JP7227477B2 - thin film lithium secondary battery - Google Patents

thin film lithium secondary battery Download PDF

Info

Publication number
JP7227477B2
JP7227477B2 JP2019051363A JP2019051363A JP7227477B2 JP 7227477 B2 JP7227477 B2 JP 7227477B2 JP 2019051363 A JP2019051363 A JP 2019051363A JP 2019051363 A JP2019051363 A JP 2019051363A JP 7227477 B2 JP7227477 B2 JP 7227477B2
Authority
JP
Japan
Prior art keywords
electrode layer
positive electrode
negative electrode
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019051363A
Other languages
Japanese (ja)
Other versions
JP2019169469A (en
Inventor
弘実 中澤
博 石井
順 秋草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2019169469A publication Critical patent/JP2019169469A/en
Application granted granted Critical
Publication of JP7227477B2 publication Critical patent/JP7227477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、薄膜リチウム二次電池に関する。 The present invention relates to a thin film lithium secondary battery.

小型の電子機器やICカードなどでは、バックアップ電源として容積が小さい薄膜二次電池が開発されている(例えば特許文献1~3)。上記薄膜二次電池としては、リチウムイオンを用いた薄膜リチウム二次電池が主に利用される。薄膜リチウム二次電池は、正極層がLiCoO、LiNiO、又はLiMnなどで形成され、電解質層が主としてLiPO+N(LiPON)で形成され、負極層がLi金属、V、Nb、又はInなどで形成されている。 Small-capacity thin-film secondary batteries have been developed as backup power sources for small electronic devices, IC cards, and the like (for example, Patent Documents 1 to 3). As the thin film secondary battery, a thin film lithium secondary battery using lithium ions is mainly used. The thin-film lithium secondary battery has a positive electrode layer made of LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like, an electrolyte layer made mainly of Li 3 PO 4 +N (LiPON), and a negative electrode layer made of Li metal, V 2 . It is made of O 5 , Nb 2 O 5 , In 2 O 3 or the like.

特開2005-251417号公報JP 2005-251417 A 国際公開第2002/089236号WO2002/089236 国際公開第2011/018980号WO2011/018980

従来の薄膜リチウム二次電池では、正極層、負極層の膜厚を厚くしても、充放電容量があまり大きくならないという問題があった。充放電容量が大きくならないのは、正極層、負極層の膜厚を厚くすると、内部抵抗が大きくなってリチウムイオンの動きが鈍くなるためである。また、正極層、負極層の膜厚を厚くした薄膜リチウム二次電池は、内部抵抗が大きいため、大きな電流で充放電を行うと充放電容量が低下するという課題がある。 A conventional thin-film lithium secondary battery has a problem that even if the film thickness of the positive electrode layer and the negative electrode layer is increased, the charge/discharge capacity is not so large. The reason why the charge/discharge capacity does not increase is that when the film thickness of the positive electrode layer and the negative electrode layer is increased, the internal resistance increases and the movement of lithium ions slows down. In addition, since the thin-film lithium secondary battery in which the thickness of the positive electrode layer and the negative electrode layer is thick has a large internal resistance, there is a problem that the charging/discharging capacity is lowered when the charging/discharging is performed with a large current.

本発明は、正極層及び/又は負極層の膜厚を増加させることによって充放電容量を大きくすることができ、また、大きな電流で充放電を行っても充放電容量の低下が少ない薄膜リチウム二次電池を提供することを目的とする。 The present invention is a thin-film lithium secondary battery that can increase the charge-discharge capacity by increasing the thickness of the positive electrode layer and/or the negative electrode layer, and has little decrease in the charge-discharge capacity even when charging and discharging at a large current. An object of the present invention is to provide a secondary battery.

本発明の第1の観点に係る薄膜リチウム二次電池は、正極層と、固体電解質層と、負極層とを備え、前記正極層及び/又は前記負極層は窒素(N)を含む。 A thin film lithium secondary battery according to a first aspect of the present invention comprises a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, the positive electrode layer and/or the negative electrode layer containing nitrogen (N).

本発明の第2の観点に係る薄膜リチウム二次電池は、上記第1の観点に対し、前記正極層がリチウム-マンガン酸化物、リチウム-コバルト酸化物、又はリチウム-マンガン-コバルト酸化物を含み、前記負極層が酸化ニオブ又はリチウム-チタン酸化物を含み、前記固体電解質層がリン酸リチウムに窒素(N)が添加されたLiPONを含む。 In the thin film lithium secondary battery according to the second aspect of the present invention, in contrast to the first aspect, the positive electrode layer contains lithium-manganese oxide, lithium-cobalt oxide, or lithium-manganese-cobalt oxide. , the negative electrode layer includes niobium oxide or lithium-titanium oxide, and the solid electrolyte layer includes LiPON in which nitrogen (N) is added to lithium phosphate.

本発明の第1及び第2の観点によれば、窒素がドープされた前記正極層及び/又は前記負極層を備えることによって、前記正極層及び/又は前記負極層のイオン伝導度が向上し、前記正極層及び/又は前記負極層の膜厚を厚くしても、内部抵抗の上昇が抑制される。したがって前記正極層及び/又は前記負極層において厚さ方向にリチウムイオンがスムーズに移動することができるので、薄膜リチウム二次電池は、充放電容量を大きくすることができる。また薄膜リチウム二次電池は、内部抵抗が小さいので、大きな電流で充放電を行っても充放電容量の低下が少ない。 According to the first and second aspects of the present invention, by providing the positive electrode layer and/or the negative electrode layer doped with nitrogen, the ion conductivity of the positive electrode layer and/or the negative electrode layer is improved, Even if the film thickness of the positive electrode layer and/or the negative electrode layer is increased, an increase in internal resistance is suppressed. Therefore, since lithium ions can smoothly move in the thickness direction of the positive electrode layer and/or the negative electrode layer, the thin film lithium secondary battery can have a large charging/discharging capacity. In addition, since the thin-film lithium secondary battery has a small internal resistance, even if it is charged and discharged with a large current, the charge-discharge capacity does not decrease much.

本実施形態に係る薄膜リチウム二次電池を模式的に示す縦断面図である。1 is a longitudinal sectional view schematically showing a thin film lithium secondary battery according to this embodiment; FIG. 実施例に係る薄膜リチウム二次電池の電圧-充放電容量特性を示すグラフである。4 is a graph showing voltage-charge/discharge capacity characteristics of a thin film lithium secondary battery according to an example. 実施例に係る薄膜リチウム二次電池のサイクル特性を示すグラフである。4 is a graph showing cycle characteristics of thin-film lithium secondary batteries according to examples.

本発明に係る薄膜リチウム二次電池は、正極層と、固体電解質層と、負極層とを備え、前記正極層及び/又は前記負極層は窒素(N)を含む。すなわち薄膜リチウム二次電池は、正極層又は負極層がNを含む場合と、正極層及び負極層の両方がNを含む場合がある。薄膜リチウム二次電池は、前記正極層及び/又は前記負極層のイオン伝導度が向上し、前記正極層及び/又は前記負極層の膜厚を増加させることによって充放電容量を大きくすることができる。 A thin film lithium secondary battery according to the present invention comprises a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein the positive electrode layer and/or the negative electrode layer contain nitrogen (N). That is, in the thin film lithium secondary battery, the positive electrode layer or the negative electrode layer may contain N, or both the positive electrode layer and the negative electrode layer may contain N. In the thin film lithium secondary battery, the ion conductivity of the positive electrode layer and/or the negative electrode layer is improved, and the charge/discharge capacity can be increased by increasing the film thickness of the positive electrode layer and/or the negative electrode layer. .

薄膜リチウム二次電池は、正極集電体層と、正極層と、固体電解質層と、負極層と、負極集電体層とを備える場合を含む。この場合、薄膜リチウム二次電池は、基板上に設けられるのが好ましい。薄膜リチウム二次電池は、基板に接する側から正極集電体層と、正極層と、固体電解質層と、負極層と、負極集電体層とが順に設けられている場合と、基板に接する側から負極集電体層と、負極層と、固体電解質層と、正極層と、正極集電体層とが順に設けられている場合とを含む。薄膜リチウム二次電池は、正極集電体層又は負極集電体層を基板として用いてもよく、この場合、上記基板を省略することができる。 The thin-film lithium secondary battery includes a case comprising a positive electrode current collector layer, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector layer. In this case, the thin film lithium secondary battery is preferably provided on the substrate. The thin-film lithium secondary battery has a positive electrode current collector layer, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector layer in this order from the side in contact with the substrate. A case where a negative electrode current collector layer, a negative electrode layer, a solid electrolyte layer, a positive electrode layer, and a positive electrode current collector layer are provided in this order from the side is included. The thin-film lithium secondary battery may use the positive electrode current collector layer or the negative electrode current collector layer as a substrate, and in this case, the substrate can be omitted.

また、正極集電体層や負極集電体層は、必ずしも必要ではなく、例えば、正極層が正極集電体層を兼ねる場合もあるし、負極層が負極集電体層を兼ねる場合もある。すなわち正極層と正極集電体層は、一体であって1層で形成される場合を含む。また負極層と負極集電体層は、一体であって1層で形成される場合を含む。 In addition, the positive electrode current collector layer and the negative electrode current collector layer are not necessarily required. For example, the positive electrode layer may also serve as the positive electrode current collector layer, and the negative electrode layer may also serve as the negative electrode current collector layer. . That is, the positive electrode layer and the positive electrode current collector layer include the case where they are integrally formed as a single layer. Moreover, the negative electrode layer and the negative electrode current collector layer include the case where they are integrally formed as a single layer.

以下、図面を参照して本発明の実施形態について詳細に説明する。図1に示す薄膜リチウム二次電池10は、正極集電体層14と、正極層16と、固体電解質層18と、負極層20と、負極集電体層22とを備える。薄膜リチウム二次電池10は、基板12上に設けられ、当該基板12に接する側から正極集電体層14と、正極層16と、固体電解質層18と、負極層20と、負極集電体層22とが順に設けられている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A thin-film lithium secondary battery 10 shown in FIG. The thin film lithium secondary battery 10 is provided on a substrate 12, and from the side in contact with the substrate 12, a positive electrode current collector layer 14, a positive electrode layer 16, a solid electrolyte layer 18, a negative electrode layer 20, and a negative electrode current collector. Layers 22 are provided in sequence.

基板12表面に正極集電体層14が設けられている。正極集電体層14の表面に、正極層16が設けられている。正極集電体層14と正極層16は、電気的に接続されている。正極層16の表面に固体電解質層18が設けられ、当該固体電解質層18を挟んで反対側に負極層20が設けられている。負極層20の表面に、負極集電体層22が設けられている。負極層20と負極集電体層22は、電気的に接続されている。 A positive collector layer 14 is provided on the surface of the substrate 12 . A positive electrode layer 16 is provided on the surface of the positive electrode current collector layer 14 . The positive electrode collector layer 14 and the positive electrode layer 16 are electrically connected. A solid electrolyte layer 18 is provided on the surface of the positive electrode layer 16 , and a negative electrode layer 20 is provided on the opposite side of the solid electrolyte layer 18 . A negative electrode collector layer 22 is provided on the surface of the negative electrode layer 20 . The negative electrode layer 20 and the negative electrode collector layer 22 are electrically connected.

基板12は、耐熱性を有する基板や、可撓性を有する樹脂基板を用いることができる。耐熱性を有する基板の材料は、例えば、ガラス、シリコン(Si)、セラミック、ステンレスなどから選択できる。可撓性を有する樹脂基板の材料は、例えば、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などから選択できる。 A heat-resistant substrate or a flexible resin substrate can be used for the substrate 12 . The material of the substrate having heat resistance can be selected from, for example, glass, silicon (Si), ceramics, stainless steel, and the like. Materials for the flexible resin substrate can be selected from, for example, polycarbonate (PC), polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and the like.

正極集電体層14と、負極集電体層22は、抵抗が低い金属、すなわち導電体で形成され、互いに同じ材料でも異なる材料でもよい。正極集電体層14と負極集電体層22の材料は、例えば、チタン(Ti)、バナジウム(V)、銅(Cu)、アルミニウム(Al)などから選択するのが好ましい。 The positive electrode current collector layer 14 and the negative electrode current collector layer 22 are made of a metal with low resistance, that is, a conductor, and may be made of the same material or different materials. Materials for the positive electrode current collector layer 14 and the negative electrode current collector layer 22 are preferably selected from, for example, titanium (Ti), vanadium (V), copper (Cu), aluminum (Al), and the like.

正極層16は、リチウム(Li)を含み、リチウムの吸蔵と、吸蔵されたリチウムの脱離が可能な材料で形成され、さらにNを含む。正極層16は、例えば、リチウム-コバルト酸化物(LiCoO)、リチウム-ニッケル酸化物(LiNiO)、リチウム-マンガン酸化物(LiMn、LiMn)、リチウム-マンガン-コバルト酸化物(LiMnCoO)などのLiを含む金属酸化物に、Nがドープされている。正極層16におけるNのドープ量は、0.1at%~10.0at%であるのが好ましく、1.0at%~5.0at%であるのがより好ましい。Nのドープ量が0.1at%以上であることにより、より確実にイオン伝導度を向上する効果が得られる。Nのドープ量が10.0at%を超えると、イオン伝導度を向上する効果が飽和する。 The positive electrode layer 16 contains lithium (Li), is made of a material capable of intercalating lithium and desorbing the intercalated lithium, and further contains nitrogen. The positive electrode layer 16 is made of, for example, lithium-cobalt oxide (LiCoO 2 ), lithium-nickel oxide (LiNiO 2 ), lithium-manganese oxide (Li 2 Mn 2 O 4 , LiMn 2 O 4 ), lithium-manganese- Metal oxides containing Li, such as cobalt oxides (LiMnCoO 4 ), are doped with N. The doping amount of N in the positive electrode layer 16 is preferably 0.1 at % to 10.0 at %, more preferably 1.0 at % to 5.0 at %. By setting the doping amount of N to 0.1 at % or more, the effect of improving the ionic conductivity can be obtained more reliably. When the doping amount of N exceeds 10.0 atomic %, the effect of improving the ionic conductivity is saturated.

固体電解質層18は、リチウムイオンを含有し、リチウムイオンが移動可能な材料で形成される。固体電解質層18は、例えば、リン酸リチウム(LiPO)にNをドープしたLiPONを用いるのが好ましい。 The solid electrolyte layer 18 contains lithium ions and is made of a material through which lithium ions can move. For the solid electrolyte layer 18, it is preferable to use , for example, LiPON in which N is doped in lithium phosphate ( Li3PO4 ).

負極層20は、リチウムイオンを吸蔵及び脱離し得る材料で形成され、酸化ニオブ(Nb)、酸化バナジウム(V)、酸化インジウム(In)、リチウム-チタン酸化物(LiTi12)、酸化インジウムスズ(ITO)などの金属酸化物薄膜によって形成されるのが好ましい。 The negative electrode layer 20 is made of a material capable of intercalating and deintercalating lithium ions, such as niobium oxide (Nb 2 O 5 ), vanadium oxide (V 2 O 5 ), indium oxide (In 2 O 3 ), lithium-titanium oxide. (Li 4 Ti 5 O 12 ), indium tin oxide (ITO) and other metal oxide thin films.

また、上記以外にも、金属リチウム(Li)や金属スズ(Sn)などを用いることもできる。なお、金属リチウム(Li)、金属スズ(Sn)や酸化インジウムスズ(ITO)を負極層20として用いた場合、負極層20が負極集電体層22を兼ねることができる。 In addition to the above, metal lithium (Li), metal tin (Sn), or the like can also be used. When metallic lithium (Li), metallic tin (Sn), or indium tin oxide (ITO) is used as the negative electrode layer 20 , the negative electrode layer 20 can also serve as the negative electrode current collector layer 22 .

負極層20は、さらにNがドープされているのがより好ましい。負極層20におけるNのドープ量は、0.1at%~10.0at%であるのが好ましく、1.0at%~5.0at%であるのがより好ましい。Nのドープ量が0.1at%以上であることにより、より確実にイオン伝導度を向上する効果が得られる。Nのドープ量が10.0at%を超えると、イオン伝導度を向上する効果が飽和する。 More preferably, the negative electrode layer 20 is further doped with N. The doping amount of N in the negative electrode layer 20 is preferably 0.1 at % to 10.0 at %, more preferably 1.0 at % to 5.0 at %. By setting the doping amount of N to 0.1 at % or more, the effect of improving the ionic conductivity can be obtained more reliably. When the doping amount of N exceeds 10.0 atomic %, the effect of improving the ionic conductivity is saturated.

薄膜リチウム二次電池10は、スパッタリング法、蒸着法、塗布法などにより作製することができる。塗布法は、有機金属化合物を有機溶媒とともに基板12上に塗布し、加熱、分解することによって所望の酸化物層が得られる。本実施形態の場合、組成のずれが少なく、比較的大きな面積に均一に膜を形成できるスパッタリング法が好ましい。 The thin film lithium secondary battery 10 can be produced by a sputtering method, a vapor deposition method, a coating method, or the like. In the coating method, a desired oxide layer is obtained by coating the substrate 12 with an organometallic compound together with an organic solvent and heating and decomposing it. In the case of the present embodiment, the sputtering method is preferable because it can form a uniform film over a relatively large area with little deviation in composition.

各層の厚さは数10nm~数μmであるのが好ましい。正極層16および負極層20の厚さは、それぞれの層の単位体積当たりの容量に膜厚と面積を乗じて得られるお互いの層全体の容量が一致するようにするのが好ましい。正極層16の厚さは、100nm~1000nmがより好ましい。正極層16の厚さは、固体電解質層18の厚さに対し、50%~1000%であるのが好ましい。固体電解質層18の厚さは10nm~1000nmであることが好まく、抵抗を下げて伝導度を上げるために、ピンホール等の欠陥によるショートが生じない範囲で、できる限り薄くすることがより好ましい。 The thickness of each layer is preferably several tens of nm to several μm. The thicknesses of the positive electrode layer 16 and the negative electrode layer 20 are preferably such that the overall capacity of each layer obtained by multiplying the capacity per unit volume of each layer by the film thickness and the area is the same. The thickness of the positive electrode layer 16 is more preferably 100 nm to 1000 nm. The thickness of the positive electrode layer 16 is preferably 50% to 1000% of the thickness of the solid electrolyte layer 18 . The thickness of the solid electrolyte layer 18 is preferably 10 nm to 1000 nm, and in order to reduce the resistance and increase the conductivity, it is more preferable to make it as thin as possible without causing short circuits due to defects such as pinholes. .

負極層20の厚さは、その層全体の容量が正極層16の層全体の容量と一致するようにすることが好ましい。例えば、負極層20の単位体積あたりの容量が正極層16の単位体積あたりの容量より大きい場合、負極層20の厚さは正極層16の厚さより薄いのが好ましい。具体的には、負極層20の単体積あたりの容量が正極層16の単位体積あたりの容量の2倍であって、正極層16の厚さが100nm~1000nmの場合、負極層20の厚さは、50nm~500nmで正極層16の厚さの半分であるのがより好ましい。負極層20の厚さは、固体電解質層18の厚さに対し、50%~1000%であるのが好ましい。 The thickness of the negative electrode layer 20 is preferably such that the overall layer capacity matches the overall layer capacity of the positive electrode layer 16 . For example, when the capacity per unit volume of the negative electrode layer 20 is greater than the capacity per unit volume of the positive electrode layer 16 , the thickness of the negative electrode layer 20 is preferably thinner than the thickness of the positive electrode layer 16 . Specifically, when the capacity per unit volume of the negative electrode layer 20 is twice the capacity per unit volume of the positive electrode layer 16 and the thickness of the positive electrode layer 16 is 100 nm to 1000 nm, the thickness of the negative electrode layer 20 is is preferably between 50 nm and 500 nm, which is half the thickness of the positive electrode layer 16 . The thickness of the negative electrode layer 20 is preferably 50% to 1000% of the thickness of the solid electrolyte layer 18 .

薄膜リチウム二次電池10は、充電する際、正極集電体層14と負極集電体層22を図示しない電源に接続し、正極集電体層14と負極集電体層22間に電圧が印加される。そうすると、正極層16におけるリチウムが正極層16から脱離してリチウムイオンとなって固体電解質層18を介して負極層20へ移動する。上記反応が継続することによって、正極層16ではリチウムが減り、負極層20ではリチウムイオンが電子と結びついて負極層20内に蓄積する。 When the thin-film lithium secondary battery 10 is charged, the positive electrode current collector layer 14 and the negative electrode current collector layer 22 are connected to a power supply (not shown), and a voltage is applied between the positive electrode current collector layer 14 and the negative electrode current collector layer 22 . applied. Then, lithium in the positive electrode layer 16 is desorbed from the positive electrode layer 16 to become lithium ions, which migrate to the negative electrode layer 20 through the solid electrolyte layer 18 . As the above reaction continues, the amount of lithium in the positive electrode layer 16 decreases, and lithium ions combine with electrons in the negative electrode layer 20 and accumulate in the negative electrode layer 20 .

薄膜リチウム二次電池10は、放電する際、正極集電体層14と負極集電体層22が図示しない外部回路に接続され、正極集電体層14と負極集電体層22間に電位差が生じる。そうすると、負極層20のリチウムがリチウムイオンとなって固体電解質層18を介して正極層16へ移動するとともに、電子が外部回路を通って負極層20から正極層16へ移動する。正極層16では、リチウムイオンと電子が結びついて正極層16内に蓄積される。上記の反応によって外部回路に電流が流れる。 When the thin-film lithium secondary battery 10 is discharged, the positive electrode current collector layer 14 and the negative electrode current collector layer 22 are connected to an external circuit (not shown), and a potential difference is generated between the positive electrode current collector layer 14 and the negative electrode current collector layer 22. occurs. Then, lithium in the negative electrode layer 20 becomes lithium ions and moves to the positive electrode layer 16 through the solid electrolyte layer 18, and electrons move from the negative electrode layer 20 to the positive electrode layer 16 through the external circuit. In the positive electrode layer 16 , lithium ions and electrons are combined and accumulated in the positive electrode layer 16 . The above reaction causes current to flow in the external circuit.

本来的にNがドープされていない正極層は、微結晶の集合体である。Nがドープされることによって、正極層16は、アモルファス化し、イオン伝導度が向上すると考えられる。本実施形態に係る薄膜リチウム二次電池10は、Nがドープされた正極層16を備えることによって、正極層16のイオン伝導度が向上し、正極層16の膜厚を厚くしても、内部抵抗の上昇が抑制される。したがって正極層16において厚さ方向にリチウムイオンがスムーズに移動することができるので、薄膜リチウム二次電池10は、正極層16を有効に活用することができ、結果として充放電容量を大きくすることができる。また薄膜リチウム二次電池10は、内部抵抗が低いので、大きな電流で充放電を行っても充放電容量の低下が少なく、素早く充放電でき、従来にくらべ高出力化を実現することができる。 The cathode layer, which is inherently undoped with N, is an aggregate of crystallites. It is believed that the doping of N makes the positive electrode layer 16 amorphous and improves the ionic conductivity. Since the thin-film lithium secondary battery 10 according to the present embodiment includes the N-doped positive electrode layer 16, the ionic conductivity of the positive electrode layer 16 is improved. An increase in resistance is suppressed. Therefore, since lithium ions can smoothly move in the thickness direction in the positive electrode layer 16, the thin film lithium secondary battery 10 can effectively utilize the positive electrode layer 16, and as a result, the charge/discharge capacity can be increased. can be done. In addition, since the thin-film lithium secondary battery 10 has a low internal resistance, even if it is charged and discharged with a large current, the charge-discharge capacity does not decrease, and it can be charged and discharged quickly, and can achieve higher output than conventional batteries.

薄膜リチウム二次電池10は、負極層20にもNをドープすることによって、負極層20でもイオン伝導度が向上し、充放電容量をより大きくすることができる。このように、正極層16及び負極層20の両方にNをドープしてもよい。 In the thin-film lithium secondary battery 10, by doping the negative electrode layer 20 with N as well, the ion conductivity of the negative electrode layer 20 is improved and the charge/discharge capacity can be increased. Thus, both the positive electrode layer 16 and the negative electrode layer 20 may be doped with N.

また薄膜リチウム二次電池10は、正極層16ではなく、負極層20のみにNをドープしてもよい。薄膜リチウム二次電池10は、Nがドープされた負極層20を備えることによって、負極層20のイオン伝導度が向上し、負極層20の膜厚を厚くしても、内部抵抗の上昇が抑制される。したがって負極層20において厚さ方向にリチウムイオンがスムーズに移動することができるので、薄膜リチウム二次電池10は、負極層20を有効に活用することができ、結果として充放電容量を大きくすることができる。Nのドープ量は、上記実施形態と同様に、0.1at%~10.0at%であるのが好ましく、1.0at%~5.0at%であるのがより好ましい。 Also, in the thin film lithium secondary battery 10 , N may be doped only in the negative electrode layer 20 instead of the positive electrode layer 16 . Since the thin-film lithium secondary battery 10 includes the negative electrode layer 20 doped with N, the ion conductivity of the negative electrode layer 20 is improved, and even if the thickness of the negative electrode layer 20 is increased, the increase in internal resistance is suppressed. be done. Therefore, since lithium ions can smoothly move in the thickness direction of the negative electrode layer 20, the thin film lithium secondary battery 10 can effectively utilize the negative electrode layer 20, and as a result, the charge/discharge capacity can be increased. can be done. The doping amount of N is preferably 0.1 at % to 10.0 at %, more preferably 1.0 at % to 5.0 at %, as in the above embodiment.

以上のとおり、薄膜リチウム二次電池10は、正極層16及び負極層20の少なくともいずれか一方がNを含むことによって、正極層16及び/又は負極層20のイオン伝導度が向上する。したがって、薄膜リチウム二次電池10は、正極層16及び/又は負極層20の膜厚を増加させることによって充放電容量を大きくすることができ、また、大きな電流で充放電を行っても充放電容量の低下を小さくできる。 As described above, in the thin-film lithium secondary battery 10 , at least one of the positive electrode layer 16 and the negative electrode layer 20 contains N, thereby improving the ionic conductivity of the positive electrode layer 16 and/or the negative electrode layer 20 . Therefore, the thin film lithium secondary battery 10 can increase the charge/discharge capacity by increasing the film thickness of the positive electrode layer 16 and/or the negative electrode layer 20, and even if the charge/discharge is performed with a large current, the charge/discharge capacity is increased. Decrease in capacity can be reduced.

(実施例1)
実際に薄膜リチウム二次電池を作製し、その効果を検証した。基板としてガラス基板を用い、当該ガラス基板上に薄膜リチウム二次電池をスパッタリング法(マグネトロンスパッタ装置、(株)アルバック製、CS-200)によって、以下の手順によって作製した。
(Example 1)
A thin-film lithium secondary battery was actually produced and its effect was verified. A glass substrate was used as a substrate, and a thin film lithium secondary battery was fabricated on the glass substrate by a sputtering method (magnetron sputtering device, CS-200, manufactured by ULVAC, Inc.) according to the following procedure.

まず、ガラス基板(無アルカリガラス、50mm×50mm、厚さ1mm)上に、Ti金属のターゲットを用いて、正極集電体層として厚さ100nmのTi膜を形成した。詳細なスパッタリング条件は、表1に示す通りである。成膜時の基板温度は、室温とした。 First, on a glass substrate (non-alkali glass, 50 mm×50 mm, thickness 1 mm), a Ti metal target was used to form a Ti film having a thickness of 100 nm as a positive electrode current collector layer. Detailed sputtering conditions are as shown in Table 1. The substrate temperature during film formation was room temperature.

Ti膜(正極集電体層)上に、LiMn酸化物焼結体をターゲットとし、Nを含むスパッタリングガスを用いて、正極層として所定の厚さのLiMn膜を形成した。正極層の厚さは、200nm、400nm、600nmの3種類とした。 On the Ti film (positive electrode current collector layer), Li 2 Mn 2 O 4 oxide sintered body was used as a target, and a sputtering gas containing N was used to deposit Li 2 Mn 2 O 4 with a predetermined thickness as a positive electrode layer. A film was formed. Three thicknesses of 200 nm, 400 nm, and 600 nm were used for the positive electrode layer.

LiMn膜(正極層)上にLiPO酸化物焼結体のターゲットを用いて、Nを含むスパッタリングガスを導入して固体電解質層として厚さ100nmのLiPON膜を形成した。LiPON膜(固体電解質層)上にNb酸化物焼結体のターゲットを用いて、負極層として所定の厚さのNb膜を形成した。負極層の厚さは、厚さ200nmの正極層に対し100nm、厚さ400nmの正極層に対し200nm、厚さ600nmの正極層に対し300nmとした。 A LiPON film having a thickness of 100 nm was formed as a solid electrolyte layer on the Li 2 Mn 2 O 4 film (positive electrode layer) by introducing a sputtering gas containing N using a Li 3 PO 4 oxide sintered body target. . An Nb 2 O 5 film having a predetermined thickness was formed as a negative electrode layer on a LiPON film (solid electrolyte layer) using a target of Nb 2 O 5 oxide sintered body. The thickness of the negative electrode layer was 100 nm for the 200 nm thick positive electrode layer, 200 nm for the 400 nm thick positive electrode layer, and 300 nm for the 600 nm thick positive electrode layer.

Nb膜(負極層)上に、正極集電体層と同様に、負極集電体層として厚さ100nmのTi膜を形成した。上記のようにして実施例に係る試料No.1~No.6を作製した。Nb膜(負極層)を形成する際、Nを含むスパッタリングガスを用いる以外は、上記と同じ方法とすることによって、Nを含む正極層及び負極層を備えた実施例に係る試料No.7~No.12を作製した。 On the Nb 2 O 5 film (negative electrode layer), similarly to the positive electrode current collector layer, a Ti film having a thickness of 100 nm was formed as the negative electrode current collector layer. Samples No. 1 to No. 6 according to Examples were produced as described above. Sample No. 2 according to the example provided with a positive electrode layer and a negative electrode layer containing N by the same method as described above except that a sputtering gas containing N is used when forming the Nb 2 O 5 film (negative electrode layer). .7 to No.12 were produced.

比較として、LiMn膜(正極層)を形成する際、Nを含まないスパッタリングガスを用いる以外は、上記試料No.1~No.6と同じ方法とすることによって、比較例に係る試料No.1~No.6を作製した。 For comparison, comparative examples were prepared by the same method as in Samples No. 1 to No. 6, except that a sputtering gas containing no N was used when forming the Li 2 Mn 2 O 4 film (positive electrode layer). Such samples No. 1 to No. 6 were produced.

Figure 0007227477000001
Figure 0007227477000001

正極層と負極層におけるNのドープ量は、別途作製した正極層又は負極層の単層膜のサンプルに対し、電子線マイクロアナライザー(EPMA;Electron Probe Micro Analyzer、日本電子(株)製、JEOL JXA-8530F)を用いて分析を行い、測定した。上記サンプルは、各実施例の試料と同様の条件(表1のN有の条件)でガラス基板上に正極層、又は、負極層のみを成膜したものである。その結果を表2の「窒素原子比率」の欄に示す。 The doping amount of N in the positive electrode layer and the negative electrode layer was determined by using an electron probe micro analyzer (EPMA; Electron Probe Micro Analyzer, manufactured by JEOL Ltd., JEOL JXA -8530F) was used to analyze and measure. In the above samples, only a positive electrode layer or a negative electrode layer was formed on a glass substrate under the same conditions as the samples of each example (conditions with N in Table 1). The results are shown in the column of "nitrogen atom ratio" in Table 2.

作製した薄膜二次電池について、充放電特性を評価した。評価にあたっては、空気中の水分の影響を避けるため、Alと樹脂から成るバリアフィルムで封止した。充放電特性は、充放電測定装置(アスカ電子(株)製)を用いて、25℃の温度で測定した。測定電流は表2の通りとし、電圧範囲は3.5~0.3Vとした。その結果を表2に示す。 The charge/discharge characteristics of the produced thin film secondary battery were evaluated. In the evaluation, it was sealed with a barrier film made of Al and resin in order to avoid the influence of moisture in the air. The charge/discharge characteristics were measured at a temperature of 25° C. using a charge/discharge measuring device (manufactured by Asuka Denshi Co., Ltd.). The measured current was as shown in Table 2, and the voltage range was 3.5-0.3V. Table 2 shows the results.

Figure 0007227477000002
Figure 0007227477000002

(実施例2)
正極層をLiMnCoO膜としたこと以外は、上記の実施例1と同様にして、実施例2に係る試料No.13~No.18を作製した。この正極層の形成では、LiMnCoO酸化物焼結体ターゲットを用い、Nを含むスパッタリングガスを導入して、200nm、400nm、600nmの3種類の厚さのLiMnCoO膜を形成した。LiMnCoO膜を形成する際、Nを含まないスパッタリングガスを用いる以外は、上記試料No.13~No.18と同じ方法とすることによって、比較例2に係る試料No.7~No.12を作製した。それらのNのドープ量、充放電特性を上記の実施例1、比較例1と同様にして測定した。その結果を、膜構成、測定電流とともに表3に示す。
(Example 2)
Samples No. 13 to No. 18 according to Example 2 were produced in the same manner as in Example 1 above, except that the positive electrode layer was a LiMnCoO 4 film. In the formation of this positive electrode layer, a LiMnCoO 4 oxide sintered body target was used, and a sputtering gas containing N was introduced to form LiMnCoO 4 films with three different thicknesses of 200 nm, 400 nm, and 600 nm. Samples No. 7 to No. 12 according to Comparative Example 2 were prepared in the same manner as in Samples No. 13 to No. 18 except that a sputtering gas containing no N was used when forming the LiMnCoO 4 film. made. The doping amount of N and the charge/discharge characteristics of these samples were measured in the same manner as in Example 1 and Comparative Example 1 above. The results are shown in Table 3 together with the film configuration and the measured current.

Figure 0007227477000003
Figure 0007227477000003

(実施例3)
正極層をLiCoO膜としたこと以外は、上記の実施例1と同様にして、実施例3に係る試料No.19~No.24を作製した。この正極層の形成では、LiCoO酸化物焼結体ターゲットを用い、Nを含むスパッタリングガスを導入して、200nm、400nm、600nmの3種類の厚さのLiCoO膜を形成した。LiCoO膜を形成する際、Nを含まないスパッタリングガスを用いる以外は、上記試料No.19~No.24と同じ方法とすることによって、比較例3に係る試料No.13~No.18を作製した。それらのNのドープ量、充放電特性を上記の実施例1、比較例1と同様にして測定した。その結果を、膜構成、測定電流とともに表4に示す。
(Example 3)
Samples No. 19 to No. 24 according to Example 3 were produced in the same manner as in Example 1 above, except that the positive electrode layer was a LiCoO 2 film. In the formation of this positive electrode layer, a LiCoO 2 oxide sintered body target was used, and a sputtering gas containing N was introduced to form LiCoO 2 films with three different thicknesses of 200 nm, 400 nm, and 600 nm. Samples No. 13 to No. 18 according to Comparative Example 3 were obtained in the same manner as in Samples No. 19 to No. 24 except that a sputtering gas containing no N was used when forming the LiCoO 2 film. made. The doping amount of N and the charge/discharge characteristics of these samples were measured in the same manner as in Example 1 and Comparative Example 1 above. The results are shown in Table 4 together with the film configuration and the measured current.

Figure 0007227477000004
Figure 0007227477000004

(実施例4)
負極層をLiTi12膜としたこと以外は、上記の実施例1と同様にして、実施例4に係る試料No.25~No.30を作製した。この負極層の形成では、LiTi12酸化物焼結体ターゲットを用い、Nを含むスパッタリングガスを導入して、200nm、400nm、600nmの3種類の厚さのLiTi12膜を形成した。LiTi12膜を形成する際、Nを含まないスパッタリングガスを用いる以外は、上記試料No.25~No.30と同じ方法とすることによって、比較例3に係る試料No.19~No.24を作製した。それらのNのドープ量、充放電特性を上記の実施例1、比較例1と同様にして測定した。その結果を、膜構成、測定電流とともに表5に示す。
(Example 4)
Samples No. 25 to No. 30 according to Example 4 were produced in the same manner as in Example 1 above, except that the negative electrode layer was a Li 4 Ti 5 O 12 film. In the formation of this negative electrode layer, a Li 4 Ti 5 O 12 oxide sintered body target was used, a sputtering gas containing N was introduced, and Li 4 Ti 5 O 12 having three thicknesses of 200 nm, 400 nm, and 600 nm was formed. A film was formed. Samples No. 19 to No. 19 according to Comparative Example 3 were formed in the same manner as in Samples No. 25 to No. 30 except that a sputtering gas containing no N was used when forming the Li 4 Ti 5 O 12 film. No.24 was produced. The doping amount of N and the charge/discharge characteristics of these samples were measured in the same manner as in Example 1 and Comparative Example 1 above. The results are shown in Table 5 together with the film configuration and the measured current.

Figure 0007227477000005
Figure 0007227477000005

実施例に係る試料No.1~No.6、No.13~No.24が正極層にNを含む例であり、試料No.25~No.30が負極層にNを含む例であり、試料No.7~No.12が正極層及び負極層の両方にNを含む例である。表2~5における充放電容量は、充放電容量が安定する100サイクル目の値を示している。表2~5に示すように、実施例に係る試料No.1~No.30は、正極、負極の膜厚の増加に伴って、充放電容量が増加することが確認された。例えば、実施例1において、膜厚が異なる試料No.1と試料No.3とを比較する。試料No.1は、正極層の膜厚が200(nm)、充電容量が64(μAh)、放電容量が62(μAh)である。これに対し試料No.3は、正極層の膜厚が600(nm)、充電容量が151(μAh)、放電容量が148(μAh)である。したがって、試料No.3は、試料No.1に対し、正極層の厚さが3倍であるのに対し、充放電容量が約2.4倍である。 Samples No. 1 to No. 6 and No. 13 to No. 24 according to Examples are examples containing N in the positive electrode layer, and Samples No. 25 to No. 30 are examples containing N in the negative electrode layer, Samples No. 7 to No. 12 are examples in which N is contained in both the positive electrode layer and the negative electrode layer. The charge/discharge capacities in Tables 2 to 5 show values at the 100th cycle when the charge/discharge capacities stabilize. As shown in Tables 2 to 5, it was confirmed that Samples No. 1 to No. 30 according to the examples showed an increase in charge/discharge capacity as the film thicknesses of the positive and negative electrodes increased. For example, in Example 1, sample No. 1 and sample No. 3 having different film thicknesses are compared. Sample No. 1 has a positive electrode layer thickness of 200 (nm), a charge capacity of 64 (μAh), and a discharge capacity of 62 (μAh). On the other hand, sample No. 3 has a positive electrode layer thickness of 600 (nm), a charge capacity of 151 (μAh), and a discharge capacity of 148 (μAh). Therefore, sample No. 3 has a positive electrode layer thickness three times that of sample No. 1, and a charge/discharge capacity approximately 2.4 times larger.

また、実施例に係る試料No.1~No.30は、測定電流を大きくしても充放電容量の低下が少ないことが確認された。例えば、実施例1において、膜構成が同じで測定電流のみが異なる試料No.1と試料No.4を比較する。試料No.1は、測定電流が20(μA)のとき、充電容量が64(μAh)、放電容量が62(μAh)であるのに対し、試料No.4は、測定電流が100(μA)のとき、充電容量が58(μAh)、放電容量が56(μAh)である。したがって、試料No.4は、試料No.1に対し、測定電流を5倍にしても充放電容量の低下が少ない。 In addition, it was confirmed that samples No. 1 to No. 30 according to the examples showed little decrease in charge/discharge capacity even when the measured current was increased. For example, in Example 1, sample No. 1 and sample No. 4, which have the same film structure and differ only in the measurement current, are compared. Sample No.1 has a charge capacity of 64 (μAh) and a discharge capacity of 62 (μAh) when the measured current is 20 (μA), while sample No.4 has a measured current of 100 (μA). , the charge capacity is 58 (μAh) and the discharge capacity is 56 (μAh). Therefore, Sample No. 4 shows less decrease in charge/discharge capacity than Sample No. 1 even if the measured current is increased five times.

比較例に係る試料No.1~No.24は、正極、負極の膜厚の増加に対し、充放電容量が実施例と比較してあまり増加せず、実施例に係る試料No.1~No.30に比べ充放電容量が小さいことが確認された。例えば、比較例1において、膜厚が異なる試料No.1と試料No.3とを比較する。試料No.1は、正極層の膜厚が200(nm)、充電容量が50(μAh)、放電容量が47(μAh)である。これに対し試料No.3は、正極層の膜厚が600(nm)、充電容量が86(μAh)、放電容量が82(μAh)である。したがって、試料No.3は、試料No.1に対し、正極層の厚さが3倍であるのに対し、充放電容量が2倍未満にとどまり、実施例1に比べ充放電容量が小さい。 Samples No. 1 to No. 24 according to the comparative examples did not increase the charge/discharge capacity much compared to the examples with respect to the increase in the film thickness of the positive electrode and the negative electrode, and samples No. 1 to No. according to the examples. It was confirmed that the charge/discharge capacity was smaller than that of .30. For example, in Comparative Example 1, sample No. 1 and sample No. 3 having different film thicknesses are compared. Sample No. 1 has a positive electrode layer thickness of 200 (nm), a charge capacity of 50 (μAh), and a discharge capacity of 47 (μAh). On the other hand, sample No. 3 has a positive electrode layer thickness of 600 (nm), a charge capacity of 86 (μAh), and a discharge capacity of 82 (μAh). Therefore, in sample No. 3, although the thickness of the positive electrode layer is three times that of sample No. 1, the charge/discharge capacity remains less than twice that of sample No. 1, and the charge/discharge capacity is smaller than that of Example 1.

また比較例に係る試料No.1~No.24は、測定電流を大きくすると充放電容量が実施例と比較して大きく減少してしまうことが確認された。例えば、比較例1において、膜構成が同じで測定電流のみが異なる試料No.1と試料No.4を比較する。試料No.1は、測定電流が20(μA)のとき、充電容量が50(μAh)、放電容量が47(μAh)であるのに対し、試料No.4は、測定電流が100(μA)のとき、充電容量が26(μAh)、放電容量が23(μAh)である。したがって、試料No.4は、試料No.1に対し、測定電流を5倍にしたことによって充放電容量が約半分に低下し、実施例1に比べ充放電容量が大きく減少した。 It was also confirmed that the charge/discharge capacities of samples No. 1 to No. 24 according to the comparative examples significantly decreased as compared with the examples when the measured current was increased. For example, in Comparative Example 1, sample No. 1 and sample No. 4, which have the same film configuration and differ only in the measurement current, are compared. Sample No.1 has a charge capacity of 50 (μAh) and a discharge capacity of 47 (μAh) when the measured current is 20 (μA), while sample No.4 has a measured current of 100 (μA). , the charge capacity is 26 (μAh) and the discharge capacity is 23 (μAh). Therefore, the charge/discharge capacity of Sample No. 4 was reduced to about half of that of Sample No. 1 by increasing the measured current by five times, and the charge/discharge capacity of Sample No. 1 was greatly reduced compared to Example 1.

上記結果から実施例は、少なくとも正極層の膜厚が200nm以上において、比較例に比べ充放電容量が大きいといえる。また実施例は、正極層の膜厚が200nmから増加するに伴い、充放電容量がほぼ比例して増加し、増加が少ない比較例との差がより大きくなる。 From the above results, it can be said that the examples have higher charge/discharge capacities than the comparative examples at least when the film thickness of the positive electrode layer is 200 nm or more. In addition, in the example, as the thickness of the positive electrode layer increases from 200 nm, the charge/discharge capacity increases almost proportionally, and the difference from the comparative example, in which the increase is small, becomes larger.

実施例に係る試料No.1~No.30は、全て充放電カーブおよび充放電容量について、1000サイクル以上の安定したサイクル特性が確認された。その一例として、実施例1の試料No.1の電圧-充放電容量特性および充放電容量のサイクル特性を図2および図3に示す。 Samples No. 1 to No. 30 according to the examples were all confirmed to have stable cycle characteristics of 1000 cycles or more with respect to charge/discharge curves and charge/discharge capacities. As an example, the voltage-charge/discharge capacity characteristics and charge/discharge capacity cycle characteristics of Sample No. 1 of Example 1 are shown in FIGS.

(変形例)
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。上記実施形態の場合、Nを含むスパッタリングガスを用いたスパッタリング法によって、Nを含む正極層及び負極層を形成する場合について説明したが、本発明はこれに限らない。例えば、Nを含まない正極層及び負極層に対し、イオン注入によりNをドープしてもよい。
(Modification)
The present invention is not limited to the above embodiments, and can be appropriately modified within the scope of the present invention. In the above embodiment, the case of forming the positive electrode layer and the negative electrode layer containing N by a sputtering method using a sputtering gas containing N has been described, but the present invention is not limited to this. For example, a positive electrode layer and a negative electrode layer that do not contain N may be doped with N by ion implantation.

上記実施形態の場合、正極集電体層14と、正極層16と、固体電解質層18と、負極層20と、負極集電体層22とを、それぞれ1つずつ備える場合について説明したが、本発明はこれに限らない。例えば、固体電解質層の両面に正極層および負極層がそれぞれ配置された構成を基本構成とし、この基本構成を集電体層を挟んで、複数積層してもよい。 In the case of the above embodiment, the case where each of the positive electrode current collector layer 14, the positive electrode layer 16, the solid electrolyte layer 18, the negative electrode layer 20, and the negative electrode current collector layer 22 is provided has been described. The present invention is not limited to this. For example, a configuration in which a positive electrode layer and a negative electrode layer are respectively arranged on both sides of a solid electrolyte layer is used as a basic configuration, and multiple layers of this basic configuration may be laminated with a current collector layer interposed therebetween.

なお、薄膜リチウム二次電池10の表面に窒化珪素や酸化珪素などのバリア膜を形成したり、薄膜リチウム二次電池10全体をAlや樹脂のフィルムで封止したり、樹脂でモールドしたりして、空気中の水分による劣化や、汚れを防止する処理を施しても良い。 A barrier film such as silicon nitride or silicon oxide may be formed on the surface of the thin film lithium secondary battery 10, the entire thin film lithium secondary battery 10 may be sealed with an Al or resin film, or molded with resin. In addition, a treatment may be applied to prevent deterioration due to moisture in the air and contamination.

10 薄膜リチウム二次電池
12 基板
14 正極集電体層
16 正極層
18 固体電解質層
20 負極層
22 負極集電体層
10 thin film lithium secondary battery 12 substrate 14 positive electrode current collector layer 16 positive electrode layer 18 solid electrolyte layer 20 negative electrode layer 22 negative electrode current collector layer

Claims (2)

正極層と、固体電解質層と、負極層とを備え、
前記正極層は、膜全体に窒素(N)がドープされた、リチウムを含む金属酸化物のスパッタリング膜である
薄膜リチウム二次電池。
A positive electrode layer, a solid electrolyte layer, and a negative electrode layer,
The positive electrode layer is a sputtered film of metal oxide containing lithium, doped with nitrogen (N) throughout the film.
Thin-film lithium secondary battery.
前記正極層がリチウム-マンガン酸化物、リチウム-コバルト酸化物、又はリチウム-マンガン-コバルト酸化物を含み、前記負極層が酸化ニオブ又はリチウム-チタン酸化物を含み、前記固体電解質層がリン酸リチウムに窒素(N)が添加されたLiPONを含む請求項1記載の薄膜リチウム二次電池。 The positive electrode layer contains lithium-manganese oxide, lithium-cobalt oxide, or lithium-manganese-cobalt oxide, the negative electrode layer contains niobium oxide or lithium-titanium oxide, and the solid electrolyte layer contains lithium phosphate. 2. The thin-film lithium secondary battery according to claim 1, comprising LiPON to which nitrogen (N) is added.
JP2019051363A 2018-03-22 2019-03-19 thin film lithium secondary battery Active JP7227477B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018055179 2018-03-22
JP2018055179 2018-03-22

Publications (2)

Publication Number Publication Date
JP2019169469A JP2019169469A (en) 2019-10-03
JP7227477B2 true JP7227477B2 (en) 2023-02-22

Family

ID=68106900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051363A Active JP7227477B2 (en) 2018-03-22 2019-03-19 thin film lithium secondary battery

Country Status (1)

Country Link
JP (1) JP7227477B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (en) 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
WO2005101551A1 (en) 2004-04-12 2005-10-27 Matsushita Electric Industrial Co., Ltd. Substrate containing metal oxide and method for production thereof
JP2006032129A (en) 2004-07-16 2006-02-02 Kyoto Univ Lithium battery
WO2006082846A1 (en) 2005-02-02 2006-08-10 Geomatec Co., Ltd. Thin-film solid secondary cell
JP2012009201A (en) 2010-06-23 2012-01-12 Sony Corp Transparent conductive film, method for manufacturing the same, dye-sensitized solar battery having the same, and solid electrolyte battery having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340257A (en) 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
WO2005101551A1 (en) 2004-04-12 2005-10-27 Matsushita Electric Industrial Co., Ltd. Substrate containing metal oxide and method for production thereof
JP2006032129A (en) 2004-07-16 2006-02-02 Kyoto Univ Lithium battery
WO2006082846A1 (en) 2005-02-02 2006-08-10 Geomatec Co., Ltd. Thin-film solid secondary cell
JP2012009201A (en) 2010-06-23 2012-01-12 Sony Corp Transparent conductive film, method for manufacturing the same, dye-sensitized solar battery having the same, and solid electrolyte battery having the same

Also Published As

Publication number Publication date
JP2019169469A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6069821B2 (en) Lithium ion secondary battery
JP5316809B2 (en) Lithium battery and manufacturing method thereof
US9991555B2 (en) Solid electrolyte for a microbattery
JP5515308B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
EP1852933B1 (en) Thin-film solid secondary cell
JP5549192B2 (en) Solid electrolyte battery and positive electrode active material
US20040096745A1 (en) Lithium ion conductor and all-solid lithium ion rechargeable battery
JP5217195B2 (en) Thin-film solid lithium ion secondary battery and composite device including the same
WO2011062113A1 (en) Solid electrolyte cell and cathode active material
US20130244109A1 (en) Solid electrolyte cell and positive electrode active material
WO2011043267A1 (en) Non-aqueous electrolyte cell
JP2011044368A (en) Nonaqueous electrolyte battery
JP2009152077A (en) Lithium battery
JP2012054151A (en) Solid electrolyte battery
JP4381176B2 (en) Thin film solid secondary battery
JP7227477B2 (en) thin film lithium secondary battery
CN115552662A (en) Battery and method for manufacturing same
JP6697155B2 (en) All solid state battery
JP2011090877A (en) Solid electrolyte battery
US20240128437A1 (en) Battery and method for manufacturing the same
US11431021B2 (en) Solid electrolyte battery
US20240120472A1 (en) Battery and method for manufacturing the same
WO2024018246A1 (en) Method for producing all-solid-state battery
KR20180023380A (en) Lithium ion battery and method of preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7227477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150