JP2021055531A - Floor slab joint structure - Google Patents

Floor slab joint structure Download PDF

Info

Publication number
JP2021055531A
JP2021055531A JP2020160325A JP2020160325A JP2021055531A JP 2021055531 A JP2021055531 A JP 2021055531A JP 2020160325 A JP2020160325 A JP 2020160325A JP 2020160325 A JP2020160325 A JP 2020160325A JP 2021055531 A JP2021055531 A JP 2021055531A
Authority
JP
Japan
Prior art keywords
floor slab
reinforcing bar
joint structure
fiber reinforced
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020160325A
Other languages
Japanese (ja)
Inventor
哲生 川口
Tetsuo Kawaguchi
哲生 川口
武田 均
Hitoshi Takeda
均 武田
利孝 島▲崎▼
Toshitaka Shimazaki
利孝 島▲崎▼
唯堅 趙
Iken Cho
唯堅 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Publication of JP2021055531A publication Critical patent/JP2021055531A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

To propose a floor slab joint structure that enables labor saving during construction and shortens a construction period.SOLUTION: A floor slab joint structure 1 in which reinforcing bars 3 protruding from each of end surfaces 23 of adjacent reinforced concrete precast floor slabs 2 are joined by an empty lap joint is provided. The reinforcing bar 3 is a floor slab vertical reinforcement 21 arranged on the precast floor slab 2, and includes a fiber reinforcement mortar 5 filled in a gap 11 formed between the facing end surfaces 23, and a fixing body 4 made of steel plate fixed to a tip of the reinforcing bar 3.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリート製プレキャスト床版の床版継手構造に関する。 The present invention relates to a floor slab joint structure of a concrete precast floor slab.

連続して敷設されたプレキャスト床版同士は、継手部に打設された間詰コンクリートや間詰モルタル等(以下、単に「間詰材」という)を介して連結する。
例えば、特許文献1には、ループ筋が突出するプレキャスト床版の端面同士を所定の隙間をあけて突き合せた状態で、ループ筋と交差する配力筋を配筋し、端面同士の隙間に間詰コンクリートを打設する床版継手構造が開示されている。特許文献1の継手構造では、隙間の下面を覆うアゴ部が、プレキャスト床版の下部に形成されている。
ところが、前記従来の床版継手構造では、プレキャスト床版の敷設後に、ループ筋の内側に配力筋を配筋する作業に手間がかかる。また、プレキャスト床版同士は、互いのアゴ部を突き合せた状態で敷設する必要があるが、敷設時にプレキャスト床版同士が接触すると破損するおそれがあるため、慎重に作業を行う必要があるとともに、熟練した技術が必要である。また、ループ筋の加工寸法に制限があるため、ループ筋の被りを考慮すると、プレキャスト床版の部材厚の低減化も制限されてしまう。さらに、ループ筋の寸法により、プレキャスト床版同士の隙間が大きくなるため、必要な間詰コンクリートが多くなり、打設作業に時間を要し、工期短縮化の妨げとなる。
The continuously laid precast floor slabs are connected to each other via the interstitial concrete, the interstitial mortar, or the like (hereinafter, simply referred to as “interstitial material”) placed in the joint portion.
For example, in Patent Document 1, in a state where the end faces of the precast floor slab on which the loop muscles protrude are butted against each other with a predetermined gap, the force distribution muscles intersecting the loop muscles are arranged in the gaps between the end faces. A floor slab joint structure for placing precast concrete is disclosed. In the joint structure of Patent Document 1, a jaw portion covering the lower surface of the gap is formed in the lower part of the precast floor slab.
However, in the conventional floor slab joint structure, it takes time and effort to arrange the force distribution reinforcement inside the loop reinforcement after laying the precast floor slab. In addition, the precast floor slabs need to be laid with their jaws abutting each other, but if the precast floor slabs come into contact with each other during laying, they may be damaged, so careful work is required. , Skilled skill is required. In addition, since the processing dimensions of the loop streaks are limited, the reduction of the member thickness of the precast floor slab is also limited in consideration of the covering of the loop streaks. Further, due to the size of the loop bar, the gap between the precast floor slabs becomes large, so that the required concrete is increased, the casting work takes time, and the shortening of the construction period is hindered.

特開2010−236258号公報Japanese Unexamined Patent Publication No. 2010-236258

本発明は、施工時の省力化を可能にするとともに、工期短縮化を可能にする床版継手構造を提案することを課題とする。 An object of the present invention is to propose a floor slab joint structure that enables labor saving during construction and shortens the construction period.

このような課題を解決するために、本発明は、所定の間隔をあけて設置された床版の、互いの端面から突出する鉄筋同士が空き重ね継手により接合されてなる床版継手構造であって、向い合う前記端面同士の間に充填された繊維補強充填材と、前記鉄筋の先端に形成された定着体とを備えている。
前記鉄筋はSD390以下で、空き重ね継手の継手長は鉄筋径の2.4倍以上であり、前記鉄筋の間隔は鉄筋径の8倍以下であるのが望ましい。
また、前記繊維補強充填材には、セメントを主成分とする繊維補強コンクリートや繊維補強モルタルを使用すればよく、好ましくは、設計基準強度は50N/mm以上で、体積比で0.5%以上の繊維が混入されている繊維補強モルタルを使用すればよい。
また、前記定着体は、外径または幅が前記鉄筋の鉄筋径の2倍以上、厚さが12mm以上の円形または矩形の鋼板を鉄筋の先端に固定することにより形成すればよい。
さらに、一方の床版の端面から突出する前記鉄筋の先端と他方の床版の端面との距離が、15mm〜45mmの範囲内とするのが望ましい。
かかる床版継手構造によれば、先端に定着体が形成された鉄筋が配筋されているため、鉄筋の定着長を短くすることが可能となり、その結果、端面同士の隙間を小さくすることが可能となる。そのため、隙間に充填される繊維補強モルタルの量が少なくなり、打設作業に要する時間が少なくなり、工期短縮化を図ることができる。間詰材として繊維補強モルタルを用いることで、間詰材が高い引張抵抗力を発現するため、配力筋を省略することができる。その結果、配力筋の配筋の手間を省略できるため、施工時の手間を削減することができる。また、鉄筋の曲げ加工を考慮する必要が無いため、床板の厚さ設定の自由度が向上する。
In order to solve such a problem, the present invention is a floor slab joint structure in which reinforcing bars protruding from each other's end faces of floor slabs installed at predetermined intervals are joined by an empty lap joint. A fiber reinforced filler filled between the end faces facing each other and a fixing body formed at the tip of the reinforcing bar are provided.
It is desirable that the reinforcing bars are SD390 or less, the joint length of the empty lap joint is 2.4 times or more the diameter of the reinforcing bars, and the interval between the reinforcing bars is 8 times or less the diameter of the reinforcing bars.
Further, as the fiber reinforced filler, fiber reinforced concrete or fiber reinforced mortar containing cement as a main component may be used, preferably, the design standard strength is 50 N / mm 2 or more, and the volume ratio is 0.5%. A fiber reinforced mortar containing the above fibers may be used.
Further, the fixing body may be formed by fixing a circular or rectangular steel plate having an outer diameter or width twice or more the reinforcing bar diameter of the reinforcing bar and a thickness of 12 mm or more to the tip of the reinforcing bar.
Further, it is desirable that the distance between the tip of the reinforcing bar protruding from the end face of one floor slab and the end face of the other floor slab is within the range of 15 mm to 45 mm.
According to such a floor slab joint structure, since the reinforcing bars having the fixing body formed at the tip are arranged, the fixing length of the reinforcing bars can be shortened, and as a result, the gap between the end faces can be reduced. It will be possible. Therefore, the amount of fiber-reinforced mortar filled in the gap is reduced, the time required for the placing work is reduced, and the construction period can be shortened. By using the fiber reinforced mortar as the filling material, the filling material exhibits a high tensile resistance force, so that the force distribution muscle can be omitted. As a result, the labor of arranging the force distribution muscles can be omitted, so that the labor during construction can be reduced. Further, since it is not necessary to consider the bending process of the reinforcing bar, the degree of freedom in setting the thickness of the floor plate is improved.

本発明の床版継手構造によれば、施工時の省力化が可能となり、なおかつ、工期短縮化を図ることが可能となる。 According to the floor slab joint structure of the present invention, it is possible to save labor during construction and to shorten the construction period.

本実施形態の床版継手構造を示す平面図である。It is a top view which shows the floor slab joint structure of this embodiment. 本実施形態の床版継手構造を示す側面図である。It is a side view which shows the floor slab joint structure of this embodiment. 実証実験の試験モデルの概要を示す平面図である。It is a top view which shows the outline of the test model of the demonstration experiment. 実証実験における鉄筋部ひずみと引抜荷重の関係を示すグラフである。It is a graph which shows the relationship between the strain of a reinforcing bar part and a pull-out load in a demonstration experiment. 実証実験における試験体の概要を示す図であって、(a)は平面図、(b)は側面図である。It is a figure which shows the outline of the test body in the demonstration experiment, (a) is a plan view, (b) is a side view. 実証実験における比較例の試験体の概要を示す図であって、(a)は平面図、(b)は側面図である。It is a figure which shows the outline of the test body of the comparative example in the demonstration experiment, (a) is a plan view, (b) is a side view. 実証実験における荷重−たわみの関係を示すグラフである。It is a graph which shows the relationship of load-deflection in a demonstration experiment.

本実施形態では、橋梁の施工において、橋軸方向に連続して敷設された複数のプレキャスト床版2同士を接合する床版継手構造1について説明する。床版継手構造1は、隙間11をあけて配設された一対のプレキャスト床版2,2と、プレキャスト床版2の端面23同士の間(隙間11)に充填された繊維補強モルタル5とを備えている。 In this embodiment, in the construction of a bridge, a floor slab joint structure 1 for joining a plurality of precast floor slabs 2 laid continuously in the bridge axis direction will be described. The floor slab joint structure 1 comprises a pair of precast floor slabs 2 and 2 arranged with a gap 11 and a fiber reinforced mortar 5 filled between the end faces 23 of the precast floor slab 2 (gap 11). I have.

プレキャスト床版2は、鉄筋コンクリート製である。図1および図2に示すように、プレキャスト床版2の内部には、上下2段の床版縦筋21が橋軸方向(図面において左右方向)に沿って配筋されているとともに、床版縦筋21と交差する床版横筋22が配筋されている。また、プレキャスト床版2の端面23には、鉄筋3が突設されている。本実施形態の鉄筋3は、図2に示すように、床版縦筋21のうち、端面23から突出して隙間11に配設された部分である。本実施形態の鉄筋3はSD345である。なお、鉄筋3は、床版縦筋21とは別にプレキャスト床版2の端面23に植設されたものであってもよい。
本実施形態のプレキャスト床版2の端面23には、繊維補強モルタル5とプレキャスト床版2との間での力の伝達性を向上するためのせん断キー24が形成されている。また、端面23は、繊維補強モルタル5との接合性を向上させるために目荒らしされている。せん断キー24は、上下に配筋された鉄筋3同士の中間付近に形成された断面視台形上の凹部である。本実施形態のせん断キー24は、プレキャスト床版2の幅方向(図1において上下方向)に連続しているが、せん断キー24は間欠的に形成されていてもよい。なお、せん断キー24の断面形状は限定されるものではなく、例えば、矩形や円形であってもよい。また、せん断キー24は、端面23に形成された凸部であってもよい。
The precast floor slab 2 is made of reinforced concrete. As shown in FIGS. 1 and 2, inside the precast floor slab 2, two upper and lower floor slab vertical bars 21 are arranged along the bridge axis direction (horizontal direction in the drawing), and the floor slab is arranged. The floor slab horizontal bars 22 that intersect the vertical bars 21 are arranged. Further, a reinforcing bar 3 is projected from the end surface 23 of the precast floor slab 2. As shown in FIG. 2, the reinforcing bar 3 of the present embodiment is a portion of the floor slab vertical bar 21 that protrudes from the end face 23 and is arranged in the gap 11. The reinforcing bar 3 of this embodiment is SD345. The reinforcing bar 3 may be planted on the end surface 23 of the precast floor slab 2 separately from the floor slab vertical bar 21.
A shear key 24 is formed on the end surface 23 of the precast floor slab 2 of the present embodiment to improve the transmission of force between the fiber reinforced mortar 5 and the precast floor slab 2. Further, the end face 23 is roughened in order to improve the bondability with the fiber reinforced mortar 5. The shear key 24 is a recess on a trapezoidal cross-section formed near the middle of the reinforcing bars 3 arranged vertically. The shear key 24 of the present embodiment is continuous in the width direction (vertical direction in FIG. 1) of the precast floor slab 2, but the shear key 24 may be formed intermittently. The cross-sectional shape of the shear key 24 is not limited, and may be, for example, a rectangle or a circle. Further, the shear key 24 may be a convex portion formed on the end face 23.

図1に示すように、床版継手構造1では、一方のプレキャスト床版2の端面23から突出する鉄筋3と、他方のプレキャスト床版2の端面23から突出する鉄筋3とが、平面視で交互に配設されている。本実施形態では、一方のプレキャスト床版2の端面23から突出する鉄筋3同士の中間付近に、他方のプレキャスト床版2の端面23から突出する鉄筋3が配筋されるように、鉄筋3が配筋されている。すなわち、交互に配筋された鉄筋3同士の間隔は等間隔である。
鉄筋3の先端には、定着体4が形成されている。本実施形態の定着体4は、40×70mm(幅が鉄筋3の鉄筋径の2倍以上)、厚さが12mm以上の矩形の鋼板を鉄筋3の先端に固定することにより形成されている。定着体4の鉄筋3への固定方法は限定されるものではなく、例えば、溶接してもよいし、摩擦圧接接合やガス圧接接合により固定してもよい。また、鉄筋3にネジ加工が施されている場合には、定着体4として鉄筋3にナットを採用してもよいし、ボルト孔が形成された鋼板を採用してもよい。また、定着体4は、別部材(鋼板)を鉄筋3に固定することにより形成されたものに限定されるものではなく、例えば、端部を軸方向に圧縮することにより形成された拡径部(いわゆるコブ)であってもよい。
As shown in FIG. 1, in the floor slab joint structure 1, the reinforcing bars 3 protruding from the end surface 23 of one precast floor slab 2 and the reinforcing bars 3 protruding from the end surface 23 of the other precast floor slab 2 are viewed in a plan view. They are arranged alternately. In the present embodiment, the reinforcing bars 3 are arranged so that the reinforcing bars 3 protruding from the end surface 23 of the other precast floor slab 2 are arranged near the middle of the reinforcing bars 3 protruding from the end surface 23 of one precast floor slab 2. Reinforcing bars are arranged. That is, the intervals between the reinforcing bars 3 arranged alternately are equal intervals.
A fixing body 4 is formed at the tip of the reinforcing bar 3. The fixing body 4 of the present embodiment is formed by fixing a rectangular steel plate having a width of 40 × 70 mm (width is at least twice the diameter of the reinforcing bar 3) and a thickness of 12 mm or more to the tip of the reinforcing bar 3. The method of fixing the fixing body 4 to the reinforcing bar 3 is not limited, and may be fixed by, for example, welding, friction welding or gas pressure welding. When the reinforcing bar 3 is threaded, a nut may be used for the reinforcing bar 3 as the fixing body 4, or a steel plate having bolt holes may be used. Further, the fixing body 4 is not limited to the one formed by fixing another member (steel plate) to the reinforcing bar 3, and for example, the enlarged diameter portion formed by compressing the end portion in the axial direction. It may be (so-called bump).

本実施形態の床版継手構造1では、図1に示すように、対向設置された一対のプレキャスト床版2,2の互いの端面23から突出する鉄筋3同士を空き重ね継手により接合する。空き重ね継手は、鉄筋3同士の間に間隔を開けた状態で鉄筋3の端部同士を軸方向に重ねることで、繊維補強モルタル5(コンクリート等)と鉄筋3との付着力により鉄筋3同士を接合した状態を形成するものである。空き重ね継手の継手長は鉄筋径の2.4倍以上、好ましくは5倍以上、より好ましくは鉄筋径の5倍から15倍の範囲内とする。また、鉄筋間隔(配筋ピッチ)は鉄筋径の8倍以下、好ましくは、鉄筋径の6倍から8倍の範囲内とする。また、一方のプレキャスト床版2の端面23から突出する鉄筋3の先端と他方のプレキャスト床版2の端面23との距離は、15mm以上45mm未満の範囲内、好ましくは、15mm以上30mm未満の範囲内とする。 In the floor slab joint structure 1 of the present embodiment, as shown in FIG. 1, the reinforcing bars 3 protruding from the end faces 23 of the pair of precast floor slabs 2 and 2 installed facing each other are joined by an empty lap joint. In the empty lap joint, the ends of the reinforcing bars 3 are stacked in the axial direction with a space between the reinforcing bars 3, and the reinforcing bars 3 are bonded to each other due to the adhesive force between the fiber reinforced mortar 5 (concrete or the like) and the reinforcing bars 3. It forms a state in which the above are joined. The joint length of the empty lap joint is 2.4 times or more, preferably 5 times or more, more preferably 5 times to 15 times the diameter of the reinforcing bar. Further, the reinforcing bar spacing (reinforcing bar arrangement pitch) is 8 times or less the reinforcing bar diameter, preferably within the range of 6 to 8 times the reinforcing bar diameter. The distance between the tip of the reinforcing bar 3 protruding from the end surface 23 of one precast floor slab 2 and the end surface 23 of the other precast floor slab 2 is within a range of 15 mm or more and less than 45 mm, preferably within a range of 15 mm or more and less than 30 mm. Be inside.

隣り合うプレキャスト床版2の端面23同士の間(隙間11)には繊維補強モルタル5が充填されている。繊維補強モルタル5の設計基準強度は50N/mm以上で、体積比で0.5%以上の繊維が混入されている。本実施形態では、繊維補強モルタル5として、材齢3時間の強度が24/mm、材齢7日間の強度が60N/mmの早期硬化型のものを使用する。なお、繊維補強モルタル5の種類は早期硬化型に限定されるものではなく、例えば、材齢7日間の強度が100N/mmの超高強度型を使用してもよい。 Fiber reinforced mortar 5 is filled between the end faces 23 of the adjacent precast floor slabs 2 (gap 11). The design standard strength of the fiber reinforced mortar 5 is 50 N / mm 2 or more, and 0.5% or more of fibers are mixed in the volume ratio. In the present embodiment, as the fiber reinforced mortar 5, an early curing type having a strength of 24 / mm 2 for 3 hours and a strength of 60 N / mm 2 for 7 days is used. The type of the fiber reinforced mortar 5 is not limited to the early curing type, and for example, an ultra-high strength type having a strength of 100 N / mm 2 for 7 days may be used.

次に、床版継手構造1の施工手順を説明する。まず、プレキャスト床版2を敷設する。プレキャスト床版2の敷設は、一方のプレキャスト床版2を所定の位置に配置した後、他方のプレキャスト床版2を上方から吊り下すことにより行う。このとき、隣り合うプレキャスト床版2の端面23同士の間には、所定の大きさの隙間11を形成しておく。また、一方のプレキャスト床版2の端面23から突出する鉄筋3は、他方のプレキャスト床版2の端面23から突出する鉄筋3の間に配置されるようにする。なお、鉄筋3の先端には、予め定着体4が形成されている。
プレキャスト床版2を敷設したら、必要に応じて隙間11の側面および底面を型枠(図示せず)により覆う。なお、隙間11の下側に主桁が配設されている場合など、隙間11の下側から繊維補強モルタル5が流出するおそれがない場合などには、隙間11の底面の型枠を省略してもよい。
隙間11の周囲を型枠で覆ったら、隙間11に繊維補強モルタル5を充填する。繊維補強モルタル5は、現場内で製造するのが望ましい。繊維補強モルタル5の養生を行い、所定の強度が発現したら、型枠を撤去する。
Next, the construction procedure of the floor slab joint structure 1 will be described. First, the precast floor slab 2 is laid. The precast floor slab 2 is laid by arranging one precast floor slab 2 at a predetermined position and then suspending the other precast floor slab 2 from above. At this time, a gap 11 having a predetermined size is formed between the end faces 23 of the adjacent precast floor slabs 2. Further, the reinforcing bars 3 protruding from the end surface 23 of one precast floor slab 2 are arranged between the reinforcing bars 3 protruding from the end surface 23 of the other precast floor slab 2. A fixing body 4 is formed in advance at the tip of the reinforcing bar 3.
After laying the precast floor slab 2, the side surfaces and the bottom surface of the gap 11 are covered with a formwork (not shown) as needed. In addition, when there is no possibility that the fiber reinforced mortar 5 flows out from the lower side of the gap 11, such as when the main girder is arranged on the lower side of the gap 11, the formwork on the bottom surface of the gap 11 is omitted. You may.
After covering the periphery of the gap 11 with a mold, the gap 11 is filled with the fiber reinforced mortar 5. The fiber reinforced mortar 5 is preferably manufactured on-site. The fiber-reinforced mortar 5 is cured, and when a predetermined strength is developed, the mold is removed.

本実施形態の床版継手構造1によれば、先端に定着体4が形成された鉄筋3が配筋されているため、鉄筋3の定着長を短くすることが可能となり、その結果、プレキャスト床版2(端面23)同士の隙間11を小さくすることができる。そのため、隙間11に充填する繊維補強モルタル5の量を少なくし、繊維補強モルタル5の打設作業に要する時間が短くなり、ひいては工期短縮化を図ることができる。
端面23から突出する鉄筋3は直線状であり、曲げ加工を要しない。そのため、鉄筋3の曲げ加工に要するコストを省略できる。また、鉄筋3の曲げ加工を考慮する必要が無いため、プレキャスト床版2の厚さを240mm以下にするなど、厚さ設定の自由度が向上する。プレキャスト床版2の薄肉化を図ることで、プレキャスト床版2が取り扱い易くなるとともに、隙間11に充填する繊維補強モルタル5の量を減らすことができるため、工期短縮化が可能となる。また、繊維補強モルタル5の少量化により、繊維補強モルタル5の製造設備の小型化および繊維補強モルタル5の製造時の手間の低減化が可能となる。
また、プレキャスト床版2の端部にアゴ部が形成されていないため、プレキャスト床版2の敷設時にプレキャスト床版2同士が接触し難い。また、後から敷設するプレキャスト床版2は、上方から鉛直に吊り下すことにより所定の位置に配置することが可能なため、位置決めが容易である。したがって、プレキャスト床版2の敷設作業を熟練した技術を要することなく容易に行うことができる。
According to the floor slab joint structure 1 of the present embodiment, since the reinforcing bars 3 having the fixing body 4 formed at the tip are arranged, the fixing length of the reinforcing bars 3 can be shortened, and as a result, the precast floor. The gap 11 between the plates 2 (end faces 23) can be reduced. Therefore, the amount of the fiber reinforced mortar 5 filled in the gap 11 can be reduced, the time required for the placement work of the fiber reinforced mortar 5 can be shortened, and the construction period can be shortened.
The reinforcing bar 3 protruding from the end face 23 is straight and does not require bending. Therefore, the cost required for bending the reinforcing bar 3 can be omitted. Further, since it is not necessary to consider the bending process of the reinforcing bar 3, the degree of freedom in setting the thickness is improved, such as reducing the thickness of the precast floor slab 2 to 240 mm or less. By reducing the wall thickness of the precast floor slab 2, the precast floor slab 2 can be easily handled and the amount of fiber reinforced mortar 5 filled in the gap 11 can be reduced, so that the construction period can be shortened. Further, by reducing the amount of the fiber reinforced mortar 5, it is possible to reduce the size of the manufacturing equipment of the fiber reinforced mortar 5 and the labor required for manufacturing the fiber reinforced mortar 5.
Further, since the jaw portion is not formed at the end portion of the precast floor slab 2, it is difficult for the precast floor slabs 2 to come into contact with each other when the precast floor slab 2 is laid. Further, since the precast floor slab 2 to be laid later can be arranged at a predetermined position by suspending it vertically from above, positioning is easy. Therefore, the laying work of the precast floor slab 2 can be easily performed without requiring a skilled technique.

また、隙間11に充填する間詰材として繊維補強モルタル5を用いることで、間詰材が高い引張抵抗力を発現するため、配力筋を省略することができる。その結果、間隔が狭い隙間において、配力筋を配筋する必要が無いため、従来の継手構造に比べて施工時の手間を削減することができる。
また、硬化後の繊維補強モルタル5にひび割れが生じた場合であっても、繊維補強モルタル5の繊維の架橋効果によりひび割れの幅が広がることが防止されるため、耐久性が高い。
繊維補強モルタル5として、早期に硬化する材料を使用することで、早期施工、ひいては早期に交通開放することが可能となる。
また、繊維補強モルタル5は、一般的にはセメント量が多く、その硬化体は緻密な構造となるため、物質が透過し難く、高い耐久性を発揮する。また、収縮を補償するための膨張材を混入することで、隙間11において目開き等が発生し難く、水や酸素などの侵入が減少し、耐久性が向上する。
Further, by using the fiber reinforced mortar 5 as the filling material to be filled in the gap 11, the filling material exhibits a high tensile resistance force, so that the force distribution muscle can be omitted. As a result, since it is not necessary to arrange the force distribution bars in the gaps where the intervals are narrow, it is possible to reduce the labor during construction as compared with the conventional joint structure.
Further, even when the fiber reinforced mortar 5 after curing is cracked, the width of the crack is prevented from widening due to the cross-linking effect of the fibers of the fiber reinforced mortar 5, so that the durability is high.
By using a material that cures at an early stage as the fiber reinforced mortar 5, it is possible to perform early construction and eventually to open traffic at an early stage.
Further, the fiber reinforced mortar 5 generally has a large amount of cement, and the cured product has a dense structure, so that it is difficult for substances to permeate and the fiber reinforced mortar 5 exhibits high durability. Further, by mixing an expanding material for compensating for shrinkage, opening or the like is less likely to occur in the gap 11, intrusion of water, oxygen, etc. is reduced, and durability is improved.

以下、本実施形態の床版継手構造1について実施した実験結果について説明する。まず、図3に示すように、繊維補強モルタル5内において空き重ね継手により接合された鉄筋3に引張力Pを作用させた場合において、繊維補強モルタル5の硬化体のひび割れの発生状況を確認した。なお、図3の符号6はひずみゲージである。
(1)空き重ね継手長の検証
まず、空き重ね継手長L1の影響について確認を行った。実験では、ケース1として空き重ね継手長L1を95mm(5D相当)にした場合、ケース2として空き重ね継手長L1を190mm(10D相当)とした場合、ケース3として空き重ね継手長L1を285mm(15D相当)とした場合についてそれぞれ引抜試験を行った。各ケースとも、2体の試験体に対して、実験を行った。鉄筋3には、SD345、D19mmのものを使用した。鉄筋3の端部には、定着体4として、直径50mm、厚さ12mmの円形の鋼板を固定した。繊維補強モルタル5(間詰め材)には、材齢3時間の強度が24/mm、材齢7日間の強度が59.3N/mmの早期硬化型の繊維補強モルタル5を使用した。ケース1〜3の隙間11の幅L2は、それぞれ149mm、244mm、339mmとした。鉄筋3の鉄筋間隔(配筋ピッチ)Iは150mmとした。試験結果を表1に示す。また、ケース1(隙間幅149mm)、ケース2(隙間幅244mm)およびケース3(隙間幅339mm)の鉄筋に生じるひずみ(鉄筋部ひずみ)と引抜荷重の関係を図4に示す。いずれの試験体(ケース1〜3)も鉄筋3に設けたネジ部の破断で引抜試験を終了した。
Hereinafter, the experimental results of the floor slab joint structure 1 of the present embodiment will be described. First, as shown in FIG. 3, when a tensile force P was applied to the reinforcing bars 3 joined by the empty lap joint in the fiber reinforced mortar 5, it was confirmed that the hardened body of the fiber reinforced mortar 5 was cracked. .. Reference numeral 6 in FIG. 3 is a strain gauge.
(1) Verification of empty lap joint length First, the influence of the empty lap joint length L1 was confirmed. In the experiment, when the empty lap joint length L1 is 95 mm (equivalent to 5D) as the case 1, when the empty lap joint length L1 is 190 mm (equivalent to 10D) as the case 2, the empty lap joint length L1 is 285 mm (equivalent to 10D) as the case 3. A pull-out test was conducted for each case (equivalent to 15D). In each case, experiments were conducted on two test specimens. As the reinforcing bar 3, SD345 and D19 mm were used. A circular steel plate having a diameter of 50 mm and a thickness of 12 mm was fixed to the end of the reinforcing bar 3 as a fixing body 4. As the fiber reinforced mortar 5 (filling material), an early curing type fiber reinforced mortar 5 having a strength of 24 / mm 2 for 3 hours and a strength of 59.3 N / mm 2 for 7 days was used. The width L2 of the gap 11 of the cases 1 to 3 was 149 mm, 244 mm, and 339 mm, respectively. The reinforcing bar spacing (reinforcing bar arrangement pitch) I of the reinforcing bars 3 was set to 150 mm. The test results are shown in Table 1. Further, FIG. 4 shows the relationship between the strain (reinforcing bar strain) generated in the reinforcing bars of the case 1 (gap width 149 mm), the case 2 (gap width 244 mm) and the case 3 (gap width 339 mm) and the pull-out load. In each of the test bodies (cases 1 to 3), the pull-out test was completed due to the breakage of the screw portion provided on the reinforcing bar 3.

Figure 2021055531
Figure 2021055531

表1に示すように、空き重ね継手長L1が5Dのケース1ではひび割れが発生したが、ひび割れの大きさは0.04mm以下で微細であり、また、ひび割れ発生荷重は、1体目、2体目共に70kN以上で、供用時の荷重(供用時の鉄筋応力=120N/mm→本試験の引抜荷重34kN相当)を大きく上回っているため、実用上の問題は生じない。また、空き重ね継手長L1が10D、15Dのケース2,3では、ひび割れが発生しなかった。以上の試験により、材齢7日間の強度が59.3N/mm以上の繊維補強モルタル5を使用した場合では、空き重ね継手長L1を5D以上確保すればよいということが確認できた。
また、図4に示すように、ケース1(隙間幅149mm)、ケース2(隙間幅244mm)、ケース3(隙間幅339mm)のいずれの場合においても、最大鉄筋部ひずみは、2000×10−6に近い値となった。したがって、鉄筋の降伏点は、約400N/mm(≒(2.05×10N/mm)×(2000×10−6))であり、実質SD390の鉄筋を使用することができることが確認できた。
As shown in Table 1, cracks occurred in Case 1 where the empty lap joint length L1 was 5D, but the size of the cracks was as fine as 0.04 mm or less, and the crack generation load was the first and 2nd body. Since both body parts are 70 kN or more, which greatly exceeds the load during operation (reinforcing bar stress during service = 120 N / mm 2 → equivalent to the withdrawal load of 34 kN in this test), no practical problem occurs. Further, in cases 2 and 3 in which the empty lap joint lengths L1 were 10D and 15D, no cracks occurred. From the above test, it was confirmed that when the fiber reinforced mortar 5 having a strength of 59.3 N / mm 2 or more for 7 days was used, the empty lap joint length L1 should be secured at 5D or more.
Further, as shown in FIG. 4, in any of the cases 1 (gap width 149 mm), case 2 (gap width 244 mm), and case 3 (gap width 339 mm), the maximum reinforcing bar strain is 2000 × 10-6. It became a value close to. Therefore, the yield point of the reinforcing bar is about 400 N / mm 2 (≈ (2.05 × 10 5 N / mm 2 ) × (2000 × 10-6 )), and it is possible to use the reinforcing bar of substantially SD390. It could be confirmed.

(2)鉄筋間隔の検証
次に、鉄筋間隔Iの影響について確認を行った。実験では、ケース1、4、5の鉄筋間隔Iをそれぞれ150mm、125mm、175mmとして、ひび割れの発生状況を確認した。ケース4,5のその他の条件(空き重ね継手長L1、使用材料等)は、ケース1と同様とした。試験結果を表2に示す。
(2) Verification of Reinforcing Bar Spacing Next, the influence of Reinforcing Bar Spacing I was confirmed. In the experiment, the reinforcing bar spacing I of cases 1, 4 and 5 was set to 150 mm, 125 mm and 175 mm, respectively, and the occurrence of cracks was confirmed. Other conditions of cases 4 and 5 (empty lap joint length L1, materials used, etc.) were the same as in case 1. The test results are shown in Table 2.

Figure 2021055531
Figure 2021055531

表2に示すように、鉄筋間隔Iが175mmのケース5では、1体目ではコーン状破壊が発生し、2体目では0.2mm程度のひび割れが発生した。一方、鉄筋間隔Iが150mmのケース1と125mmのケース4では、0.04mm以下の微細なひび割れしか生じなかった。ケース5でも、ひび割れ発生荷重は、1体目、2体目共に58kN以上で、供用時の荷重(供用時の鉄筋応力=120N/mm→本試験の引抜荷重34kN相当)を大きく上回っているため、実用上の問題は生じない。そのため、定着体4として直径50mm、厚さ12mmの円形の鋼板が固定された鉄筋3(SD345、鉄筋径19mm)で、早期硬化型の繊維補強モルタル5を使用した場合における鉄筋間隔Iは175mm以下としてもよく、150mm以下がより望ましいという結果となった。 As shown in Table 2, in Case 5 where the reinforcing bar spacing I was 175 mm, cone-shaped fracture occurred in the first body and cracks of about 0.2 mm occurred in the second body. On the other hand, in Case 1 having a reinforcing bar spacing I of 150 mm and Case 4 having a reinforcing bar spacing I of 125 mm, only fine cracks of 0.04 mm or less occurred. Even in Case 5, the crack generation load is 58 kN or more for both the first and second bodies, which greatly exceeds the load during operation (reinforcing bar stress during service = 120 N / mm 2 → equivalent to the withdrawal load of 34 kN in this test). Therefore, no practical problem occurs. Therefore, when a reinforcing bar 3 (SD345, reinforcing bar diameter 19 mm) to which a circular steel plate having a diameter of 50 mm and a thickness of 12 mm is fixed as the fixing body 4 and an early curing type fiber reinforced mortar 5 is used, the reinforcing bar spacing I is 175 mm or less. However, the result is that 150 mm or less is more desirable.

(3)繊維補強モルタルの種類の検証
次に、繊維補強モルタル5の種類を変化させた場合の影響について確認した。実験では、ケース1では材齢3時間の強度が24/mm、材齢7日間の強度が59.3N/mmの早期硬化型の繊維補強モルタル5を使用し、ケース6では材齢7日間の強度が101N/mmの超高強度型の繊維補強モルタル5を使用した。ケース6のその他の条件(空き重ね継手長、隙間間隔、鉄筋、定着体等)は、ケース1と同様とした。試験結果を表3に示す。
表3に示すように超高強度型の繊維補強モルタル5を使用すれば、空き重ね継手長L1を95mmにした場合であってもひび割れが生じないことが確認できた。
(3) Verification of Type of Fiber Reinforced Mortar Next, the effect of changing the type of fiber reinforced mortar 5 was confirmed. In the experiment, an early-curing fiber-reinforced mortar 5 having a strength of 24 / mm 2 for 3 hours and a strength of 59.3 N / mm 2 for 7 days was used in case 1, and in case 6, the strength was 7 An ultra-high strength type fiber reinforced mortar 5 having a daily strength of 101 N / mm 2 was used. Other conditions of the case 6 (empty lap joint length, gap spacing, reinforcing bars, fixed body, etc.) were the same as those of the case 1. The test results are shown in Table 3.
As shown in Table 3, it was confirmed that when the ultra-high strength type fiber reinforced mortar 5 was used, cracks did not occur even when the empty lap joint length L1 was set to 95 mm.

Figure 2021055531
Figure 2021055531

(4)定着体とプレキャスト床版の端面との間隔の検証
次に、定着体4とプレキャスト床版2の端面23との間隔を変化させた場合の影響について確認した結果を示す。本実験では、定着体4とプレキャスト床版2の端面23との間隔を、ケース1では15mm、ケース7では30mmとした。その他、ケース7の条件(空き重ね継手長L1、使用材料等)は、ケース1と同様とした。試験結果を表4に示す。
表4に示すように、定着体4とプレキャスト床版2の端面23との間隔を30mmに広げると、コーン状破壊が生じる結果となったが、ひび割れ発生荷重は、1体目、2体目共に50kN以上で、供用時の荷重(供用時の鉄筋応力=120N/mm→本試験の引抜荷重34kN相当)を大きく上回っているため、実用上の問題は生じない。一方、定着体4とプレキャスト床版2の端面23との間隔を15mm以下にすると、繊維補強モルタル5を充填し難くなる。そのため、定着体4とプレキャスト床版2の端面23との間隔は15mm〜45mmの範囲内、より望ましくは15mm〜30mmの範囲内、さらに望ましくは15mm程度にするのがよい。
(4) Verification of the distance between the fixed body and the end face of the precast floor slab Next, the result of confirming the effect of changing the distance between the fixed body 4 and the end face 23 of the precast floor slab 2 is shown. In this experiment, the distance between the fixing body 4 and the end face 23 of the precast floor slab 2 was set to 15 mm in the case 1 and 30 mm in the case 7. In addition, the conditions of the case 7 (empty lap joint length L1, materials used, etc.) were the same as those of the case 1. The test results are shown in Table 4.
As shown in Table 4, when the distance between the fixing body 4 and the end face 23 of the precast floor slab 2 was widened to 30 mm, cone-shaped fracture occurred, but the crack generation load was the first and second bodies. Both are 50 kN or more, which greatly exceeds the load during operation (reinforcing bar stress during service = 120 N / mm 2 → equivalent to the withdrawal load of 34 kN in this test), so no practical problem occurs. On the other hand, if the distance between the fixing body 4 and the end face 23 of the precast floor slab 2 is 15 mm or less, it becomes difficult to fill the fiber reinforced mortar 5. Therefore, the distance between the fixing body 4 and the end face 23 of the precast floor slab 2 is preferably in the range of 15 mm to 45 mm, more preferably in the range of 15 mm to 30 mm, and more preferably in the range of about 15 mm.

Figure 2021055531
Figure 2021055531

(5)隙間幅と間詰材種類の影響の検証
次に、図5(a)および(b)に示すように、一対のプレキャスト床版2を接合することにより形成された全長3000mm幅825mmの試験体を用いて、隙間幅と間詰材の種類の影響を検証した。具体的には、鉛直荷重Pvを作用させた場合(曲げ試験)における鉛直荷重Pvとたわみの関係に基づいて、隙間幅の影響と間詰材種類の影響を確認した。
鉛直荷重Pvは、試験体の中心から長手方向400mmの位置に、それぞれ1/2ずつ作用させた。試験体は、中心から長手方向1200mmの2カ所において支持した。
一対のプレキャスト床版2は、プレキャスト床版2同士の隙間11に充填された繊維補強モルタル5内において、重ね継手により接合されている。
(5) Verification of Effect of Gap Width and Filling Material Type Next, as shown in FIGS. 5A and 5B, a total length of 3000 mm and a width of 825 mm formed by joining a pair of precast floor slabs 2 Using the test piece, the influence of the gap width and the type of packing material was verified. Specifically, the influence of the gap width and the influence of the filling material type were confirmed based on the relationship between the vertical load Pv and the deflection when the vertical load Pv was applied (bending test).
The vertical load Pv was applied by 1/2 each at a position 400 mm in the longitudinal direction from the center of the test piece. Specimens were supported at two locations 1200 mm longitudinally from the center.
The pair of precast floor slabs 2 are joined by lap joints in the fiber reinforced mortar 5 filled in the gap 11 between the precast floor slabs 2.

ケースaでは、隙間幅を100mm(重ね継手長2.4D相当)とし、ケースbでは、隙間幅を150mm(重ね継手長5D相当)とし、ケースa,bそれぞれについて曲げ試験を行った。
ケースa,bでは、間詰材として、材齢7日間の強度が101N/mmの超高強度型の繊維補強モルタル5を使用した。また、鉄筋3として、SD345、D19mmの異径鉄筋を使用した。鉄筋3の端部には、定着体4として、直径50mm、厚さ12mmの円形の鋼板を固定した。さらに、鉄筋3の鉄筋間隔(配筋ピッチ)は150mmとした。
また、ケースcでは、隙間幅を100mm(空き重ね継手長2.4D相当)とし、ケースdでは、隙間幅を150mm(空き重ね継手長5D相当)とし、ケースeでは、隙間幅を250mm(空き重ね継手長10D相当)とし、ケースc〜eについてそれぞれ曲げ試験を行った。ケースc〜eの間詰材には、材齢3時間の強度が24N/mm、材齢7日間の強度が59.3N/mmの早期硬化型の繊維補強モルタルを使用した。また、鉄筋3には、SD345、D19の異形鉄筋を使用した。鉄筋3の端部には、定着体4として、直径50mm、厚さ12mmの円形の鋼板を固定した。鉄筋3の鉄筋間隔(配筋ピッチ)は150mmとした。
さらに、ケースf(比較例)として、図6(a)および(b)に示すように、ループ筋が突出するプレキャスト床版2の端面同士を、隙間幅340mmを確保して突き合せた状態で、ループ筋と交差する配力筋を配筋し、端面同士の隙間11に間詰コンクリートを打設した試験体について、曲げ試験を行った。ケースfの間詰コンクリートには、65.9N/mmのコンクリートを用いた。また、鉄筋3には、SD345、D19の異形鉄筋を使用した。ケースfの試験体の鉛直荷重Pvの作用箇所および試験体の支持点は、ケースa〜eの試験体と同様とした。なお、ループ筋の重ね継手長は279mm(14.7D相当)とした。
In case a, the gap width was set to 100 mm (equivalent to a lap joint length of 2.4D), and in case b, the gap width was set to 150 mm (equivalent to a lap joint length of 5D), and bending tests were performed on each of cases a and b.
In cases a and b, an ultra-high-strength fiber-reinforced mortar 5 having a strength of 101 N / mm 2 for 7 days was used as the filling material. Further, as the reinforcing bar 3, a reinforcing bar having a different diameter of SD345 and D19 mm was used. A circular steel plate having a diameter of 50 mm and a thickness of 12 mm was fixed to the end of the reinforcing bar 3 as a fixing body 4. Further, the reinforcing bar spacing (reinforcing bar arrangement pitch) of the reinforcing bars 3 was set to 150 mm.
Further, in the case c, the gap width is 100 mm (equivalent to the empty lap joint length 2.4D), in the case d, the gap width is 150 mm (equivalent to the empty lap joint length 5D), and in the case e, the gap width is 250 mm (empty). The lap joint length was equivalent to 10D), and bending tests were performed on each of the cases c to e. The During filling material of the case c-e, the intensity at the age of 3 hours 24N / mm 2, the strength at the age of 7 days was used early curable fiber reinforced mortar 59.3N / mm 2. Further, as the reinforcing bar 3, the deformed reinforcing bars of SD345 and D19 were used. A circular steel plate having a diameter of 50 mm and a thickness of 12 mm was fixed to the end of the reinforcing bar 3 as a fixing body 4. The reinforcing bar spacing (reinforcing bar arrangement pitch) of the reinforcing bars 3 was set to 150 mm.
Further, as a case f (comparative example), as shown in FIGS. 6A and 6B, the end faces of the precast floor slab 2 on which the loop muscles protrude are butted against each other with a gap width of 340 mm secured. , A bending test was performed on a test body in which reinforcements intersecting with the loop reinforcements were arranged and interstitial concrete was placed in the gap 11 between the end faces. As the padded concrete of the case f, 65.9 N / mm 2 concrete was used. Further, as the reinforcing bar 3, the deformed reinforcing bars of SD345 and D19 were used. The place of action of the vertical load Pv of the test piece of case f and the support point of the test piece were the same as those of the test pieces of cases a to e. The length of the lap joint of the loop muscle was 279 mm (equivalent to 14.7D).

各ケースとも1体の試験体に対して、実験を行った。試験結果を表5に示す。また、ケースa(隙間幅100mm)、ケースb(隙間幅150mm)、ケースc(隙間幅100mm)、ケースd(隙間幅150mm)、ケースe(隙間幅250mm)、ケースf(隙間幅340mm)の荷重−たわみの関係を図6に示す。 Experiments were conducted on one test piece in each case. The test results are shown in Table 5. Further, of case a (gap width 100 mm), case b (gap width 150 mm), case c (gap width 100 mm), case d (gap width 150 mm), case e (gap width 250 mm), case f (gap width 340 mm). The load-deflection relationship is shown in FIG.

Figure 2021055531
Figure 2021055531

表5に示すように、ケースa、ケースb、ケースfでは、隙間部ではなく、PCa部(プレキャスト床版2)が破壊に至ったため、試験を終了した。ケースaの最大荷重は266.9kN、ケースbの最大荷重は280.4kNとなり、ケースfの最大荷重237.7kNを上回った。また、図6に示すように、ケースaとケースbの荷重−たわみ関係は、ケースfの荷重−たわみ関係を上回ることが確認できた。
表5に示すように、ケースcでは、隙間部に大きなひび割れが発生して、荷重が低下したため試験を終了した。最大荷重は187.3kNとなり、ケースfの最大荷重237.7kNを下回った。
また、表5に示すように、ケースd、ケースe、ケースfでは、PCa部(プレキャスト床版2)が破壊したため、試験を終了した。ケースdでの最大荷重は268.8kN、ケースeでの最大荷重は280.4kNとなり、ケースfを上回ることが確認できた。また、図6に示すように、ケースdとケースeの荷重−たわみ関係はケースfの荷重−たわみ関係を上回るが、ケースcの荷重−たわみ関係はケースfの荷重−たわみ関係を下回った。
As shown in Table 5, in case a, case b, and case f, the PCa portion (precast floor slab 2), not the gap portion, was destroyed, so the test was terminated. The maximum load of case a was 266.9 kN, and the maximum load of case b was 280.4 kN, which exceeded the maximum load of 237.7 kN of case f. Further, as shown in FIG. 6, it was confirmed that the load-deflection relationship between the case a and the case b exceeds the load-deflection relationship of the case f.
As shown in Table 5, in case c, a large crack was generated in the gap and the load was reduced, so that the test was completed. The maximum load was 187.3 kN, which was lower than the maximum load of 237.7 kN in case f.
Further, as shown in Table 5, in case d, case e, and case f, the PCa portion (precast floor slab 2) was destroyed, so that the test was terminated. It was confirmed that the maximum load in case d was 268.8 kN and the maximum load in case e was 280.4 kN, which exceeded the case f. Further, as shown in FIG. 6, the load-deflection relationship between the case d and the case e exceeds the load-deflection relationship of the case f, but the load-deflection relationship of the case c is lower than the load-deflection relationship of the case f.

以上の結果から、材齢7日間の強度が101N/mmの超高強度型の繊維補強モルタル5を間詰材として使用した場合(ケースa,b)は、空き重ね継手長L1を2.4D以上確保すれば、ループ継手を用いた床版継手構造よりも強度の高い継手構造を構築できることが確認できた。
また、材齢7日間の強度が59.3N/mm以上の繊維補強モルタル5を使用した場合(ケースc〜e)では、空き重ね継手長を5D以上(ケースd,e)確保すれば、ループ継手を用いた床版継手構造よりも強度の高い継手構造を構築できることが確認できた。
なお、ケースcは、強度面でやや劣るものの、施工時の省力化や工期短縮化を図ることは可能である。
From the above results, when the ultra-high strength type fiber reinforced mortar 5 having a strength of 101 N / mm 2 for 7 days is used as the filling material (cases a and b), the empty lap joint length L1 is set to 2. It was confirmed that if 4D or more is secured, a joint structure having higher strength than the floor slab joint structure using the loop joint can be constructed.
Further, when the fiber reinforced mortar 5 having a strength of 59.3 N / mm 2 or more for 7 days is used (cases c to e), if the empty lap joint length is secured to 5D or more (cases d and e), It was confirmed that a joint structure with higher strength than the floor slab joint structure using a loop joint can be constructed.
Although the case c is slightly inferior in strength, it is possible to save labor and shorten the construction period at the time of construction.

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
前記実施形態では、鉄筋3としてSD345を使用したが、鉄筋3の規格(降伏点)はSD390以下であれば限定されるものではなく、例えば、SD295であってもよい。
鉄筋3は、必要に応じてエポキシ樹脂等の合成樹脂によりコーティングしてもよい。鉄筋3に樹脂コーティングをすれば、樹脂コーティングを行わない場合と同様の効果が得られるとともに、鉄筋3の腐食を防止できる。
定着体4の形状は、外径または幅が鉄筋3の鉄筋径の2倍以上、厚さが12mm以上であれば限定されるものではない。
前記実施形態では、対向する端面23から突出して交互に配筋された鉄筋3同士の間隔を等間隔としたが、対向する端面23から突出する鉄筋3同士の間隔は必ずしも等間隔である必要はない。
繊維補強モルタル5は、現場内で製造してもよいし、現場外のプラントで製造されたものを搬入してもよい。
また、繊維補強充填材は、繊維補強モルタルに限定されるものではなく、ワーカビリティや充填性が確保できれば、繊維補強コンクリートを使用してもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and each component can be appropriately modified without departing from the spirit of the present invention.
In the above embodiment, SD345 is used as the reinforcing bar 3, but the standard (yield point) of the reinforcing bar 3 is not limited as long as it is SD390 or less, and may be, for example, SD295.
The reinforcing bar 3 may be coated with a synthetic resin such as an epoxy resin, if necessary. If the reinforcing bar 3 is coated with a resin, the same effect as in the case where the resin coating is not applied can be obtained, and corrosion of the reinforcing bar 3 can be prevented.
The shape of the fixing body 4 is not limited as long as the outer diameter or width is twice or more the diameter of the reinforcing bar 3 and the thickness is 12 mm or more.
In the above embodiment, the intervals between the reinforcing bars 3 protruding from the opposite end faces 23 and alternately arranged are set to be equal intervals, but the intervals between the reinforcing bars 3 protruding from the facing end faces 23 do not necessarily have to be equal intervals. Absent.
The fiber reinforced mortar 5 may be manufactured on-site or may be carried in from a plant outside the site.
Further, the fiber reinforced filler is not limited to the fiber reinforced mortar, and fiber reinforced concrete may be used as long as workability and filling property can be ensured.

1 床版継手構造
11 隙間
2 プレキャスト床版
21 床版縦筋
22 床版横筋
23 端面
24 せん断キー
3 鉄筋
4 定着体
5 繊維補強モルタル(繊維補強充填材)
1 Floor slab joint structure 11 Gap 2 Precast floor slab 21 Floor slab vertical bar 22 Floor slab horizontal bar 23 End face 24 Shear key 3 Reinforcing bar 4 Fixing body 5 Fiber reinforced mortar (fiber reinforced filler)

Claims (5)

所定の間隔をあけて設置された床版の、互いの端面から突出する鉄筋同士が空き重ね継手により接合されてなる床版継手構造であって、
向い合う前記端面同士の間に充填された繊維補強充填材と、
前記鉄筋の先端に形成された定着体と、を備えていることを特徴とする、床版継手構造。
It is a floor slab joint structure in which reinforcing bars protruding from each other's end faces of floor slabs installed at predetermined intervals are joined by an empty lap joint.
A fiber reinforced filler filled between the end faces facing each other,
A floor slab joint structure comprising: a fixing body formed at the tip of the reinforcing bar.
前記鉄筋はSD390以下で、空き重ね継手の継手長は鉄筋径の2.4倍以上であり、前記鉄筋の間隔は鉄筋径の8倍以下であることを特徴とする、請求項1に記載の床版継手構造。 The first aspect of the present invention, wherein the reinforcing bars are SD390 or less, the joint length of the empty lap joint is 2.4 times or more the diameter of the reinforcing bars, and the interval between the reinforcing bars is 8 times or less the diameter of the reinforcing bars. Floor slab joint structure. 前記繊維補強充填材は、繊維補強モルタルであり、設計基準強度は50N/mm以上で、体積比で0.5%以上の繊維が混入されていることを特徴とする、請求項1または請求項2に記載の床版継手構造。 The fiber reinforced filler is a fiber reinforced mortar, which has a design standard strength of 50 N / mm 2 or more and contains 0.5% or more fibers in a volume ratio. Item 2. The floor slab joint structure according to item 2. 前記定着体は、外径または幅が前記鉄筋の鉄筋径の2倍以上、厚さが12mm以上の円形または矩形の鋼板であることを特徴とする、請求項1乃至請求項3のいずれか1項に記載の床版継手構造。 Any one of claims 1 to 3, wherein the anchored body is a circular or rectangular steel plate having an outer diameter or width of twice or more the reinforcing bar diameter of the reinforcing bar and a thickness of 12 mm or more. Floor slab joint structure described in the section. 一方の床版の端面から突出する前記鉄筋の先端と他方の床版の端面との距離が、15mm〜45mmの範囲内であることを特徴とする、請求項1乃至請求項4のいずれか1項に記載の床版継手構造。 Any one of claims 1 to 4, wherein the distance between the tip of the reinforcing bar protruding from the end face of one floor slab and the end face of the other floor slab is within the range of 15 mm to 45 mm. Floor slab joint structure described in the section.
JP2020160325A 2019-09-26 2020-09-25 Floor slab joint structure Pending JP2021055531A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019174947 2019-09-26
JP2019174947 2019-09-26

Publications (1)

Publication Number Publication Date
JP2021055531A true JP2021055531A (en) 2021-04-08

Family

ID=75270157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160325A Pending JP2021055531A (en) 2019-09-26 2020-09-25 Floor slab joint structure

Country Status (1)

Country Link
JP (1) JP2021055531A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057265A (en) * 2004-08-18 2006-03-02 Taisei Corp Shearing force reinforcing method, shearing force reinforcing structure, and shear reinforcing member
JP2018080460A (en) * 2016-11-14 2018-05-24 鹿島建設株式会社 Connection structure and connection method
JP2019002251A (en) * 2017-06-20 2019-01-10 株式会社大林組 Precast concrete floor slab connection structure and connection method
JP2019078115A (en) * 2017-10-26 2019-05-23 鹿島建設株式会社 Concrete precast floor slab and joint method
JP2019126991A (en) * 2018-01-25 2019-08-01 株式会社大林組 Ultrahigh strength fiber-reinforced concrete composite precast pc floor slab
JP2019183425A (en) * 2018-04-03 2019-10-24 鹿島建設株式会社 Junction structure and jointing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057265A (en) * 2004-08-18 2006-03-02 Taisei Corp Shearing force reinforcing method, shearing force reinforcing structure, and shear reinforcing member
JP2018080460A (en) * 2016-11-14 2018-05-24 鹿島建設株式会社 Connection structure and connection method
JP2019002251A (en) * 2017-06-20 2019-01-10 株式会社大林組 Precast concrete floor slab connection structure and connection method
JP2019078115A (en) * 2017-10-26 2019-05-23 鹿島建設株式会社 Concrete precast floor slab and joint method
JP2019126991A (en) * 2018-01-25 2019-08-01 株式会社大林組 Ultrahigh strength fiber-reinforced concrete composite precast pc floor slab
JP2019183425A (en) * 2018-04-03 2019-10-24 鹿島建設株式会社 Junction structure and jointing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
北村健、外3名: "高性能な間詰め材で一体化させた新しい鉄筋継手構造の開発", コンクリート工学年次論文集, vol. Vol39、No.2、2017, JPN6023023800, 2017, JP, pages 403 - 408, ISSN: 0005082061 *
吉松秀和、外5名: "床版取替え用プレキャストPC床版の合理化継手の開発", 構造工学論文集, vol. 60, JPN6023023802, March 2014 (2014-03-01), JP, pages 1159 - 1168, ISSN: 0005082062 *

Similar Documents

Publication Publication Date Title
JP5363930B2 (en) Precast member joining structure and construction method thereof
Choi et al. Development and testing of precast concrete beam-to-column connections
KR101286557B1 (en) Steel-concrete composite beam for reducing story height and flatplate structure
JP2007239301A (en) Method of integrating precast concrete members interposed by filling concrete
KR101930674B1 (en) Spliced Prestressed Concrete Girder and Fabrication Method for Thereof
JP2017172143A (en) Junction structure of precast concrete floor slab for rapid construction work, and construction method of the same
US11268280B2 (en) Anchorage of continuous fiber-reinforced polymer strands
JP2014001579A (en) Construction method of box-girder bridge
EP3168384A1 (en) Structural strengthening system with internally anchored reinforcements by adherence
Jawdhari Behavior of RC beams strengthened in flexure with spliced CFRP rod panels
JP2013014899A (en) Joint structure for concrete slab
JP6567355B2 (en) Joint structure of prestressed concrete structure
JP6491034B2 (en) Concrete floor slab
JP5261418B2 (en) Method for manufacturing prestressed concrete member
El-Naqeeb et al. Numerical investigation on the behaviour of socket connections in GFRP-reinforced precast concrete
JP2007270600A (en) Prestress introducing method to filling part between precast concrete members
JP2017106231A (en) Pca floor slab joint structure and construction method thereof
KR200302128Y1 (en) prestressed preflex steel composite beam possible to retensioning
JP2021055531A (en) Floor slab joint structure
JP5439016B2 (en) Buried formwork
KR101163455B1 (en) The splicing method of segmental prestressed concrete girder
JP3910976B2 (en) Concrete member and method for reinforcing concrete member
KR20160078150A (en) Segmental prestressed concrete girder and method for constructing same
JP5684320B2 (en) Prestressed concrete member
JP6159155B2 (en) Precast member set, precast member crimping method, structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240202