 Ti 5 O 12 + N) - titanium oxide with respect to (Li 4 Ti 5 O 12) , N -doped lithium N doped sputtering gas ..

また、Nを含む材料からなる固体電解質層18を成膜する際には、スパッタリングターゲットとして、LiPOを用い、このスパッタリングターゲットに対して、Nガスをスパッタリングガスとして、スパッタリングを行う。これにより、スパッタリングガスのNがドープされたリン酸リチウム(LiPON)からなるアモルファス薄膜が成膜できる。 Further, when the solid electrolyte layer 18 made of a material containing N is formed, Li 3 PO 4 is used as a sputtering target, and N 2 gas is used as a sputtering gas for sputtering on the sputtering target. As a result, an amorphous thin film made of lithium phosphate (LiPON) doped with N of a sputtering gas can be formed.

なお、Nを含む材料から負極層を成膜する場合でも、正極層と同様に、スパッタリングターゲットに対して、ArにNを混合した混合ガスをスパッタリングガスとして、スパッタリングを行うことで、Nがドープされた薄膜を成膜できる。 Even when the negative electrode layer is formed from a material containing N, N can be obtained by performing sputtering on the sputtering target using a mixed gas obtained by mixing Ar and N 2 as the sputtering gas, as in the case of the positive electrode layer. A doped thin film can be formed.

以上、本発明の一実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.

本発明の有効性を確認するために行った検証実験について説明する。 A verification experiment conducted to confirm the effectiveness of the present invention will be described.

(実施例1)スパッタリング法によって、ガラス基板に正極集電体層、正極層、固体電解質層、負極層、負極集電層を順に積層してなる積層体を形成し、実施例1の薄膜リチウム二次電池を作製した。成膜条件は以下の通りである。
スパッタリング装置: DCマグネトロンスパッタ装置(CS−200:アルバック株式会社製)。
磁界強度: 1000ガウス(スパッタリングターゲット直上、垂直成分)。
到達真空度: 5×10−5Pa以下。
スパッタリングターゲット: 正極集電体層および負極集電体層[ITO焼結体]、固体電解質層[LiPO焼結体]、正極層および負極層[LiTi12焼結体]。
スパッタリングガス: 正極集電体層および負極集電体層[Ar+O混合ガス(混合比、Ar:O=99:1)、固体電解質層[N(100%)]、正極層および負極層[Ar+N混合ガス(混合比、Ar:N=9:1)。
スパッタリングガス圧: 0.5Pa。
スパッタリングパワー: 正極集電体層および負極集電体層[DC100W]、正極層、負極層、固体電解質層[RF100W]。
基板: 無アルカリガラス板(サイズ50mm×50mm×1mm(厚み))。
成膜時の基板加熱: なし。
(Example 1) By the sputtering method, a laminate formed by laminating a positive electrode current collector layer, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector layer in this order is formed on a glass substrate, and the thin film lithium of Example 1 is formed. A secondary battery was manufactured. The film forming conditions are as follows.
Sputtering equipment: DC magnetron sputtering equipment (CS-200: manufactured by ULVAC, Inc.).
Magnetic field strength: 1000 gauss (directly above the sputtering target, vertical component).
Ultimate vacuum: 5 x 10-5 Pa or less.
Sputtering target: Positive electrode current collector layer and negative electrode current collector layer [ITO sintered body], solid electrolyte layer [Li 3 PO 4 sintered body], positive electrode layer and negative electrode layer [Li 4 Ti 5 O 12 sintered body] ..
Sputtering gas: Positive electrode current collector layer and negative electrode current collector layer [Ar + O 2 mixed gas (mixing ratio, Ar: O 2 = 99: 1), solid electrolyte layer [N 2 (100%)], positive electrode layer and negative electrode layer [Ar + N 2 mixed gas (mixing ratio, Ar: N 2 = 9: 1).
Sputtering gas pressure: 0.5 Pa.
Sputtering power: Positive electrode current collector layer and negative electrode current collector layer [DC100W], positive electrode layer, negative electrode layer, solid electrolyte layer [RF100W].
Substrate: Non-alkali glass plate (size 50 mm x 50 mm x 1 mm (thickness)).
Substrate heating during film formation: None.

正極集電体層および負極集電体層はITO、膜厚は100nmとした。固体電解質層はLiPON、膜厚は100nmとした。正極層および負極層は、共にNをドープしたLiTi12とした。そして、正極層および負極層の膜厚をそれぞれ100nm(サンプル1,3)、200nm(サンプル2,4)にしたサンプルを作製した。なお、正極層や負極層にNがドープされていることは、それらの単層膜について、EPMA(電子線マイクロアナライザー、波長分散型X線分光)分析を行い、Nが検出されたことにより確認した。 The positive electrode current collector layer and the negative electrode current collector layer were ITO, and the film thickness was 100 nm. The solid electrolyte layer was LiPON and the film thickness was 100 nm. The positive electrode layer and the negative electrode layer were both N-doped Li 4 Ti 5 O 12 . Then, samples were prepared in which the film thicknesses of the positive electrode layer and the negative electrode layer were 100 nm (samples 1 and 3) and 200 nm (samples 2 and 4, respectively). The fact that the positive electrode layer and the negative electrode layer are doped with N is confirmed by performing EPMA (electron probe microanalyzer, wavelength dispersive X-ray spectroscopy) analysis on these monolayer films and detecting N. did.

(実施例2)
負極層をNbにした以外は実施例1と同様である。正極層および負極層の膜厚をそれぞれ100nm(サンプル5,7)、200nm(サンプル6,8)にしたサンプルを作製した。また、実施例1と異なる成膜条件は以下の通りである。
スパッタリングターゲット: 負極層[Nb焼結体]。
スパッタリングガス: 負極層[Ar+O混合ガス(混合比、Ar:O=9:1)。
(Example 2)
This is the same as in Example 1 except that the negative electrode layer is Nb 2 O 5. Samples were prepared in which the film thicknesses of the positive electrode layer and the negative electrode layer were 100 nm (samples 5 and 7) and 200 nm (samples 6 and 8), respectively. The film forming conditions different from those of Example 1 are as follows.
Sputtering target: Negative electrode layer [Nb 2 O 5 sintered body].
Sputtering gas: Negative electrode layer [Ar + O 2 mixed gas (mixing ratio, Ar: O 2 = 9: 1).

(比較例)
正極層および負極層として、NをドープしないLiTi12を用いた。正極層および負極層の膜厚をそれぞれ100nm(サンプル1、3、5、7)、200nm(サンプル2、4、6、8)にしたサンプルを作製した。
実施例1と異なる成膜条件は以下の通りである。
スパッタリングターゲット: 負極層[LiTi12焼結体]。
スパッタリングガス: 正極層および負極層[Ar+O混合ガス(混合比、Ar:O=9:1)。
(Comparison example)
As the positive electrode layer and the negative electrode layer, Li 4 Ti 5 O 12 not doped with N was used. Samples were prepared in which the film thicknesses of the positive electrode layer and the negative electrode layer were 100 nm (samples 1, 3, 5, 7) and 200 nm (samples 2, 4, 6, 8), respectively.
The film forming conditions different from those of Example 1 are as follows.
Sputtering target: Negative electrode layer [Li 4 Ti 5 O 12 sintered body].
Sputtering gas: Positive electrode layer and negative electrode layer [Ar + O 2 mixed gas (mixing ratio, Ar: O 2 = 9: 1).

以上のような実施例1、2、比較例の積層体を、正極層および負極層の膜厚をそれぞれ100nm、200nmにしたサンプルを作製し、これらをさらに2つに分けて測定電流を10μAおよび50μA(電圧範囲:−2.0〜+2.0V)に設定して、充電容量、放電容量、光学透過率、および正極層と負極層の窒素原子比率を測定した。それぞれの測定条件は以下の通りである。
充電、放電容量測定: 充放電測定装置(アスカ電子株式会社製)、測定温度25℃で実施。表1に示す充電容量、放電容量は、100サイクル目の値を採用。
光学透過率測定: 分光光度計(U4100:日立ハイテクノロジーズ株式会社製)、400nm〜700nmの波長範囲における透過率スペクトルを測定し平均透過率を算出。
窒素原子比率測定: 電子線マイクロアナライザー装置(EPMA、JEOL JXA−8530F:日本電子株式会社製)、窒素原子の定量分析を実施。
以上の測定結果を表1に纏めて示す。
Samples in which the thicknesses of the positive electrode layer and the negative electrode layer were 100 nm and 200 nm, respectively, were prepared from the laminates of Examples 1 and 2 and Comparative Examples as described above, and these were further divided into two to measure a current of 10 μA. The charge capacity, discharge capacity, optical transmittance, and nitrogen atom ratio between the positive electrode layer and the negative electrode layer were measured by setting the voltage range to 50 μA (voltage range: −2.0 to + 2.0 V). Each measurement condition is as follows.
Charging and discharging capacity measurement: Charge / discharge measuring device (manufactured by Asuka Electronics Co., Ltd.), measured at a measurement temperature of 25 ° C. The values for the 100th cycle are used for the charge capacity and discharge capacity shown in Table 1.
Optical transmittance measurement: A spectrophotometer (U4100: manufactured by Hitachi High-Technologies Corporation) measures the transmittance spectrum in the wavelength range of 400 nm to 700 nm and calculates the average transmittance.
Nitrogen atom ratio measurement: Electron probe microanalyzer (EPMA, JEOL JXA-8530F: manufactured by JEOL Ltd.), quantitative analysis of nitrogen atoms.
The above measurement results are summarized in Table 1.

Figure 2021057317
Figure 2021057317

表1に示す結果によれば、実施例1および実施例2共に、正極層および負極層の膜厚が厚くなると、充電容量および放電容量の増加が確認された。また、測定電流を大きくしても充電容量および放電容量があまり減少しないことが確認された。また、可視光領域(400〜700nm)の光学透過率がいずれも60%以上の高い値を示した。さらに、実施例1および実施例2共に、いずれのサンプルも充電容量および放電容量について、100サイクル以上の安定したサイクル特性が確認された。 According to the results shown in Table 1, in both Examples 1 and 2, it was confirmed that the charge capacity and the discharge capacity increased as the film thicknesses of the positive electrode layer and the negative electrode layer increased. It was also confirmed that the charge capacity and the discharge capacity did not decrease so much even if the measured current was increased. In addition, the optical transmittance in the visible light region (400 to 700 nm) was as high as 60% or more. Further, in both Example 1 and Example 2, stable cycle characteristics of 100 cycles or more were confirmed in terms of charge capacity and discharge capacity.

一方、比較例の各サンプルは、正極層や負極層の膜厚が増加しても、充電容量および放電容量は実施例1や実施例2のように増加せず、正極層、負極層が同じ膜厚の実施例のサンプルよりも充電容量および放電容量が小さかった。また、電流を大きくすると、実施例1や実施例2と比較して、充電容量および放電容量の大きな減少が確認された。また、可視光領域(400〜700nm)の光学透過率がいずれも60%未満で、実施例1、実施例2の各サンプルよりも光学透過率が低かった。 On the other hand, in each sample of the comparative example, even if the film thickness of the positive electrode layer and the negative electrode layer increases, the charge capacity and the discharge capacity do not increase as in Examples 1 and 2, and the positive electrode layer and the negative electrode layer are the same. The charge capacity and discharge capacity were smaller than those of the sample of the film thickness example. Further, when the current was increased, a large decrease in charge capacity and discharge capacity was confirmed as compared with Example 1 and Example 2. In addition, the optical transmittance in the visible light region (400 to 700 nm) was less than 60%, which was lower than that of the samples of Examples 1 and 2.

以上のとおり、実施例1、実施例2では、正極層、負極層の膜厚の増加に伴って充電容量および放電容量が増加し、また、測定電流を大きくしても充電容量および放電容量があまり減少しないことが確認された。これは、正極層の材料や負極層の材料に窒素(N)を添加したことにより、イオン伝導度が増加し、内部抵抗が低下したことによると考えられる。そして、実施例1、実施例2では、比較例よりも光学透過率が大きくなることが確認された。これは、正極層にNをドープしたことにより、正極層が非晶質となり、Nをドープしない場合に結晶化して受ける粒界散乱の影響が低減したことによると考えられる。 As described above, in Examples 1 and 2, the charge capacity and the discharge capacity increase as the film thicknesses of the positive electrode layer and the negative electrode layer increase, and the charge capacity and the discharge capacity increase even if the measurement current is increased. It was confirmed that it did not decrease much. It is considered that this is because the addition of nitrogen (N) to the material of the positive electrode layer and the material of the negative electrode layer increased the ionic conductivity and decreased the internal resistance. Then, in Examples 1 and 2, it was confirmed that the optical transmittance was larger than that in Comparative Example. It is considered that this is because the positive electrode layer is made amorphous by doping the positive electrode layer with N, and the influence of grain boundary scattering caused by crystallization when N is not doped is reduced.

次に、表1の実施例1中のサンプル1を用いて、充放電時の電圧変化および充放電容量のサイクル特性を測定した。この結果を図2、3にそれぞれ示す。このうち、図2は、サイクル数がそれぞれ2回目、10回目、50回目、および100回目における、充電時および放電時の電圧変化を示したグラフである。また、図3は、0〜100回までの充放電容量のサイクル特性を示している。 Next, using Sample 1 in Example 1 of Table 1, the voltage change during charging / discharging and the cycle characteristics of the charging / discharging capacity were measured. The results are shown in FIGS. 2 and 3, respectively. Of these, FIG. 2 is a graph showing voltage changes during charging and discharging at the second, tenth, 50th, and 100th cycles, respectively. Further, FIG. 3 shows the cycle characteristics of the charge / discharge capacity from 0 to 100 times.

図2によれば、表1に示すサンプル1の薄膜リチウム二次電池は、2サイクル目から100サイクル目に至るまで、充電時の電圧特性、および放電時の電圧特性が殆ど変化せず、繰り返しサイクルを経ても、0Vを介して安定して正負極の反転動作が行われることが確認された。
また、図3によれば、表1に示すサンプル1の薄膜リチウム二次電池は、充放電サイクル初期に若干のブレが生じて以降は、100回まで充放電容量が11uAh程度で殆ど変化せず、繰り返しサイクルを経ても安定した充放電を行えることが確認された。
According to FIG. 2, the thin-film lithium secondary battery of Sample 1 shown in Table 1 repeats from the second cycle to the 100th cycle with almost no change in the voltage characteristics during charging and the voltage characteristics during discharging. It was confirmed that the positive and negative electrode reversal operations were stably performed via 0 V even after the cycle.
Further, according to FIG. 3, the thin-film lithium secondary battery of Sample 1 shown in Table 1 has a charge / discharge capacity of about 11 uAh and hardly changes up to 100 times after a slight blurring occurs at the initial stage of the charge / discharge cycle. It was confirmed that stable charging and discharging can be performed even after repeated cycles.

10…薄膜リチウム二次電池
11…積層体
12…基板
14…正極集電体層
16…正極層
18…固体電解質層
20…負極層
22…負極集電体層
10 ... Thin-film lithium secondary battery 11 ... Laminated body 12 ... Substrate 14 ... Positive electrode current collector layer 16 ... Positive electrode layer 18 ... Solid electrolyte layer 20 ... Negative electrode layer 22 ... Negative electrode current collector layer

Claims (6)

正極層、固体電解質層、負極層を有する積層体を備え、前記正極層または前記負極層のうち、少なくともいずれか一方は窒素を含み、
前記積層体は、可視光透過率が60%以上であることを特徴とする薄膜リチウム二次電池。
A laminate having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer is provided, and at least one of the positive electrode layer and the negative electrode layer contains nitrogen.
The laminated body is a thin-film lithium secondary battery having a visible light transmittance of 60% or more.
前記正極層または前記負極層は、可視光透過性の金属酸化物を含む化合物からなることを特徴とする請求項1に記載の薄膜リチウム二次電池。 The thin-film lithium secondary battery according to claim 1, wherein the positive electrode layer or the negative electrode layer is made of a compound containing a metal oxide that transmits visible light. 前記可視光透過性の金属酸化物は、リチウム−チタン酸化物、ニオブ酸化物のうちのいずれか一つを含むことを特徴とする請求項2に記載の薄膜リチウム二次電池。 The thin-film lithium secondary battery according to claim 2, wherein the visible light-transmitting metal oxide contains any one of a lithium-titanium oxide and a niobium oxide. 前記固体電解質層は、リン酸リチウムに窒素(N)が添加されたLiPONからなることを特徴とする請求項1から3のいずれか一項に記載の薄膜リチウム二次電池。 The thin film lithium secondary battery according to any one of claims 1 to 3, wherein the solid electrolyte layer is made of LiPON in which nitrogen (N) is added to lithium phosphate. 前記積層体は、最上層および最下層に、可視光透過性を有する導電性酸化物からなる集電体層を有することを特徴とする請求項1から4のいずれか一項に記載の薄膜リチウム二次電池。 The thin film lithium according to any one of claims 1 to 4, wherein the laminated body has a current collector layer made of a conductive oxide having visible light transmission in the uppermost layer and the lowermost layer. Secondary battery. 請求項1から5のいずれか一項に記載の薄膜リチウム二次電池の製造方法であって、
窒素を含むスパッタリングガスを用いて、前記正極層または前記負極層のうち、少なくともいずれか一方を成膜する成膜工程を備えたことを特徴とする薄膜リチウム二次電池の製造方法。
The method for manufacturing a thin-film lithium secondary battery according to any one of claims 1 to 5.
A method for producing a thin film lithium secondary battery, which comprises a film forming step of forming at least one of the positive electrode layer and the negative electrode layer using a sputtering gas containing nitrogen.
JP2019182121A 2019-10-02 2019-10-02 Thin film lithium secondary battery and manufacturing method thereof Pending JP2021057317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019182121A JP2021057317A (en) 2019-10-02 2019-10-02 Thin film lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019182121A JP2021057317A (en) 2019-10-02 2019-10-02 Thin film lithium secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021057317A true JP2021057317A (en) 2021-04-08

Family

ID=75271057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019182121A Pending JP2021057317A (en) 2019-10-02 2019-10-02 Thin film lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2021057317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254524A1 (en) * 2021-05-31 2022-12-08 日本電信電話株式会社 Lithium secondary battery and method for producing same
WO2023238379A1 (en) * 2022-06-10 2023-12-14 日本電信電話株式会社 Lithium secondary battery and method for producing lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108533A (en) * 2009-11-18 2011-06-02 Sony Corp Solid electrolyte cell, and positive electrode active material
WO2011135713A1 (en) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 Electrode body and secondary battery using same
JP2012009201A (en) * 2010-06-23 2012-01-12 Sony Corp Transparent conductive film, method for manufacturing the same, dye-sensitized solar battery having the same, and solid electrolyte battery having the same
JP5002852B2 (en) * 2005-02-02 2012-08-15 ジオマテック株式会社 Thin film solid secondary battery
JP2016162593A (en) * 2015-03-02 2016-09-05 富士通株式会社 Secondary battery and storage electricity amount display method
JP2016170973A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Active material composite particle and lithium battery
JP2019102399A (en) * 2017-12-08 2019-06-24 日本電信電話株式会社 Light transmission type battery, device using the battery, and determination method of remaining battery charge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002852B2 (en) * 2005-02-02 2012-08-15 ジオマテック株式会社 Thin film solid secondary battery
JP2011108533A (en) * 2009-11-18 2011-06-02 Sony Corp Solid electrolyte cell, and positive electrode active material
WO2011135713A1 (en) * 2010-04-30 2011-11-03 トヨタ自動車株式会社 Electrode body and secondary battery using same
JP2012009201A (en) * 2010-06-23 2012-01-12 Sony Corp Transparent conductive film, method for manufacturing the same, dye-sensitized solar battery having the same, and solid electrolyte battery having the same
JP2016162593A (en) * 2015-03-02 2016-09-05 富士通株式会社 Secondary battery and storage electricity amount display method
JP2016170973A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Active material composite particle and lithium battery
JP2019102399A (en) * 2017-12-08 2019-06-24 日本電信電話株式会社 Light transmission type battery, device using the battery, and determination method of remaining battery charge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254524A1 (en) * 2021-05-31 2022-12-08 日本電信電話株式会社 Lithium secondary battery and method for producing same
WO2023238379A1 (en) * 2022-06-10 2023-12-14 日本電信電話株式会社 Lithium secondary battery and method for producing lithium secondary battery

Similar Documents

Publication Publication Date Title
US9362547B2 (en) Solid electrolyte cell and positive electrode active material
JP5002852B2 (en) Thin film solid secondary battery
Choi et al. Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films
CN106207162B (en) All-solid-state lithium ion secondary battery and method for manufacturing same
Song et al. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride
JP5549192B2 (en) Solid electrolyte battery and positive electrode active material
US20150311562A1 (en) Solid electrolyte for a microbattery
WO2006082846A1 (en) Thin-film solid secondary cell
US9325008B2 (en) Solid electrolyte battery and positive electrode active material
JP2008159399A (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using it, and complex apparatus equipped with it
JP2021057317A (en) Thin film lithium secondary battery and manufacturing method thereof
JP2015210970A (en) Electricity storage element and method for manufacturing electricity storage element
CN102369626A (en) Solid electrolyte cell and process for producing solid electrolyte cell
WO2018135154A1 (en) Lithium ion secondary battery and positive electrode active material
WO2012111783A1 (en) Solid electrolyte battery
JP4381176B2 (en) Thin film solid secondary battery
US20210194040A1 (en) Lithium-ion rechargeable battery and method for manufacturing lithium-ion rechargeable battery
Sasaki et al. Fabrication of solid-state secondary battery using semiconductors and evaluation of its charge/discharge characteristics
CN111033855A (en) Lithium ion secondary battery and positive electrode for lithium ion secondary battery
JP2021057316A (en) Non-polar thin film lithium secondary battery and manufacturing method thereof
Donders et al. All-solid-state batteries: a challenging route towards 3D integration
JP7227477B2 (en) thin film lithium secondary battery
JP6697155B2 (en) All solid state battery
Sakakura et al. Development of oxide-based all-solid-state batteries using aerosol deposition
WO2023238379A1 (en) Lithium secondary battery and method for producing lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128