JP2021050825A - Heat insulating material and apparatus using the same - Google Patents

Heat insulating material and apparatus using the same Download PDF

Info

Publication number
JP2021050825A
JP2021050825A JP2020214482A JP2020214482A JP2021050825A JP 2021050825 A JP2021050825 A JP 2021050825A JP 2020214482 A JP2020214482 A JP 2020214482A JP 2020214482 A JP2020214482 A JP 2020214482A JP 2021050825 A JP2021050825 A JP 2021050825A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
resin
composite layer
resin column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020214482A
Other languages
Japanese (ja)
Inventor
坂口 茂樹
Shigeki Sakaguchi
茂樹 坂口
米澤 隆弘
Takahiro Yonezawa
隆弘 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020214482A priority Critical patent/JP2021050825A/en
Publication of JP2021050825A publication Critical patent/JP2021050825A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermal Insulation (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a heat insulating material which can suppress deterioration in heat conductivity by maintaining a structure of the heat insulating material with respect to compression stress, and an apparatus using the heat insulating material.SOLUTION: A heat insulating material of this invention includes a composite layer containing fiber and silica aerogel, and a resin column provided in a thickness direction of the composite layer. A part of the resin column appears on one surface of the composite layer. A length of the resin column is smaller than a thickness of the composite layer. In an apparatus of this invention, the heat insulating material is disposed between a plurality of heating elements.SELECTED DRAWING: Figure 1

Description

本発明は、疎水性エアロゲルを用いた断熱材とその断熱材を使用した機器に関するものである。 The present invention relates to a heat insulating material using hydrophobic airgel and a device using the heat insulating material.

近年、環境意識の高まりから電気自動車やハイブリッド自動車など二次電池を搭載した自動車が増加している。車載用の電池は、複数のリチウムイオン電池(電池セル)から構成されている。電池セルの製造時の不具合や、車の衝突、電池セルの誤った取り扱いにより、電池セルが熱暴走を起こすことが想定されている。1つの電池セルが熱暴走し、大量の熱を隣接する他の電池セルへ伝達することで類焼が発生し、大事故に至る。 In recent years, the number of vehicles equipped with secondary batteries, such as electric vehicles and hybrid vehicles, is increasing due to heightened environmental awareness. The vehicle-mounted battery is composed of a plurality of lithium-ion batteries (battery cells). It is assumed that the battery cell will cause thermal runaway due to a malfunction in the manufacture of the battery cell, a collision of a car, or an incorrect handling of the battery cell. One battery cell runs away from heat, and a large amount of heat is transferred to another adjacent battery cell, causing a kind of fire, leading to a major accident.

そこで現在、電池セル間の類焼防止として、電池セル間に熱絶縁体として変性PPE樹脂やアラミド樹脂が用いられている。 Therefore, at present, a modified PPE resin or an aramid resin is used as a thermal insulator between the battery cells to prevent burning between the battery cells.

しかしながら、車載電池の小型により電池セル間の空隙が狭くなり、電池セル間の類焼の危険性が増加している。現在、熱絶縁体としてセル間に使用されている変性PPE樹脂やアラミド樹脂の熱伝導率は、0.17W/mk、0.04W/mkと熱伝導率が高い。このため、電池セル間の縮小により類焼が発生する。そこで、電池セル間に熱絶縁体として、変性PPE樹脂やアラミド樹脂よりも熱伝導率が低いシリカエアロゲルを用いて電池セル間の断熱が考えられている(特許文献1)。 However, due to the small size of the in-vehicle battery, the gap between the battery cells is narrowed, and the risk of burning between the battery cells is increased. Currently, the modified PPE resin and aramid resin used as thermal insulators between cells have high thermal conductivitys of 0.17 W / mk and 0.04 W / mk. Therefore, the shrinkage between the battery cells causes burning. Therefore, heat insulation between battery cells has been considered by using silica airgel having a lower thermal conductivity than modified PPE resin or aramid resin as a thermal insulator between battery cells (Patent Document 1).

特許第5624254号公報Japanese Patent No. 5624254

シリカエアロゲルは、低い熱伝導率(0.02W/mk)を特徴とするが、シリカエアロゲルのシリカ2次粒子同士の結合力が小さく極めて脆弱であるため、外部から応力が加わると、シリカエアロゲルが破壊され、特性が劣化する欠点がある。 Silica airgel is characterized by low thermal conductivity (0.02 W / mk), but since the bonding force between silica secondary particles of silica airgel is small and extremely fragile, when external stress is applied, silica airgel becomes It has the drawback of being destroyed and degrading its properties.

電池セルの劣化により電池セルが膨張することで、セル間の隙間が少なくなり、セル間の脆弱なシリカエアロゲルに圧縮応力が発生し、シリカエアロゲルが破壊される。シリカエアロゲルが破壊されると熱伝導率が増加し、電池セルの断熱特性が劣化する。このことで電池セルの類焼防止が出来ない。 As the battery cell expands due to deterioration of the battery cell, the gap between the cells is reduced, compressive stress is generated in the fragile silica airgel between the cells, and the silica airgel is destroyed. When the silica airgel is destroyed, the thermal conductivity increases and the heat insulating property of the battery cell deteriorates. This makes it impossible to prevent the battery cells from burning.

そこで、本発明では、上記課題に鑑み、圧縮応力に対し、断熱材の構造を保持して熱伝導率の悪化を抑制した断熱材とその断熱材を使用した機器を提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a heat insulating material that retains the structure of the heat insulating material and suppresses deterioration of thermal conductivity against compressive stress, and an apparatus using the heat insulating material. ..

上記課題を解決するために、繊維とシリカエアロゲルを含む複合層と、上記複合層の厚み方向に、設けたられた樹脂支柱と、を含む断熱材を用いる。複数の発熱体間に上記断熱材を配置した電子機器を用いる。 In order to solve the above problems, a heat insulating material containing a composite layer containing fibers and silica airgel and a resin strut provided in the thickness direction of the composite layer is used. An electronic device in which the heat insulating material is arranged between a plurality of heating elements is used.

本願発明の断熱材によれば、樹脂支柱により断熱材にかかる圧縮応力を分散することができ、断熱材の断熱特性を保持できる。電池セル間に本願断熱材を用いれば、この断熱材中のシリカエアロゲルに掛かる圧縮応力を樹脂支柱で分散でき、電池セル間の断熱性を長期間保てる。結果、電池のセル間の熱暴走による類焼を抑制でき、安全な車載用電池を提供できる。さらに、断熱性樹脂支柱を多孔質の樹脂にすれば電池セルからの熱伝導を抑制することができる。 According to the heat insulating material of the present invention, the compressive stress applied to the heat insulating material can be dispersed by the resin column, and the heat insulating property of the heat insulating material can be maintained. If the heat insulating material of the present application is used between the battery cells, the compressive stress applied to the silica airgel in the heat insulating material can be dispersed by the resin columns, and the heat insulating property between the battery cells can be maintained for a long period of time. As a result, it is possible to suppress burning due to thermal runaway between battery cells, and it is possible to provide a safe in-vehicle battery. Further, if the heat insulating resin column is made of a porous resin, heat conduction from the battery cell can be suppressed.

実施の形態の断熱材の断面図Sectional drawing of the heat insulating material of embodiment 実施の形態の断熱材の応用例を示す断面図Sectional drawing which shows application example of the heat insulating material of embodiment 実施の形態のシリカエアロゲルの模式図Schematic diagram of the silica airgel of the embodiment (a)〜(b)実施の形態の断熱材での樹脂支柱の挿入を説明する断面図(A)-(b) Cross-sectional view for explaining the insertion of the resin column in the heat insulating material of the embodiment. (a)圧縮されていない正常なシリカエアロゲルの表面図、(b)圧縮されたシリカエアロゲルの表面図(A) Surface view of uncompressed normal silica airgel, (b) Surface view of compressed silica airgel 実施の形態の断熱材の応用例の断面図Sectional drawing of application example of heat insulating material of embodiment (a)〜(b)実施の形態の断熱材の応用例の断面図(A)-(b) Cross-sectional view of an application example of the heat insulating material of the embodiment 実施の形態の断熱材の応用例の断面図Sectional drawing of application example of heat insulating material of embodiment (a)〜(b)実施例2の断熱材を説明する断面図(A)-(b) Cross-sectional view for explaining the heat insulating material of Example 2. (a)〜(b)実施例3の断熱材を説明する断面図(A)-(b) Cross-sectional view for explaining the heat insulating material of Example 3. 断熱材の製造フローチャート図Insulation material manufacturing flowchart

以下に、実施の形態について、図を参照しながら説明する。 Hereinafter, embodiments will be described with reference to the drawings.

(実施の形態)
図1は、本発明の実施の形態におけるシリカエアロゲルを含む断熱材100の断面図を示したものである。
(Embodiment)
FIG. 1 shows a cross-sectional view of a heat insulating material 100 containing silica airgel according to an embodiment of the present invention.

図2に実施の形態として車載用電池の電池セル106間に、断熱材100を装着した構造を示す。電池セル106の劣化により電池セル106が膨張することで、電池セル106間の隙間が少なくなり、断熱材100が変形を受ける。この実施の形態では、上記変形により断熱材100中の脆弱なシリカエアロゲルに圧縮応力が発生し、シリカエアロゲルが破壊されるのを防止し、電池セル間の類焼防止を抑制するものである。 FIG. 2 shows a structure in which the heat insulating material 100 is mounted between the battery cells 106 of the vehicle-mounted battery as an embodiment. As the battery cell 106 expands due to deterioration of the battery cell 106, the gap between the battery cells 106 is reduced, and the heat insulating material 100 is deformed. In this embodiment, compressive stress is generated in the fragile silica airgel in the heat insulating material 100 due to the above deformation, the silica airgel is prevented from being destroyed, and the prevention of burning between battery cells is suppressed.

<断熱材100の構成>
図1において、断熱材100は、繊維102にナノサイズの多孔質構造を有するシリカエアロゲル103の複合層101を有している。樹脂支柱104は厚み方向に平行に配置され、圧縮応力に対応した樹脂支柱104のサイズおよび樹脂支柱104の数を備えている。さらに必要に応じて上下をラミネートフィルム105にて挟まれている。
<Structure of heat insulating material 100>
In FIG. 1, the heat insulating material 100 has a composite layer 101 of silica airgel 103 having a nano-sized porous structure on fibers 102. The resin columns 104 are arranged parallel to each other in the thickness direction, and have the size of the resin columns 104 and the number of resin columns 104 corresponding to the compressive stress. Further, the upper and lower parts are sandwiched between the laminated films 105 as needed.

樹脂支柱104により、断熱材100は、圧縮応力を分散し、その形状を保つ。結果、シリカエアロゲルが脱離せず、熱伝導率が維持され、電池セルの類焼を抑制することができる。 The resin column 104 disperses the compressive stress and keeps the shape of the heat insulating material 100. As a result, the silica airgel does not come off, the thermal conductivity is maintained, and the burning of the battery cell can be suppressed.

<複合層101の構成>
断熱材100の主体となる複合層101は、シリカエアロゲル103の製造過程で、ゲル状態のシリカエアロゲルを繊維102に含浸させる。その後、ゲルを反応させて湿潤ゲルを形成する。最後に湿潤ゲル表面を疎水化、熱風乾燥することにより得られる。繊維102は、PET(ポリエチレンテレフタレート)や安全性の観点から繊維に難燃処理を施した酸化アクリル、グラスウールなどの繊維が好ましい。
<Structure of composite layer 101>
The composite layer 101, which is the main component of the heat insulating material 100, impregnates the fibers 102 with the gelled silica airgel in the process of manufacturing the silica airgel 103. The gel is then reacted to form a wet gel. Finally, it is obtained by hydrophobicizing the surface of the wet gel and drying it with hot air. The fiber 102 is preferably a fiber such as PET (polyethylene terephthalate), acrylic oxide obtained by subjecting the fiber to a flame-retardant treatment from the viewpoint of safety, or glass wool.

繊維102の径は、0.1〜30umが望ましい。繊維102の径が30umより大きくなると繊維102を通じて熱が伝達しやすくなるため、熱伝導率が上昇し、断熱性が悪化する。このことで電池セル106から発生した熱を隣の電池セル106に伝えることで電池セル106の温度上昇により類焼が発生させる。 The diameter of the fiber 102 is preferably 0.1 to 30 um. When the diameter of the fiber 102 is larger than 30 um, heat is easily transferred through the fiber 102, so that the thermal conductivity increases and the heat insulating property deteriorates. As a result, the heat generated from the battery cell 106 is transferred to the adjacent battery cell 106, so that the temperature rise of the battery cell 106 causes burning.

<シリカエアロゲル103>
図3に、シリカエアロゲル103の構造について説明する。シリカエアロゲル103は、1nm程度の径をもつシリカ1次粒子201が集合して形成された10nm前後の径を持つシリカ2次粒子202が、10〜60nm程度の粒子間距離の空隙203をもつ網目構造の集合体である。
<Silica Airgel 103>
FIG. 3 describes the structure of the silica airgel 103. The silica airgel 103 is a network in which silica secondary particles 202 having a diameter of about 10 nm formed by gathering silica primary particles 201 having a diameter of about 1 nm have voids 203 having an interparticle distance of about 10 to 60 nm. It is a collection of structures.

シリカエアロゲル103は、水ガラスやテトラメトキシシランのような金属アルコキシドをゲル原料として、水やアルコールなどの溶媒と必要に応じて触媒を混合することで、溶媒中でゲル原料と反応させ湿潤ゲルを形成し、内部の溶媒を乾燥させたものである。 Silica airgel 103 uses a metal alkoxide such as water glass or tetramethoxysilane as a gel raw material, and mixes a solvent such as water or alcohol with a catalyst as needed to react with the gel raw material in the solvent to form a wet gel. It is formed and the solvent inside is dried.

しかしながら、湿潤ゲルを普通に熱風乾燥させたものは、溶媒が乾燥するときの表面張力により、収縮してしまい空隙を潰してしまい、断熱材として機能しない。従って、溶媒が乾燥するときに表面張力がほとんど働かないように、超臨界乾燥、あるいは湿潤ゲルの表面のシラノール基を、シリル化剤を用いてシリル化することにより疎水化した後に熱風乾燥することが必要になる。 However, when the wet gel is normally dried with hot air, it shrinks due to the surface tension when the solvent dries and crushes the voids, so that it does not function as a heat insulating material. Therefore, supercritical drying or hydrophobizing the silanol groups on the surface of the wet gel with a silylating agent is performed so that surface tension hardly acts when the solvent dries, and then hot air drying is performed. Is required.

<樹脂支柱104の構造>
樹脂支柱104を作製するには、樹脂を溶融させて、シリカエアロゲル103に設けた穴へ流し込むことが考えられる。しかし、シリカエアロゲル103に穴を開ける時に、加熱により繊維を溶かし、穴開けをすると、シリカエアロゲル103が親水性となり水分を吸収し、断熱特性が劣化する。
<Structure of resin support 104>
In order to manufacture the resin strut 104, it is conceivable to melt the resin and pour it into the holes provided in the silica airgel 103. However, when a hole is made in the silica airgel 103, the fibers are melted by heating and the hole is made, the silica airgel 103 becomes hydrophilic and absorbs moisture, and the heat insulating property is deteriorated.

そのため、図4(a)、図4(b)のように、樹脂支柱104を予め作製し、樹脂支柱104を複合層101に挿入する。さらに、樹脂支柱104を、多孔質の樹脂にて構成し、樹脂支柱の内部に空気層を設け、断熱性を高めるのが好ましい。多孔質樹脂は、樹脂中に気孔が存在しており、気孔径は5μから200μ程度あり、気孔率は10〜60%が望ましい。気孔径と気孔率は、樹脂支柱104の強度と熱伝導率から選定する。また、樹脂支柱104の径は、径が大きくなると熱伝導率特性が低下し、径が小さいと補強強度が低下するため、複合層101の厚みに対し、1/2〜10倍の範囲にあることが望ましい。 Therefore, as shown in FIGS. 4A and 4B, the resin support column 104 is prepared in advance, and the resin support column 104 is inserted into the composite layer 101. Further, it is preferable that the resin column 104 is made of a porous resin and an air layer is provided inside the resin column to enhance the heat insulating property. The porous resin has pores in the resin, the pore diameter is about 5μ to 200μ, and the porosity is preferably 10 to 60%. The pore diameter and porosity are selected from the strength and thermal conductivity of the resin column 104. Further, the diameter of the resin column 104 is in the range of 1/2 to 10 times the thickness of the composite layer 101 because the thermal conductivity characteristic decreases as the diameter increases and the reinforcing strength decreases as the diameter decreases. Is desirable.

また、樹脂支柱104の材質は、フッ素樹脂、ポリスチレン、ポリプロピレン、ポリエチレンなどを用いることができる。この多孔質の樹脂により、樹脂支柱104を通して熱の伝達を抑制する効果がある。 Further, as the material of the resin support column 104, fluororesin, polystyrene, polypropylene, polyethylene or the like can be used. This porous resin has the effect of suppressing heat transfer through the resin column 104.

特に、発熱に敏感な電池セル106間の断熱材100としては、電池セル106の膨張により電池セル106間の断熱材100に圧縮応力が加わると、表面のシリカエアロゲルが図5(b)のように破壊されることでクラック(空気の隙間)が発生する。図5(a)は、初期の正常な状態の複合層101の表面観察写真である。図5(b)は、複合層101に圧縮が加わり、シリカエアロゲルが取れた複合層101の表面観察写真である。 In particular, as the heat insulating material 100 between the battery cells 106, which is sensitive to heat generation, when compressive stress is applied to the heat insulating material 100 between the battery cells 106 due to the expansion of the battery cells 106, the silica airgel on the surface is as shown in FIG. 5 (b). Cracks (air gaps) occur when the battery is destroyed. FIG. 5A is a surface observation photograph of the composite layer 101 in the initial normal state. FIG. 5B is a surface observation photograph of the composite layer 101 from which compression is applied to the composite layer 101 to remove silica airgel.

シリカエアロゲルが取れた結果、断熱材100の熱伝導率が上昇し、電池セル106の類焼が発生する。このため、圧縮応力に合わせ、断熱材100での樹脂支柱104のサイズや数量を決める。 As a result of removing the silica airgel, the thermal conductivity of the heat insulating material 100 increases, and the battery cell 106 burns. Therefore, the size and quantity of the resin columns 104 in the heat insulating material 100 are determined according to the compressive stress.

樹脂支柱104は、断熱材100の表面に現れていることがよい。複数の樹脂支柱104の位置がそろい、断熱材100の圧縮方向が一定で安定する。 The resin column 104 may appear on the surface of the heat insulating material 100. The positions of the plurality of resin columns 104 are aligned, and the compression direction of the heat insulating material 100 is constant and stable.

<断熱材100として必要な熱伝導率>
この実施の形態では、電池セル106間の絶縁体として、スペースが限られた空間に用いる断熱材100を目的としている。一例を以下に示す。断熱材100の電池セル106への適用例を説明する為、車載用のリチウムイオン電池の電池セル配列を図2に示す。電池セル106と電池セル106の間に、断熱材100が配置されている。
<Thermal conductivity required for the heat insulating material 100>
In this embodiment, as an insulator between the battery cells 106, a heat insulating material 100 used in a space where the space is limited is intended. An example is shown below. In order to explain an example of application of the heat insulating material 100 to the battery cell 106, the battery cell arrangement of the lithium ion battery for a vehicle is shown in FIG. The heat insulating material 100 is arranged between the battery cell 106 and the battery cell 106.

車載用電池の小型化により電池セル106間の隙間は約0.3mm〜1.0mm程度である。従来の断熱材である変性PPE樹脂の熱伝導率は、0.17W/mkである。この変性PPE樹脂を1.0mmの隙間に使用した場合、実験結果から類焼が確認されている。類焼させないためには、断熱材100として、0.20W/mk以下の熱伝導率が必要となる。 Due to the miniaturization of the in-vehicle battery, the gap between the battery cells 106 is about 0.3 mm to 1.0 mm. The thermal conductivity of the modified PPE resin, which is a conventional heat insulating material, is 0.17 W / mk. When this modified PPE resin is used in a gap of 1.0 mm, burning has been confirmed from the experimental results. In order to prevent burning, the heat insulating material 100 needs to have a thermal conductivity of 0.20 W / mk or less.

<実施例1>
図6に実施例を示す。電池セル106間に断熱材100を配置している。この場合、樹脂支柱104の長さは、断熱材100の複合層101の厚みより短い方がよい。樹脂支柱104の長さが、断熱材100の複合層101の厚みと同じか、長いと、断熱材100の表面にでて、熱伝導し、熱伝導特性が悪くなる可能性がある。
<Example 1>
An example is shown in FIG. The heat insulating material 100 is arranged between the battery cells 106. In this case, the length of the resin column 104 should be shorter than the thickness of the composite layer 101 of the heat insulating material 100. If the length of the resin column 104 is the same as or longer than the thickness of the composite layer 101 of the heat insulating material 100, heat conduction may occur on the surface of the heat insulating material 100 and the heat conduction characteristics may be deteriorated.

樹脂支柱104の一部は、ラミネートフィルム105と接触し、もう片方は、電池セル106の膨張などにより電池セル106間の距離が減少した場合に、ラミネートフィルム105に接触することが望ましい。 It is desirable that a part of the resin column 104 comes into contact with the laminate film 105, and the other comes into contact with the laminate film 105 when the distance between the battery cells 106 decreases due to expansion of the battery cells 106 or the like.

したがって、樹脂支柱104の長さは、複合層101の厚みより短いのがよい。ただし、複合層101の厚みの70%以上が望ましい。 Therefore, the length of the resin column 104 is preferably shorter than the thickness of the composite layer 101. However, 70% or more of the thickness of the composite layer 101 is desirable.

すなわち、電池セル106の側面に断熱材100の表面が密着することで断熱特性を効率よく発揮させるためである。 That is, the surface of the heat insulating material 100 is brought into close contact with the side surface of the battery cell 106 so that the heat insulating characteristics can be efficiently exhibited.

なお、ラミネートフィルム105を使用しない場合は、直接、樹脂支柱104に接触、非接触する。 When the laminated film 105 is not used, it directly contacts or does not contact the resin column 104.

樹脂支柱104の挿入は、図7(a)、図7(b)に示すように、複合層101に対して、片側もしくは両側からでもよい。図7(a)に示すように、樹脂支柱104の形状は、先端部に行くほど後部より細くなっており、複合層101に挿入し易い形状であることが望ましい。その形状は、柱状で、円柱状、楕円柱状、四角柱状など複合層101の厚みと外部からの圧縮応力により決定する。また、図7(b)のように両側からの樹脂支柱104は、その形状を両側で変えることが出来る。凹部と凸部とのように、入れ込み型の組み合わせる構造が好ましい。 As shown in FIGS. 7 (a) and 7 (b), the resin column 104 may be inserted from one side or both sides of the composite layer 101. As shown in FIG. 7A, it is desirable that the shape of the resin column 104 is narrower toward the tip and is easier to insert into the composite layer 101. Its shape is columnar, and is determined by the thickness of the composite layer 101 such as columnar, elliptical, and square columnar and the compressive stress from the outside. Further, as shown in FIG. 7B, the shape of the resin columns 104 from both sides can be changed on both sides. A recessed type combined structure such as a concave portion and a convex portion is preferable.

なお、図7(a)に示す樹脂支柱104を、複合層101の両面から挿入した構造でもよい。一方の面の樹脂支柱104は、第1の樹脂支柱であり、他方の面の樹脂支柱は、第2の樹脂支柱である。 The resin column 104 shown in FIG. 7A may be inserted from both sides of the composite layer 101. The resin strut 104 on one surface is the first resin strut, and the resin strut on the other surface is the second resin strut.

圧縮応力の関係から複数本の樹脂支柱104を形成する場合、図8のように上部を連結部107にて連結させることで一度に数本の樹脂支柱104を形成することができる。また、樹脂支柱104の位置を固定しやすい。連結部107の材質はフッ素樹脂、ポリスチレン、ポリプロピレン、ポリエチレンなどの樹脂を用いる。熱伝導率の観点から多孔質樹脂を用いることで更に特性を向上させることができる。連結部107の厚みは、熱伝導をさせないように、樹脂支柱104の形状が保持できるのであれば薄い方がよい。 When forming a plurality of resin columns 104 due to the relationship of compressive stress, several resin columns 104 can be formed at a time by connecting the upper portions with the connecting portion 107 as shown in FIG. In addition, it is easy to fix the position of the resin support column 104. As the material of the connecting portion 107, a resin such as fluororesin, polystyrene, polypropylene, or polyethylene is used. By using a porous resin from the viewpoint of thermal conductivity, the characteristics can be further improved. The thickness of the connecting portion 107 should be thin as long as the shape of the resin column 104 can be maintained so as not to cause heat conduction.

<実施例2>
図9(a)の多孔質の樹脂支柱104に溶剤を含む接着剤108を含浸させ、繊維102とシリカエアロゲル103の複合層101である断熱材100に挿入する。その後、加熱することで、多孔質の樹脂支柱104から流れ出た接着剤108と複合層101中の繊維102とが接着された構造となる。最終、接着剤108は、樹脂支柱104と複合層101との両方にまたがって位置する。
<Example 2>
The porous resin column 104 of FIG. 9A is impregnated with the adhesive 108 containing a solvent and inserted into the heat insulating material 100 which is the composite layer 101 of the fiber 102 and the silica airgel 103. After that, by heating, the adhesive 108 flowing out from the porous resin column 104 and the fibers 102 in the composite layer 101 are adhered to each other. Finally, the adhesive 108 is located across both the resin column 104 and the composite layer 101.

接着剤108は、図9(b)に示すように、あらかじめ複合層101の表面に滴下し、その後多孔質の樹脂支柱104を挿入してもよい。また、接着剤108は熱硬化型が望ましい。 As shown in FIG. 9B, the adhesive 108 may be dropped onto the surface of the composite layer 101 in advance, and then the porous resin column 104 may be inserted. Further, the adhesive 108 is preferably a thermosetting type.

複合層101は、柔軟性があり曲げることができる。多孔質の樹脂支柱104を挿入するのみでは、複合層101を曲げた場合、曲げ時の応力により多孔質の樹脂支柱104が脱落する可能性がある。この実施例では、接着剤108を用いているので脱落を防止できる。 The composite layer 101 is flexible and can be bent. If the composite layer 101 is bent only by inserting the porous resin support column 104, the porous resin support column 104 may fall off due to the stress at the time of bending. In this embodiment, since the adhesive 108 is used, it can be prevented from falling off.

<実施例3>
図10に実施形態を示す。多孔質の樹脂支柱104の先端部に、他の樹脂(本体部)より低い融点の樹脂109を使用する構造である。
<Example 3>
FIG. 10 shows an embodiment. The structure is such that a resin 109 having a melting point lower than that of other resins (main body) is used at the tip of the porous resin column 104.

例えば、耐熱温度が260℃のフッ素樹脂を樹脂支柱104に用いて、先端に融点が110℃のPP(ポリプロピレン)樹脂を低い融点の樹脂109として用いる。複合層101に樹脂支柱104を挿入後、低い融点の樹脂109を加熱ヒータ110で加熱し、樹脂支柱104の先端を溶融させる(図10(a))ことでリベット構造(図10(b))をつくることができる。 For example, a fluororesin having a heat resistant temperature of 260 ° C. is used for the resin column 104, and a PP (polypropylene) resin having a melting point of 110 ° C. is used as a resin 109 having a low melting point at the tip. After inserting the resin column 104 into the composite layer 101, the resin 109 having a low melting point is heated by the heater 110 to melt the tip of the resin column 104 (FIG. 10 (a)), thereby forming a rivet structure (FIG. 10 (b)). Can be made.

つまり、複合層101の表面に平板状部分があり、複合層101の内部に樹脂支柱104の本体が位置する。この構造により強い曲げ応力を受けた場合での樹脂支柱の落下が抑制できる。この場合、樹脂支柱104は、繊維層とシリカエアロゲル層の複合材の厚みよりも長くすることが必要である。 That is, there is a flat plate-like portion on the surface of the composite layer 101, and the main body of the resin column 104 is located inside the composite layer 101. Due to this structure, it is possible to suppress the falling of the resin column when a strong bending stress is applied. In this case, the resin strut 104 needs to be longer than the thickness of the composite material of the fiber layer and the silica airgel layer.

また、挿入角度は、複合材に対して鉛直方向に加え、角度をつけてもよい。角度をつけることで、熱の伝わる経路が長くなり熱伝導率を低下させることができる。 Further, the insertion angle may be set in addition to the vertical direction with respect to the composite material. By setting the angle, the heat transfer path becomes longer and the thermal conductivity can be reduced.

<断熱材100の製造方法>
断熱材100の製造方法の一例をフローチャート図11に示す。
<Manufacturing method of heat insulating material 100>
An example of a method for manufacturing the heat insulating material 100 is shown in FIG. 11.

(1)含浸工程
はじめに、繊維(目付け量34g/m、厚み0.6mm、寸法9cm×14cm)に、ゾル液を用いて含浸させる。ゾル液は、高モル珪酸ソーダ(珪酸水溶液、Si濃度14%)に触媒として濃塩酸(12N)を1.4wt%添加し攪拌することにより調合する。
(1) Impregnation Step First, fibers (mesh weight 34 g / m 2 , thickness 0.6 mm, dimensions 9 cm × 14 cm) are impregnated with a sol solution. The sol solution is prepared by adding 1.4 wt% of concentrated hydrochloric acid (12N) as a catalyst to high molar sodium silicate (silicic acid aqueous solution, Si concentration 14%) and stirring.

次に、室温23℃で約20分間放置し、ゾルをゲル化させる。このとき、ゲル化を促進し、時間短縮を行うため、ヒーター(約50℃〜130℃)で加熱させてもよい。次に、2軸ロール等を用いて所望の厚みに形成する。 Next, the sol is left at room temperature of 23 ° C. for about 20 minutes to gel the sol. At this time, in order to promote gelation and shorten the time, it may be heated with a heater (about 50 ° C. to 130 ° C.). Next, it is formed to a desired thickness using a biaxial roll or the like.

(2)養生工程
次に、容器に、乾燥防止のために純水を注ぎ、80℃の恒温槽に12時間入れて、シラノールの脱水縮合反応を促進することにより、シリカ粒子を成長させ、多孔質構造を形成する。
(2) Curing step Next, pure water is poured into the container to prevent drying, and the container is placed in a constant temperature bath at 80 ° C. for 12 hours to promote the dehydration condensation reaction of silanol to grow silica particles and make them porous. Form a quality structure.

(3)疎水化工程
次に、ゲルシートを塩酸(6〜12規定)に浸漬後、常温23℃で1時間放置してゲルシートの中に塩酸を取り込む。
(3) Hydrophobicization Step Next, after immersing the gel sheet in hydrochloric acid (specified in 6 to 12), the gel sheet is left at room temperature of 23 ° C. for 1 hour to incorporate hydrochloric acid into the gel sheet.

次に、ゲルシートを、例えばシリル化剤であるオクタメチルトリシロキサンと2−プロパノール(IPA)の混合液に浸漬させて、55℃の恒温槽に入れて2時間反応さをせる。トリメチルシロキサン結合が形成され始めると、ゲルシートから塩酸が排出され、上層がトリシロキサン、下層が塩酸水に2液分離する。 Next, the gel sheet is immersed in a mixed solution of, for example, octamethyltrisiloxane, which is a silylating agent, and 2-propanol (IPA), and placed in a constant temperature bath at 55 ° C. for reaction for 2 hours. When the trimethylsiloxane bond begins to be formed, hydrochloric acid is discharged from the gel sheet, and the upper layer is separated into trisiloxane and the lower layer is separated into hydrochloric acid water.

(4)乾燥工程
次に、ゲルシートを150℃の恒温槽に移して2時間乾燥させることにより、繊維にナノサイズの多孔質構造を有するシリカエアロゲルを坦持させた断熱材100が出来る。
(4) Drying Step Next, the gel sheet is transferred to a constant temperature bath at 150 ° C. and dried for 2 hours to obtain a heat insulating material 100 in which the fibers carry silica airgel having a nano-sized porous structure.

(5)樹脂支柱挿入工程
次に、断熱材100に多孔質樹脂の樹脂支柱104を挿入する。
(5) Resin Strut Insertion Step Next, the resin strut 104 made of porous resin is inserted into the heat insulating material 100.

多孔質樹脂は、樹脂中にガスを分散させるなどして樹脂支柱を製作する。樹脂支柱の組成は、フッ素、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリエーテルエーテルケトンなどの樹脂を用いて製作することが出来る。 For the porous resin, a resin strut is manufactured by dispersing gas in the resin. The composition of the resin column can be produced by using a resin such as fluorine, polyethylene, polypropylene, polytetrafluoroethylene, and polyetheretherketone.

(6)ラミネート工程
断熱材100の上下面にラミネートフィルム105を貼り付ける。
(6) Laminating Step The laminating film 105 is attached to the upper and lower surfaces of the heat insulating material 100.

<全体を通して>
実施の形態、実施例は組み合わせるこができる。この樹脂支柱は、シリカエアロゲルに限られず、断熱材に広く適用できる。
<Throughout>
The embodiments and examples can be combined. This resin strut is not limited to silica airgel, and can be widely applied to heat insulating materials.

車載用電池の電池セル106間での例を示したが、他の機器にも応用できる。発熱部材間に実施の形態の断熱材を配置し、発熱部材間の熱を遮断できる。 Although an example between the battery cells 106 of the in-vehicle battery is shown, it can be applied to other devices. The heat insulating material of the embodiment can be arranged between the heat generating members to block the heat between the heat generating members.

本発明の断熱材は、圧縮応力を分散することで断熱特性を保持できるものであって、広く車載用機器や電子機器内に利用される。情報機器、携帯電話、ディスプレイなど、熱に関わる製品へ応用される。 The heat insulating material of the present invention can maintain heat insulating properties by dispersing compressive stress, and is widely used in in-vehicle devices and electronic devices. It is applied to heat-related products such as information devices, mobile phones, and displays.

100 断熱材
101 複合層
102 繊維
103 シリカエアロゲル
104 樹脂支柱
105 ラミネートフィルム
106 電池セル
107 連結部
108 接着剤
109 低い融点の樹脂
110 加熱ヒータ
201 シリカ1次粒子
202 シリカ2次粒子
203 空隙
100 Insulation 101 Composite layer 102 Fiber 103 Silica airgel 104 Resin prop 105 Laminate film 106 Battery cell 107 Connecting part 108 Adhesive 109 Low melting point resin 110 Heater 201 Silica primary particles 202 Silica secondary particles 203 Voids

Claims (10)

繊維とシリカエアロゲルとを含む1層である複合層と、
前記1層である複合層中で、厚み方向に配置された樹脂支柱と、を含み、
前記樹脂支柱は複数あり、前記1層である複合層の一方の面にその一部が現れ、他方の面に現れない第1の樹脂支柱を含む断熱材。
A composite layer that is a single layer containing fibers and silica airgel,
In the composite layer which is the one layer, the resin columns arranged in the thickness direction are included.
A heat insulating material containing a first resin column having a plurality of resin columns, one of which appears on one surface of the composite layer, which is the one layer, and does not appear on the other surface.
前記1層である複合層の前記他方の面にその一部が現れ、前記一方の面に現れない第2の樹脂支柱を含む請求項1記載の断熱材。 The heat insulating material according to claim 1, further comprising a second resin strut in which a part thereof appears on the other surface of the composite layer which is the one layer and does not appear on the one surface. 繊維とシリカエアロゲルとを含む複合層と、
前記複合層中で、厚み方向に配置された樹脂支柱と、を含み、
前記複数の樹脂支柱間をその上部で連結する連結部を設け、
前記樹脂支柱は、先端部に行くほど後部より細くなっている断熱材。
A composite layer containing fibers and silica airgel,
In the composite layer, the resin columns arranged in the thickness direction are included.
A connecting portion for connecting the plurality of resin columns at the upper portion thereof is provided.
The resin strut is a heat insulating material that becomes thinner toward the tip and thinner than the rear.
前記連結部は、前記断熱材の一方の面に現れ、他方の面に現れない請求項3記載の断熱材。 The heat insulating material according to claim 3, wherein the connecting portion appears on one surface of the heat insulating material and does not appear on the other side. 前記樹脂支柱の長さは、前記複合層の厚みより短い請求項1から4のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 4, wherein the length of the resin column is shorter than the thickness of the composite layer. 複数の前記樹脂支柱は多孔質の樹脂である請求項1から5のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 5, wherein the plurality of resin columns are porous resins. 前記樹脂支柱に接着剤を含浸させた請求項1から6のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 6, wherein the resin support is impregnated with an adhesive. 前記接着剤は、前記樹脂支柱中と前記複合層中とにまたがって存在する請求項7記載の断熱材。 The heat insulating material according to claim 7, wherein the adhesive is present in the resin column and in the composite layer. 前記樹脂支柱は、本体部と先端部とを含み、前記本体部は前記複合層中にあって柱状あり、前記先端部は、前記複合層の表面に位置し平板状である請求項1から8のいずれか1項に記載の断熱材。 The resin column includes a main body portion and a tip portion, the main body portion is in the composite layer and has a columnar shape, and the tip portion is located on the surface of the composite layer and has a flat plate shape. The heat insulating material according to any one of the above. 複数の発熱体間に請求項1〜9のいずれか1項に記載の前記断熱材を配置した機器。 A device in which the heat insulating material according to any one of claims 1 to 9 is arranged between a plurality of heating elements.
JP2020214482A 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same Pending JP2021050825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020214482A JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016110600A JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material
JP2020214482A JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016110600A Division JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material

Publications (1)

Publication Number Publication Date
JP2021050825A true JP2021050825A (en) 2021-04-01

Family

ID=60575538

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016110600A Active JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material
JP2020214482A Pending JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016110600A Active JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material

Country Status (1)

Country Link
JP (2) JP6865344B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433970A (en) * 2017-12-08 2020-07-17 住友电气工业株式会社 Cooling body and electricity storage pack using same
JP7352769B2 (en) * 2018-10-05 2023-09-29 パナソニックIpマネジメント株式会社 Insulating materials, their manufacturing methods, and electronic devices and automobiles using them
CN113614983A (en) * 2019-03-27 2021-11-05 三洋电机株式会社 Power supply device and electric vehicle
CN113614986B (en) 2019-03-27 2024-02-13 三洋电机株式会社 Power supply device and electric vehicle
JP7303017B2 (en) * 2019-05-10 2023-07-04 イビデン株式会社 Battery cells and assembled batteries
JP7332333B2 (en) * 2019-05-10 2023-08-23 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7332332B2 (en) * 2019-05-10 2023-08-23 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7292231B2 (en) 2020-03-06 2023-06-16 ニチアス株式会社 Thermal insulation for batteries and batteries
KR20240041322A (en) * 2021-07-30 2024-03-29 이비덴 가부시키가이샤 Insulation sheet, manufacturing method of insulation sheet, and battery pack
WO2024095930A1 (en) * 2022-10-31 2024-05-10 日東電工株式会社 Heat-insulating material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617250A (en) * 1979-07-24 1981-02-19 Kawasaki Heavy Ind Ltd Foaming resin heat insulating material
JPS63296908A (en) * 1987-05-29 1988-12-05 Tokyo Gas Co Ltd Manufacture of heat insulation panel having high compression strength
JP2001151199A (en) * 1999-09-23 2001-06-05 Astrium Gmbh Thermal protection system
JP2011073959A (en) * 2009-09-02 2011-04-14 Nichias Corp Thermal insulation material
JP2012124319A (en) * 2010-12-08 2012-06-28 Jm Energy Corp Power storage device
JP2014035044A (en) * 2012-08-09 2014-02-24 Panasonic Corp Heat insulating material and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136306B1 (en) * 1968-04-27 1976-10-07
JPS5431079U (en) * 1977-08-04 1979-03-01
JPS54148086A (en) * 1978-05-14 1979-11-19 Nakata Giken Kk Insulating panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617250A (en) * 1979-07-24 1981-02-19 Kawasaki Heavy Ind Ltd Foaming resin heat insulating material
JPS63296908A (en) * 1987-05-29 1988-12-05 Tokyo Gas Co Ltd Manufacture of heat insulation panel having high compression strength
JP2001151199A (en) * 1999-09-23 2001-06-05 Astrium Gmbh Thermal protection system
JP2011073959A (en) * 2009-09-02 2011-04-14 Nichias Corp Thermal insulation material
JP2012124319A (en) * 2010-12-08 2012-06-28 Jm Energy Corp Power storage device
JP2014035044A (en) * 2012-08-09 2014-02-24 Panasonic Corp Heat insulating material and method for producing the same

Also Published As

Publication number Publication date
JP6865344B2 (en) 2021-04-28
JP2017215014A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6865344B2 (en) Insulation material and equipment using that insulation material
JP2018204708A (en) Heat insulation material, heat generation unit using the same and battery unit
JP7088892B2 (en) Insulation sheet for assembled battery and assembled battery
US10923787B2 (en) Heat insulation sheet, method for producing same, and secondary battery in which same is used
JP2017523584A (en) Passive insulation
CN109177365B (en) Heat insulation sheet, electronic device using same and manufacturing method of heat insulation sheet
CN109328280B (en) Thermal insulation material and equipment using same
WO2011121901A1 (en) Battery pack
US9707737B2 (en) Composite material and electronic apparatus
JP6600808B2 (en) Insulating material, manufacturing method thereof, and electronic equipment using the insulating material
US11384892B2 (en) Heat insulation sheet, heat insulation body using same, and production method therefor
JP7065412B2 (en) Insulation sheet and its manufacturing method, as well as electronic devices and battery units
US11342614B2 (en) Battery cell and battery pack using same
WO2020183773A1 (en) Heat-insulating sheet and method for manufacturing same
WO2019188159A1 (en) Thermal insulator and method for manufacturing same
WO2021054110A1 (en) Heat insulation sheet for battery pack, and battery pack
CN111868432A (en) Heat insulator, heat insulating sheet using the same, and method for producing heat insulator
JP7382547B2 (en) Heat insulation sheets and electronic devices and battery units using the heat insulation sheets
JP7462134B2 (en) Heat insulating sheet and secondary battery using same
JP2018141524A (en) Heat insulation member and heat insulation structure using heat insulation member and manufacturing method of heat insulation member
JP7364722B2 (en) Method for manufacturing heat transfer suppressing sheet, heat transfer suppressing sheet and assembled battery
WO2023171818A1 (en) Heat transfer suppression sheet production method, heat transfer suppression sheet, and battery pack
WO2024117239A1 (en) Heat transfer suppression sheet and battery pack
WO2023229047A1 (en) Heat transfer suppression sheet and battery pack
JP2021190396A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220531