JP2021052217A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2021052217A
JP2021052217A JP2021003587A JP2021003587A JP2021052217A JP 2021052217 A JP2021052217 A JP 2021052217A JP 2021003587 A JP2021003587 A JP 2021003587A JP 2021003587 A JP2021003587 A JP 2021003587A JP 2021052217 A JP2021052217 A JP 2021052217A
Authority
JP
Japan
Prior art keywords
conductive
conductive portion
protective element
island
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021003587A
Other languages
Japanese (ja)
Other versions
JP7048160B2 (en
Inventor
真砂彦 東
Masahiko Azuma
真砂彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2021003587A priority Critical patent/JP7048160B2/en
Publication of JP2021052217A publication Critical patent/JP2021052217A/en
Application granted granted Critical
Publication of JP7048160B2 publication Critical patent/JP7048160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a semiconductor device capable of suppressing an increase in an area and improving a discharge capacity to ESD more than ever before.SOLUTION: A semiconductor device includes: a substrate having a first conductivity type; a well region provided on the substrate and having a second conductivity type different from the first conductivity type; a plurality of first conductive parts which are provided in the well region, extend in a first direction, and are juxtaposed separated from each other in a second direction crossing the first direction, and each of which has a first conductivity type; a second conductive part provided in the well region, provided between each two of the plurality of first conductive parts, having a second conductivity type, and extending in the first direction; and a low concentration region of a first conductivity type provided between the well region and at least one of the plurality of first conductive parts, and having a lower impurity concentration than the first conductive part.SELECTED DRAWING: Figure 10

Description

本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.

半導体デバイスは、静電気放電(ESD: Electro-Static Discharge)によって損傷または誤動作発生などの影響を受ける。保護対象回路をESDから保護する保護素子としてダイオードが用いられている。 Semiconductor devices are affected by electrostatic discharge (ESD), such as damage or malfunction. A diode is used as a protection element that protects the circuit to be protected from ESD.

ダイオードの構造の一例として、例えば特許文献1には、ポジティブ型ウェル領域の外周がポジティブ型コンタクト領域に囲まれ、更にポジティブ型コンタクト領域がネガティブ型コンタクト領域に囲まれたショットキーバリアダイオードが記載されている。 As an example of the diode structure, for example, Patent Document 1 describes a Schottky barrier diode in which the outer periphery of a positive well region is surrounded by a positive contact region and the positive contact region is further surrounded by a negative contact region. ing.

特表2013−535823号公報Japanese Patent Application Laid-Open No. 2013-535823

近年、半導体集積回路の高密度化に伴って、保護素子の面積の縮小が要請されている。一方、ESDに対する保護素子の放電能力を高めることで、保護素子による保護機能を向上させることも要請されている。しかしながら、保護素子において、面積の縮小と放電能力の向上とはトレードオフの関係にあり、両立させることが困難である。 In recent years, as the density of semiconductor integrated circuits has increased, there has been a demand for reducing the area of protective elements. On the other hand, it is also required to improve the protection function of the protection element by increasing the discharge capacity of the protection element against ESD. However, in the protective element, there is a trade-off relationship between the reduction of the area and the improvement of the discharge capacity, and it is difficult to achieve both.

本発明は、上記の点に鑑みてなされたものであり、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることができる半導体装置を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor device capable of improving the discharge capacity for ESD while suppressing an increase in area.

本発明に係る半導体装置は、第1の導電型を有する基板と、前記基板上に設けられ、前記第1の導電型とは異なる第2の導電型を有するウェル領域と、前記ウェル領域内に設けられ、各々が前記第1の導電型を有し且つ第1の方向に伸び、前記第1の方向と交差する第2の方向に互いに離間して並置された複数の第1の導電部と、前記ウェル領域内に設けられ、前記複数の第1の導電部の各々の間に設けられ、前記第2の導電型を有し且つ前記第1の方向に伸びる第2の導電部と、前記ウェル領域と前記複数の第1の導電部の少なくとも一つの間に設けられ、前記第1の導電部よりも不純物濃度が低い前記第1の導電型の低濃度領域と、を含む。 The semiconductor device according to the present invention has a substrate having a first conductive mold, a well region provided on the substrate and having a second conductive mold different from the first conductive mold, and a well region in the well region. With a plurality of first conductive portions each provided, each having the first conductive mold and extending in the first direction and juxtaposed with each other in a second direction intersecting the first direction. , The second conductive portion provided in the well region, provided between each of the plurality of first conductive portions, having the second conductive mold, and extending in the first direction, and the said The first conductive type low concentration region, which is provided between the well region and at least one of the plurality of first conductive portions and has a lower impurity concentration than the first conductive portion, is included.

本発明に係る他の半導体装置は、第1の導電型を有する基板と、前記基板上に設けられ、前記第1の導電型とは異なる第2の導電型を有するウェル領域と、前記ウェル領域内に設けられ、前記第1の導電型を有し且つ環状パターンを有する第1の導電部と、前記ウェル領域内に設けられ、前記第2の導電型を有し且つ前記第1の導電部に囲まれるよう位置する第2の導電部と、前記ウェル領域と前記第1の導電部の少なくとも一部の間に設けられ、前記第1の導電部よりも不純物濃度が低い前記第1の導電型の低濃度領域と、を含む。 The other semiconductor device according to the present invention includes a substrate having a first conductive type, a well region provided on the substrate and having a second conductive type different from the first conductive type, and the well region. A first conductive portion provided inside and having the first conductive mold and having an annular pattern, and a first conductive portion provided inside the well region and having the second conductive mold and having the first conductive portion. The first conductive portion, which is provided between the well region and at least a part of the first conductive portion and has a lower impurity concentration than the first conductive portion, and a second conductive portion located so as to be surrounded by the first conductive portion. Includes a low concentration region of the mold.

本発明に係る半導体装置によれば、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることが可能となる。 According to the semiconductor device according to the present invention, it is possible to improve the discharge capacity for ESD while suppressing the increase in area.

本発明の実施形態に係る保護素子の使用形態の一例を示す図であり、保護素子1を含む集積回路の部分的な構成の一例を示す回路図である。It is a figure which shows an example of the usage form of the protection element which concerns on embodiment of this invention, and is the circuit diagram which shows an example of the partial structure of the integrated circuit including protection element 1. 本発明の実施形態に係る集積回路を収容した半導体チップの構成の一例を示す平面図である。It is a top view which shows an example of the structure of the semiconductor chip which accommodated the integrated circuit which concerns on embodiment of this invention. 本発明の実施形態に係る保護素子の構成を示す平面図、A plan view showing the configuration of the protective element according to the embodiment of the present invention. 図2Aにおける2B−2B線に沿った断面図である。It is sectional drawing along the line 2B-2B in FIG. 2A. 本発明の実施形態に係る保護素子における静電気放電時の放電電流の経路を示す平面図である。It is a top view which shows the path of the discharge current at the time of electrostatic discharge in the protection element which concerns on embodiment of this invention. 図3Aにおける3B−3B線に沿った断面図である。FIG. 3B is a cross-sectional view taken along the line 3B-3B in FIG. 3A. 第1の比較例に係る保護素子の構成を示す平面図である。It is a top view which shows the structure of the protection element which concerns on 1st comparative example. 図4Aにおける4B−4B線に沿った断面図である。It is sectional drawing along the line 4B-4B in FIG. 4A. TLP測定法により取得した本発明の実施形態に係る保護素子および第1の比較例に係る保護素子のそれぞれの電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of each of the protection element which concerns on embodiment of this invention and the protection element which concerns on 1st comparative example acquired by the TLP measurement method. 第2の比較例に係る保護素子の構成を示す平面図である。It is a top view which shows the structure of the protection element which concerns on the 2nd comparative example. 図6Aにおける6B−6B線に沿った断面図である。6 is a cross-sectional view taken along the line 6B-6B in FIG. 6A. 本発明の実施形態に係る保護素子ペアのレイアウトの一例を示す平面図である。It is a top view which shows an example of the layout of the protection element pair which concerns on embodiment of this invention. 図7Aにおける7B−7B線に沿った断面図である。It is sectional drawing along the line 7B-7B in FIG. 7A. 本発明の他の実施形態に係る保護素子の構成を示す平面図である。It is a top view which shows the structure of the protection element which concerns on other embodiment of this invention. 本発明の他の実施形態に係る保護素子の構成を示す平面図である。It is a top view which shows the structure of the protection element which concerns on other embodiment of this invention. 本発明の他の実施形態に係る保護素子の構成を示す平面図である。It is a top view which shows the structure of the protection element which concerns on other embodiment of this invention. 本発明の他の実施形態に係る保護素子の構成を示す平面図である。It is a top view which shows the structure of the protection element which concerns on other embodiment of this invention.

以下、本発明の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一または等価な構成要素および部分には同一の参照符号を付与し、重複する説明は省略する。 Hereinafter, an example of the embodiment of the present invention will be described with reference to the drawings. In each drawing, the same or equivalent components and parts are designated by the same reference numerals, and duplicate description will be omitted.

[第1の実施形態]
図1Aは、本発明の実施形態に係る半導体装置としての保護素子1および2の使用形態の一例を示す図であり、保護素子1および2を含む集積回路100の部分的な構成の一例を示す回路図である。集積回路100は、保護素子1および2と、保護素子1および2によって保護される保護対象回路の一例である出力回路110と、電極パッド111、112、113と、を含んで構成されている。電極パッド111は、出力回路110を含む集積回路100内の各回路に電源電圧VDDを供給するための電源端子であり、電源ライン114を介して出力回路110を含む集積回路100内の各回路に接続されている。電極パッド112は、出力回路110を含む集積回路100内の各回路に接地電圧VSSを供給するためのグランド端子であり、グランドライン115を介して出力回路110を含む集積回路100内の各回路に接続されている。電極パッド113は、出力回路110から出力される出力信号を集積回路100の外部に取り出すための信号出力端子であり、信号ライン116を介して出力回路110の出力端に接続されている。
[First Embodiment]
FIG. 1A is a diagram showing an example of usage of protection elements 1 and 2 as a semiconductor device according to an embodiment of the present invention, and shows an example of a partial configuration of an integrated circuit 100 including protection elements 1 and 2. It is a circuit diagram. The integrated circuit 100 includes protection elements 1 and 2, an output circuit 110 which is an example of a protection target circuit protected by the protection elements 1 and 2, and electrode pads 111, 112, and 113. The electrode pad 111 is a power supply terminal for supplying the power supply voltage VDD to each circuit in the integrated circuit 100 including the output circuit 110, and is connected to each circuit in the integrated circuit 100 including the output circuit 110 via the power supply line 114. It is connected. The electrode pad 112 is a ground terminal for supplying the ground voltage VSS to each circuit in the integrated circuit 100 including the output circuit 110, and is connected to each circuit in the integrated circuit 100 including the output circuit 110 via the ground line 115. It is connected. The electrode pad 113 is a signal output terminal for taking out the output signal output from the output circuit 110 to the outside of the integrated circuit 100, and is connected to the output terminal of the output circuit 110 via the signal line 116.

集積回路100は、例えば、LCD(liquid crystal display)ドライバを構成するものであってもよく、この場合、集積回路100において、複数の出力回路110および電極パッド113が、LCDの複数の画素に対応して設けられる。図1Bは、集積回路100がLCDドライバを構成する場合における、集積回路100を収容した半導体チップ100Aの構成の一例を示す平面図である。半導体チップ100Aの外形は、例えば長方形であり、半導体チップ100Aの各辺に沿って電極パッドが配置されている。複数の出力回路110の各々に接続された複数の電極パッド113は、例えば、半導体チップ100Aの一辺に沿って配列され、保護素子1および2は、複数の電極パッド113の各々の直下に配置されている。 The integrated circuit 100 may, for example, constitute an LCD (liquid crystal display) driver. In this case, in the integrated circuit 100, the plurality of output circuits 110 and the electrode pads 113 correspond to a plurality of pixels of the LCD. Is provided. FIG. 1B is a plan view showing an example of the configuration of the semiconductor chip 100A accommodating the integrated circuit 100 when the integrated circuit 100 constitutes the LCD driver. The outer shape of the semiconductor chip 100A is, for example, a rectangle, and electrode pads are arranged along each side of the semiconductor chip 100A. The plurality of electrode pads 113 connected to each of the plurality of output circuits 110 are arranged along one side of the semiconductor chip 100A, for example, and the protection elements 1 and 2 are arranged directly under each of the plurality of electrode pads 113. ing.

LCDの画素数の増加に対応するためには、集積回路100に搭載される出力回路110の数を増加させる必要がある。また、出力回路110の数の増加に伴って保護素子1、2の数を増加させる必要がある。出力回路110および保護素子1、2の数を増加させる場合において半導体チップ100Aの面積の拡大が許容できない場合には、電極パッド113間のピッチを小さくする必要があり、これに伴って、保護素子1および2の面積を小さくする必要がある。しかしながら、一般的に保護素子の面積を小さくすると、保護素子の放電能力が低下し、その保護機能が低下する。 In order to cope with the increase in the number of pixels of the LCD, it is necessary to increase the number of output circuits 110 mounted on the integrated circuit 100. Further, it is necessary to increase the number of protection elements 1 and 2 as the number of output circuits 110 increases. When increasing the number of output circuits 110 and the number of protection elements 1 and 2, if the expansion of the area of the semiconductor chip 100A is unacceptable, it is necessary to reduce the pitch between the electrode pads 113, and accordingly, the protection elements It is necessary to reduce the areas of 1 and 2. However, in general, when the area of the protective element is reduced, the discharge capacity of the protective element is reduced, and the protective function thereof is reduced.

本実施形態に係る保護素子1および2は、面積の増大を抑制しつつ放電能力を従来よりも向上させることが可能である。換言すれば、放電能力を維持しつつその面積を縮小することが可能である。以下において、主に保護素子1について説明する。なお、保護素子1および2に保護される保護対象回路の一例として出力回路110を例示したが、保護対象回路はいかなる回路であってもよい。また、保護素子1および2は、LCDドライバ以外の用途で用いられる集積回路に搭載することも可能である。 The protective elements 1 and 2 according to the present embodiment can improve the discharge capacity as compared with the conventional case while suppressing an increase in the area. In other words, it is possible to reduce the area while maintaining the discharge capacity. Hereinafter, the protection element 1 will be mainly described. Although the output circuit 110 has been illustrated as an example of the protection target circuit protected by the protection elements 1 and 2, the protection target circuit may be any circuit. Further, the protection elements 1 and 2 can be mounted on an integrated circuit used for applications other than the LCD driver.

図2Aは、本発明の実施形態に係る半導体装置としての保護素子1の構成を示す平面図、図2Bは、図2Aにおける2B−2B線に沿った断面図である。保護素子1は、P型の導電型のシリコン基板10の表層部に設けられたN型の導電型のNウェル11を有する。保護素子1は、Nウェル11内に形成されたアノードとして機能するP型の導電型を有する第1の導電部20およびカソードとして機能するN型の導電型を有する第2の導電部30を備える。なお、N型のシリコン基板の表層部に第1の導電部20および第2の導電部30を設ける構成とすることも可能である。 FIG. 2A is a plan view showing the configuration of the protective element 1 as the semiconductor device according to the embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along the line 2B-2B in FIG. 2A. The protective element 1 has an N-type conductive N-well 11 provided on the surface layer of the P-type conductive silicon substrate 10. The protective element 1 includes a first conductive portion 20 having a P-shaped conductive mold that functions as an anode and a second conductive portion 30 having an N-shaped conductive mold that functions as a cathode formed in the N well 11. .. It is also possible to provide the first conductive portion 20 and the second conductive portion 30 on the surface layer portion of the N-type silicon substrate.

第1の導電部20は、図2AにおいてそれぞれY方向に伸びる第1の部分21、第2の部分22および第3の部分23を有する。第1の部分21、第2の部分22および第3の部分23は、図2AにおいてX方向に互いに離間して並置されている。 The first conductive portion 20 has a first portion 21, a second portion 22, and a third portion 23 extending in the Y direction, respectively, in FIG. 2A. The first portion 21, the second portion 22, and the third portion 23 are juxtaposed with each other in the X direction in FIG. 2A.

第1の導電部20は、図2AにおいてそれぞれX方向に伸びる第4の部分24および第5の部分を更に有する。第4の部分24は、第1の部分21、第2の部分22および第3の部分23の各々の一端に接続され、第5の部分25は、第1の部分21、第2の部分22および第3の部分23の各々の他端に接続されている。このように、第1の導電部20は、2つの矩形リングを連結した「日」の字型のパターンを有する。 The first conductive portion 20 further has a fourth portion 24 and a fifth portion extending in the X direction in FIG. 2A, respectively. The fourth part 24 is connected to one end of each of the first part 21, the second part 22 and the third part 23, and the fifth part 25 is the first part 21, the second part 22. And is connected to the other end of each of the third portion 23. As described above, the first conductive portion 20 has a "day" -shaped pattern in which two rectangular rings are connected.

第1の導電部20の第1の部分21〜第5の部分25は、それぞれ、比較的に不純物濃度が高いP型半導体で構成されており、比較的に不純物濃度が低いP型の低濃度領域28を介してNウェル11に接続されている。このように、比較的に不純物濃度が高い第1の導電部20の第1の部分21〜第5の部分25とNウェル11との間に、比較的に不純物濃度が低い低濃度領域28を介在させることにより、保護素子1において、所定の耐圧を確保することが可能となる。また、第1の導電部20の第1の部分21〜第5の部分25は、それぞれ、複数のコンタクト29を介して、配線層(図示せず)に設けられた共通の信号ライン116(図1A参照)に接続される。 The first portion 21 to the fifth portion 25 of the first conductive portion 20 are each composed of a P-type semiconductor having a relatively high impurity concentration, and each has a low P-type concentration having a relatively low impurity concentration. It is connected to the N well 11 via the region 28. As described above, the low concentration region 28 having a relatively low impurity concentration is formed between the first portions 21 to 5 fifth portions 25 and the N well 11 of the first conductive portion 20 having a relatively high impurity concentration. By interposing the protective element 1, it is possible to secure a predetermined withstand voltage. Further, the first portions 21 to 5 of the first conductive portion 20 are each provided with a common signal line 116 (not shown) in the wiring layer (not shown) via a plurality of contacts 29 (FIGS.). 1A) is connected.

第2の導電部30は、図2AにおいてそれぞれY方向に伸びる第1のアイランド部31および第2のアイランド部32を有する。第1のアイランド部31は、第1の導電部20の第1の部分21と第2の部分22との間に設けられている。すなわち、第1のアイランド部31は、第1の導電部20の第1の部分21と第2の部分22との間に挟まれており、これらの双方と対向している。第1のアイランド部31は、第1のアイランド部31の外周を囲む絶縁体40によって第1の導電部20から絶縁分離されている。 The second conductive portion 30 has a first island portion 31 and a second island portion 32 extending in the Y direction, respectively, in FIG. 2A. The first island portion 31 is provided between the first portion 21 and the second portion 22 of the first conductive portion 20. That is, the first island portion 31 is sandwiched between the first portion 21 and the second portion 22 of the first conductive portion 20, and faces both of them. The first island portion 31 is insulated and separated from the first conductive portion 20 by an insulator 40 that surrounds the outer periphery of the first island portion 31.

第2の導電部30の第2のアイランド部32は、第1の導電部20の第2の部分22と第3の部分23との間に設けられている。すなわち、第2のアイランド部32は、第1の導電部20の第2の部分22と第3の部分23との間に挟まれており、これらの双方と対向している。第2のアイランド部32は、第2のアイランド部32の外周を囲む絶縁体40によって第1の導電部20から絶縁分離されている。 The second island portion 32 of the second conductive portion 30 is provided between the second portion 22 and the third portion 23 of the first conductive portion 20. That is, the second island portion 32 is sandwiched between the second portion 22 and the third portion 23 of the first conductive portion 20, and faces both of them. The second island portion 32 is insulated and separated from the first conductive portion 20 by an insulator 40 that surrounds the outer periphery of the second island portion 32.

第2の導電部30は、第1の導電部20の外周を囲む環状パターンを有する環状部38を更に含む。環状部38は、図2AにおいてY方向に伸びる部分と、Xの方向に伸びる部分とを有する矩形環状パターンを有する。環状部38のY方向に伸びる部分は、第1の導電部20の第1の部分21および第3の部分23と対向し、環状部38のX方向に伸びる部分は、第1の導電部20の第4の部分24および第5の部分25と対向している。環状部38は、第1の導電部20の外周を囲む絶縁体41によって第1の導電部20から絶縁分離されている。また、環状部38は、環状部38の外周を囲む絶縁体42によって、保護素子1の周囲に設けられた他の素子(図示せず)から絶縁分離されている。絶縁体40、41および42は、例えば、公知のSTI(Shallow Trench Isolation)技術を用いて形成される。 The second conductive portion 30 further includes an annular portion 38 having an annular pattern surrounding the outer periphery of the first conductive portion 20. The annular portion 38 has a rectangular annular pattern having a portion extending in the Y direction and a portion extending in the X direction in FIG. 2A. The portion extending in the Y direction of the annular portion 38 faces the first portion 21 and the third portion 23 of the first conductive portion 20, and the portion extending in the X direction of the annular portion 38 is the first conductive portion 20. It faces the fourth portion 24 and the fifth portion 25 of the above. The annular portion 38 is insulated and separated from the first conductive portion 20 by an insulator 41 that surrounds the outer periphery of the first conductive portion 20. Further, the annular portion 38 is insulated and separated from other elements (not shown) provided around the protective element 1 by an insulator 42 surrounding the outer circumference of the annular portion 38. The insulators 40, 41 and 42 are formed using, for example, a known STI (Shallow Trench Isolation) technique.

第2の導電部30の第1のアイランド部31、第2のアイランド部32および環状部38は、それぞれ、比較的に不純物濃度が高いN型半導体で構成されており、比較的に不純物濃度が低いNウェル11に接続されている。また、第2の導電部30の第1のアイランド部31、第2のアイランド部32および環状部38は、それぞれ、複数のコンタクト39を介して、配線層(図示せず)に設けられた共通の電源ライン114(図1A参照)に接続される。 The first island portion 31, the second island portion 32, and the annular portion 38 of the second conductive portion 30 are each composed of an N-type semiconductor having a relatively high impurity concentration, and have a relatively high impurity concentration. It is connected to the lower N-well 11. Further, the first island portion 31, the second island portion 32, and the annular portion 38 of the second conductive portion 30 are commonly provided in the wiring layer (not shown) via a plurality of contacts 39, respectively. Is connected to the power supply line 114 (see FIG. 1A).

以上のように、保護素子1は、カソードとして機能する第2の導電部30が、互いに分離して配置された第1のアイランド部31および第2のアイランド部32からなるダブルアイランド構造を有し、アノードとして機能する第1の導電部20が、第2の導電部30の第1のアイランド部31および第2のアイランド部32をそれぞれ囲む2つのリングを形成する第1の部分21〜第5の部分25を有する。第2の導電部30は、第1の導電部20の外周を囲む環状部38を更に含む。 As described above, the protective element 1 has a double island structure in which the second conductive portion 30 that functions as the cathode is composed of the first island portion 31 and the second island portion 32 that are arranged separately from each other. The first conductive portion 20 functioning as an anode forms two rings surrounding the first island portion 31 and the second island portion 32 of the second conductive portion 30, respectively, the first portions 21 to 5 It has a portion 25 of. The second conductive portion 30 further includes an annular portion 38 that surrounds the outer periphery of the first conductive portion 20.

図3Aは、カソードとして機能する第2の導電部30が、アノードとして機能する第1の導電部20に対して低電位となる静電気放電時の放電電流の経路を示す平面図であり、図3Bは、図3Aにおける3B−3B線に沿った断面図である。第2の導電部30が、第1の導電部20に対して低電位となる静電気放電が生じると、図3Aおよび図3Bにおいて矢印で示される方向、すなわち、第1の導電部20から第2の導電部30に向けて放電電流が流れる。放電電流は、図3Bに示すように、第1の導電部20の各部分と第2の導電部30の各部分の間に設けられた絶縁体40および41の外縁に沿って流れる。 FIG. 3A is a plan view showing a path of a discharge current at the time of electrostatic discharge in which a second conductive portion 30 functioning as a cathode has a low potential with respect to a first conductive portion 20 functioning as an anode. FIG. 3B. Is a cross-sectional view taken along the line 3B-3B in FIG. 3A. When an electrostatic discharge occurs in which the second conductive portion 30 has a low potential with respect to the first conductive portion 20, the direction indicated by the arrow in FIGS. 3A and 3B, that is, the first conductive portion 20 to the second A discharge current flows toward the conductive portion 30 of the. As shown in FIG. 3B, the discharge current flows along the outer edges of the insulators 40 and 41 provided between each portion of the first conductive portion 20 and each portion of the second conductive portion 30.

本実施形態に係る保護素子1においては、上記のように、Y方向に伸びる第1の導電部20の第1の部分21と第2の部分22との間にY方向に伸びる第2の導電部30の第1のアイランド部31が設けられ、Y方向に伸びる第1の導電部20の第2の部分22と第3の部分23との間にY方向に伸びる第2の導電部30の第2のアイランド部32が設けられている。このように、互いに同じ方向に伸びるP型半導体とN型半導体とが交互に配置されることで、静電気放電時の放電電流の電流経路の面積効率を向上させることができ、保護素子1の放電能力を高めることができる。また、本実施形態に係る保護素子1においては、第1の導電部20は、X方向に伸びる第4の部分24および第5の部分25を更に含み、第2の導電部30は、第1の導電部20の外周を囲む矩形環状の環状部38を更に含む。これにより、静電気放電時の放電電流の電流経路の面積効率を更に向上させることができる。 In the protective element 1 according to the present embodiment, as described above, the second conductive portion extending in the Y direction between the first portion 21 and the second portion 22 of the first conductive portion 20 extending in the Y direction. The first island portion 31 of the portion 30 is provided, and the second conductive portion 30 extending in the Y direction between the second portion 22 and the third portion 23 of the first conductive portion 20 extending in the Y direction. A second island portion 32 is provided. By alternately arranging P-type semiconductors and N-type semiconductors extending in the same direction as each other in this way, it is possible to improve the area efficiency of the current path of the discharge current during electrostatic discharge, and the discharge of the protective element 1 can be improved. You can improve your ability. Further, in the protective element 1 according to the present embodiment, the first conductive portion 20 further includes a fourth portion 24 and a fifth portion 25 extending in the X direction, and the second conductive portion 30 is the first. Further includes a rectangular annular annular portion 38 surrounding the outer periphery of the conductive portion 20 of the above. Thereby, the area efficiency of the current path of the discharge current at the time of electrostatic discharge can be further improved.

すなわち、本実施形態に係る保護素子1によれば、第1の導電部20の第1の部分21から第2の導電部30の第1のアイランド部31および環状部38に向かう電流経路がY方向に沿って形成される。また、第1の導電部20の第2の部分22から第2の導電部30の第1のアイランド部31および第2のアイランド部32に向かう電流経路がY方向に沿って形成される。また、第1の導電部20の第3の部分23から第2の導電部30の第2のアイランド部32および環状部38に向かう電流経路がY方向に沿って形成される。また、第1の導電部20の第4の部分24および第5の部分25から第2の導電部30の環状部38に向かう電流経路がX方向に沿って形成される。 That is, according to the protection element 1 according to the present embodiment, the current path from the first portion 21 of the first conductive portion 20 to the first island portion 31 and the annular portion 38 of the second conductive portion 30 is Y. Formed along the direction. Further, a current path from the second portion 22 of the first conductive portion 20 to the first island portion 31 and the second island portion 32 of the second conductive portion 30 is formed along the Y direction. Further, a current path from the third portion 23 of the first conductive portion 20 to the second island portion 32 and the annular portion 38 of the second conductive portion 30 is formed along the Y direction. Further, a current path from the fourth portion 24 and the fifth portion 25 of the first conductive portion 20 to the annular portion 38 of the second conductive portion 30 is formed along the X direction.

このように、本実施形態に係る保護素子1によれば、静電気放電時の放電電流の電流経路の面積効率を高めることができるので、保護素子1の面積の増大を抑制しつつ放電能力を従来よりも向上させることが可能である。換言すれば、放電能力を維持しつつ保護素子1の面積を縮小することが可能である。 As described above, according to the protection element 1 according to the present embodiment, the area efficiency of the current path of the discharge current at the time of electrostatic discharge can be increased, so that the discharge capacity is conventionally increased while suppressing the increase in the area of the protection element 1. It is possible to improve. In other words, it is possible to reduce the area of the protective element 1 while maintaining the discharge capacity.

図4Aは、第1の比較例に係る保護素子1Xの構成を示す平面図、図4Bは、図4Aにおける4B−4B線に沿った断面図である。図4Aおよび4Bには、カソードとして機能する第2の導電部30Xが、アノードとして機能する第1の導電部20Xに対して低電位となる静電気放電時の放電電流の経路が矢印で示されている。 FIG. 4A is a plan view showing the configuration of the protective element 1X according to the first comparative example, and FIG. 4B is a cross-sectional view taken along the line 4B-4B in FIG. 4A. In FIGS. 4A and 4B, the path of the discharge current at the time of electrostatic discharge in which the second conductive portion 30X functioning as the cathode has a low potential with respect to the first conductive portion 20X functioning as the anode is indicated by an arrow. There is.

第1の比較例に係る保護素子1Xにおいて、アノードとして機能する第1の導電部20Xは長方形のパターンを有し、カソードとして機能する第2の導電部30Xは第1の導電部20Xの外周を囲む矩形環状パターンを有する。第2の導電部30Xは、第1の導電部20Xの外周を囲む絶縁体によって第1の導電部20Xから絶縁分離されている。第1の導電部20Xは、比較的に不純物濃度が高いP型半導体で構成されており、比較的に不純物濃度が低いP型の低濃度領域28Xを介してNウェル11に接続されている。第2の導電部30Xは、比較的に不純物濃度が高いN型半導体で構成されており、比較的に不純物濃度が低いNウェル11に接続されている。第1の導電部20Xの表面には、複数のコンタクト29Xが第1の導電部20の全面に亘り略均一に設けられている。第2の導電部30Xの表面には、複数のコンタクト39Xが設けられている。第1の比較例に係る保護素子1Xによれば、図4Aに示すように、静電気放電時には第1の導電部20Xの4辺に沿って電流経路が形成される。 In the protective element 1X according to the first comparative example, the first conductive portion 20X that functions as an anode has a rectangular pattern, and the second conductive portion 30X that functions as a cathode covers the outer periphery of the first conductive portion 20X. It has a rectangular annular pattern that surrounds it. The second conductive portion 30X is insulated and separated from the first conductive portion 20X by an insulator surrounding the outer periphery of the first conductive portion 20X. The first conductive portion 20X is composed of a P-type semiconductor having a relatively high impurity concentration, and is connected to the N well 11 via a P-type low concentration region 28X having a relatively low impurity concentration. The second conductive portion 30X is composed of an N-type semiconductor having a relatively high impurity concentration, and is connected to an N-well 11 having a relatively low impurity concentration. On the surface of the first conductive portion 20X, a plurality of contacts 29X are provided substantially uniformly over the entire surface of the first conductive portion 20. A plurality of contacts 39X are provided on the surface of the second conductive portion 30X. According to the protective element 1X according to the first comparative example, as shown in FIG. 4A, a current path is formed along the four sides of the first conductive portion 20X during electrostatic discharge.

図5は、TLP(Transmission Line Pulse)測定法により取得した本発明の実施形態に係る保護素子1および第1の比較例に係る保護素子1Xのそれぞれの電流−電圧特性を示すグラフである。なお、保護素子1および1Xの面積は、互いに同じである。TLP測定法は、同軸ケーブルに蓄えられた電荷を放出することで得られる矩形波を利用して保護素子の特性を調べる手法である。図5において、横軸は保護素子のアノード−カソード間の電圧を示し、縦軸は保護素子に流れる電流を示す。同じ電圧で比較した場合、本発明の実施形態に係る保護素子1に流れる電流は、第1の比較例に係る保護素子1Xに流れる電流よりも顕著に大きくなることが確認された。これは、本発明の実施形態に係る保護素子1の方が、第1の比較例に係る保護素子1Xよりも放電能力が高く、保護対象回路をESDから保護する保護機能が優れていることを示している。 FIG. 5 is a graph showing the current-voltage characteristics of the protection element 1 according to the embodiment of the present invention and the protection element 1X according to the first comparative example acquired by the TLP (Transmission Line Pulse) measurement method. The areas of the protective elements 1 and 1X are the same as each other. The TLP measurement method is a method of examining the characteristics of a protective element by using a rectangular wave obtained by discharging the electric charge stored in the coaxial cable. In FIG. 5, the horizontal axis represents the voltage between the anode and the cathode of the protective element, and the vertical axis represents the current flowing through the protective element. When compared at the same voltage, it was confirmed that the current flowing through the protective element 1 according to the embodiment of the present invention is significantly larger than the current flowing through the protective element 1X according to the first comparative example. This is because the protection element 1 according to the embodiment of the present invention has a higher discharge capacity than the protection element 1X according to the first comparative example, and has an excellent protection function for protecting the circuit to be protected from ESD. Shown.

図6Aは、第2の比較例に係る保護素子1Yの構成を示す平面図、図6Bは、図6Aにおける6B−6B線に沿った断面図である。第2の比較例に係る保護素子1Yは、第1の導電部20Yが、第1の比較例に係る保護素子1Xにおける第1の導電部20Xの中央部に絶縁体40Xを配置した構造を有する点において第1の比較例に係る保護素子1Xと異なる。すなわち、第2の比較例に係る保護素子1Yにおいて、第1の導電部20Yは、矩形環状パターンを有し、第1の導電部20Yの面積は、第1の比較例に係る保護素子1Xにおける第1の導電部20Xの面積よりも小さくなっている。 FIG. 6A is a plan view showing the configuration of the protective element 1Y according to the second comparative example, and FIG. 6B is a cross-sectional view taken along the line 6B-6B in FIG. 6A. The protective element 1Y according to the second comparative example has a structure in which the first conductive portion 20Y has an insulator 40X arranged at the center of the first conductive portion 20X in the protective element 1X according to the first comparative example. In that respect, it differs from the protective element 1X according to the first comparative example. That is, in the protective element 1Y according to the second comparative example, the first conductive portion 20Y has a rectangular annular pattern, and the area of the first conductive portion 20Y is the protective element 1X according to the first comparative example. It is smaller than the area of the first conductive portion 20X.

第2の実施形態に係る保護素子1Yについても、TLP測定法による電流−電圧特性を取得したところ、第1の比較例に係る保護素子1Xと略同等の特性が得られた。この結果から本発明者は、第1の比較例に係る保護素子1Xにおいて、第1の導電部20Xの中央部は放電に殆ど寄与せず、外周部のみが放電に寄与するという知見を得た。本発明者は、上記の知見から、保護素子のアノードを構成するP型半導体とカソードを構成するN型半導体とが互いに対向する構造部分を効率よく配置することで、面積の増大を抑制しつつ放電能力を向上できることを発想し、本発明の実施形態に係る保護素子1の構成を案出するに至った。 When the current-voltage characteristics of the protection element 1Y according to the second embodiment were acquired by the TLP measurement method, characteristics substantially equivalent to those of the protection element 1X according to the first comparative example were obtained. From this result, the present inventor has obtained the finding that in the protective element 1X according to the first comparative example, the central portion of the first conductive portion 20X hardly contributes to the discharge, and only the outer peripheral portion contributes to the discharge. .. Based on the above findings, the present inventor efficiently arranges structural portions in which the P-type semiconductor constituting the anode of the protective element and the N-type semiconductor constituting the cathode face each other, thereby suppressing an increase in area. Based on the idea that the discharge capacity can be improved, the configuration of the protective element 1 according to the embodiment of the present invention has been devised.

以上、信号ライン116と電源ライン114との間に設けられる保護素子1の構成について説明したが、グランドライン115と信号ライン116との間に設けられる保護素子2(図1参照)も保護素子1と同様の構造とすることができる。 Although the configuration of the protection element 1 provided between the signal line 116 and the power supply line 114 has been described above, the protection element 2 (see FIG. 1) provided between the ground line 115 and the signal line 116 is also the protection element 1. It can have the same structure as.

図7Aは、保護素子1および2からなる保護素子ペアのレイアウトの一例を示す平面図である。図7Bは、図7Aにおける7B−7B線に沿った断面図であり、保護素子2の断面構造を示す。図7Aに示すように、保護素子1および2を互いに隣接して配置してもよい。また、図7Bに示すように、保護素子2の構成として、保護素子1におけるP型半導体の領域とN型半導体の領域とを反転させた構成としてもよい。 FIG. 7A is a plan view showing an example of the layout of the protection element pair including the protection elements 1 and 2. FIG. 7B is a cross-sectional view taken along the line 7B-7B in FIG. 7A, showing the cross-sectional structure of the protective element 2. As shown in FIG. 7A, the protection elements 1 and 2 may be arranged adjacent to each other. Further, as shown in FIG. 7B, the protective element 2 may have a configuration in which the region of the P-type semiconductor and the region of the N-type semiconductor in the protective element 1 are inverted.

すなわち、保護素子2は、シリコン基板10の表層部に形成されたP型の導電型のPウェル11Aを有する。保護素子2は、Pウェル11A内に形成されたカソードとして機能するN型の導電型を有する第1の導電部20Aおよびアノードとして機能するP型の導電型を有する第2の導電部30Aを備える。保護素子2における第1の導電部20Aは、保護素子1における第1の導電部20と同じパターンを有し、保護素子2における第2の導電部30Aは、保護素子1における第2の導電部30と同じパターンを有する。すなわち、保護素子2は、アノードとして機能する第2の導電部30Aが、互いに分離して配置された2つのアイランド部からなるダブルアイランド構造を有し、カソードとして機能する第1の導電部20Aが、第2の導電部30Aの分離配置された2つの部分をそれぞれ囲む2つのリングを構成するように配置されている。第2の導電部30Aは、第1の導電部20Aの外周を囲む環状部を更に含む。上記の構成を有する保護素子2においても、保護素子1と同様、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることができる、という効果を得ることができる。 That is, the protective element 2 has a P-type conductive P-well 11A formed on the surface layer portion of the silicon substrate 10. The protective element 2 includes a first conductive portion 20A having an N-type conductive mold that functions as a cathode and a second conductive portion 30A having a P-type conductive mold that functions as an anode formed in the P well 11A. .. The first conductive portion 20A in the protective element 2 has the same pattern as the first conductive portion 20 in the protective element 1, and the second conductive portion 30A in the protective element 2 is a second conductive portion in the protective element 1. It has the same pattern as 30. That is, the protective element 2 has a double island structure in which the second conductive portion 30A that functions as an anode is composed of two island portions that are arranged separately from each other, and the first conductive portion 20A that functions as a cathode is provided. , The second conductive portion 30A is arranged so as to form two rings surrounding each of the two separately arranged portions. The second conductive portion 30A further includes an annular portion surrounding the outer periphery of the first conductive portion 20A. Similar to the protective element 1, the protective element 2 having the above configuration can also obtain the effect that the discharge capacity for ESD can be improved as compared with the conventional case while suppressing the increase in the area.

[第2の実施形態]
図8は、本発明の第2の実施形態に係る半導体装置としての保護素子1Aの構成を示す平面図である。保護素子1Aは、第1の導電部20および第2の導電部30のパターンが第1の実施形態に係る保護素子1と異なる。具体的には、保護素子1Aは、第1の導電部20が第6の部分26を更に含み、第2の導電部30が、第3のアイランド部33を更に含む点が、第1の実施形態に係る保護素子1と異なる。
[Second Embodiment]
FIG. 8 is a plan view showing the configuration of the protective element 1A as the semiconductor device according to the second embodiment of the present invention. The pattern of the first conductive portion 20 and the second conductive portion 30 of the protective element 1A is different from that of the protective element 1 according to the first embodiment. Specifically, the first embodiment of the protective element 1A is that the first conductive portion 20 further includes the sixth portion 26, and the second conductive portion 30 further includes the third island portion 33. It is different from the protective element 1 according to the form.

すなわち、保護素子1Aにおいて、第1の導電部20は、図8においてそれぞれY方向に伸びる第1の部分21、第2の部分22、第3の部分23および第6の部分26を有する。第1の部分21、第2の部分22、第3の部分23および第6の部分26は、図8においてX方向に互いに離間して並置されている。図8においてX方向に伸びる第1の導電部20の第4の部分24は、第1の部分21、第2の部分22、第3の部分23および第6の部分26の各々の一端に接続されている。図8においてX方向に伸びる第1の導電部20の第5の部分25は、第1の部分21、第2の部分22、第3の部分23および第6の部分26の各々の他端に接続されている。このように、保護素子1Aにおいて、第1の導電部20は3つの矩形リングを連結した「目」の字型のパターンを有する。 That is, in the protective element 1A, the first conductive portion 20 has a first portion 21, a second portion 22, a third portion 23, and a sixth portion 26 extending in the Y direction, respectively, in FIG. The first portion 21, the second portion 22, the third portion 23, and the sixth portion 26 are juxtaposed with each other in the X direction in FIG. In FIG. 8, the fourth portion 24 of the first conductive portion 20 extending in the X direction is connected to one end of each of the first portion 21, the second portion 22, the third portion 23, and the sixth portion 26. Has been done. In FIG. 8, the fifth portion 25 of the first conductive portion 20 extending in the X direction is attached to the other end of each of the first portion 21, the second portion 22, the third portion 23, and the sixth portion 26. It is connected. As described above, in the protective element 1A, the first conductive portion 20 has an "eye" -shaped pattern in which three rectangular rings are connected.

第2の導電部30の第3のアイランド部33は、第1の導電部20の第3の部分23と第6の部分26との間に設けられている。すなわち、第2の導電部30の第3のアイランド部33は、第1の導電部20の第3の部分23と第6の部分26との間に挟まれており、これらの双方と対向している。第2の導電部30の第3のアイランド部33は、第3のアイランド部33の外周を囲む絶縁体40によって第1の導電部20から絶縁分離されている。第2の導電部30は、第1の導電部20の外周を囲む環状のパターンを有する環状部38を更に含む。 The third island portion 33 of the second conductive portion 30 is provided between the third portion 23 and the sixth portion 26 of the first conductive portion 20. That is, the third island portion 33 of the second conductive portion 30 is sandwiched between the third portion 23 and the sixth portion 26 of the first conductive portion 20, and faces both of them. ing. The third island portion 33 of the second conductive portion 30 is insulated and separated from the first conductive portion 20 by an insulator 40 surrounding the outer circumference of the third island portion 33. The second conductive portion 30 further includes an annular portion 38 having an annular pattern surrounding the outer periphery of the first conductive portion 20.

このように、保護素子1Aは、カソードとして機能する第2の導電部30が、互いに分離して配置された第1のアイランド部31、第2のアイランド部32、第3のアイランド部33からなるトリプルアイランド構造を有し、アノードとして機能する第1の導電部20が、第2の導電部30の第1のアイランド部31、第2のアイランド部32および第3のアイランド部33をそれぞれ囲む3つのリングを形成する第1の部分21〜第6の部分26を有する。第2の導電部30は、第1の導電部20の外周を囲む環状部38を更に含む。 As described above, the protection element 1A includes a first island portion 31, a second island portion 32, and a third island portion 33 in which the second conductive portion 30 functioning as a cathode is arranged so as to be separated from each other. The first conductive portion 20 having a triple island structure and functioning as an anode surrounds the first island portion 31, the second island portion 32, and the third island portion 33 of the second conductive portion 30, respectively. It has a first portion 21 to a sixth portion 26 forming one ring. The second conductive portion 30 further includes an annular portion 38 that surrounds the outer periphery of the first conductive portion 20.

上記の構成を有する保護素子1Aにおいても、保護素子1と同様、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることができる、という効果を得ることができる。 Similar to the protective element 1, the protective element 1A having the above configuration can also have the effect that the discharge capacity for ESD can be improved as compared with the conventional case while suppressing the increase in the area.

[第3の実施形態]
図9は、本発明の第3の実施形態に係る半導体装置としての保護素子1Bの構成を示す平面図である。保護素子1Bは、第1の導電部20および第2の導電部30のパターンが第1の実施形態に係る保護素子1と異なる。
[Third Embodiment]
FIG. 9 is a plan view showing the configuration of the protective element 1B as the semiconductor device according to the third embodiment of the present invention. The pattern of the first conductive portion 20 and the second conductive portion 30 of the protective element 1B is different from that of the protective element 1 according to the first embodiment.

保護素子1Bにおいて、第1の導電部20は、Y方向に伸びる第1の部分21、第2の部分22および第3の部分23と、これらと交差するX方向に伸びる第4の部分24、第5の部分25および第7の部分27と、からなる格子状パターンを有する。換言すれば、保護素子1Bにおいて、第1の導電部20は、「田」の字型のパターンを有する。 In the protective element 1B, the first conductive portion 20 includes a first portion 21, a second portion 22 and a third portion 23 extending in the Y direction, and a fourth portion 24 extending in the X direction intersecting these. It has a grid pattern consisting of a fifth portion 25 and a seventh portion 27. In other words, in the protective element 1B, the first conductive portion 20 has a "field" -shaped pattern.

第2の導電部30は、第1の導電部20の格子状パターンにおける各格子の内側に設けられた第1のアイランド部31、第2のアイランド部32、第3のアイランド部33および第4のアイランド部34を有する。第2の導電部30の第1のアイランド部31〜第4のアイランド部34は、それぞれ、これらの外周を囲む絶縁体40によって第1の導電部20から絶縁分離されている。第2の導電部30は、第1の導電部20の外周を囲む矩形環状パターンを有する環状部38を更に含む。 The second conductive portion 30 includes a first island portion 31, a second island portion 32, a third island portion 33, and a fourth, which are provided inside each grid in the grid pattern of the first conductive portion 20. It has an island portion 34 of. The first island portions 31 to 4 of the second conductive portion 30 are each insulated and separated from the first conductive portion 20 by an insulator 40 surrounding their outer circumferences. The second conductive portion 30 further includes an annular portion 38 having a rectangular annular pattern surrounding the outer periphery of the first conductive portion 20.

上記の構成を有する保護素子1Bにおいても、保護素子1と同様、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることができる、という効果を得ることができる。 Similar to the protective element 1, the protective element 1B having the above configuration can also have the effect that the discharge capacity for ESD can be improved as compared with the conventional case while suppressing the increase in the area.

[第4の実施形態]
図10は、本発明の第4の実施形態に係る半導体装置としての保護素子1Cの構成を示す平面図である。保護素子1Cは、第1の導電部20および第2の導電部30のパターンが第1の実施形態に係る保護素子1と異なる。具体的には、保護素子1Cは、第1の導電部20がX方向に伸びる部分を含んでおらず、第2の導電部30を構成する第1のアイランド部31および第2のアイランド部32が、第1の導電部20の第1の部分21〜第3の部分23と同じ長さを有している。
[Fourth Embodiment]
FIG. 10 is a plan view showing the configuration of the protective element 1C as the semiconductor device according to the fourth embodiment of the present invention. The pattern of the first conductive portion 20 and the second conductive portion 30 of the protective element 1C is different from that of the protective element 1 according to the first embodiment. Specifically, the protective element 1C does not include a portion where the first conductive portion 20 extends in the X direction, and the first island portion 31 and the second island portion 32 constituting the second conductive portion 30. However, it has the same length as the first portions 21 to 3 of the first conductive portion 20.

すなわち、保護素子1Cにおいて、第1の導電部20は、それぞれY方向に伸びる第1の部分21、第2の部分22、第3の部分23を有する。第1の部分21、第2の部分22、第3の部分23は、X方向に互いに離間して並置されている。保護素子1Cにおいて、第2の導電部30は、Y方向に伸びる第1のアイランド部31および第2のアイランド部32を有する。第1のアイランド部31は、第1の導電部20の第1の部分21と第2の部分22との間に設けられている。第2のアイランド部32は、第1の導電部20の第2の部分22と第3の部分23との間に設けられている。第2の導電部30は、第1の導電部20の外周を囲む環状パターンを有する環状部38を更に含む。環状部38は、図2AにおいてY方向に伸びる部分と、Xの方向に伸びる部分とを有する矩形環状パターンを有する。 That is, in the protective element 1C, the first conductive portion 20 has a first portion 21, a second portion 22, and a third portion 23 extending in the Y direction, respectively. The first portion 21, the second portion 22, and the third portion 23 are juxtaposed so as to be separated from each other in the X direction. In the protective element 1C, the second conductive portion 30 has a first island portion 31 extending in the Y direction and a second island portion 32. The first island portion 31 is provided between the first portion 21 and the second portion 22 of the first conductive portion 20. The second island portion 32 is provided between the second portion 22 and the third portion 23 of the first conductive portion 20. The second conductive portion 30 further includes an annular portion 38 having an annular pattern surrounding the outer periphery of the first conductive portion 20. The annular portion 38 has a rectangular annular pattern having a portion extending in the Y direction and a portion extending in the X direction in FIG. 2A.

上記の構成を有する保護素子1Cにおいても、保護素子1と同様、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることができる、という効果を得ることができる。 Similar to the protective element 1, the protective element 1C having the above configuration can also have the effect that the discharge capacity for ESD can be improved as compared with the conventional case while suppressing the increase in the area.

[第5の実施形態]
図11は、本発明の第5の実施形態に係る半導体装置としての保護素子1Dの構成を示す平面図である。保護素子1Dは、第1の導電部20および第2の導電部30のパターンが第1の実施形態に係る保護素子1と異なる。
[Fifth Embodiment]
FIG. 11 is a plan view showing the configuration of the protective element 1D as the semiconductor device according to the fifth embodiment of the present invention. The pattern of the first conductive portion 20 and the second conductive portion 30 of the protective element 1D is different from that of the protective element 1 according to the first embodiment.

保護素子1Dにおいて、第1の導電部20は、図11においてそれぞれY方向に伸びる第1の部分21、第2の部分22を有する。第1の部分21および第2の部分22は、図11においてX方向に互いに離間して並置されている。図11においてX方向に伸びる第1の導電部20の第4の部分24は、第1の部分21および第2の部分22の各々の一端に接続されている。図11においてX方向に伸びる第1の導電部20の第5の部分25は、第1の部分21および第2の部分22の各々の他端に接続されている。このように、保護素子1Dにおいて、第1の導電部20は単一の矩形リング状パターンを有する。 In the protective element 1D, the first conductive portion 20 has a first portion 21 and a second portion 22 extending in the Y direction, respectively, in FIG. The first portion 21 and the second portion 22 are juxtaposed with each other in the X direction in FIG. In FIG. 11, the fourth portion 24 of the first conductive portion 20 extending in the X direction is connected to one end of each of the first portion 21 and the second portion 22. In FIG. 11, the fifth portion 25 of the first conductive portion 20 extending in the X direction is connected to the other ends of each of the first portion 21 and the second portion 22. As described above, in the protective element 1D, the first conductive portion 20 has a single rectangular ring-shaped pattern.

第2の導電部30は、図11においてY方向に伸びる第1のアイランド部31を有する。第1のアイランド部31は、第1の導電部20の第1の部分21と第2の部分22との間に設けられている。すなわち、第1のアイランド部31は、第1の導電部20の第1の部分21と第2の部分22との間に挟まれており、これらの双方と対向している。第1のアイランド部31は、第1のアイランド部31の外周を囲む絶縁体40によって第1の導電部20から絶縁分離されている。第2の導電部30は、第1の導電部20の外周を囲む環状のパターンを有する環状部38を更に含む。 The second conductive portion 30 has a first island portion 31 extending in the Y direction in FIG. The first island portion 31 is provided between the first portion 21 and the second portion 22 of the first conductive portion 20. That is, the first island portion 31 is sandwiched between the first portion 21 and the second portion 22 of the first conductive portion 20, and faces both of them. The first island portion 31 is insulated and separated from the first conductive portion 20 by an insulator 40 that surrounds the outer periphery of the first island portion 31. The second conductive portion 30 further includes an annular portion 38 having an annular pattern surrounding the outer periphery of the first conductive portion 20.

上記の構成を有する保護素子1Dにおいても、保護素子1と同様、面積の増大を抑制しつつESDに対する放電能力を従来よりも向上させることができる、という効果を得ることができる。 Similar to the protective element 1, the protective element 1D having the above configuration can also obtain the effect that the discharge capacity for ESD can be improved as compared with the conventional case while suppressing the increase in the area.

以上、本発明の実施形態に係る半導体装置の構成について例示したが、本発明は、上記の各実施形態に係る半導体装置の構成に限定されるものではない。すなわち、本発明に係る半導体装置は、各々が第1の導電型を有し且つ第1の方向に伸び、第1の方向と交差する第2の方向に互いに離間して並置された複数の部分を有する第1の導電部と、各々が第1の導電型とは異なる第2の導電型を有し且つ第1の方向に伸び、第1の導電部の第2の方向に互いに離間して並置された複数の部分の間に設けられた少なくとも1つのアイランド部を有する第2の導電部と、を含んでいればよく、上記の第1〜第5の実施形態に係る半導体装置の構成に対して適宜改変を加えることが可能である。 Although the configuration of the semiconductor device according to the embodiment of the present invention has been illustrated above, the present invention is not limited to the configuration of the semiconductor device according to each of the above embodiments. That is, the semiconductor device according to the present invention has a plurality of portions each having a first conductive type, extending in a first direction, and juxtaposed with each other in a second direction intersecting with the first direction. Each has a second conductive mold different from the first conductive mold and extends in the first direction, and is separated from each other in the second direction of the first conductive portion. It suffices to include a second conductive portion having at least one island portion provided between the plurality of juxtaposed portions, and the configuration of the semiconductor device according to the first to fifth embodiments described above may include. On the other hand, it is possible to modify it as appropriate.

1、1A、1B、1C 半導体装置
10 シリコン基板
11 Nウェル
20 第1の導電部
21 第1の部分
22 第2の部分
23 第3の部分
24 第4の部分
25 第5の部分
26 第6の部分
30 第2の導電部
31 第1のアイランド部
32 第2のアイランド部
33 第3のアイランド部
34 第4のアイランド部
39 環状部
40、41 絶縁体
1, 1A, 1B, 1C Semiconductor device 10 Silicon substrate 11 N well 20 First conductive part 21 First part 22 Second part 23 Third part 24 Fourth part 25 Fifth part 26 Sixth Part 30 Second conductive part 31 First island part 32 Second island part 33 Third island part 34 Fourth island part 39 Circular part 40, 41 Insulator

Claims (5)

第1の導電型を有する基板と、
前記基板上に設けられ、前記第1の導電型とは異なる第2の導電型を有するウェル領域と、
前記ウェル領域内に設けられ、各々が前記第1の導電型を有し且つ第1の方向に伸び、前記第1の方向と交差する第2の方向に互いに離間して並置された複数の第1の導電部と、
前記ウェル領域内に設けられ、前記複数の第1の導電部の各々の間に設けられ、前記第2の導電型を有し且つ前記第1の方向に伸びる第2の導電部と、
前記ウェル領域と前記複数の第1の導電部の少なくとも一つの間に設けられ、前記第1の導電部よりも不純物濃度が低い前記第1の導電型の低濃度領域と、
を含む半導体装置。
The substrate having the first conductive type and
A well region provided on the substrate and having a second conductive mold different from the first conductive mold,
A plurality of firsts provided in the well region, each having the first conductive mold, extending in the first direction, and juxtaposed with each other in a second direction intersecting the first direction. 1 conductive part and
A second conductive portion provided in the well region, provided between each of the plurality of first conductive portions, having the second conductive mold, and extending in the first direction.
The first conductive type low concentration region provided between the well region and at least one of the plurality of first conductive portions and having an impurity concentration lower than that of the first conductive portion.
Semiconductor devices including.
前記第2の導電型を有し且つ前記複数の第1の導電部及び前記第2の導電部を囲む環状パターンを有する第3の導電部を更に含む
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, further comprising a third conductive portion having the second conductive type and having the plurality of first conductive portions and an annular pattern surrounding the second conductive portion.
第1の導電型を有する基板と、
前記基板上に設けられ、前記第1の導電型とは異なる第2の導電型を有するウェル領域と、
前記ウェル領域内に設けられ、前記第1の導電型を有し且つ環状パターンを有する第1の導電部と、
前記ウェル領域内に設けられ、前記第2の導電型を有し且つ前記第1の導電部に囲まれるよう位置する第2の導電部と、
前記ウェル領域と前記第1の導電部の少なくとも一部の間に設けられ、前記第1の導電部よりも不純物濃度が低い前記第1の導電型の低濃度領域と、
を含む半導体装置。
The substrate having the first conductive type and
A well region provided on the substrate and having a second conductive mold different from the first conductive mold,
A first conductive portion provided in the well region, having the first conductive mold and having an annular pattern,
A second conductive portion provided in the well region, having the second conductive mold, and located so as to be surrounded by the first conductive portion.
A low-concentration region of the first conductive type provided between the well region and at least a part of the first conductive portion and having a lower impurity concentration than the first conductive portion.
Semiconductor devices including.
前記第1の導電部は、第1の方向に伸びる複数の部分と、前記第1の方向と交差する第2の方向に伸びる複数の部分とを有する矩形環状パターンであり、
前記第2の導電部は、前記第1の方向及び前記第2の方向のいずれか一方向に伸びる
請求項3に記載の半導体装置。
The first conductive portion is a rectangular annular pattern having a plurality of portions extending in a first direction and a plurality of portions extending in a second direction intersecting the first direction.
The semiconductor device according to claim 3, wherein the second conductive portion extends in any one of the first direction and the second direction.
前記第2の導電型を有し且つ前記第1の導電部及び前記第2の導電部を囲む環状パターンを有する第3の導電部を更に含む
請求項3または4に記載の半導体装置。
The semiconductor device according to claim 3 or 4, further comprising a third conductive portion having the second conductive mold and having the first conductive portion and the annular pattern surrounding the second conductive portion.
JP2021003587A 2021-01-13 2021-01-13 Semiconductor device Active JP7048160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003587A JP7048160B2 (en) 2021-01-13 2021-01-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003587A JP7048160B2 (en) 2021-01-13 2021-01-13 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016169911A Division JP6824667B2 (en) 2016-08-31 2016-08-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2021052217A true JP2021052217A (en) 2021-04-01
JP7048160B2 JP7048160B2 (en) 2022-04-05

Family

ID=75156494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003587A Active JP7048160B2 (en) 2021-01-13 2021-01-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JP7048160B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065020A (en) * 1996-08-21 1998-03-06 Oki Electric Ind Co Ltd Semiconductor device
JP2007335440A (en) * 2006-06-12 2007-12-27 Nec Electronics Corp Electrostatic breakdown protection method and electrostatic breakdown protection device of semiconductor device
US20100148265A1 (en) * 2008-12-15 2010-06-17 United Microelectronics Corp. Esd protection device
JP2012049444A (en) * 2010-08-30 2012-03-08 Elpida Memory Inc Protection circuit and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065020A (en) * 1996-08-21 1998-03-06 Oki Electric Ind Co Ltd Semiconductor device
JP2007335440A (en) * 2006-06-12 2007-12-27 Nec Electronics Corp Electrostatic breakdown protection method and electrostatic breakdown protection device of semiconductor device
US20100148265A1 (en) * 2008-12-15 2010-06-17 United Microelectronics Corp. Esd protection device
JP2012049444A (en) * 2010-08-30 2012-03-08 Elpida Memory Inc Protection circuit and semiconductor device

Also Published As

Publication number Publication date
JP7048160B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
US7038280B2 (en) Integrated circuit bond pad structures and methods of making
JP2005072607A (en) Integrated circuit device having input/output electrostatic discharge protection cell comprising electrostatic protection element and power clamp
TWI430432B (en) Power semiconductor device with electrostatic discharge structure and manufacturing method
CN111326507B (en) Electrostatic discharge protection device
US6815821B2 (en) Method of fabricating seal-ring structure with ESD protection
EP0415255B2 (en) Protection circuit for use in semiconductor integrated circuit device
KR101712629B1 (en) ESD(Electrostatic Discharge) protection device, method of fabricating the same device, and electrical and electronic apparatus comprising the same device
CN111033720B (en) Semiconductor integrated circuit device having a plurality of semiconductor chips
JP6824667B2 (en) Semiconductor device
US8866228B2 (en) Diode and electrostatic discharge protection circuit including the same
JP7048160B2 (en) Semiconductor device
JP2016035952A (en) Semiconductor element and semiconductor device
JP2010080622A (en) Semiconductor integrated circuit
CN112242390A (en) Transient voltage suppression element
JP2007019413A (en) Semiconductor device for protection circuit
JP6838504B2 (en) Semiconductor devices and semiconductor circuit devices
JP5023254B2 (en) Integrated circuit electrostatic discharge protection
KR100631958B1 (en) Electrostatic discharge protection circuit
CN114492285A (en) Layout design method for improving ESD protection capability of interdigital structure device
JP2004363136A (en) Semiconductor circuit device
JP4795613B2 (en) Semiconductor device
JP2008034503A (en) Semiconductor protecting device and its manufacturing method
JP2012028380A (en) Semiconductor device
WO2023167083A1 (en) Semiconductor integrated circuit device
CN112185954B (en) Vertical bipolar transistor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220317

R150 Certificate of patent or registration of utility model

Ref document number: 7048160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150