JP2021056322A - Fixing device and image forming apparatus - Google Patents

Fixing device and image forming apparatus Download PDF

Info

Publication number
JP2021056322A
JP2021056322A JP2019177999A JP2019177999A JP2021056322A JP 2021056322 A JP2021056322 A JP 2021056322A JP 2019177999 A JP2019177999 A JP 2019177999A JP 2019177999 A JP2019177999 A JP 2019177999A JP 2021056322 A JP2021056322 A JP 2021056322A
Authority
JP
Japan
Prior art keywords
temperature
detecting means
fixing device
heat source
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019177999A
Other languages
Japanese (ja)
Other versions
JP7329188B2 (en
Inventor
小木曽 敏夫
Toshio Ogiso
敏夫 小木曽
保 池田
Tamotsu Ikeda
保 池田
南野 茂夫
Shigeo Minamino
茂夫 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2019177999A priority Critical patent/JP7329188B2/en
Publication of JP2021056322A publication Critical patent/JP2021056322A/en
Application granted granted Critical
Publication of JP7329188B2 publication Critical patent/JP7329188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

To provide a fixing device that can improve the accuracy in detecting dew condensation compared with before.SOLUTION: A fixing device has a heat source 3, a fixing member 1, a pressure member 2, infrared temperature detection means 4 that detects infrared rays generated from a surface of the fixing member to measure temperature, and dew condensation means for the infrared temperature detection means. The dew condensation detection means detects dew condensation in the infrared temperature detection means 4 after the lapse of a predetermined time within 10 seconds from the start of lighting of the heat source. The fixing device has the other temperature detection means than the infrared temperature detection means 4 that detects the temperature of the surface of the fixing member or the surface of the pressure member; when the difference between an output temperature from the infrared temperature detection means 4 and an output temperature from the other temperature detection means exceeds a threshold, the fixing device may reduce output from the heat source 3, stop the lighting of the heat source 3, or drive the fixing member 1 and the pressure member 2 while lighting the heat source 3.SELECTED DRAWING: Figure 1

Description

本発明は、定着装置及び画像形成装置に関するものである。 The present invention relates to a fixing device and an image forming device.

従来、熱源と、定着部材と、加圧部材と、定着部材表面より発生する赤外線を検知して温度測定する赤外線温度検知手段と、前記赤外線温度検知手段の結露検知手段とを有する定着装置が知られている。例えば特許文献1には、定着ローラのほぼ中央の多少異なる位置の温度を検出する赤外線温度センサとサーミスタの検出温度差が所定差より大きいとき、結露と判断してサーミスタで点灯制御し、所定時間この状態が継続したら警報を発したりヒータへの電力供給を遮断したりするものが記載されている。また、特許文献2には、画像形成装置内部が、前記赤外線温度検知手段の表面が結露する範囲として予め定められた温湿度であることを温湿度検知手段が検知したときは、記録用紙の走行を禁止することが記載されている。 Conventionally, a fixing device having a heat source, a fixing member, a pressurizing member, an infrared temperature detecting means for detecting infrared rays generated from the surface of the fixing member and measuring the temperature, and a dew condensation detecting means for the infrared temperature detecting means has been known. Has been done. For example, in Patent Document 1, when the detection temperature difference between the infrared temperature sensor and the thermistor, which detects the temperature at a slightly different position in the center of the fixing roller, is larger than the predetermined difference, it is determined that dew condensation is formed, and the thermistor controls the lighting for a predetermined time. If this state continues, an alarm is issued or the power supply to the heater is cut off. Further, in Patent Document 2, when the temperature / humidity detecting means detects that the inside of the image forming apparatus has a temperature / humidity predetermined as a range in which the surface of the infrared temperature detecting means is dewed, the recording paper is run. It is stated that the prohibition is prohibited.

ところが、結露の検知精度に改善の余地が残されていた。 However, there was room for improvement in the accuracy of dew condensation detection.

本願発明は、上記課題を解決するため定着部材と、加圧部材と、定着部材表面又は加圧部材表面より発生する赤外線を検知して温度測定する赤外線温度検知手段とを有し、
熱源の点灯開始から10秒以内の所定時間の経過後に、前記赤外線温度検知手段の出力と前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段の出力の関係、又は、前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍温度を検知する温度検知手段の出力と外気温度検知手段の出力の関係、又は、前記赤外線の近傍温度検知手段の出力と外気温度検知手段の出力と外気湿度検知手段の出力の関係、のいずれかが所定の関係を満たした場合に、前記熱源の点灯を継続するか、前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動、前記熱源の出力低減、又は、前記熱源の点灯停止、を行うかを選択することを特徴とする。
The present invention has a fixing member, a pressure member, and an infrared temperature detecting means for detecting infrared rays generated from the surface of the fixing member or the surface of the pressure member and measuring the temperature in order to solve the above problems.
After a lapse of a predetermined time within 10 seconds from the start of lighting of the heat source, the relationship between the output of the infrared temperature detecting means and the output of the surface temperature detecting means of another fixing member or pressure member other than the infrared temperature detecting means, or The relationship between the output of the infrared temperature detecting means or the temperature detecting means for detecting the vicinity temperature of the infrared temperature detecting means and the output of the outside air temperature detecting means, or the output of the infrared near temperature detecting means and the output of the outside air temperature detecting means. When any of the relationship between the output of the outside air humidity detecting means and the output of the outside air humidity detecting means satisfies a predetermined relationship, the heat source is continuously lit, or the fixing member and the pressurizing member are driven while the heat source is lit. It is characterized in that it selects whether to reduce the output of the heat source or stop lighting the heat source.

本発明によれば、結露の検出精度を従来に比して向上させることができる。 According to the present invention, the accuracy of detecting dew condensation can be improved as compared with the conventional case.

画像形成装置の定着器周辺の正面図。Front view around the fuser of the image forming apparatus. 定着ローラの説明図。Explanatory drawing of fixing roller. マシン非通電時環境温度急激変化時の温度変化の説明図。Explanatory drawing of temperature change at the time of sudden change of environmental temperature when machine is de-energized. マシン非通電時環境温度時の機外温度、サーモパイル温度の時間変化の例を示すグラフ。The graph which shows the example of the time change of the outside temperature and the thermopile temperature at the environment temperature when the machine is not energized. 環境温度急激変化時立ち上げ時の定着ローラ温度変化の例を示すグラフ。The graph which shows the example of the fixing roller temperature change at the time of start-up at the time of abrupt change of the environmental temperature. サーモパイルの結露検知時の立ち上げ動作の制御を示すフローチャート。A flowchart showing control of the start-up operation when dew condensation is detected on the thermopile. 機内外温度差と機内相対湿度とから、結露状況を検知する関係図。A relationship diagram that detects the dew condensation status from the temperature difference between the inside and outside of the machine and the relative humidity inside the machine. 湿り空気線図。Psychrometrics. 中央サーモパイル、端部サーミスタの所定時間昇温量の比から結露状況検知を行う温度の説明図。Explanatory drawing of the temperature which detects the dew condensation state from the ratio of the amount of temperature rise for a predetermined time of a central thermopile and an end thermistor. サーモパイル、サーミスタの所定時間昇温量比と、立ち上げ後のサーモパイル読み値・実温度温度差との関係示す図。The figure which shows the relationship between the temperature rise ratio of a thermopile and a thermistor for a predetermined time, and the thermopile reading value and the actual temperature temperature difference after a start-up. 機内外温度差、機内相対湿度から結露状況検知する制御のフローチャート。Flow chart of control to detect the dew condensation situation from the temperature difference between the inside and outside of the machine and the relative humidity inside the machine. 中央端部昇温量比により結露検知する立ち上げ制御のフローチャート。Flow chart of start-up control that detects dew condensation by the temperature rise ratio at the central end. 結露解消動作時の説明図。Explanatory drawing at the time of dew condensation elimination operation. 結露低減動作を行う制御のフローチャート。Flow chart of control to perform dew condensation reduction operation. 結露低減動作実施時のサーモパイル温度読み値、定着R中央実温度の変化を示すグラフ。The graph which shows the change of the thermopile temperature reading value and the fixing R center actual temperature at the time of performing a dew condensation reduction operation. 結露解消動作実施時のサーモパイル部、機外温度変化の説明図。Explanatory drawing of thermopile part and outside temperature change at the time of dew condensation elimination operation. 結露解消時間とサーモパイル部温度昇温量(y)との関係を示すグラフ。The graph which shows the relationship between the dew condensation elimination time and the thermopile part temperature temperature rise amount (y). 結露解消動作後サーモパイル温度と機外雰囲気温度との関係を示すグラフ。A graph showing the relationship between the thermopile temperature and the outside atmosphere temperature after the dew condensation elimination operation. 結露低減確認方法その1のフローチャート。The flowchart of the dew condensation reduction confirmation method # 1. 結露低減確認方法その2のフローチャート。The flowchart of the dew condensation reduction confirmation method # 2. 結露低減確認方法その3のフローチャート。The flowchart of the dew condensation reduction confirmation method (3). 結露低減動作の最後の30s間のサーモパイル温度変化例のグラフ。The graph of the thermopile temperature change example during the last 30s of the dew condensation reduction operation. 結露低減動作最後30s間のサーモパイル最低温度と、終了後ヒータ点灯後のサーモパイル温度読み値・実温度温度差との関係を示すグラフ。A graph showing the relationship between the minimum thermopile temperature during the last 30 seconds of the dew condensation reduction operation and the thermopile temperature reading / actual temperature difference after the heater is turned on. 結露低減確認方法その2の具体例のフローチャート。The flowchart of the concrete example of the dew condensation reduction confirmation method part 2. 結露状況検知後、結露解消動作を行う制御方法のフローチャート。A flowchart of a control method that performs a dew condensation elimination operation after detecting the dew condensation situation. 結露状況検知後、結露解消動作を行う他の制御方法のフローチャート。A flowchart of another control method that performs a dew condensation elimination operation after the dew condensation status is detected. 画像形成装置の一例の概略構成図。The schematic block diagram of an example of an image forming apparatus. 定着装置の電装部の構成例。Configuration example of the electrical component of the fixing device.

本発明を、加熱と加圧によって用紙にトナー像を定着する定着装置に適用した実施形態について説明する。この定着装置は、赤外線温度検知手段であるサーモパイルで温度検出を行う。図1はサーモパイルで定着ローラの温度検出を行う定着器を有する画像形成装置の定着器周辺の概略構成を示す正面図である。図2は定着器の定着ローラを示す右側面図である。 An embodiment in which the present invention is applied to a fixing device for fixing a toner image on paper by heating and pressurizing will be described. This fixing device detects the temperature with a thermopile, which is an infrared temperature detecting means. FIG. 1 is a front view showing a schematic configuration around a fuser of an image forming apparatus having a fuser that detects the temperature of a fixing roller with a thermopile. FIG. 2 is a right side view showing the fixing roller of the fixing device.

定着器は、ヒータ3が内蔵された定着ローラ1に加圧ローラ2を加圧したローラ定着器であり、用紙6は矢印で示す方向に搬送される。図1において定着ローラ1と加圧ローラ2とを囲む枠は定着器ケース170aであり、全体を囲む枠は画像形成装置ケース100aである。定着ローラ1の温度はサーモパイル4により検出される。サーモパイル4は画像形成装置内の定着器ケース170a外にとりつけられ、非接触で定着ローラの温度を測定する。 The fuser is a roller fuser in which the pressurizing roller 2 is pressed onto the fixing roller 1 having a built-in heater 3, and the paper 6 is conveyed in the direction indicated by the arrow. In FIG. 1, the frame surrounding the fixing roller 1 and the pressurizing roller 2 is the fixing device case 170a, and the frame surrounding the entire frame is the image forming apparatus case 100a. The temperature of the fixing roller 1 is detected by the thermopile 4. The thermopile 4 is attached to the outside of the fixing device case 170a in the image forming apparatus, and measures the temperature of the fixing roller in a non-contact manner.

図2に示すように、ヒータ3は定着ローラ軸方向中央に位置する中央加熱ヒータ3aと定着ローラ軸方向の両端に位置する端部加熱ヒータ3bとからなる。中央加熱ヒータ3aはサーモパイル4により非接触で検知された図中10で示す軸方向中央の箇所の検知温度に基づき制御される。端部加熱ヒータ3bは、非通紙領域に設けられた接触式の端部サーミスタ9により温度検知して制御される。 As shown in FIG. 2, the heater 3 includes a central heating heater 3a located at the center in the axial direction of the fixing roller and end heating heaters 3b located at both ends in the axial direction of the fixing roller. The central heater 3a is controlled based on the detection temperature at the central portion in the axial direction shown by 10 in the figure, which is detected by the thermopile 4 in a non-contact manner. The end heater 3b is controlled by detecting the temperature by a contact-type end thermistor 9 provided in the non-paper-passing region.

図1、図2に示すように定着ローラ1の軸方向の中央にサーモパイル4を非接触で配置し、端部の非通紙部に接触式の端部サーミスタ9を設けることで、温度検知部への経時でのトナー、紙粉などの異物付着を回避して安定した温度検出を行うことが可能である。また、図1に示すようにサーモパイル4が配置された部分であるサーモパイル部の温度湿度を検出するための機内温度検出器11と機内湿度検出器12とを設ける構成としてもよい。更に、機外温度検出器13,機外湿度検出器14を設ける構成としてもよい。 As shown in FIGS. 1 and 2, the thermopile 4 is arranged in the center of the fixing roller 1 in the axial direction in a non-contact manner, and the contact-type end thermistor 9 is provided in the non-passing portion of the end to provide a temperature detection unit. It is possible to perform stable temperature detection by avoiding the adhesion of foreign substances such as toner and paper dust to the surface over time. Further, as shown in FIG. 1, an in-flight temperature detector 11 and an in-flight humidity detector 12 for detecting the temperature and humidity of the thermopile portion where the thermopile 4 is arranged may be provided. Further, the external temperature detector 13 and the external humidity detector 14 may be provided.

図示の例ではサーモパイル部の上方に、機内湿度検出器12と機内温度検出器11とをこの順で配置している。また、サーモパイル部の下方に、機外温度検出器13と機外湿度検出器14とを、この順で設けている。機外温度検出器13と機外湿度検出器14は、画像形成装置ケース100aの外気取り込み口に設置され、外気の温度湿度を測定する。端部サーミスタ9や機内外温湿度検出器(11、12、13、14)を用いて、後述するように結露検出手段を構成できる。 In the illustrated example, the in-flight humidity detector 12 and the in-flight temperature detector 11 are arranged in this order above the thermopile portion. Further, below the thermopile portion, an external temperature detector 13 and an external humidity detector 14 are provided in this order. The outside temperature detector 13 and the outside humidity detector 14 are installed at the outside air intake port of the image forming apparatus case 100a, and measure the temperature and humidity of the outside air. The dew condensation detecting means can be configured as described later by using the end thermistor 9 and the inside / outside temperature / humidity detectors (11, 12, 13, 14).

図3は、非通電時に環境温度が急激に変化する場合の温度変化の説明図である。画像形成装置全体が非通電状態で低温環境に放置されていた状態から、急激に環境温度が上昇した場合、実線で示すように、機外雰囲気温度Taは図示の昇温勾配で上昇する。このとき、機内温度、具体的にはサーモパイル部の雰囲気温度(以下、サーモパイル部温度という)T2は、破線で示すように機外雰囲気温度Taに追従しては上がらない。 FIG. 3 is an explanatory diagram of a temperature change when the environmental temperature suddenly changes when the power is not supplied. When the environmental temperature rises sharply from the state where the entire image forming apparatus is left in a low temperature environment in a non-energized state, the outside atmosphere temperature Ta rises at the temperature rise gradient shown in the figure, as shown by the solid line. At this time, the temperature inside the machine, specifically, the ambient temperature of the thermopile portion (hereinafter referred to as the temperature of the thermopile portion) T2 does not rise following the outside atmosphere temperature Ta as shown by the broken line.

図4は、図3の環境温度急激変化時の機外雰囲気温度Ta、サーモパイル部温度T2の8時間に亘る変化の例を示す。機外雰囲気温度Taが−30℃〜23℃まで8時間で遷移してもサーモパイル部温度T2は10℃までしか昇温していない。 FIG. 4 shows an example of changes in the outside atmosphere temperature Ta and the thermopile portion temperature T2 over 8 hours when the environmental temperature in FIG. 3 suddenly changes. Even if the outside atmosphere temperature Ta changes from −30 ° C. to 23 ° C. in 8 hours, the thermopile portion temperature T2 only rises to 10 ° C.

図5は図3の非通電時に環境温度が急激に変化してから1時間経過した時点で電源をON(図3の「通電」)し、立ち上げ動作を行った場合の電源ON後の定着ローラ温度の変化の例を示す。横軸が立ち上げ後の経過時間(秒、s)を示す。左側の縦軸が定着ローラ中央実温度(以下、定着ローラ中央実温度という)T0とサーモパイル4の読み取り値に対応する温度T1の温度目盛り(°C)、および、中央加熱ヒータ3aのデューティ(%)である。右側の縦軸が機外雰囲気温度Taとサーモパイル部温度T2の温度目盛りである。以上の各種温度T0、T1、Ta、T2の変化に加え、定着ローラ軸方向中央の目標温度T1´と定着ローラ内の中央加熱ヒータ3aのデューティ(Duty)も示している。定着ローラ中央実温度T0は、実験により熱電対を用いて測定した定着ローラ軸方向中央の温度である。 FIG. 5 shows fixing after the power is turned on when the power is turned on (“energized” in FIG. 3) and the start-up operation is performed when one hour has passed since the environmental temperature suddenly changed when the power was not turned on in FIG. An example of a change in roller temperature is shown. The horizontal axis shows the elapsed time (seconds, s) after startup. The vertical axis on the left is the temperature scale (° C) of the temperature T1 corresponding to the readings of the fixing roller center actual temperature (hereinafter referred to as the fixing roller center actual temperature) T0 and the thermopile 4, and the duty (%) of the center heating heater 3a. ). The vertical axis on the right side is the temperature scale of the outside atmosphere temperature Ta and the thermopile temperature T2. In addition to the above-mentioned changes in various temperatures T0, T1, Ta, and T2, the target temperature T1'at the center of the fixing roller axial direction and the duty of the central heating heater 3a in the fixing roller are also shown. The actual temperature T0 at the center of the fixing roller is the temperature at the center of the fixing roller in the axial direction measured by an experiment using a thermocouple.

サーモパイル4は図1の部分5のように結露してしまい温度を低めに検知する。図5に白抜きの矢印Aに示すようにサーモパイル温度読み値に対応する温度(以下、温度読み値という。)T1 180℃、定着ローラ中央実温度T0 270℃で90deg温度差がある。このように低めに検知することから、目標温度を維持しようとするとヒータを過剰に点灯させ、図5に示すように、定着ローラ中央実温度T0が270℃以上と高くなった。これが原因で定着部材破損(定着ローラと加圧ローラの溶着)が発生した。 The thermopile 4 detects the temperature at a low temperature due to dew condensation as shown in the portion 5 of FIG. As shown by the white arrow A in FIG. 5, there is a 90 deg temperature difference between the temperature corresponding to the thermopile temperature reading (hereinafter referred to as the temperature reading) T1 180 ° C. and the actual temperature at the center of the fixing roller T0 270 ° C. Since the detection is low as described above, the heater is excessively turned on when trying to maintain the target temperature, and as shown in FIG. 5, the actual temperature T0 at the center of the fixing roller becomes as high as 270 ° C. or higher. This caused damage to the fixing member (welding of the fixing roller and the pressure roller).

図3で示すように、環境温度が急激に変化してから時間が経過するのに伴ってサーモパイル部温度T2が上昇し、立ち上げ動作開始を遅らせるほど立ち上げ動作開始に伴う結露の量は減少する。よって、立ち上げ動作を遅らせるほど、開始後のサーモパイル温度読み値T1と定着ローラ中央実温度T0との温度差(以下、サーモパイル温度読み値・実温度温度差という。)は小さくなり、定着ローラ中央実温度T0が過剰に高くなるのは抑制でき、定着部材破損も避けることが可能となる。しかし、環境温度の遷移後、例えば2時間(2hr)くらい待たないとサーモパイル結露による定着部材破損を解消できないという問題が確認された。 As shown in FIG. 3, the thermopile temperature T2 rises as time elapses after the abrupt change in the environmental temperature, and the amount of dew condensation accompanying the start-up operation decreases as the start-up operation is delayed. To do. Therefore, as the start-up operation is delayed, the temperature difference between the thermopile temperature reading value T1 after the start and the actual temperature T0 at the center of the fixing roller (hereinafter referred to as the thermopile temperature reading value / actual temperature temperature difference) becomes smaller, and the center of the fixing roller becomes smaller. It is possible to suppress the actual temperature T0 from becoming excessively high, and it is possible to avoid damage to the fixing member. However, it has been confirmed that the damage to the fixing member due to the thermopile dew condensation cannot be resolved without waiting for about 2 hours (2 hr) after the transition of the environmental temperature.

この問題を解決する第一実施形態について説明する。本実施形態は、不具合を生じうるサーモパイル結露状況を検知したら、定着部材の損傷を防止するため、動作を停止させる制御方法である。図6は、その制御のフローチャートである。画像形成装置の電源投入後などの定着装置電源ON(通電開始)時に実行される。まず、立ち上げ動作を所定時間行い(S601)、その後、結露状況を検知し(S602)、不具合が生じる結露状態を検知(S602/Y)したら、異常停止(ヒータの点灯停止)する。不具合が生じる結露状態を検知しなかったら(S602/N)、立ち上げ動作を継続する。 A first embodiment for solving this problem will be described. This embodiment is a control method for stopping the operation in order to prevent damage to the fixing member when a thermopile dew condensation situation that may cause a problem is detected. FIG. 6 is a flowchart of the control. This is executed when the fixing device power is turned on (energization starts), such as after the power of the image forming device is turned on. First, the start-up operation is performed for a predetermined time (S601), then the dew condensation state is detected (S602), and when the dew condensation state in which a problem occurs (S602 / Y) is detected, an abnormal stop (heater lighting stop) is performed. If the dew condensation state that causes a problem is not detected (S602 / N), the start-up operation is continued.

結露状況の検知方法について2つの方法を説明する。
(1)機内外の温度差と、機内の相対湿度から検出する方式
図7に、結露に関係ある機内外の温度差と、機内相対湿度の関係を示している。縦軸は、図1の機外温度検出器13で検知した機外の雰囲気温度と機内温度検出器11で検知したサーモパイル部温度T2との差を示す。横軸は、図1の機内湿度検出器12で検出したサーモパイル部の雰囲気の相対湿度を示す。
Two methods will be described for detecting the dew condensation situation.
(1) Method of detecting from the temperature difference between the inside and outside of the machine and the relative humidity inside the machine FIG. 7 shows the relationship between the temperature difference inside and outside the machine related to dew condensation and the relative humidity inside the machine. The vertical axis shows the difference between the ambient temperature outside the machine detected by the outside temperature detector 13 in FIG. 1 and the thermopile temperature T2 detected by the inside temperature detector 11. The horizontal axis shows the relative humidity of the atmosphere of the thermopile portion detected by the in-flight humidity detector 12 of FIG.

機外温度20°Cという条件で機内・機外温度差が互いに異なる環境を用意し、各環境でさらに、種々の相対湿度の環境を用意し、定着立ち上げを行った場合の定着部材の損傷の有無を調べた結果を示している。□のドットは機外温度20°Cという条件での結露有無の境界上のものである。○のドットは定着部材の破損なし、×のドットは定着部材の破損ありである。 Under the condition that the outside temperature is 20 ° C, the environment where the temperature difference between the inside and outside of the machine is different is prepared, and the environment of various relative humidity is prepared in each environment, and the fixing member is damaged when the fixing is started. The result of examining the presence or absence of is shown. The dots in □ are on the boundary of the presence or absence of dew condensation under the condition that the outside temperature is 20 ° C. The ◯ dot indicates that the fixing member is not damaged, and the × dot indicates that the fixing member is damaged.

図7中、実線L71が、機外温度20°Cという条件での結露有無を示す境界線で次の(数1)で表される(単位: 機内外温度差(deg), 機内相対湿度(%))。
機内外温度差=−0.3*機内相対湿度+27 ・・・(数1)
In FIG. 7, the solid line L71 is a boundary line indicating the presence or absence of dew condensation under the condition that the outside temperature is 20 ° C, and is represented by the following (Equation 1) (unit: inside / outside temperature difference (deg), inside / outside relative humidity (unit: relative humidity inside the machine). %)).
Temperature difference between inside and outside the machine = -0.3 * Relative humidity inside the machine +27 ... (Equation 1)

この境界線は、図8に示すような湿り空気線図(図内%は相対湿度)から導かれるものである。結露を生じやすい冬場の一般的なオフィス環境を想定して20℃と条件としている。オフィス環境(温度17〜28℃∧湿度40〜70%:労働安全衛生法事務所衛生基準規則5条3項)においてはL71の線はほとんど変わらない。20℃のL71線に対して±1〜2℃程度のズレが生じるだけである。 This boundary line is derived from a psychrometric chart as shown in FIG. 8 (% in the figure is relative humidity). The condition is set to 20 ° C, assuming a general office environment in winter when dew condensation is likely to occur. In the office environment (temperature 17-28 ° C ∧ humidity 40-70%: Industrial Safety and Health Act Office Hygiene Standards Regulations Article 5.3), the L71 line is almost unchanged. Only a deviation of about ± 1 to 2 ° C. occurs with respect to the L71 line at 20 ° C.

破線L72が、定着部材破損の発生するサーモパイル温度読み値・実温度温度差が50deg以上となる線で次の(数2)で表される。この破線L72は図7に示す実験結果から求めたもてのである。少量の結露であれば少量の温度誤検知になるので破損には至らないが、サーモパイルと実温度との差が50degとなるポイント(L72上にある×のプロット)で初めて破損が発生し、それより上では高確率で破損が発生した。機外温度が20℃と異なる場合にも成立するのは上述のように、オフィス環境温度であれば結露発生の線はほとんど変わらず、シフトしたL72線上の結露レベルもほぼ変わらないからである。 The broken line L72 is a line in which the thermopile temperature reading / actual temperature temperature difference at which the fixing member is damaged is 50 deg or more, and is represented by the following (Equation 2). This broken line L72 is obtained from the experimental results shown in FIG. If a small amount of dew condensation occurs, a small amount of false detection of temperature will result in damage, but damage will occur only at the point where the difference between the thermopile and the actual temperature is 50 deg (the x plot on L72). Above that, there was a high probability of damage. This is true even when the outside temperature is different from 20 ° C. because, as described above, if the office environment temperature is used, the line where dew condensation occurs is almost the same, and the dew condensation level on the shifted L72 line is almost the same.

この装置では、サーモパイル温度読み値・実温度温度差が50deg以上となると、定着ローラ中央実温度T0が270℃以上になって定着部材が破損する。
機内外温度差=−0.3*機内相対湿度+35 ・・・(数2)
よって、機内外温度差>−0.3*機内相対湿度+35 の場合は定着部材破損が発生するため、ヒータ点灯を停止する。高温オフセット発生抑止のためには、(数1)と(数2)の間の境界線より上の領域ではヒータ点灯を停止する。
In this device, when the thermopile temperature reading / actual temperature temperature difference is 50 deg or more, the central actual temperature T0 of the fixing roller becomes 270 ° C. or more, and the fixing member is damaged.
Temperature difference between inside and outside of the machine = -0.3 * Relative humidity inside the machine +35 ... (Equation 2)
Therefore, if the temperature difference between the inside and outside of the machine is> -0.3 * relative humidity inside the machine +35, the fixing member will be damaged and the heater will stop lighting. In order to suppress the occurrence of high temperature offset, the heater lighting is stopped in the region above the boundary line between (Equation 1) and (Equation 2).

(2)サーモパイルと、サーミスタの所定時間の昇温量比(昇温勾配比)から検出する方式
サーモパイルは結露すると温度を低め検知するのに対し(温度による抵抗変化で温度検知する)サーミスタは結露しても温度誤検知しない。この点に着目し両者の検知温度の比較で結露状況を検知する方式を検討した。
(2) Method of detecting from the temperature rise ratio (temperature rise gradient ratio) between the thermopile and the thermistor for a predetermined time The thermopile detects when dew condensation occurs at a lower temperature, whereas the thermistor detects dew condensation (temperature is detected by the resistance change due to temperature). Even if it does, the temperature is not falsely detected. Focusing on this point, we examined a method to detect the dew condensation situation by comparing the detected temperatures of both.

図9は、図1,図2で示した定着器構成、つまり、軸方向中央をサーモパイル4で温度検知し、軸方向端部をサーミスタ9で温度検知する構成における、立ち上げ時の中央サーモパイル4の昇温特性L91と、端部サーミスタ9の昇温特性L92の例を示している。立ち上げスタートt0の後、まず、昇温勾配ΔTc、ΔTsが安定するまで、待ち時間Taだけ待ち、それに引き続き所定時間(昇温量検知時間Tb)の昇温量を検知する。待ち時間Ta,昇温量検知時間Tbの選定は以下の条件を満たすように設定する。 FIG. 9 shows the central thermopile 4 at startup in the fuser configuration shown in FIGS. 1 and 2, that is, the configuration in which the temperature is detected by the thermopile 4 at the center in the axial direction and the temperature is detected by the thermistor 9 at the end in the axial direction. An example of the temperature rise characteristic L91 of the above and the temperature rise characteristic L92 of the end thermistor 9 is shown. After the start-up start t0, first, the waiting time Ta is waited until the temperature rising gradients ΔTc and ΔTs are stabilized, and then the temperature rising amount for a predetermined time (heating amount detection time Tb) is detected. The waiting time Ta and the temperature rise detection time Tb are selected so as to satisfy the following conditions.

・定着装置の破損を防ぐには、定着装置が破損する温度(本装置では270℃)に到達する前にヒータ点灯を制御(出力低減、点灯停止等)する必要があるため、待ち時間Taと昇温量検知時間Tbの合計時間は長くとも15秒以内に設定する。昇温カーブの勾配を考慮すると10秒以内が好ましく、ヒータ点灯開始時の機内部品温度等のバラツキまで考慮すると7秒以内がさらに好ましい。 -In order to prevent damage to the fixing device, it is necessary to control the heater lighting (output reduction, lighting stop, etc.) before the temperature at which the fixing device is damaged (270 ° C in this device) is reached. The total time of the temperature rise detection time Tb is set within 15 seconds at the longest. Considering the gradient of the temperature rise curve, it is preferably within 10 seconds, and further preferably within 7 seconds in consideration of the variation in the temperature of the in-machine parts at the start of lighting the heater.

・昇温勾配が安定するまでには3〜5秒の時間が必要であるため、評価の上で待ち時間Taは3.6秒とした。
・昇温量検知時間Tbは上記を満たす範囲で任意に決めることができ、消費電力の観点からは短く設定する方が好ましいが、あまりに短すぎるとバラツキが大きくなるため、評価の上でTbは1.2秒とした。
-Since it takes 3 to 5 seconds for the temperature rise gradient to stabilize, the waiting time Ta was set to 3.6 seconds in the evaluation.
-The temperature rise detection time Tb can be arbitrarily determined within the range that satisfies the above, and it is preferable to set it short from the viewpoint of power consumption. It was set to 1.2 seconds.

図10は、昇温量検知時間Tbにおける中央サーモパイル4の昇温量(サーモパイル読み取値変化に対応する昇温量)と端部サーミスタ9の昇温量との比(以下、中央端部昇温度量比という。)と、サーモパイル温度読み値・実温度温度差との関係の例を示すグラフである。縦軸の中央端部昇温度量比は図9に示すΔTcとΔTsの比ΔTc/ΔTsであり、横軸のサーモパイル温度読み値・実温度温度差が0の場合(結露無しの場合)の中央端部昇温量比Aを1として規格化した値で示している。横軸のサーモパイル温度読み値・実温度温度差は結露度合いに対応する。 FIG. 10 shows the ratio of the temperature rise amount of the central thermopile 4 (the temperature rise amount corresponding to the change in the thermopile reading value) and the temperature rise amount of the end thermistor 9 at the temperature rise detection time Tb (hereinafter, the center end temperature rise temperature). It is a graph which shows an example of the relationship between a quantity ratio) and a thermopile temperature reading value / actual temperature temperature difference. The temperature rise ratio at the center end of the vertical axis is the ratio of ΔTc and ΔTs shown in FIG. 9, ΔTc / ΔTs, and the center when the thermopile temperature reading / actual temperature temperature difference on the horizontal axis is 0 (without condensation). It is shown as a standardized value with the end temperature rise ratio A as 1. The thermopile temperature reading and actual temperature temperature difference on the horizontal axis correspond to the degree of dew condensation.

種々の結露状況の定着装置について、待ち時間Ta=3.6s,昇温量検知時間Tb=1.2sと設定して検知を行った場合の結果を示している。横軸のサーモパイル温度読み値・実温度温度差が大きいほど結露の量が多く、縦軸の中央端部昇温度量比が小さくなる右下下がりの傾向が現れている。 The results are shown when the fixing device for various dew condensation conditions is detected by setting the waiting time Ta = 3.6 s and the temperature rise detection time Tb = 1.2 s. The larger the thermopile temperature reading / actual temperature temperature difference on the horizontal axis, the greater the amount of dew condensation, and the smaller the ratio of the temperature rise at the center end of the vertical axis, the lower the right.

図10の横軸のサーモパイル温度読み値・実温度温度差が0degより大の条件で結露するのであるが、サーモパイル温度読み値・実温度温度差50deg以上で、定着部材が破損する場合がある。よって、定着部材損傷発生する条件であるサーモパイル温度読み値・実温度温度差が50deg以上の中央端部昇温量比Bに対応する図10の縦軸の中端昇温量比の規格化値B/A 0.75以下で、異常検知停止(ヒータ点灯停止)を行うことで、定着部材損傷を防止することができる。サーモパイル温度読み値・実温度温度差が50deg以上という矢印A10で示す結露状況の閾値条件に代え、中端昇温量比の規格化が0.75以下という矢印B10で示す結露状況の閾値条件を用いて定着部材損傷防止を図るのである。 Condensation occurs under the condition that the thermopile temperature reading / actual temperature temperature difference on the horizontal axis of FIG. 10 is larger than 0 deg, but the fixing member may be damaged if the thermopile temperature reading / actual temperature temperature difference is 50 deg or more. Therefore, the normalized value of the temperature rise ratio at the middle end of the vertical axis of FIG. 10 corresponding to the temperature rise ratio B at the center end where the thermopile temperature reading / actual temperature temperature difference, which is a condition for causing damage to the fixing member, is 50 deg or more. Damage to the fixing member can be prevented by stopping the abnormality detection (stopping the heater lighting) at a B / A of 0.75 or less. Instead of the threshold condition of the dew condensation condition indicated by the arrow A10 that the thermopile temperature reading value / actual temperature temperature difference is 50 deg or more, the threshold condition of the dew condensation condition indicated by the arrow B10 that the standardization of the middle end temperature rise ratio is 0.75 or less is used. It is used to prevent damage to the fixing member.

また、温度差40deg以上の場合に、高温オフセットの画質不良が発生する場合は、1.2s間中端昇温量比規格化値B/Aが0.8以下の場合は異常検知停止(ヒータ点灯を止める)動作を行うことで、高温オフセットの画質不良発生を抑止することができる。 If the temperature difference is 40 deg or more and the image quality of the high temperature offset is poor, the abnormality detection is stopped when the standardized value B / A of the temperature rise ratio at the middle end for 1.2 s is 0.8 or less (heater). By performing the operation (stop lighting), it is possible to suppress the occurrence of poor image quality due to the high temperature offset.

以上の結果を基に、結露状況検出方法を反映し制御方法を、図11,図12に示した。
図11と図12は、図6の制御方法における結露状況検知(S602)として、(1)機内外の温度差と、機内の相対湿度から検出する方式と(2)サーモパイルと、サーミスタの所定時間の昇温量比(昇温勾配比)から検出する方式とを採用した例である。
Based on the above results, the control method reflecting the dew condensation status detection method is shown in FIGS. 11 and 12.
11 and 12 show the method of detecting the dew condensation condition (S602) in the control method of FIG. 6 from (1) the temperature difference between the inside and outside of the machine and the relative humidity inside the machine, (2) the thermopile, and the predetermined time of the thermistor. This is an example of adopting a method of detecting from the temperature rise ratio (heat temperature gradient ratio) of.

具体的には、図11の制御では、結露状況の検知(S112)を、(数1)であらわされる線以上であるか否か、すなわち、次の(数1)´が成立するか否かによって、定着部材破損につながるような異常な結露状況であるか否かを判断する。
機内外温度差>=−0.3*機内相対湿度+27 ・・・(数1)´
ただし、「>=」は以上を表す。
また、図12の制御では、結露状況の検知(S112)を、図10の閾値B9、すなわち、中端昇温量比の規格化値Bが結露無時の中央端部昇温量比Aの0.8倍以下か否かによって、高温オフセットの画質不良の発生につながるような異常な結露状況であるか否かを判断する。0.75倍以下か否かかによって、定着部材破損につながる結露状態か否かを判断して、このような異常な結露状態と判断したときに、ヒータの点灯を停止するようにてもよい。
Specifically, in the control of FIG. 11, whether or not the detection of the dew condensation state (S112) is equal to or greater than the line represented by (Equation 1), that is, whether or not the next (Equation 1)'is satisfied. It is determined whether or not there is an abnormal dew condensation situation that leads to damage to the fixing member.
Temperature difference between inside and outside of the machine> = -0.3 * Relative humidity inside the machine +27 ・ ・ ・ (Equation 1) ´
However, ">=" represents the above.
Further, in the control of FIG. 12, the detection of the dew condensation state (S112) is performed by the threshold value B9 of FIG. 10, that is, the normalized value B of the middle end temperature rise ratio is the central end temperature rise ratio A when there is no dew condensation. Whether or not it is 0.8 times or less determines whether or not there is an abnormal dew condensation condition that leads to the occurrence of poor image quality of the high temperature offset. Depending on whether or not it is 0.75 times or less, it may be determined whether or not there is a dew condensation state that leads to damage to the fixing member, and when such an abnormal dew condensation state is determined, the lighting of the heater may be stopped. ..

以上、第一実施形態の制御方法を用いることで、定着部材の破損を防止したり、高温オフセット発生を防止したりすることができる。なお、図10を用いて説明した例では、昇温量の比を用いたが、昇温量の差を用いてもよい。いずれも結露状況と対応関係を有する昇温量の開きを把握できる。さらに、昇温量ではなく、サーモパイルとサーミスタとの主力温度の開きを、両者の差や比によって把握するようにしてもよい。それぞれの場合に、用いる閾値を実験で求めることができる。 As described above, by using the control method of the first embodiment, it is possible to prevent the fixing member from being damaged and to prevent the occurrence of high temperature offset. In the example described with reference to FIG. 10, the ratio of the amount of temperature rise is used, but the difference in the amount of temperature rise may be used. In each case, it is possible to grasp the difference in the amount of temperature rise that corresponds to the dew condensation situation. Further, the difference in the main temperature between the thermopile and the thermistor may be grasped not by the amount of temperature rise but by the difference or ratio between the two. In each case, the threshold to be used can be determined experimentally.

次に,第二実施形態について説明する。第一実施形態では、結露状況を検知して、定着部材の損傷が懸念される条件で、異常検知停止(ヒータ点灯停止)して、結露が解消するまで待つ動作であった。この場合、上述のように2hr程度待つ必要があった。本実施形態では、その待ち時間を短縮するため、結露低減動作を行い、結露低減までの待ち時間を短縮するものである。 Next, the second embodiment will be described. In the first embodiment, the operation is to detect the dew condensation state, stop the abnormality detection (stop the heater lighting) under the condition that there is a concern about damage to the fixing member, and wait until the dew condensation disappears. In this case, it was necessary to wait for about 2 hours as described above. In the present embodiment, in order to shorten the waiting time, the dew condensation reduction operation is performed to shorten the waiting time until the dew condensation is reduced.

図13は、結露低減動作の説明図である。サーモパイル4の部分5の結露を考慮して定着部材破損しない定着ローラ1の目標温度を維持するよう、ヒータ3を点灯させながら定着ローラ1を加熱空転させる。定着ローラ1の熱を加圧ローラ2に逃がしながらヒータを点灯させつづけ、サーモパイル部の雰囲気温度を上げることで飽和水蒸気量を増し、サーモパイル部の雰囲気の相対湿度を低減させる。これにより、結露を低減する動作である。 FIG. 13 is an explanatory diagram of the dew condensation reduction operation. In consideration of dew condensation on the portion 5 of the thermopile 4, the fixing roller 1 is heated and idled while the heater 3 is turned on so as to maintain the target temperature of the fixing roller 1 that does not damage the fixing member. The heater is continuously lit while releasing the heat of the fixing roller 1 to the pressurizing roller 2, and the atmospheric temperature of the thermopile portion is raised to increase the saturated water vapor amount and reduce the relative humidity of the atmosphere of the thermopile portion. This is an operation of reducing dew condensation.

図14は、その制御のフローチャートである。画像形成装置の電源投入後などの定着装置電源ON(通電開始)時に実行される。まず、立ち上げ動作を所定時間行い(S141)、その後、結露状況を検知し(S142)、不具合が生じる結露状態を検知(S142/Y)したら、結露低減動作(S143)を所定時間経過するまで(S144/Y)で実行する。そして、所定時間の結露低減動作の実行後に、結露低減されているか判定する(S145)。 FIG. 14 is a flowchart of the control. This is executed when the fixing device power is turned on (energization starts), such as after the power of the image forming device is turned on. First, the start-up operation is performed for a predetermined time (S141), then the dew condensation situation is detected (S142), and when the dew condensation state in which a problem occurs (S142 / Y) is detected, the dew condensation reduction operation (S143) is performed until the predetermined time elapses. (S144 / Y) is executed. Then, after the dew condensation reduction operation is executed for a predetermined time, it is determined whether or not the dew condensation is reduced (S145).

結露低減していれば(S145/Y)、再度立ち上げ動作に入る(S141)。結露が低減していなければ(S145/N)、異常検知したものとしてヒータ点灯停止する(S147)。所定時間の立ち上げ動作後の結露状況の検知で不具合が生じる結露状態を検知しなかったら(S142/N)、定着装置電源ON後の立ち上げ動作を継続する(S146)。 If the dew condensation is reduced (S145 / Y), the start-up operation is started again (S141). If the dew condensation is not reduced (S145 / N), the heater is stopped on as if an abnormality has been detected (S147). If the dew condensation state that causes a problem is not detected in the detection of the dew condensation state after the start-up operation for a predetermined time (S142 / N), the start-up operation after the fixing device power is turned on is continued (S146).

S141、S142の所定の時間の立ち上げ動作や結露状態の検知は、図6の制御と同様に行うことができる。つまり、図7〜図12を用いて説明した所定の時間の立ち上げ動作や結露状態の検知方式を用いることができる。 The start-up operation of S141 and S142 for a predetermined time and the detection of the dew condensation state can be performed in the same manner as in the control of FIG. That is, the start-up operation and the dew condensation state detection method for a predetermined time described with reference to FIGS. 7 to 12 can be used.

図15に、結露低減動作実施時のサーモパイル温度読み値と実温度の変化を示した。横軸と、左側の縦軸とは、図5におけると同様である。つまり、横軸が立ち上げ後の経過時間(秒、s)を示す。左側の縦軸が定着ローラ中央実温度T0とサーモパイル4の読み取り値T1の温度目盛り(°C)、および、中央加熱ヒータ3aのデューティ(%)である。加えて、この図16では、左側の縦軸が機外雰囲気温度Taとサーモパイル部温度T2の温度目盛りでもある。更に、定着ローラ軸方向中央の目標温度T1´と定着ローラ内の中央加熱ヒータ3aのデューティ(Duty)も示している。定着ローラ中央実温度T0は、実験により熱電対を用いて測定した定着ローラ軸方向中央の温度である。 FIG. 15 shows changes in the thermopile temperature reading and the actual temperature when the dew condensation reduction operation was performed. The horizontal axis and the vertical axis on the left side are the same as in FIG. That is, the horizontal axis indicates the elapsed time (seconds, s) after the start-up. The vertical axis on the left side is the temperature scale (° C) of the actual temperature T0 at the center of the fixing roller and the reading T1 of the thermopile 4, and the duty (%) of the central heater 3a. In addition, in FIG. 16, the vertical axis on the left side is also the temperature scale of the outside atmosphere temperature Ta and the thermopile portion temperature T2. Further, the target temperature T1'at the center in the axial direction of the fixing roller and the duty of the central heating heater 3a in the fixing roller are also shown. The actual temperature T0 at the center of the fixing roller is the temperature at the center of the fixing roller in the axial direction measured by an experiment using a thermocouple.

時刻t15は結露異常検知を行う時点を示す。電源ON後の所定時間の立ち上げ後であるので、実施形態1と同様に、例えば、待ち時間Ta=3.6s,昇温量検知時間Tb=1.2sと設定して検知を行った場合は電源ON後の4.8s経過の時点である。この時刻t14から結露低減動作を時間z(s)、たとえば、580sだけ行う。結露低減動作開始後は、サーモパイル温度読み値T1が120℃程度、実温度T0がmax 180℃程度で、60deg程度の温度差があったものが、時間400s付近から、サーモパイル温度読み値T1が、定着ローラの実温度T0に近づいて結露低減している(A15の符号を付した○の領域参照)。そのときのサーモパイル部温度T2,機外雰囲気温度Taを下方に示したが、サーモパイル部温度T2が機外雰囲気温度Ta+20deg程度まで昇温している(B15の符号を付した○の領域参照)。 The time t15 indicates the time when the dew condensation abnormality is detected. Since it is after the startup for a predetermined time after the power is turned on, for example, when the waiting time Ta = 3.6 s and the temperature rise amount detection time Tb = 1.2 s are set and the detection is performed as in the first embodiment. Is the time point when 4.8 seconds have passed since the power was turned on. From this time t14, the dew condensation reduction operation is performed for time z (s), for example, 580 s. After the dew condensation reduction operation was started, the thermopile temperature reading T1 was about 120 ° C., the actual temperature T0 was about 180 ° C., and there was a temperature difference of about 60 deg. Condensation is reduced as it approaches the actual temperature T0 of the fixing roller (see the area marked with a circle A15). The thermopile temperature T2 and the outside atmosphere temperature Ta at that time are shown below, but the thermopile temperature T2 has risen to about the outside atmosphere temperature Ta + 20 deg (see the area marked with a circle B15).

結露低減動作中は実温度が、230℃以下になるように目標温度を120°Cと設定することで、定着部材の損傷を防止している。また、中央ヒータは点灯デューティをmax50%に抑制することで、ヒータ点灯を低減している。結露低減動作中の目標温度を120°Cよりも高くすることで、さらに短時間で回復することができるが、実温度が270°Cで定着装置が破損してしまうこと、及び、結露状態では測定誤差が90deg程度生じうることから、目標温度は最大でも180°C以下にすることが好ましい。なお、結露低減動作を行った結果、結露が許容される程度に軽減あるいは解消していると判定して再度立ち上げ動作に入る場合には、図15に示すようにそれまでの中央ヒータの点灯デューティをmax50%に抑制していたのを解除し、max50%にしてもよい。つまり、熱源の出力を結露低減動作中よりも増加させてもよい。 During the dew condensation reduction operation, the target temperature is set to 120 ° C so that the actual temperature is 230 ° C or lower, thereby preventing damage to the fixing member. Further, the central heater reduces the lighting of the heater by suppressing the lighting duty to a maximum of 50%. By setting the target temperature during the dew condensation reduction operation higher than 120 ° C, it can be recovered in a shorter time, but the fixing device is damaged when the actual temperature is 270 ° C, and in the dew condensation state. Since a measurement error of about 90 deg can occur, the target temperature is preferably 180 ° C or less at the maximum. As a result of performing the dew condensation reduction operation, when it is determined that the dew condensation has been reduced or eliminated to an allowable extent and the start-up operation is started again, the central heater up to that point is turned on as shown in FIG. The duty may be released from suppressing the duty to max 50% and may be set to max 50%. That is, the output of the heat source may be increased as compared with that during the dew condensation reduction operation.

図16に、結露低減動作時間とサーモパイル部の温度上昇量・機外温度の関係を示した。結露低減するには、サーモパイル部温度T2を機外雰囲気温度Taに対してx(deg)以上に上げる必要があり、所定時間z(s)だけ定着ローラ1を回転させることで、サーモパイル部温度T2はy(deg)上昇する。よって、環境温度昇温後の温度(ex25℃)−(y−x)>T3となるような、温度T3から立ち上げた場合は、所定時間z(s)回転を行っても結露解消できない。従って、そのような場合は、結露軽減動作を所定時間行った後、結露軽減を確認し、異常(経路軽減不十分)と判定し(S135/N)、ヒータ点灯を停止させる(S137)ことになる。これが図14の制御方法で異常検知停止する条件(S135/N)である。 FIG. 16 shows the relationship between the dew condensation reduction operation time, the amount of temperature rise in the thermopile portion, and the outside temperature. In order to reduce dew condensation, it is necessary to raise the thermopile temperature T2 to x (deg) or more with respect to the outside atmosphere temperature Ta, and by rotating the fixing roller 1 for a predetermined time z (s), the thermopile temperature T2 Rise by y (deg). Therefore, when the temperature is raised from the temperature T3 such that the temperature (ex 25 ° C.) − (y−x)> T3 after the temperature rise of the environmental temperature, the dew condensation cannot be eliminated even if the rotation is performed for a predetermined time z (s). Therefore, in such a case, after performing the dew condensation reduction operation for a predetermined time, the dew condensation reduction is confirmed, it is determined that there is an abnormality (path reduction is insufficient) (S135 / N), and the heater lighting is stopped (S137). Become. This is the condition (S135 / N) for stopping the abnormality detection by the control method shown in FIG.

図17は横軸に結露低減動作の所定時間z(s)の継続時間を取り、縦軸にサーモパイル部温度T2の昇温量(deg)を取り、次のような各種のマシン非通電時環境温度変化後に結露軽減動作を行った場合の、両者の関係をプロットしたものである。a1は−10°Cから25°Cまで1時間当たり20degの昇温スピードで昇温した環境温度変化である。これを略して、−10°C25°C20deg/hと表記するものとすると、他は次のようになる。b1は10°C40°C20deg/h、c1は−5°C23°C20deg/h、d1は−30°C23°C8h(8時間で23°Cまで昇温)、e1は−10°C10°C20deg/hである。補助線L16のように、いずれの環境温度変化後であっても、横軸の結露低減動作時間が長いほど縦軸のサーモパイル部温度T2の昇温量(deg)が大きくなる。 In FIG. 17, the horizontal axis represents the duration of the dew condensation reduction operation for a predetermined time z (s), and the vertical axis represents the temperature rise amount (deg) of the thermopile portion temperature T2. This is a plot of the relationship between the two when the dew condensation reduction operation is performed after the temperature changes. a1 is an environmental temperature change in which the temperature is raised from −10 ° C. to 25 ° C. at a heating rate of 20 deg per hour. If this is abbreviated and expressed as −10 ° C25 ° C20deg / h, the others are as follows. b1 is 10 ° C40 ° C20deg / h, c1 is -5 ° C23 ° C20deg / h, d1 is -30 ° C23 ° C8h (heated to 23 ° C in 8 hours), and e1 is -10 ° C10 ° C20deg /. h. As in the auxiliary line L16, the longer the dew condensation reduction operation time on the horizontal axis is, the larger the temperature rise (deg) of the thermopile portion temperature T2 on the vertical axis is after any change in the environmental temperature.

図18は横軸に機外雰囲気温度Ta(°C)を取り、縦軸に結露低減動作後のサーモパイル部温度T2(°C)を取り、両者の関係をプロットしてものである。横軸の機外雰囲気温度Taは10°C、23°C、25°C、40°Cの4つの機外雰囲気温度Taでの実験である。この4つの機外雰囲気温度Taは、図17の5つの環境温度変化a1〜e1に対応している。10°C以外の雰囲気温度では複数のドットが存在する。これは、図17に示すように結露動作時間を異ならせて実験したり、同じ時間で複数回実験したりし、そのときの縦軸にあるサーモパイル部温度T2の測定したものである。 In FIG. 18, the horizontal axis represents the outside atmosphere temperature Ta (° C), and the vertical axis represents the thermopile temperature T2 (° C) after the dew condensation reduction operation, and the relationship between the two is plotted. The outside atmosphere temperature Ta on the horizontal axis is an experiment at four outside atmosphere temperatures Ta of 10 ° C, 23 ° C, 25 ° C, and 40 ° C. These four external atmosphere temperatures Ta correspond to the five environmental temperature changes a1 to e1 in FIG. There are a plurality of dots at an ambient temperature other than 10 ° C. As shown in FIG. 17, this is an experiment in which the dew condensation operation time is different, or an experiment is performed a plurality of times at the same time, and the thermopile portion temperature T2 on the vertical axis at that time is measured.

各プロットに対応する実験について、サーモパイル温度読み値・実温度温度差の次の区分を符号a2、b2、c2で示している。つまり、サーモパイル温度読み値・実温度温度差が、a2は50deg以上、b2は31〜50deg、c2は30deg以下である。補助線L181はT2=Taの直線、補助線L182はT2=Ta+20(deg)の直線である。この装置で定着ローラ中央実温度T0が270℃以上になって定着部材破損するサーモパイル温度読み値・実温度温度差50deg以上は、補助線L182を含みこれより図中上方では生じていない。 For the experiments corresponding to each plot, the following categories of thermopile temperature reading and actual temperature temperature difference are indicated by reference numerals a2, b2, and c2. That is, the thermopile temperature reading / actual temperature temperature difference is 50 deg or more for a2, 31 to 50 deg for b2, and 30 deg or less for c2. The auxiliary line L181 is a straight line of T2 = Ta, and the auxiliary line L182 is a straight line of T2 = Ta + 20 (deg). In this device, the thermopile temperature reading value / actual temperature temperature difference of 50 deg or more, in which the central actual temperature T0 of the fixing roller becomes 270 ° C. or higher and the fixing member is damaged, includes the auxiliary line L182 and does not occur in the upper part of the figure.

以上、図17及び図18の確認結果から、図17にX17の矢印で差し示す、所定時間z=580s空転で、上昇y=35degの結露低減動作により、サーモパイル部温度T2>機外雰囲気温度Ta+20deg(=x) とする。 As described above, based on the confirmation results of FIGS. 17 and 18, the thermopile temperature T2> the outside atmosphere temperature Ta + 20 deg due to the dew condensation reduction operation of the rise y = 35 deg at the predetermined time z = 580 s idling indicated by the arrow X17 in FIG. Let (= x).

図17で、x=20deg以上で結露低減され、図15を参照すると、サーモパイル部温度=環境温度+x−y (℃)以上の場合は結露低減動作で結露低減できることになる。上昇y=35degであれば、環境温度−15deg以上で結露低減動作で結露低減できることになり、多くの甚大結露状態で結露低減できる。これより低い温度の場合は、結露NGの判定を出して、ユーザーにはお待ちいただく装置動作になっても問題ないと考え、そのしきい値として、y=35degとしたものである。どこまで甚大な結露を結露低減動作で救済するかという条件として決めたものである。 In FIG. 17, dew condensation is reduced when x = 20 deg or more, and referring to FIG. 15, when the thermopile portion temperature = environmental temperature + xy (° C.) or more, dew condensation can be reduced by the dew condensation reduction operation. If the increase y = 35 deg, the dew condensation can be reduced by the dew condensation reduction operation at an environmental temperature of −15 deg or more, and the dew condensation can be reduced in many large dew condensation states. If the temperature is lower than this, it is considered that there is no problem even if the device is operated to wait for the user by judging that the dew condensation is NG, and y = 35 deg is set as the threshold value. It was decided as a condition of how much dew condensation should be relieved by the dew condensation reduction operation.

以上、第二実施形態によれば、第一実施形態でサーモパイル結露時に2hr程度待つ必要があったものが、10min程度(=580s)の結露低減動作を行うことで、結露低減されて、機械が立ち上げ可能になった。 As described above, according to the second embodiment, what had to wait for about 2 hr at the time of thermopile dew condensation in the first embodiment is reduced by performing a dew condensation reduction operation for about 10 minutes (= 580 s), and the machine is reduced. It became possible to start up.

図14の制御方法で、結露低減動作終了時に行う結露低減確認(a135)の具体例を、図19,図20,図21に示す。図19に示したサーモパイル部温度T2(図13の機内温度検出器11)と、機外雰囲気温度Ta(機外温度検出器13)の温度差から判定する。サーモパイル部温度T2−機外雰囲気温度Ta>=20degであれば、低減確認とし、それ以外低減確認できずとする。 A specific example of the dew condensation reduction confirmation (a135) performed at the end of the dew condensation reduction operation by the control method of FIG. 14 is shown in FIGS. 19, 20, and 21. Judgment is made from the temperature difference between the thermopile portion temperature T2 (internal temperature detector 11 in FIG. 13) and the external atmosphere temperature Ta (external temperature detector 13) shown in FIG. If the thermopile part temperature T2-external atmosphere temperature Ta> = 20 deg, the reduction is confirmed, and the reduction cannot be confirmed otherwise.

図20は、図15に示した結露が低減あるいは解消されてサーモパイル部温度T2が昇温したことの確認を、サーモパイル温度読み値T1が所定時間所定温度以上であること(読み値が上がりだしたこと)を検知することで行う。この更に具体例は後に説明する。図21は、結露低減検知をサーモパイル部周辺に設けた温度検出器11、湿度検出器12それぞれの出力と、機外温度検出器13の出力とを基に行うことにより、図7の結露領域、もしくは、サーモパイル温度読み値・実温度温度差50deg以上の定着部材損傷領域から、脱したことを検知して、結露低減確認する。図21ではこのうち、(数2)に対応する後者の例を示している。 FIG. 20 shows that the thermopile temperature reading value T1 is equal to or higher than the predetermined temperature for a predetermined time (the reading value has started to increase) to confirm that the dew condensation shown in FIG. 15 has been reduced or eliminated and the thermopile portion temperature T2 has risen. That) is detected. A further specific example of this will be described later. FIG. 21 shows the dew condensation region of FIG. 7 by performing dew condensation reduction detection based on the output of each of the temperature detector 11 and the humidity detector 12 provided around the thermopile portion and the output of the external temperature detector 13. Alternatively, it is detected that the thermopile has come off from the damaged region of the fixing member having a temperature difference of 50 deg or more between the thermopile temperature reading value and the actual temperature, and the reduction of dew condensation is confirmed. Of these, FIG. 21 shows an example of the latter corresponding to (Equation 2).

図20で説明したサーモパイル温度読み値T1の上りだし(図15のサーモパイル温度読み値T1の上りだし)の検知方法について図22,図23を用いて説明する。図22に示す結露低減動作580sの最後の30s間のサーモパイル温度読み値T1の変化の一例を示すものである。時刻t22は結露低減動作の終了時点示す。補助線T10はこの30s間の最低温度、補助線T11は目標温度を示す。図23は、種々の結露状態の装置について検出した最後30s間のサーモパイル温度読み値T1の最低値T10と、その結露低減動作後のヒータ点灯動作実施後のサーモパイル温度読み値・実温度温度差との関係を示したものである。 The method of detecting the rise of the thermopile temperature reading value T1 described with reference to FIG. 20 (the rise of the thermopile temperature reading value T1 of FIG. 15) will be described with reference to FIGS. 22 and 23. An example of the change in the thermopile temperature reading T1 during the last 30 s of the dew condensation reduction operation 580 s shown in FIG. 22 is shown. Time t22 indicates the end time point of the dew condensation reduction operation. The auxiliary line T10 indicates the minimum temperature during the 30s, and the auxiliary line T11 indicates the target temperature. FIG. 23 shows the minimum value T10 of the thermopile temperature reading value T1 detected for the devices in various dew condensation states during the last 30 seconds, and the thermopile temperature reading value / actual temperature temperature difference after the heater lighting operation is performed after the dew condensation reduction operation. It shows the relationship between.

図23から、結露軽減動作のサーモパイル4の目標温度120°Cに対して、結露軽減動作最後の30s間の最低温度T10が124°C以上(4deg以上温度上昇した条件)であれば、その後ヒータ点灯動作開始後のサーモパイル温度読み値・実温度温度差が最大40degであり、50deg以下とできることがわかる。つまり、結露軽減動作最後の30s間の最低温度T10がサーモパイル4の目標温度に対して4deg以上温度上昇したか否かによって結露低減があったか否かを判断できる。図24はその判断のフローを示す。 From FIG. 23, if the minimum temperature T10 during the last 30 seconds of the dew condensation reduction operation is 124 ° C or more (condition that the temperature has risen by 4 deg or more) with respect to the target temperature of 120 ° C of the thermopile 4 in the dew condensation reduction operation, then the heater It can be seen that the thermopile temperature reading value / actual temperature temperature difference after the start of the lighting operation is 40 deg at the maximum, and can be 50 deg or less. That is, it can be determined whether or not the dew condensation has been reduced depending on whether or not the minimum temperature T10 during the last 30 seconds of the dew condensation reduction operation has risen by 4 deg or more with respect to the target temperature of the thermopile 4. FIG. 24 shows the flow of the determination.

次に第三実施形態について説明する。第二実施形態で説明した結露解消動作の時間をさらに短縮するものである。第三実施形態の制御方法は、結露低減動作を開始したら所定時間しつづけることなく、結露低減確認を随時行い、確認できたら結露低減動作を終了するようにする。 Next, the third embodiment will be described. The time for the dew condensation eliminating operation described in the second embodiment is further shortened. In the control method of the third embodiment, once the dew condensation reduction operation is started, the dew condensation reduction operation is confirmed at any time without continuing for a predetermined time, and when the dew condensation reduction operation is confirmed, the dew condensation reduction operation is terminated.

例えば、図15の温度変化では、580s結露解消動作を行っているが、たとえば、500s時点で、サーモパイル部温度(45℃)が機外温度(25℃)+20deg以上になったため、結露解消動作を終了しても、定着部材損傷のない立ち上げ動作を実現することができる。 For example, in the temperature change of FIG. 15, the dew condensation elimination operation is performed for 580 s. For example, at 500 s, the thermopile part temperature (45 ° C.) becomes the outside temperature (25 ° C.) + 20 deg or more, so that the dew condensation elimination operation is performed. Even after the completion, it is possible to realize a start-up operation without damaging the fixing member.

図25は第三実施形態の制御例のフローチャートである。図14の制御との違いは、次のとおりである。図14では結露軽減動作を所定時間実施してから(S144/Y)、サーモパイル結露軽減確認を行い(S145)確認できたら再度立ち上げ動作に戻る(S141)。これに対し、図25では、結露軽減動作を開始したら経路低減確認を、所定の空転時間の上限が到達する(S255/Y)まで繰り返し、確認できた時点で加熱空転動作を終了し(S256)て、再度立ち上げ動作に入る(S251)。そして、図25では、結露軽減を確認できることなく所定の空転時間の上限に達したら(S255/Y)、異常検知停止(ヒータ点灯停止)を行う(S258)。 FIG. 25 is a flowchart of a control example of the third embodiment. The difference from the control of FIG. 14 is as follows. In FIG. 14, after the dew condensation reduction operation is performed for a predetermined time (S144 / Y), the thermopile dew condensation reduction confirmation is performed (S145), and when the confirmation is confirmed, the start-up operation is resumed (S141). On the other hand, in FIG. 25, when the dew condensation reduction operation is started, the path reduction confirmation is repeated until the upper limit of the predetermined idling time is reached (S255 / Y), and when the confirmation is confirmed, the heating idling operation is terminated (S256). Then, the start-up operation is started again (S251). Then, in FIG. 25, when the upper limit of the predetermined idling time is reached without confirming the reduction of dew condensation (S255 / Y), the abnormality detection stop (heater lighting stop) is performed (S258).

このフローチャートにおける結露低減確認は、図19,図20,図21,図24で示した制御方法を用いることができる。図26は、図21の確認方法を用いた場合のフローチャートである。結露解消の検知を、機内外温度差vs機内相対湿度関係から決めることで、早期に結露解消検知を行い、結露解消動作を終了する制御である。 For the confirmation of dew condensation reduction in this flowchart, the control methods shown in FIGS. 19, 20, 21, and 24 can be used. FIG. 26 is a flowchart when the confirmation method of FIG. 21 is used. By determining the detection of dew condensation elimination from the temperature difference between the inside and outside of the machine vs. the relative humidity inside the machine, the dew condensation elimination detection is performed at an early stage and the dew condensation elimination operation is terminated.

以上、各実施形態によれば、環境温度の低温環境から急激に上がる場合に、定着部材の損傷なく、短い時間で立ち上げ可能とすることができる。 As described above, according to each embodiment, it is possible to start up in a short time without damaging the fixing member when the temperature rises sharply from the low temperature environment.

図27は各実施形態に係る定着装置を用いることができる画像形成装置の一例を示すものである。この画像形成装置100は、像担持体としての感光体ドラム110を備えた電子写真方式でプリンタである。感光体ドラム110は帯電装置120で一様に帯電され、画像情報に基づいたレーザ光等の露光光が、書込装置130から感光体ドラム110に照射され、静電潜像が形成される。静電潜像は、現像装置140で現像されトナー像とされる。このトナー像が、給紙カセット150から給紙ローラ151で給紙され、レジストローラ152で送り込まれた転写紙Pに転写装置160にて転写される。トナー像が転写された転写紙は、定着装置170で定着された後、排紙ローラ180にて排紙トレイ181上に排紙される。転写後の感光体ドラム110はクリーニング装置190で残留トナーなどが除去されて次の作像に備えられる。 FIG. 27 shows an example of an image forming apparatus that can use the fixing apparatus according to each embodiment. The image forming apparatus 100 is an electrophotographic printer equipped with a photoconductor drum 110 as an image carrier. The photoconductor drum 110 is uniformly charged by the charging device 120, and exposure light such as a laser beam based on image information is applied to the photoconductor drum 110 from the writing device 130 to form an electrostatic latent image. The electrostatic latent image is developed by the developing device 140 to be a toner image. This toner image is fed from the paper feed cassette 150 by the paper feed roller 151, and is transferred by the transfer device 160 to the transfer paper P fed by the resist roller 152. The transfer paper on which the toner image is transferred is fixed by the fixing device 170 and then discharged onto the paper ejection tray 181 by the paper ejection roller 180. After the transfer, the photoconductor drum 110 is prepared for the next image after the residual toner and the like are removed by the cleaning device 190.

図28は定着装置170の電装部の構成例である。定着装置あるいは画像形成装置の制御装置200には、サーモパイル4、端部サーミスタ9、機内温度検出器11、機内湿度検出器12、機外温度検出器13、機外湿度検出器14などが接続され、これらの出力が入力される。また制御装置200には、定着ローラ1を回転駆動するモータ211の制御回路210や、中央加熱ヒータ3aや端部加熱ヒータ3bの駆動回路220も接続され、これらに対し制御信号が出力される。上述の各種制御のためのプログラムなどが制御装置200の記録部などに記憶されている。 FIG. 28 is a configuration example of the electrical component of the fixing device 170. A thermopile 4, an end thermistor 9, an in-flight temperature detector 11, an in-flight humidity detector 12, an external temperature detector 13, an external humidity detector 14, and the like are connected to the control device 200 of the fixing device or the image forming device. , These outputs are input. Further, the control circuit 210 of the motor 211 that rotationally drives the fixing roller 1 and the drive circuit 220 of the central heating heater 3a and the end heating heater 3b are also connected to the control device 200, and control signals are output to these. The above-mentioned programs for various controls are stored in a recording unit or the like of the control device 200.

1 :定着ローラ
2 :加圧ローラ
3 :ヒータ
3a :中央加熱ヒータ
3b :端部加熱ヒータ
4 :サーモパイル
9 :端部サーミスタ
11 :機内温度検出器
12 :機内湿度検出器
13 :機外温度検出器
14 :機外湿度検出器
100a :画像形成装置ケース
170a :定着器ケース
200 :制御装置
210 :制御回路
211 :モータ
220 :駆動回路
T :サーモパイル部温度
T0 :定着ローラ中央実温度
T1 :サーモパイル温度読み値
T10 :最低温度
T1´ :目標温度
T2 :サーモパイル部温度
Ta :機外雰囲気温度
Tb :昇温量検知時間
a1 :環境温度変化
t0 :立ち上げスタート
vs :機内外温度差
y :上昇
z :所定時間
ΔTc :昇温勾配
1: Fixing roller 2: Pressurizing roller 3: Heater 3a: Central heater 3b: End heater 4: Thermopile 9: End thermistor 11: In-flight temperature detector 12: In-flight humidity detector 13: External temperature detector 14: External humidity detector 100a: Image forming device case 170a: Fixer case 200: Control device 210: Control circuit 211: Motor 220: Drive circuit T: Thermopile part temperature T0: Fixing roller center actual temperature T1: Thermopile temperature reading Value T10: Minimum temperature T1': Target temperature T2: Thermopile part temperature Ta: Outside atmosphere temperature Tb: Temperature rise detection time a1: Environmental temperature change t0: Start-up start vs: Inside-outside temperature difference y: Rise z: Predetermined Time ΔTc: Temperature rise gradient

特開2010−72329号公報Japanese Unexamined Patent Publication No. 2010-72329 特開2006−145968号公報Japanese Unexamined Patent Publication No. 2006-145966

Claims (23)

熱源と、定着部材と、加圧部材と、定着部材表面又は加圧部材表面より発生する赤外線を検知して温度測定する赤外線温度検知手段とを有し、
熱源の点灯開始から10秒以内の所定時間の経過後に、前記赤外線温度検知手段の出力と前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段の出力の関係、又は、前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍温度を検知する温度検知手段の出力と外気温度検知手段の出力の関係、又は、前記赤外線の近傍温度検知手段の出力と外気温度検知手段の出力と外気湿度検知手段の出力の関係、のいずれかが所定の関係を満たした場合に、前記熱源の点灯を継続するか、前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動、前記熱源の出力低減、又は、前記熱源の点灯停止、を行うかを選択することを特徴とする定着装置。
It has a heat source, a fixing member, a pressurizing member, and an infrared temperature detecting means that detects infrared rays generated from the surface of the fixing member or the surface of the pressurizing member and measures the temperature.
After a lapse of a predetermined time within 10 seconds from the start of lighting of the heat source, the relationship between the output of the infrared temperature detecting means and the output of the surface temperature detecting means of another fixing member or pressure member other than the infrared temperature detecting means, or The relationship between the output of the infrared temperature detecting means or the temperature detecting means for detecting the vicinity temperature of the infrared temperature detecting means and the output of the outside air temperature detecting means, or the output of the infrared near temperature detecting means and the output of the outside air temperature detecting means. When any of the relationship between the output of the outside air humidity detecting means and the output of the outside air humidity detecting means satisfies a predetermined relationship, the heat source is continuously lit, or the fixing member and the pressurizing member are driven while the heat source is lit. A fixing device comprising selecting whether to reduce the output of the heat source or stop lighting the heat source.
請求項1に記載の定着装置であって、
前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段を有し、
前記所定時間の経過後を起点とし、起点から1〜5秒で設定した設定時間の経過中の前記赤外線温度検知手段の出力温度の昇温量と、前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段の出力温度の昇温量との開きが閾値を超えた場合に、
前記熱源の出力低減、前記熱源の点灯停止、又は、前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動、を行うことを特徴とする定着装置。
The fixing device according to claim 1.
It has a surface temperature detecting means of another fixing member or a pressurizing member which is not the infrared temperature detecting means.
Starting from the elapse of the predetermined time, the amount of temperature rise of the output temperature of the infrared temperature detecting means during the elapse of the set time set from the starting point to 1 to 5 seconds, and other fixing members other than the infrared temperature detecting means. Or, when the difference between the output temperature of the surface temperature detecting means of the pressurizing member and the amount of temperature rise exceeds the threshold value.
A fixing device characterized in that the output of the heat source is reduced, the lighting of the heat source is stopped, or the fixing member and the pressurizing member are driven while the heat source is lit.
請求項2の定着装置であって、
前記開きが閾値を超えたか否かを、前記昇温量の差分が閾値を超えたか否かで判断することを特徴とする定着装置。
The fixing device according to claim 2.
A fixing device characterized in that it is determined whether or not the opening exceeds a threshold value based on whether or not the difference in the amount of temperature rise exceeds the threshold value.
請求項3の定着装置であって、
前記閾値が40deg〜50degの設定値
であることを特徴とする定着装置。
The fixing device according to claim 3
A fixing device characterized in that the threshold value is a set value of 40 deg to 50 deg.
請求項2の定着装置であって、
前記開きが閾値を超えたか否かを、前記昇温量の比が閾値を超えたか否かで判断することを特徴とする定着装置。
The fixing device according to claim 2.
A fixing device characterized in that it is determined whether or not the opening exceeds a threshold value based on whether or not the ratio of the amount of temperature rise exceeds the threshold value.
請求項5の定着装置であって、
(前記赤外線温度検知手段の昇温量/前記他の温度検知手段の昇温量)/(液滴付着無し時の前記赤外線温度検知手段の昇温量/前記他の温度検知手段の昇温量)≦0.75〜0.8の設定値
を満たす場合に閾値を超えたと判断することを特徴とする定着装置。
The fixing device according to claim 5.
(Amount of temperature rise of the infrared temperature detecting means / Amount of temperature rise of the other temperature detecting means) / (Amount of temperature rise of the infrared temperature detecting means when no droplets are attached / Amount of temperature rise of the other temperature detecting means) ) A fixing device characterized in that it is determined that the threshold value has been exceeded when the set value of ≤0.75 to 0.8 is satisfied.
請求項1に記載の定着装置であって、
前記定着部材表面若しくは加圧部材表面の温度を検知する前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段を有し、
前記赤外線温度検知手段の出力温度と、前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段の出力温度との開きが閾値を超えた場合に、
前記熱源の出力低減、前記熱源の点灯停止、又は、前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動、を行うことを特徴とする定着装置。
The fixing device according to claim 1.
It has a surface temperature detecting means of another fixing member or a pressing member other than the infrared temperature detecting means for detecting the temperature of the surface of the fixing member or the surface of the pressurizing member.
When the difference between the output temperature of the infrared temperature detecting means and the output temperature of the surface temperature detecting means of another fixing member or pressurizing member other than the infrared temperature detecting means exceeds the threshold value.
A fixing device characterized in that the output of the heat source is reduced, the lighting of the heat source is stopped, or the fixing member and the pressurizing member are driven while the heat source is lit.
請求項7の定着装置であって、
前記開きが閾値を超えたか否かを、前記出力温度の差分が閾値を超えたか否かで判断することを特徴とする定着装置。
The fixing device according to claim 7.
A fixing device characterized in that it is determined whether or not the opening exceeds a threshold value based on whether or not the difference in output temperature exceeds the threshold value.
請求項7の定着装置であって、
前記開きが閾値を超えたか否かを、前記出力温度の比が閾値を超えたか否かで判断することを特徴とする定着装置。
The fixing device according to claim 7.
A fixing device for determining whether or not the opening exceeds a threshold value based on whether or not the ratio of the output temperatures exceeds the threshold value.
請求項1に記載の定着装置であって、
赤外線温度検知手段又は赤外線温度検知手段の近傍の温度A(deg)を検知する温度A検知手段と、前記赤外線温度検知手段の近傍の湿度B(%)を検知する湿度B検知手段と、機外又は機外近傍の温度C(deg)を検知する温度C検知手段とを有し、
C−A+0.3×B≧27〜35内の設定値
の関係を満たした場合に、前記熱源の出力低減、前記熱源の点灯停止、又は、前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動、を行うことを特徴とする定着装置。
The fixing device according to claim 1.
Temperature A detecting means for detecting temperature A (deg) in the vicinity of the infrared temperature detecting means or the infrared temperature detecting means, humidity B detecting means for detecting the humidity B (%) in the vicinity of the infrared temperature detecting means, and outside the machine. Alternatively, it has a temperature C detecting means for detecting a temperature C (deg) near the outside of the machine.
When the relationship of the set values within CA + 0.3 × B ≧ 27 to 35 is satisfied, the output of the heat source is reduced, the lighting of the heat source is stopped, or the fixing member and the addition while lighting the heat source. A fixing device characterized by driving a pressure member.
請求項1から10のいずれかに記載の定着装置であって、
前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動を、駆動の間中、前記赤外線温度検知手段の検知温度が120℃〜180℃を維持するように前記熱源の点灯を制御することを特徴とする定着装置。
The fixing device according to any one of claims 1 to 10.
The lighting of the heat source is controlled so that the detection temperature of the infrared temperature detecting means is maintained at 120 ° C. to 180 ° C. during the driving of the fixing member and the pressurizing member while lighting the heat source. A fixing device characterized by the fact that.
請求項11に記載の定着装置であって、
前記赤外線温度検知手段の検知温度が120℃〜180℃の所定値に制御するための目標温度と、前記駆動を継続する駆動時間と、が予め設定され、
前記目標温度での点灯制御下で前記駆動時間だけ前記駆動を継続することを特徴とする定着装置。
The fixing device according to claim 11.
A target temperature for controlling the detection temperature of the infrared temperature detecting means to a predetermined value of 120 ° C. to 180 ° C. and a driving time for continuing the driving are set in advance.
A fixing device characterized in that the driving is continued for the driving time under the lighting control at the target temperature.
請求項11又は12に記載の定着装置であって、
前記駆動時間の経過後に、前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍の温度A(deg)、機外は機外近傍の温度C(deg)としたとき、
A>=C+20
の関係を満たした場合に、前記熱源の出力を増加させること特徴とする定着装置。
The fixing device according to claim 11 or 12.
After the elapse of the driving time, when the temperature A (deg) in the vicinity of the infrared temperature detecting means or the infrared temperature detecting means is set, and the temperature C (deg) in the vicinity of the outside of the machine is set outside the machine.
A> = C + 20
A fixing device characterized in that the output of the heat source is increased when the above relationship is satisfied.
請求項11又は12に記載の定着装置であって、
前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍の温度A(deg)を検知する温度A検知手段と、前記赤外線温度検知手段の近傍の湿度B(%)を検知する湿度B検知手段と、機外又は機外近傍の温度C(deg)を検知する温度C検知手段を有し、
C−A+0.3×B<27〜35内の設定値
の関係を満たした場合に、前記熱源の出力を増加させること特徴とする定着装置。
The fixing device according to claim 11 or 12.
A temperature A detecting means for detecting a temperature A (deg) in the vicinity of the infrared temperature detecting means or the infrared temperature detecting means, a humidity B detecting means for detecting a humidity B (%) in the vicinity of the infrared temperature detecting means, and a humidity B detecting means. It has a temperature C detecting means for detecting the temperature C (deg) outside or near the outside of the machine.
A fixing device characterized in that the output of the heat source is increased when the relationship of set values within CA + 0.3 × B <27 to 35 is satisfied.
請求項11又は12に記載の定着装置であって、
前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍の温度A(deg)を検知する温度A検知手段と、機外又は機外近傍の温度C(deg)を検知する温度C検知手段を有し、
A<C+20
の関係を満たした場合に、熱源の出力低減、又は、点灯停止を行うことを特徴とする定着装置。
The fixing device according to claim 11 or 12.
It has a temperature A detecting means for detecting a temperature A (deg) near the infrared temperature detecting means or the infrared temperature detecting means, and a temperature C detecting means for detecting a temperature C (deg) outside the machine or near the outside of the machine. ,
A <C + 20
A fixing device characterized in that the output of the heat source is reduced or the lighting is stopped when the above relationship is satisfied.
請求項11又は12に記載の定着装置であって、
前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍の温度A(deg)を検知する温度A検知手段と、前記赤外線温度検知手段の近傍の湿度B(%)を検知する湿度B検知手段と、機外又は機外近傍の温度C(deg)を検知する温度C検知手段を有し、
C−A+0.3×B>=27〜35内の設定値
の関係を満たした場合に、熱源の出力低減、又は、点灯停止を行うことを特徴とする定着装置。
The fixing device according to claim 11 or 12.
A temperature A detecting means for detecting a temperature A (deg) in the vicinity of the infrared temperature detecting means or the infrared temperature detecting means, a humidity B detecting means for detecting a humidity B (%) in the vicinity of the infrared temperature detecting means, and a humidity B detecting means. It has a temperature C detecting means for detecting the temperature C (deg) outside or near the outside of the machine.
A fixing device characterized in that the output of a heat source is reduced or lighting is stopped when the relationship of set values within CA + 0.3 × B> = 27 to 35 is satisfied.
請求項12に記載の定着装置であって、
前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍の温度A(deg)を検知する温度A検知手段と、前記赤外線温度検知手段の近傍の湿度B(%)を検知する湿度B検知手段と、機外又は機外近傍の温度C(deg)を検知する温度C検知手段を有し、
前記駆動時間の経過前に
A>=C+20
又は
C−A+0.3×B<27〜35内の設定値
の内、少なくとも1つの関係を満たした場合には、
前記熱源の出力を増加させることを特徴とする定着装置。
The fixing device according to claim 12.
A temperature A detecting means for detecting a temperature A (deg) in the vicinity of the infrared temperature detecting means or the infrared temperature detecting means, a humidity B detecting means for detecting a humidity B (%) in the vicinity of the infrared temperature detecting means, and a humidity B detecting means. It has a temperature C detecting means for detecting the temperature C (deg) outside or near the outside of the machine.
Before the elapse of the driving time, A> = C + 20
Or, when at least one of the set values within CA + 0.3 × B <27 to 35 is satisfied,
A fixing device characterized by increasing the output of the heat source.
請求項12、または、請求項2を引用する態様の請求項13乃至17のいずれかに記載の定着装置であって、
前記駆動時間は600秒以下に設定することを特徴とする定着装置。
The fixing device according to any one of claims 13 to 17, wherein the fixing device according to claim 12 or claim 2 is cited.
A fixing device characterized in that the driving time is set to 600 seconds or less.
請求項1乃至請求項17のいずれかに記載の定着装置であって、
前記所定時間は3〜7秒の間であることを特徴とする定着装置。
The fixing device according to any one of claims 1 to 17.
The fixing device, wherein the predetermined time is between 3 and 7 seconds.
請求項2乃至6、及び、11乃至19のいずれかに記載の定着装置であって、
前記所定時間は3〜5秒であり、前記所定時間と前記設定時間を加算した時間が7秒以下であることを特徴とする定着装置。
The fixing device according to any one of claims 2 to 6 and 11 to 19.
The fixing device, wherein the predetermined time is 3 to 5 seconds, and the time obtained by adding the predetermined time and the set time is 7 seconds or less.
熱源と、定着部材と、加圧部材と、定着部材表面より発生する赤外線を検知して温度測定する赤外線温度検知手段と、前記赤外線温度検知手段又は前記赤外線温度検知手段の近傍の温度A(deg)を検知する温度A検知手段と、前記赤外線温度検知手段の近傍の湿度B(%)を検知する湿度B検知手段と、機外又は機外近傍の温度C(deg)を検知する温度C検知手段を有し、
C−A+0.3×B>=27〜35内の設定値
の関係を満たした場合に、前記熱源の出力低減、前記熱源の点灯停止、又は、前記熱源を点灯しながらの前記定着部材と前記加圧部材の駆動、を行うことを特徴とする定着装置。
A heat source, a fixing member, a pressurizing member, an infrared temperature detecting means that detects infrared rays generated from the surface of the fixing member and measures the temperature, and a temperature A (deg) in the vicinity of the infrared temperature detecting means or the infrared temperature detecting means. ), Temperature B detecting means for detecting humidity B (%) in the vicinity of the infrared temperature detecting means, and temperature C detection for detecting temperature C (deg) outside or near the outside of the machine. Have a means,
When the relationship of the set values within CA + 0.3 × B> = 27 to 35 is satisfied, the output of the heat source is reduced, the lighting of the heat source is stopped, or the fixing member and the fixing member while lighting the heat source. A fixing device characterized by driving a pressurizing member.
請求項1乃至9、及び、11乃至20のいずれかに記載の定着装置であって、
前記赤外線温度検知手段ではない他の定着部材又は加圧部材の表面温度検知手段は接触式サーミスタであることを特徴とする定着装置。
The fixing device according to any one of claims 1 to 9 and 11 to 20.
A fixing device characterized in that the surface temperature detecting means of another fixing member or pressure member other than the infrared temperature detecting means is a contact type thermistor.
請求項1乃至請求項21のいずれかに記載の定着装置を有する画像形成装置。 An image forming apparatus having the fixing apparatus according to any one of claims 1 to 21.
JP2019177999A 2019-09-27 2019-09-27 Fixing device and image forming device Active JP7329188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177999A JP7329188B2 (en) 2019-09-27 2019-09-27 Fixing device and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177999A JP7329188B2 (en) 2019-09-27 2019-09-27 Fixing device and image forming device

Publications (2)

Publication Number Publication Date
JP2021056322A true JP2021056322A (en) 2021-04-08
JP7329188B2 JP7329188B2 (en) 2023-08-18

Family

ID=75270553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177999A Active JP7329188B2 (en) 2019-09-27 2019-09-27 Fixing device and image forming device

Country Status (1)

Country Link
JP (1) JP7329188B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147770A (en) * 1982-02-26 1983-09-02 Ricoh Co Ltd Dew condensation alarm device of copying machine
JP2005338195A (en) * 2004-05-24 2005-12-08 Fuji Xerox Co Ltd Image forming apparatus
JP2006145968A (en) * 2004-11-22 2006-06-08 Fuji Xerox Co Ltd Image forming apparatus
JP2007034016A (en) * 2005-07-28 2007-02-08 Ricoh Co Ltd Fixing device and image forming apparatus
JP2007079479A (en) * 2005-09-16 2007-03-29 Fuji Xerox Co Ltd Fixing device and image forming apparatus using the same
JP2009180974A (en) * 2008-01-31 2009-08-13 Konica Minolta Business Technologies Inc Fixing device, image forming apparatus, control method and program for fixing device
JP2010078953A (en) * 2008-09-26 2010-04-08 Konica Minolta Business Technologies Inc Image forming apparatus
JP2010156735A (en) * 2008-12-26 2010-07-15 Konica Minolta Business Technologies Inc Image forming device, image forming method, and image forming program
JP2011170085A (en) * 2010-02-18 2011-09-01 Konica Minolta Business Technologies Inc Image forming apparatus
JP2013182114A (en) * 2012-03-01 2013-09-12 Canon Inc Image forming apparatus
JP2017102341A (en) * 2015-12-03 2017-06-08 コニカミノルタ株式会社 Image forming system and program for image forming system
JP2018138953A (en) * 2017-02-24 2018-09-06 キヤノン株式会社 Image forming apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147770A (en) * 1982-02-26 1983-09-02 Ricoh Co Ltd Dew condensation alarm device of copying machine
JP2005338195A (en) * 2004-05-24 2005-12-08 Fuji Xerox Co Ltd Image forming apparatus
JP2006145968A (en) * 2004-11-22 2006-06-08 Fuji Xerox Co Ltd Image forming apparatus
JP2007034016A (en) * 2005-07-28 2007-02-08 Ricoh Co Ltd Fixing device and image forming apparatus
JP2007079479A (en) * 2005-09-16 2007-03-29 Fuji Xerox Co Ltd Fixing device and image forming apparatus using the same
JP2009180974A (en) * 2008-01-31 2009-08-13 Konica Minolta Business Technologies Inc Fixing device, image forming apparatus, control method and program for fixing device
JP2010078953A (en) * 2008-09-26 2010-04-08 Konica Minolta Business Technologies Inc Image forming apparatus
JP2010156735A (en) * 2008-12-26 2010-07-15 Konica Minolta Business Technologies Inc Image forming device, image forming method, and image forming program
JP2011170085A (en) * 2010-02-18 2011-09-01 Konica Minolta Business Technologies Inc Image forming apparatus
JP2013182114A (en) * 2012-03-01 2013-09-12 Canon Inc Image forming apparatus
JP2017102341A (en) * 2015-12-03 2017-06-08 コニカミノルタ株式会社 Image forming system and program for image forming system
JP2018138953A (en) * 2017-02-24 2018-09-06 キヤノン株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP7329188B2 (en) 2023-08-18

Similar Documents

Publication Publication Date Title
JP2006285253A (en) Image forming method and image forming apparatus
EP2477077B1 (en) Apparatus and method of protecting fuser unit and image forming apparatus including the same
US20090310998A1 (en) Image forming device and image forming method
JP2006259744A (en) Fixing apparatus, heating apparatus control method and non-contact thermal sensing device
JP2007086359A (en) Fixing device and image forming apparatus using the same
US8958711B2 (en) Image forming apparatus
JP6012647B2 (en) Image forming apparatus
JPH04178679A (en) Image forming device
JP2021056322A (en) Fixing device and image forming apparatus
JP4617345B2 (en) Image forming apparatus
JP4775469B2 (en) Image forming apparatus
JP6638287B2 (en) Image forming apparatus, control method for image forming apparatus, and computer program
JPH0713461A (en) Fixing device
JP2007212844A (en) Electrophotographic image forming apparatus and method for judging service life of fixing device therein
JP2001075460A (en) Image forming device
JP2008304848A (en) Image forming apparatus
JP2005338362A (en) Image forming apparatus
JP2009265173A (en) Image forming apparatus
JP2007058061A (en) Image recorder
JP2003076177A (en) Recording device and its abnormality deciding method
JP5027478B2 (en) Image forming apparatus
JP6907808B2 (en) Fixing device and image forming device
JP2005115045A (en) Image forming apparatus
JP2005173100A (en) Method for controlling temperature of fixing device
JP2007148194A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230720

R151 Written notification of patent or utility model registration

Ref document number: 7329188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151