JP2017215014A - Heat insulating material and apparatus using the same - Google Patents

Heat insulating material and apparatus using the same Download PDF

Info

Publication number
JP2017215014A
JP2017215014A JP2016110600A JP2016110600A JP2017215014A JP 2017215014 A JP2017215014 A JP 2017215014A JP 2016110600 A JP2016110600 A JP 2016110600A JP 2016110600 A JP2016110600 A JP 2016110600A JP 2017215014 A JP2017215014 A JP 2017215014A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
resin
composite layer
strut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016110600A
Other languages
Japanese (ja)
Other versions
JP6865344B2 (en
Inventor
坂口 茂樹
Shigeki Sakaguchi
茂樹 坂口
米澤 隆弘
Takahiro Yonezawa
隆弘 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016110600A priority Critical patent/JP6865344B2/en
Publication of JP2017215014A publication Critical patent/JP2017215014A/en
Priority to JP2020214482A priority patent/JP2021050825A/en
Application granted granted Critical
Publication of JP6865344B2 publication Critical patent/JP6865344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermal Insulation (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating material which can suppress deterioration in heat conductivity by maintaining a structure of the heat insulating material with respect to compression stress, and an apparatus using the heat insulating material.SOLUTION: A heat insulating material of this invention includes a composite layer containing fiber and silica aerogel, and a resin column provided in a thickness direction of the composite layer. A part of the resin column appears on one surface of the composite layer. A length of the resin column is smaller than a thickness of the composite layer. In an apparatus of this invention, the heat insulating material is disposed between a plurality of heating elements.SELECTED DRAWING: Figure 1

Description

本発明は、疎水性エアロゲルを用いた断熱材とその断熱材を使用した機器に関するものである。     The present invention relates to a heat insulating material using a hydrophobic airgel and a device using the heat insulating material.

近年、環境意識の高まりから電気自動車やハイブリッド自動車など二次電池を搭載した自動車が増加している。車載用の電池は、複数のリチウムイオン電池(電池セル)から構成されている。電池セルの製造時の不具合や、車の衝突、電池セルの誤った取り扱いにより、電池セルが熱暴走を起こすことが想定されている。1つの電池セルが熱暴走し、大量の熱を隣接する他の電池セルへ伝達することで類焼が発生し、大事故に至る。   In recent years, the number of vehicles equipped with secondary batteries, such as electric vehicles and hybrid vehicles, has increased due to increasing environmental awareness. The on-vehicle battery is composed of a plurality of lithium ion batteries (battery cells). It is assumed that the battery cell is subject to thermal runaway due to malfunctions during manufacturing of the battery cell, car collision, or incorrect handling of the battery cell. One battery cell runs out of heat, and a large amount of heat is transferred to other adjacent battery cells, causing similar burning, leading to a major accident.

そこで現在、電池セル間の類焼防止として、電池セル間に熱絶縁体として変性PPE樹脂やアラミド樹脂が用いられている。   Therefore, currently, a modified PPE resin or an aramid resin is used as a thermal insulator between the battery cells to prevent burning between the battery cells.

しかしながら、車載電池の小型により電池セル間の空隙が狭くなり、電池セル間の類焼の危険性が増加している。現在、熱絶縁体としてセル間に使用されている変性PPE樹脂やアラミド樹脂の熱伝導率は、0.17W/mk、0.04W/mkと熱伝導率が高い。このため、電池セル間の縮小により類焼が発生する。そこで、電池セル間に熱絶縁体として、変性PPE樹脂やアラミド樹脂よりも熱伝導率が低いシリカエアロゲルを用いて電池セル間の断熱が考えられている(特許文献1)。   However, due to the small size of the in-vehicle battery, the gap between the battery cells is narrowed, and the danger of burning between the battery cells is increasing. At present, the thermal conductivity of modified PPE resins and aramid resins used between cells as thermal insulators is as high as 0.17 W / mk and 0.04 W / mk. For this reason, similar burning occurs due to shrinkage between battery cells. Then, the heat insulation between battery cells is considered using the silica airgel whose heat conductivity is lower than modified PPE resin and aramid resin as a thermal insulator between battery cells (patent document 1).

特許第5624254号公報Japanese Patent No. 5624254

シリカエアロゲルは、低い熱伝導率(0.02W/mk)を特徴とするが、シリカエアロゲルのシリカ2次粒子同士の結合力が小さく極めて脆弱であるため、外部から応力が加わると、シリカエアロゲルが破壊され、特性が劣化する欠点がある。   Silica airgel is characterized by low thermal conductivity (0.02 W / mk). However, since the silica aerogel has a small bonding force between silica secondary particles and is extremely fragile, when an external stress is applied, the silica aerogel There is a drawback that it is destroyed and its characteristics deteriorate.

電池セルの劣化により電池セルが膨張することで、セル間の隙間が少なくなり、セル間の脆弱なシリカエアロゲルに圧縮応力が発生し、シリカエアロゲルが破壊される。シリカエアロゲルが破壊されると熱伝導率が増加し、電池セルの断熱特性が劣化する。このことで電池セルの類焼防止が出来ない。   When the battery cell expands due to the deterioration of the battery cell, the gap between the cells is reduced, a compressive stress is generated in the brittle silica airgel between the cells, and the silica airgel is destroyed. When the silica airgel is broken, the thermal conductivity increases, and the heat insulating properties of the battery cell deteriorate. This makes it impossible to prevent the battery cells from burning.

そこで、本発明では、上記課題に鑑み、圧縮応力に対し、断熱材の構造を保持して熱伝導率の悪化を抑制した断熱材とその断熱材を使用した機器を提供することを目的とする。   Then, in view of the said subject, in this invention, it aims at providing the apparatus using the heat insulating material which maintained the structure of the heat insulating material with respect to the compressive stress, and suppressed the deterioration of thermal conductivity, and the heat insulating material. .

上記課題を解決するために、繊維とシリカエアロゲルを含む複合層と、上記複合層の厚み方向に、設けたられた樹脂支柱と、を含む断熱材を用いる。複数の発熱体間に上記断熱材を配置した電子機器を用いる。   In order to solve the above-described problem, a heat insulating material including a composite layer including fibers and silica aerogel and a resin support provided in the thickness direction of the composite layer is used. An electronic device in which the heat insulating material is arranged between a plurality of heating elements is used.

本願発明の断熱材によれば、樹脂支柱により断熱材にかかる圧縮応力を分散することができ、断熱材の断熱特性を保持できる。電池セル間に本願断熱材を用いれば、この断熱材中のシリカエアロゲルに掛かる圧縮応力を樹脂支柱で分散でき、電池セル間の断熱性を長期間保てる。結果、電池のセル間の熱暴走による類焼を抑制でき、安全な車載用電池を提供できる。
さらに、断熱性樹脂支柱を多孔質の樹脂にすれば電池セルからの熱伝導を抑制することができる。
According to the heat insulating material of the present invention, the compressive stress applied to the heat insulating material can be dispersed by the resin struts, and the heat insulating properties of the heat insulating material can be maintained. If the present heat insulating material is used between the battery cells, the compressive stress applied to the silica airgel in the heat insulating material can be dispersed by the resin struts, and the heat insulating property between the battery cells can be maintained for a long time. As a result, similar burning due to thermal runaway between battery cells can be suppressed, and a safe vehicle-mounted battery can be provided.
Furthermore, if the heat insulating resin support is made of a porous resin, heat conduction from the battery cell can be suppressed.

実施の形態の断熱材の断面図Cross-sectional view of heat insulating material of embodiment 実施の形態の断熱材の応用例を示す断面図Sectional drawing which shows the example of application of the heat insulating material of embodiment 実施の形態のシリカエアロゲルの模式図Schematic diagram of silica airgel of embodiment (a)〜(b)実施の形態の断熱材での樹脂支柱の挿入を説明する断面図Sectional drawing explaining insertion of the resin support | pillar in the heat insulating material of (a)-(b) embodiment (a)圧縮されていない正常なシリカエアロゲルの表面図、(b)圧縮されたシリカエアロゲルの表面図(A) Surface view of a normal silica airgel that is not compressed, (b) Surface view of a compressed silica airgel 実施の形態の断熱材の応用例の断面図Sectional drawing of the application example of the heat insulating material of embodiment (a)〜(b)実施の形態の断熱材の応用例の断面図Sectional drawing of the application example of the heat insulating material of (a)-(b) embodiment 実施の形態の断熱材の応用例の断面図Sectional drawing of the application example of the heat insulating material of embodiment (a)〜(b)実施例2の断熱材を説明する断面図(A)-(b) Sectional drawing explaining the heat insulating material of Example 2 (a)〜(b)実施例3の断熱材を説明する断面図(A)-(b) Sectional drawing explaining the heat insulating material of Example 3 断熱材の製造フローチャート図Heat insulation manufacturing flowchart

以下に、実施の形態について、図を参照しながら説明する。
(実施の形態)
図1は、本発明の実施の形態におけるシリカエアロゲルを含む断熱材100の断面図を示したものである。
Embodiments will be described below with reference to the drawings.
(Embodiment)
FIG. 1 shows a cross-sectional view of a heat insulating material 100 containing silica aerogel in an embodiment of the present invention.

図2に実施の形態として車載用電池の電池セル106間に、断熱材100を装着した構造を示す。
電池セル106の劣化により電池セル106が膨張することで、電池セル106間の隙間が少なくなり、断熱材100が変形を受ける。この実施の形態では、上記変形により断熱材100中の脆弱なシリカエアロゲルに圧縮応力が発生し、シリカエアロゲルが破壊されるのを防止し、電池セル間の類焼防止を抑制するものである。
FIG. 2 shows a structure in which a heat insulating material 100 is mounted between battery cells 106 of a vehicle-mounted battery as an embodiment.
When the battery cell 106 expands due to the deterioration of the battery cell 106, the gap between the battery cells 106 is reduced, and the heat insulating material 100 is deformed. In this embodiment, the deformation causes a compressive stress in the fragile silica aerogel in the heat insulating material 100 to prevent the silica aerogel from being destroyed, and to prevent similar firing between battery cells.

<断熱材100の構成>
図1において、断熱材100は、繊維102にナノサイズの多孔質構造を有するシリカエアロゲル103の複合層101を有している。樹脂支柱104は厚み方向に平行に配置され、圧縮応力に対応した樹脂支柱104のサイズおよび樹脂支柱104の数を備えている。さらに必要に応じて上下をラミネートフィルム105にて挟まれている。
<Configuration of heat insulating material 100>
In FIG. 1, a heat insulating material 100 has a composite layer 101 of silica airgel 103 having a nano-sized porous structure on a fiber 102. The resin struts 104 are arranged in parallel to the thickness direction, and have the size of the resin struts 104 and the number of resin struts 104 corresponding to the compressive stress. Further, the laminate film 105 is sandwiched between the upper and lower sides as necessary.

樹脂支柱104により、断熱材100は、圧縮応力を分散し、その形状を保つ。結果、シリカエアロゲルが脱離せず、熱伝導率が維持され、電池セルの類焼を抑制することができる。   By the resin support 104, the heat insulating material 100 disperses the compressive stress and keeps its shape. As a result, the silica airgel is not detached, the thermal conductivity is maintained, and the battery cells can be prevented from burning.

<複合層101の構成>
断熱材100の主体となる複合層101は、シリカエアロゲル103の製造過程で、ゲル状態のシリカエアロゲルを繊維102に含浸させる。その後、ゲルを反応させて湿潤ゲルを形成する。最後に湿潤ゲル表面を疎水化、熱風乾燥することにより得られる。繊維102は、PET(ポリエチレンテレフタレート)や安全性の観点から繊維に難燃処理を施した酸化アクリル、グラスウールなどの繊維が好ましい。
<Configuration of Composite Layer 101>
The composite layer 101 which is the main component of the heat insulating material 100 impregnates the fibers 102 with the silica airgel in a gel state in the process of manufacturing the silica airgel 103. The gel is then reacted to form a wet gel. Finally, the wet gel surface is hydrophobized and dried with hot air. The fiber 102 is preferably a fiber such as PET (polyethylene terephthalate) or an acrylic oxide or glass wool obtained by subjecting the fiber to a flame retardant treatment from the viewpoint of safety.

繊維102の径は、0.1〜30umが望ましい。繊維102の径が30umより大きくなると繊維102を通じて熱が伝達しやすくなるため、熱伝導率が上昇し、断熱性が悪化する。このことで電池セル106から発生した熱を隣の電池セル106に伝えることで電池セル106の温度上昇により類焼が発生させる。   The diameter of the fiber 102 is desirably 0.1 to 30 um. When the diameter of the fiber 102 is larger than 30 μm, heat is easily transferred through the fiber 102, so that the thermal conductivity is increased and the heat insulating property is deteriorated. As a result, the heat generated from the battery cell 106 is transmitted to the adjacent battery cell 106, thereby causing a similar firing due to the temperature rise of the battery cell 106.

<シリカエアロゲル103>
図3に、シリカエアロゲル103の構造について説明する。シリカエアロゲル103は、1nm程度の径をもつシリカ1次粒子201が集合して形成された10nm前後の径を持つシリカ2次粒子202が、10〜60nm程度の粒子間距離の空隙203をもつ網目構造の集合体である。
<Silica airgel 103>
FIG. 3 illustrates the structure of the silica airgel 103. The silica airgel 103 is a network in which silica secondary particles 202 having a diameter of about 10 nm formed by aggregating silica primary particles 201 having a diameter of about 1 nm have voids 203 having an interparticle distance of about 10 to 60 nm. A collection of structures.

シリカエアロゲル103は、水ガラスやテトラメトキシシランのような金属アルコキシドをゲル原料として、水やアルコールなどの溶媒と必要に応じて触媒を混合することで、溶媒中でゲル原料と反応させ湿潤ゲルを形成し、内部の溶媒を乾燥させたものである。   Silica aerogel 103 uses water alkoxide such as water glass or tetramethoxysilane as a gel raw material, and mixes a solvent such as water or alcohol with a catalyst as necessary to react with the gel raw material in the solvent to form a wet gel. It is formed and the solvent inside is dried.

しかしながら、湿潤ゲルを普通に熱風乾燥させたものは、溶媒が乾燥するときの表面張力により、収縮してしまい空隙を潰してしまい、断熱材として機能しない。従って、溶媒が乾燥するときに表面張力がほとんど働かないように、超臨界乾燥、あるいは湿潤ゲルの表面のシラノール基を、シリル化剤を用いてシリル化することにより疎水化した後に熱風乾燥することが必要になる。   However, when the wet gel is normally dried with hot air, it shrinks due to the surface tension when the solvent dries, crushes the voids, and does not function as a heat insulating material. Therefore, so that the surface tension hardly works when the solvent dries, it is supercritical drying, or the silanol group on the surface of the wet gel is hydrophobized by silylation using a silylating agent and then dried with hot air. Is required.

<樹脂支柱104の構造>
樹脂支柱104を作製するには、樹脂を溶融させて、シリカエアロゲル103に設けた穴へ流し込むことが考えられる。しかし、シリカエアロゲル103に穴を開ける時に、加熱により繊維を溶かし、穴開けをすると、シリカエアロゲル103が親水性となり水分を吸収し、断熱特性が劣化する。
<Structure of resin support column 104>
In order to produce the resin strut 104, it is conceivable that the resin is melted and poured into a hole provided in the silica airgel 103. However, when a hole is made in the silica airgel 103, if the fiber is melted by heating and the hole is made, the silica airgel 103 becomes hydrophilic and absorbs moisture, so that the heat insulation characteristics deteriorate.

そのため、図4(a)、図4(b)のように、樹脂支柱104を予め作製し、樹脂支柱104を複合層101に挿入する。さらに、樹脂支柱104を、多孔質の樹脂にて構成し、樹脂支柱の内部に空気層を設け、断熱性を高めるのが好ましい。多孔質樹脂は、樹脂中に気孔が存在しており、気孔径は5μから200μ程度あり、気孔率は10〜60%が望ましい。気孔径と気孔率は、樹脂支柱104の強度と熱伝導率から選定する。また、樹脂支柱104の径は、径が大きくなると熱伝導率特性が低下し、径が小さいと補強強度が低下するため、複合層101の厚みに対し、1/2〜10倍の範囲にあることが望ましい。   Therefore, as shown in FIGS. 4A and 4B, the resin strut 104 is prepared in advance, and the resin strut 104 is inserted into the composite layer 101. Furthermore, it is preferable that the resin strut 104 is made of a porous resin, and an air layer is provided inside the resin strut to enhance heat insulation. The porous resin has pores in the resin, preferably has a pore diameter of about 5 μ to 200 μ and a porosity of 10 to 60%. The pore diameter and the porosity are selected from the strength and thermal conductivity of the resin strut 104. Further, the diameter of the resin column 104 is in the range of 1/2 to 10 times the thickness of the composite layer 101 because the thermal conductivity characteristic decreases as the diameter increases, and the reinforcing strength decreases when the diameter is small. It is desirable.

また、樹脂支柱104の材質は、フッ素樹脂、ポリスチレン、ポリプロピレン、ポリエチレンなどを用いることができる。この多孔質の樹脂により、樹脂支柱104を通して熱の伝達を抑制する効果がある。   The material of the resin support 104 can be fluororesin, polystyrene, polypropylene, polyethylene, or the like. This porous resin has an effect of suppressing heat transfer through the resin column 104.

特に、発熱に敏感な電池セル106間の断熱材100としては、電池セル106の膨張により電池セル106間の断熱材100に圧縮応力が加わると、表面のシリカエアロゲルが図5(b)のように破壊されることでクラック(空気の隙間)が発生する。図5(a)は、初期の正常な状態の複合層101の表面観察写真である。図5(b)は、複合層101に圧縮が加わり、シリカエアロゲルが取れた複合層101の表面観察写真である。   In particular, as the heat insulating material 100 between the battery cells 106 sensitive to heat generation, when compressive stress is applied to the heat insulating material 100 between the battery cells 106 due to the expansion of the battery cells 106, the silica airgel on the surface is as shown in FIG. When cracked, cracks (air gaps) are generated. FIG. 5A is a surface observation photograph of the composite layer 101 in the initial normal state. FIG. 5B is a surface observation photograph of the composite layer 101 in which the composite layer 101 is compressed and the silica airgel is removed.

シリカエアロゲルが取れた結果、断熱材100の熱伝導率が上昇し、電池セル106の類焼が発生する。このため、圧縮応力に合わせ、断熱材100での樹脂支柱104のサイズや数量を決める。   As a result of the removal of the silica airgel, the thermal conductivity of the heat insulating material 100 increases, and the battery cells 106 are burned off. For this reason, the size and quantity of the resin strut 104 in the heat insulating material 100 are determined according to the compressive stress.

樹脂支柱104は、断熱材100の表面に現れていることがよい。複数の樹脂支柱104の位置がそろい、断熱材100の圧縮方向が一定で安定する。   The resin struts 104 may appear on the surface of the heat insulating material 100. The positions of the plurality of resin struts 104 are aligned, and the compression direction of the heat insulating material 100 is constant and stable.

<断熱材100として必要な熱伝導率>
この実施の形態では、電池セル106間の絶縁体として、スペースが限られた空間に用いる断熱材100を目的としている。一例を以下に示す。断熱材100の電池セル106への適用例を説明する為、車載用のリチウムイオン電池の電池セル配列を図2に示す。電池セル106と電池セル106の間に、断熱材100が配置されている。
<Thermal conductivity necessary for the heat insulating material 100>
In this embodiment, as the insulator between the battery cells 106, the heat insulating material 100 used in a space with a limited space is intended. An example is shown below. In order to describe an application example of the heat insulating material 100 to the battery cell 106, a battery cell arrangement of an in-vehicle lithium ion battery is shown in FIG. A heat insulating material 100 is disposed between the battery cells 106 and the battery cells 106.

車載用電池の小型化により電池セル106間の隙間は約0.3mm〜1.0mm程度である。従来の断熱材である変性PPE樹脂の熱伝導率は、0.17W/mkである。この変性PPE樹脂を1.0mmの隙間に使用した場合、実験結果から類焼が確認されている。類焼させないためには、断熱材100として、0.20W/mk以下の熱伝導率が必要となる。   The gap between the battery cells 106 is about 0.3 mm to 1.0 mm due to the miniaturization of the vehicle-mounted battery. The thermal conductivity of the modified PPE resin, which is a conventional heat insulating material, is 0.17 W / mk. When this modified PPE resin is used in a gap of 1.0 mm, it is confirmed from the experimental results. In order not to perform the firing, the heat insulating material 100 needs to have a thermal conductivity of 0.20 W / mk or less.

<実施例1>
図6に実施例を示す。電池セル106間に断熱材100を配置している。この場合、樹脂支柱104の長さは、断熱材100の複合層101の厚みより短い方がよい。樹脂支柱104の長さが、断熱材100の複合層101の厚みと同じか、長いと、断熱材100の表面にでて、熱伝導し、熱伝導特性が悪くなる可能性がある。
<Example 1>
FIG. 6 shows an embodiment. A heat insulating material 100 is disposed between the battery cells 106. In this case, the length of the resin column 104 is preferably shorter than the thickness of the composite layer 101 of the heat insulating material 100. If the length of the resin strut 104 is the same as or longer than the thickness of the composite layer 101 of the heat insulating material 100, the resin strut 104 is exposed to the surface of the heat insulating material 100, and heat conduction characteristics may deteriorate.

樹脂支柱104の一部は、ラミネートフィルム105と接触し、もう片方は、電池セル106の膨張などにより電池セル106間の距離が減少した場合に、ラミネートフィルム105に接触することが望ましい。   It is desirable that a part of the resin column 104 is in contact with the laminate film 105 and the other is in contact with the laminate film 105 when the distance between the battery cells 106 is reduced due to expansion of the battery cell 106 or the like.

したがって、樹脂支柱104の長さは、複合層101の厚みより短いのがよい。ただし、複合層101の厚みの70%以上が望ましい。   Therefore, the length of the resin column 104 is preferably shorter than the thickness of the composite layer 101. However, 70% or more of the thickness of the composite layer 101 is desirable.

すなわち、電池セル106の側面に断熱材100の表面が密着することで断熱特性を効率よく発揮させるためである。   That is, this is because the surface of the heat insulating material 100 is in close contact with the side surface of the battery cell 106 so that the heat insulating properties are efficiently exhibited.

なお、ラミネートフィルム105を使用しない場合は、直接、樹脂支柱104に接触、非接触する。   When the laminate film 105 is not used, the resin support 104 is directly contacted or not contacted.

樹脂支柱104の挿入は、図7(a)、図7(b)に示すように、複合層101に対して、片側もしくは両側からでもよい。図7(a)に示すように、樹脂支柱104の形状は、先端部に行くほど後部より細くなっており、複合層101に挿入し易い形状であることが望ましい。その形状は、柱状で、円柱状、楕円柱状、四角柱状など複合層101の厚みと外部からの圧縮応力により決定する。また、図7(b)のように両側からの樹脂支柱104は、その形状を両側で変えることが出来る。凹部と凸部とのように、入れ込み型の組み合わせる構造が好ましい。   The resin strut 104 may be inserted from one side or both sides of the composite layer 101 as shown in FIGS. 7 (a) and 7 (b). As shown in FIG. 7A, the shape of the resin support column 104 is thinner than the rear portion as it goes to the tip portion, and it is desirable that the shape is easy to insert into the composite layer 101. The shape is a columnar shape, and is determined by the thickness of the composite layer 101 such as a columnar shape, an elliptical columnar shape, a quadrangular prism shape, and a compressive stress from the outside. Further, as shown in FIG. 7B, the shape of the resin strut 104 from both sides can be changed on both sides. A structure in which the insertion type is combined, such as a concave portion and a convex portion, is preferable.

なお、図7(a)に示す樹脂支柱104を、複合層101の両面から挿入した構造でもよい。一方の面の樹脂支柱104は、第1の樹脂支柱であり、他方の面の樹脂支柱は、第2の樹脂支柱である。   In addition, the structure which inserted the resin support | pillar 104 shown to Fig.7 (a) from both surfaces of the composite layer 101 may be sufficient. The resin support 104 on one surface is a first resin support, and the resin support on the other surface is a second resin support.

圧縮応力の関係から複数本の樹脂支柱104を形成する場合、図8のように上部を連結部107にて連結させることで一度に数本の樹脂支柱104を形成することができる。また、樹脂支柱104の位置を固定しやすい。連結部107の材質はフッ素樹脂、ポリスチレン、ポリプロピレン、ポリエチレンなどの樹脂を用いる。熱伝導率の観点から多孔質樹脂を用いることで更に特性を向上させることができる。連結部107の厚みは、熱伝導をさせないように、樹脂支柱104の形状が保持できるのであれば薄い方がよい。   In the case where a plurality of resin struts 104 are formed from the relationship of compressive stress, a plurality of resin struts 104 can be formed at a time by connecting the upper portions with connecting portions 107 as shown in FIG. Moreover, it is easy to fix the position of the resin column 104. As a material for the connecting portion 107, a resin such as a fluororesin, polystyrene, polypropylene, or polyethylene is used. The characteristics can be further improved by using a porous resin from the viewpoint of thermal conductivity. The thickness of the connecting portion 107 is preferably thin as long as the shape of the resin support column 104 can be maintained so as not to conduct heat.

<実施例2>
図9(a)の多孔質の樹脂支柱104に溶剤を含む接着剤108を含浸させ、繊維102とシリカエアロゲル103の複合層101である断熱材100に挿入する。その後、加熱することで、多孔質の樹脂支柱104から流れ出た接着剤108と複合層101中の繊維102とが接着された構造となる。最終、接着剤108は、樹脂支柱104と複合層101との両方にまたがって位置する。
<Example 2>
The porous resin strut 104 in FIG. 9A is impregnated with an adhesive 108 containing a solvent, and inserted into the heat insulating material 100 that is the composite layer 101 of the fibers 102 and the silica airgel 103. Thereafter, by heating, the adhesive 108 flowing out from the porous resin column 104 and the fibers 102 in the composite layer 101 are bonded. Finally, the adhesive 108 is located across both the resin column 104 and the composite layer 101.

接着剤108は、図9(b)に示すように、あらかじめ複合層101の表面に滴下し、その後多孔質の樹脂支柱104を挿入してもよい。また、接着剤108は熱硬化型が望ましい。   As shown in FIG. 9B, the adhesive 108 may be dropped on the surface of the composite layer 101 in advance, and then the porous resin strut 104 may be inserted. The adhesive 108 is preferably a thermosetting type.

複合層101は、柔軟性があり曲げることができる。多孔質の樹脂支柱104を挿入するのみでは、複合層101を曲げた場合、曲げ時の応力により多孔質の樹脂支柱104が脱落する可能性がある。この実施例では、接着剤108を用いているので脱落を防止できる。   The composite layer 101 is flexible and can be bent. If the composite layer 101 is bent only by inserting the porous resin struts 104, the porous resin struts 104 may fall off due to stress during bending. In this embodiment, since the adhesive 108 is used, it can be prevented from falling off.

<実施例3>
図10に実施形態を示す。多孔質の樹脂支柱104の先端部に、他の樹脂(本体部)より低い融点の樹脂109を使用する構造である。
<Example 3>
FIG. 10 shows an embodiment. This is a structure in which a resin 109 having a melting point lower than that of other resins (main body portions) is used at the tip of the porous resin support column 104.

例えば、耐熱温度が260℃のフッ素樹脂を樹脂支柱104に用いて、先端に融点が110℃のPP(ポリプロピレン)樹脂を低い融点の樹脂109として用いる。複合層101に樹脂支柱104を挿入後、低い融点の樹脂109を加熱ヒータ110で加熱し、樹脂支柱104の先端を溶融させる(図10(a))ことでリベット構造(図10(b))をつくることができる。   For example, a fluororesin having a heat resistant temperature of 260 ° C. is used for the resin support 104 and a PP (polypropylene) resin having a melting point of 110 ° C. is used as the resin 109 having a low melting point at the tip. After inserting the resin strut 104 into the composite layer 101, the resin 109 having a low melting point is heated by the heater 110, and the tip of the resin strut 104 is melted (FIG. 10 (a)), thereby providing a rivet structure (FIG. 10 (b)). Can be made.

つまり、複合層101の表面に平板状部分があり、複合層101の内部に樹脂支柱104の本体が位置する。
この構造により強い曲げ応力を受けた場合での樹脂支柱の落下が抑制できる。この場合、樹脂支柱104は、繊維層とシリカエアロゲル層の複合材の厚みよりも長くすることが必要である。
That is, there is a flat plate portion on the surface of the composite layer 101, and the main body of the resin column 104 is located inside the composite layer 101.
With this structure, the resin support can be prevented from dropping when it receives a strong bending stress. In this case, the resin strut 104 needs to be longer than the thickness of the composite material of the fiber layer and the silica airgel layer.

また、挿入角度は、複合材に対して鉛直方向に加え、角度をつけてもよい。角度をつけることで、熱の伝わる経路が長くなり熱伝導率を低下させることができる。   The insertion angle may be added to the composite material in the vertical direction. By providing an angle, the heat transfer path becomes longer and the thermal conductivity can be lowered.

<断熱材100の製造方法>
断熱材100の製造方法の一例をフローチャート図11に示す。
<The manufacturing method of the heat insulating material 100>
An example of the manufacturing method of the heat insulating material 100 is shown in the flowchart of FIG.

・ 含浸工程
はじめに、繊維(目付け量34g/m、厚み0.6mm、寸法9cm×14cm)に、ゾル液を用いて含浸させる。ゾル液は、高モル珪酸ソーダ(珪酸水溶液、Si濃度14%)に触媒として濃塩酸(12N)を1.4wt%添加し攪拌することにより調合する。
-Impregnation process First, a fiber (weight per unit area 34 g / m 2 , thickness 0.6 mm, dimensions 9 cm × 14 cm) is impregnated using a sol solution. The sol solution is prepared by adding 1.4 wt% of concentrated hydrochloric acid (12N) as a catalyst to high molar sodium silicate (silicic acid aqueous solution, Si concentration 14%) and stirring.

次に、室温23℃で約20分間放置し、ゾルをゲル化させる。このとき、ゲル化を促進し、時間短縮を行うため、ヒーター(約50℃〜130℃)で加熱させてもよい。次に、2軸ロール等を用いて所望の厚みに形成する。
(2)養生工程
次に、容器に、乾燥防止のために純水を注ぎ、80℃の恒温槽に12時間入れて、シラノールの脱水縮合反応を促進することにより、シリカ粒子を成長させ、多孔質構造を形成する。
(3)疎水化工程
次に、ゲルシートを塩酸(6〜12規定)に浸漬後、常温23℃で1時間放置してゲルシートの中に塩酸を取り込む。
Next, the sol is allowed to gel at room temperature 23 ° C. for about 20 minutes. At this time, in order to promote gelation and shorten the time, heating may be performed with a heater (about 50 ° C. to 130 ° C.). Next, it forms in desired thickness using a biaxial roll.
(2) Curing process Next, pure water is poured into the container to prevent drying, and the mixture is placed in a thermostatic bath at 80 ° C. for 12 hours to promote silanol dehydration condensation reaction. Form a quality structure.
(3) Hydrophobization step Next, the gel sheet is immersed in hydrochloric acid (6 to 12 N) and then left at room temperature for 23 hours to take hydrochloric acid into the gel sheet.

次に、ゲルシートを、例えばシリル化剤であるオクタメチルトリシロキサンと2−プロパノール(IPA)の混合液に浸漬させて、55℃の恒温槽に入れて2時間反応さをせる。トリメチルシロキサン結合が形成され始めると、ゲルシートから塩酸が排出され、上層がトリシロキサン、下層が塩酸水に2液分離する。
(4)乾燥工程
次に、ゲルシートを150℃の恒温槽に移して2時間乾燥させることにより、繊維にナノサイズの多孔質構造を有するシリカエアロゲルを坦持させた断熱材100が出来る。
(5)樹脂支柱挿入工程
次に、断熱材100に多孔質樹脂の樹脂支柱104を挿入する。
Next, the gel sheet is immersed in, for example, a mixed solution of octamethyltrisiloxane, which is a silylating agent, and 2-propanol (IPA), placed in a constant temperature bath at 55 ° C., and allowed to react for 2 hours. When the trimethylsiloxane bond starts to form, hydrochloric acid is discharged from the gel sheet, and the upper layer is separated into trisiloxane and the lower layer is separated into hydrochloric acid water.
(4) Drying process Next, the heat insulating material 100 which made the fiber carry the silica airgel which has a nano-sized porous structure by making a gel sheet to a 150 degreeC thermostat and drying for 2 hours is made.
(5) Resin Strut Inserting Step Next, the resin strut 104 made of porous resin is inserted into the heat insulating material 100.

多孔質樹脂は、樹脂中にガスを分散させるなどして樹脂支柱を製作する。樹脂支柱の組成は、フッ素、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリエーテルエーテルケトンなどの樹脂を用いて製作することが出来る。
(6)ラミネート工程
断熱材100の上下面にラミネートフィルム105を貼り付ける。
For porous resin, a resin column is manufactured by dispersing gas in the resin. The resin strut can be manufactured using a resin such as fluorine, polyethylene, polypropylene, polytetrafluoroethylene, or polyetheretherketone.
(6) Lamination process The laminate film 105 is affixed on the upper and lower surfaces of the heat insulating material 100.

<全体を通して>
実施の形態、実施例は組み合わせるこができる。この樹脂支柱は、シリカエアロゲルに限られず、断熱材に広く適用できる。
<Overall>
Embodiments and examples can be combined. This resin support | pillar is not restricted to a silica airgel, It can apply widely to a heat insulating material.

車載用電池の電池セル106間での例を示したが、他の機器にも応用できる。発熱部材間に実施の形態の断熱材を配置し、発熱部材間の熱を遮断できる。   Although the example between the battery cells 106 of the vehicle-mounted battery was shown, it can be applied to other devices. The heat insulating material according to the embodiment can be arranged between the heat generating members to block heat between the heat generating members.

本発明の断熱材は、圧縮応力を分散することで断熱特性を保持できるものであって、広く車載用機器や電子機器内に利用される。情報機器、携帯電話、ディスプレイなど、熱に関わる製品へ応用される。 The heat insulating material of the present invention can retain heat insulating properties by dispersing compressive stress, and is widely used in in-vehicle devices and electronic devices. Applied to products related to heat, such as information equipment, mobile phones, and displays.

100 断熱材
101 複合層
102 繊維
103 シリカエアロゲル
104 樹脂支柱
105 ラミネートフィルム
106 電池セル
107 連結部
108 接着剤
109 低い融点の樹脂
110 加熱ヒータ
201 シリカ1次粒子
202 シリカ2次粒子
203 空隙
DESCRIPTION OF SYMBOLS 100 Heat insulating material 101 Composite layer 102 Fiber 103 Silica airgel 104 Resin support | pillar 105 Laminate film 106 Battery cell 107 Connection part 108 Adhesive 109 Low melting point resin 110 Heater 201 Silica primary particle 202 Silica secondary particle 203 Void

Claims (11)

繊維とシリカエアロゲルとを含む複合層と、
前記複合層中で、厚み方向に配置された樹脂支柱と、を含む断熱材。
A composite layer comprising fibers and silica airgel;
The heat insulating material containing the resin support | pillar arrange | positioned in the thickness direction in the said composite layer.
前記樹脂支柱は、前記複合層の一方の面にその一部が現れている請求項1記載の断熱材。 The heat insulating material according to claim 1, wherein a part of the resin support column appears on one surface of the composite layer. 前記樹脂支柱は複数あり、前記複合層の一方の面にその一部が現れている第1の樹脂支柱と、前記複合層の他方の面にその一部が現れている第2の樹脂支柱と、を含む請求項1または2記載の断熱材。 There are a plurality of the resin struts, a first resin strut whose part appears on one surface of the composite layer, and a second resin strut whose part appears on the other surface of the composite layer; The heat insulating material of Claim 1 or 2 containing. 前記樹脂支柱の長さは、前記複合層の厚みより短い請求項1から3のいずれか1項に記載の断熱材。 The length of the said resin support | pillar is a heat insulating material of any one of Claim 1 to 3 shorter than the thickness of the said composite layer. 複数の前記樹脂支柱は多孔質の樹脂である請求項1から4のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 4, wherein the plurality of resin struts are porous resins. 前記複数の樹脂支柱間を連結する連結部を設けた請求項1から5のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 5, further comprising a connecting portion that connects the plurality of resin struts. 前記樹脂支柱に接着剤を含浸させた請求項1から6のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 6, wherein the resin strut is impregnated with an adhesive. 前記接着剤は、前記樹脂支柱中と前記複合層中とにまたがって存在する請求項7記載の断熱材。 The heat insulating material according to claim 7, wherein the adhesive is present across the resin strut and the composite layer. 前記樹脂支柱は、本体部と先端部とを含み、前記先端部は前記本体部より低い融点である請求項1から8のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 8, wherein the resin strut includes a main body portion and a tip portion, and the tip portion has a melting point lower than that of the main body portion. 前記樹脂支柱は、本体部と先端部とを含み、前記本体部は前記複合層中にあり柱状あり、前記先端部は、前記複合層の表面に位置し平板状である請求項1から9のいずれか1項に記載の断熱材。 10. The resin post according to claim 1, comprising: a main body portion and a tip portion, wherein the main body portion is in a columnar shape in the composite layer, and the tip portion is located on a surface of the composite layer and has a flat plate shape. The heat insulating material of any one. 複数の発熱体間に請求項1〜10のいずれか1項に記載の前記断熱材を配置した機器。 The apparatus which has arrange | positioned the said heat insulating material of any one of Claims 1-10 between several heat generating bodies.
JP2016110600A 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material Active JP6865344B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016110600A JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material
JP2020214482A JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016110600A JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020214482A Division JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2017215014A true JP2017215014A (en) 2017-12-07
JP6865344B2 JP6865344B2 (en) 2021-04-28

Family

ID=60575538

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016110600A Active JP6865344B2 (en) 2016-06-02 2016-06-02 Insulation material and equipment using that insulation material
JP2020214482A Pending JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020214482A Pending JP2021050825A (en) 2016-06-02 2020-12-24 Heat insulating material and apparatus using the same

Country Status (1)

Country Link
JP (2) JP6865344B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111488A1 (en) * 2017-12-08 2019-06-13 住友電気工業株式会社 Coolant and power storage pack using same
JP2020060291A (en) * 2018-10-05 2020-04-16 パナソニックIpマネジメント株式会社 Heat insulation material, manufacturing method thereof, electronic apparatus using it, and automobile
JP2020187870A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Battery cell and battery pack
JP2020187868A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
JP2020187869A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
CN113614983A (en) * 2019-03-27 2021-11-05 三洋电机株式会社 Power supply device and electric vehicle
KR20220145874A (en) 2020-03-06 2022-10-31 니찌아스 카부시키카이샤 Insulation materials for batteries and batteries
WO2023007790A1 (en) * 2021-07-30 2023-02-02 イビデン株式会社 Thermal insulation sheet, method for producing thermal insulation sheet, and battery pack
JP7422739B2 (en) 2019-03-27 2024-01-26 三洋電機株式会社 Power supplies and electric vehicles
WO2024095930A1 (en) * 2022-10-31 2024-05-10 日東電工株式会社 Heat-insulating material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136306B1 (en) * 1968-04-27 1976-10-07
JPS5431079U (en) * 1977-08-04 1979-03-01
JPS54148086A (en) * 1978-05-14 1979-11-19 Nakata Giken Kk Insulating panel
JPS5617250A (en) * 1979-07-24 1981-02-19 Kawasaki Heavy Ind Ltd Foaming resin heat insulating material
JPS63296908A (en) * 1987-05-29 1988-12-05 Tokyo Gas Co Ltd Manufacture of heat insulation panel having high compression strength
JP2011073959A (en) * 2009-09-02 2011-04-14 Nichias Corp Thermal insulation material
JP2012124319A (en) * 2010-12-08 2012-06-28 Jm Energy Corp Power storage device
JP2014035044A (en) * 2012-08-09 2014-02-24 Panasonic Corp Heat insulating material and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945586B4 (en) * 1999-09-23 2005-03-31 Eads Space Transportation Gmbh Use of a thermal protection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136306B1 (en) * 1968-04-27 1976-10-07
JPS5431079U (en) * 1977-08-04 1979-03-01
JPS54148086A (en) * 1978-05-14 1979-11-19 Nakata Giken Kk Insulating panel
JPS5617250A (en) * 1979-07-24 1981-02-19 Kawasaki Heavy Ind Ltd Foaming resin heat insulating material
JPS63296908A (en) * 1987-05-29 1988-12-05 Tokyo Gas Co Ltd Manufacture of heat insulation panel having high compression strength
JP2011073959A (en) * 2009-09-02 2011-04-14 Nichias Corp Thermal insulation material
JP2012124319A (en) * 2010-12-08 2012-06-28 Jm Energy Corp Power storage device
JP2014035044A (en) * 2012-08-09 2014-02-24 Panasonic Corp Heat insulating material and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380946B2 (en) 2017-12-08 2022-07-05 Sumitomo Electric Industries, Ltd. Coolant and power storage pack using same
WO2019111488A1 (en) * 2017-12-08 2019-06-13 住友電気工業株式会社 Coolant and power storage pack using same
JP2020060291A (en) * 2018-10-05 2020-04-16 パナソニックIpマネジメント株式会社 Heat insulation material, manufacturing method thereof, electronic apparatus using it, and automobile
JP7352769B2 (en) 2018-10-05 2023-09-29 パナソニックIpマネジメント株式会社 Insulating materials, their manufacturing methods, and electronic devices and automobiles using them
JP7422739B2 (en) 2019-03-27 2024-01-26 三洋電機株式会社 Power supplies and electric vehicles
CN113614983A (en) * 2019-03-27 2021-11-05 三洋电机株式会社 Power supply device and electric vehicle
JP2020187868A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
JP7303017B2 (en) 2019-05-10 2023-07-04 イビデン株式会社 Battery cells and assembled batteries
JP7332332B2 (en) 2019-05-10 2023-08-23 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7332333B2 (en) 2019-05-10 2023-08-23 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP2020187869A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
JP2020187870A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Battery cell and battery pack
KR20220145874A (en) 2020-03-06 2022-10-31 니찌아스 카부시키카이샤 Insulation materials for batteries and batteries
WO2023007790A1 (en) * 2021-07-30 2023-02-02 イビデン株式会社 Thermal insulation sheet, method for producing thermal insulation sheet, and battery pack
WO2024095930A1 (en) * 2022-10-31 2024-05-10 日東電工株式会社 Heat-insulating material

Also Published As

Publication number Publication date
JP6865344B2 (en) 2021-04-28
JP2021050825A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6865344B2 (en) Insulation material and equipment using that insulation material
JP2018204708A (en) Heat insulation material, heat generation unit using the same and battery unit
US10923787B2 (en) Heat insulation sheet, method for producing same, and secondary battery in which same is used
JP6361022B2 (en) Composite sheet
JP7088892B2 (en) Insulation sheet for assembled battery and assembled battery
CN109177365B (en) Heat insulation sheet, electronic device using same and manufacturing method of heat insulation sheet
JP6771195B2 (en) Insulation material and equipment using it and manufacturing method of insulation material
US9707737B2 (en) Composite material and electronic apparatus
JP6600808B2 (en) Insulating material, manufacturing method thereof, and electronic equipment using the insulating material
CN107078231A (en) Passive isolated material
JPWO2011121901A1 (en) Battery pack
CN108884960B (en) Heat insulating sheet and method for producing same
US11384892B2 (en) Heat insulation sheet, heat insulation body using same, and production method therefor
JP7065412B2 (en) Insulation sheet and its manufacturing method, as well as electronic devices and battery units
JP6998504B2 (en) Insulation material and equipment using the insulation material
CN111052433A (en) Battery cell and battery pack using same
CN107640955B (en) Heat insulating material and method for producing same
CN111712666B (en) Heat insulator and method for manufacturing same
JP6550599B2 (en) Composite sheet
WO2021054110A1 (en) Heat insulation sheet for battery pack, and battery pack
JP7462134B2 (en) Heat insulating sheet and secondary battery using same
JP7382547B2 (en) Heat insulation sheets and electronic devices and battery units using the heat insulation sheets
JP2021190396A (en) Battery pack
CN118231844A (en) Reinforced battery thermal barrier and method
CN118054136A (en) Heat insulation and conduction structure and method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6865344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151